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Six experiments •. re conducted in the Semiscale Mod-3 system to

investigate the effect of primary coolant pump operation on

thermal-hydraulic behavior during a small break loss-of-coolant accident

(LOCA). The impetus for these experiments stemmed from licensing concerns

based on analyses conducted as a result of the accident at the

Three Mile Island nuclear power plant. PWR vendor computer code analyses

predicted that continued pump operation might cause more severe coolant

depletion, thereby jeopardizing core coolability if the pumps had to be

shut down at some intermediate point during the LOCA.

The Semiscale experiments were designed to evaluate the effect of pump

operation on primary coolant mass inventory and distribution. Three cold

leg break and three hot leg break experiments were conducted. The break

size simulated was 2.5% (of cold leg pipe flow area), representing a

circular opening in the side of a PWR pipe of approximately 11 cm. For

each of the experiments, emergency core coolant (ECC) was injected into the

cold legs at scaled flowrates corresponding to the availability of a single

high pressure injection system train. The accumulators and low pressure

injection system were not used in these experiments so as to improve the

experimental determination of coolant inventory. A condenser and weigh

tank arrangement was connected downstream of the break to provide an

accurate measurement of break discharge. Three different pump operation

scenarios were imposed for both the cold and hot leg bre?ik cases; pump trip

at scram, delayed trip, and continuous pump operation.

For the cold leg break, early pump trip caused greater primary coolant

system mass depletion than observed in either the continuous pump operation

or delayed trip cases. The difference in minimum transient coolant

inventory was small, however, amounting to a difference of only 8% between
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the early trip and continuous pump operation cases. It was found that

early pump trip caused highly subcooled ECC liquid to pool in the vicinity

of the break, resulting in a greater break discharge rate early in the

transient. Pump operation tended to homogenize primary coolant, thereby

resulting in less cold leg fluid subcooling. Approximately 350 s into the

transients, break flow was higher with the pumps running, but not to the

extent that the difference which developed early in the transient was

reversed.

The system hydraulic behavior for the hot leg break experiments was

similar. When the coolant pumps were left running, higher density fluid

was delivered to the hot portions of the system (hot legs, core, and upper

vessel regions). However, because the break was located in the hot leg,

more mass was lost out the break when the pumps were left running than when

the pumps were tripped early. This led to greater system mass depletion

when the pumps were left on. The minimum coolant inventory was

approximately 27% lower in the pumps-running case than in the early pump

trip case.

Continuous pump operation in both the cold leg and hot leg break cases

caused a greater percentage of system coolant to reside in the vessel,

since the pumps continued to deliver liquid. Moreover, in the delayed pump

trip experiments, liquid stored in the hot legs drained into the vessel

when the pumps were tripped, thus augmenting vessel inventory.

Consequently, delayed pump trip actually proved beneficial in Semiscale.

RELAP4/M0D7 computer code calculations correctly predicted the

differential effect the pump operation had in the hot and cold leg break

cases. However, the computer code failed to adequately predict several

hydraulic aspects of these transients, notably fluid density in the hot

legs where the existence of countercurrent flow was evident.

In summary, these experiments have provided useful data that will

contribute toward an ultimate resolution of the pump operation issue.

Effects of scale preclude a direct extrapolation of these results to
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expect ' behavior in a full-size PWR. Nevertheless, the results have

uncovered effects heretofore not considered in previous analyses and

furthermore suggest that the differential system response caused by pump

operation may be situational dependent. In addition, the data are

providing a basis for refining computer code models so that more accurate

predictions of PWR response under various scenarios are possible.
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TEST OBJECTIVES

ASSIST IN THE RESOLUTION OF

NUREG-0623 ISSUES:

• DETERMINE THE DIFFERENTIAL
RESPONSE CAUSED BY CONTINUOUS
PUMP OPERATION VERSUS EARLY
PUMP TRIP DURING A SMALL BREAK

• PROVIDE RELEVANT INTEGRAL
SYSTEM DATA TO ENABLE ASSESSMENT
OF COMPUTER CODES
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TEST MATRIX
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FLUID SUBCOOLING IN BROKEN COLD LEG
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DIFFERENCE IN SYSTEM COOLANT
„ MASS CAUSED BY PUMP OPERATION *
v> n.? . , ,

0.1

£ 0.0

Q
bJ

-0.1

-0.2

cc
i-0.3

COLD LEG BREAK

I

*' * HOT LEG BREAK

*•-...

NORMALIZED MASS WITH PUMPS ON
MINUS NORMALIZED MASS WITH PUMPS OFF

500 1G00

TIME AFTER RUPTURE (s)
1500

GHJ-12

! I



200

150

O>

100

50

CALCULATED AND MEASURED
TOTAL SYSTEM MASS

TEST S-SB-P1
RELAP4 CALCULATION

200 400 600 800 1000 1200

TIME AFTER RUPTURE (s)



SUBCOOLING IN THE BROKEN LOOP COLD LEG

-50

II
GO
ZD
V)

< -150

TEST S-SB-P1
RELAP4 CALCULATION

100 200

TIME AFTER RUPTURE (s)
300

GHJ-14



800

CALCULATED DENSITY IN BROKEN
LOOP HOT LEG

600

400

in

LU 200

TEST S-SB-P3
TEST S-SB-P4

500 1000 1500

TIME AFTER RUPTURE (s)
2000

GHJ-15



10 0.2

0.1

a:

DIFFERENCE IN SYSTEM COOLANT MASS
CAUSED BY PUMP OPERATION *

J

u.

Q
UJ
N

2
o

-0.1

-0.2

-0.3

COLD LEG BREAK CALCULATED

S; COLD LEG BREAK MEASURED

HOT LEG BREAK MEASURED

•NORMALIZED MASS WITH "UMPS ON MINUS
NORMALIZED MASS WITH t I P S OFT

HOT LEG BREAK CALCULATED

500 1000
TIME AFTER RUPTURE (s)

1500

G H J - 1 6



I •

CONCLUSIONS

CONTINUED PUMP OPERATION INFLUENCES
BREAK DISCHARGE

- LESS MASS DEPLETION FOR COLD LEG BREAK

- GREATER MASS DEPLETION FOR HOT LEG
BREAK

PUMP OPERATION CAUSES COOLANT
REDISTRIBUTION FROM COLD TO HOT
PORTIONS OF SYSTEM
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CONCLUSIONS (CONT'D)

• HOT LEG BREAK LESS SEVERE THAN \
COLD LEG BREAK

• RELAP4 CODE CORRECTLY PREDICTS \
DIFFERENTIAL TRENDS CAUSED BY
PUMP OPERATION j

i

• OVERALL RESULTS SUGGEST SENSITIVITY
TO ASSUMED BREAK CONFIGURATION |i
AND SCENARIO
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