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Six experiments . re conducted in the Semiscale Mod-3 system to
investigate the effect of primary coolant pump operation on
thermal-hydraulic behavior during a small break loss-of-coolant accident
(LOCA). The impetus for these experiments stemmed from licensing concerns
based on analyses conducted as a result of the accident at the
Three Mile Island nuclear power plant. PWR vendor computer code analyses
predicted that continued pump operation might cause more severe coolant
depletion, thereby jeopardizing core coglability if the pumps had to be
shut down at some intermediate point during the LOCA.

The Semiscale experiments were designed to evaluate the effect of pump
operation on primary coolant mass inventory and distribution. Three cold
leg break and three hot leg break experiments were conducted. The break
size simulated was 2.5% (of cold leg pipe flow area), representing a
circular opening in the side of a PWR pipe of approximately 11 cm. For
each of the experiments, emergency core coolant (ECC) was injected into the
cold legs at scaled flowrates corresponding to the availability of a single
high pressure injection system train. The accumulators and low pressure
injection system were not used in these experiments so as to improve the
experimental determination of cvolant inventory. A condenser and weigh
tank arrangement was connected downstream of the break to provide an
accurate measurement of break discharge. Three different pump operation
scenarios were imposed for both the cold and hot leg break cases; pump trip
at scram, delayed trip, and continuous pump operation.

For the cold leg break, early pump trip caused greater primary coolant
system mass depletion than observed in either the continuous pump operation

or delayed trip cases. The difference in minimum transient coolant
inventory was small, however, amounting to a difference of only 8% between
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the early trip and continuous pump operation cases. It was found that
early pump trip caused highly subcooled ECC liquid to pool in the vicinity
of the break, resulting in a greater break discharge rate early in the
transient. Pump operation tended to homogenize primary coolant, thereby
resulting in less cold leg fluid subcooling. Approximately 350 s into the
transients, break flow was higher with the pumps running, but not to the
extent that the difference which developed early in the transient was
reversed.

The system hydraulic behavior for the hot leg break experiments was
similar. When the coolant pumps were left running, higher density fluid
was delivered to the hot portions of the system (hbt legs, core, and upper
vessel regions). However, because the break was located in the hot Teg,
more mass was lost out the break when the pumps were left running than when
the pumps were tripped early. This led to greater system mass depletion
when the pumps were left on. The minimum coolant inventory was
approximately 27% lower in the pumps-running case than in the early pump
trip case.

Continuous pump operation in both the cold leg and hot leg break cases
caused a greater percentage of system coolant to reside in the vessel,
since the pumps continued to deliver liquid. Moreover, in the deldyed pump
trip experiments, liguid stored in the hot legs drained into the vessel
when the pumps were tripped, thus augmenting vessel inventory.
Consequent 1y, delayed pump trip actually proved beneficial in Semiscale.

RELAP4/M0D7 computer code calculations correctly predicted the
differential effect the pump operation had in the hot and cold leg break
cases. However, the computer code failed to adequately predict several
hydraulic aspects of these transients, notably fluid density in the hot
legs where the existence of countercurrent flow was evident.

In summary, these experiments have provided useful data that will

contribute toward an ultimate resolution of the pump operation issue.
Effects of scale preclude a direct extrapolation of these results to
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expec. ~ behavior in a full-size PWR. Nevertheless, the results have
uncovereu effects heretofore not considered in previous analyses and
furthermore suggest that the differential system response caused by pump

operation may be situational dependent. In addition, the data are
providing a basis for refining computer code models so that more accurate

predictions of PWR response under various scenarios are possible.
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TEST OBJECTIVES

ASSIST IN THE RESOLUTION OF

NUREG-0623 ISSUES:

e DETERMINE THE DIFFERENTIAL
RESPONSE CAUSED BY CONTINUOUS
PUMP OPERATION VERSUS EARLY
PUMP TRIP DURING A SMALL BREAK

« PROVIDE RELEVANT INTEGRAL

SYSTEM DATA TO ENABLE ASSESSMENT
OF COMPUTER CODES
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SUBCOOLING IN THE BROKEN LOOP COLD LEG
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CONCLUSIONS

e CONTINUED PUMP OPERATION INFLUENCES
BREAK DISCHARGE

- LESS MASS DEPLETION FOR COLD LEG BREAK

- GREATER MASS DEPLETION FOR HOT LEG
BREAK

e PUMP OPERATION CAUSES COOLANT

REDISTRIBUTION FROM COLD TO HOT
PORTIONS OF SYSTEM
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CONCLUSIONS (CONT'D)

e HOT LEG BREAK LESS SEVERE THAN
COLD LEG BREAK

e RELAP4 CODE CORRECTLY PREDICTS
DIFFERENTIAL TRENDS CAUSED BY
PUMP OPERATION

e OVERALL RESULTS SUGGEST SENSITIVITY

TO ASSUMED BREAK CONFIGURATION
AND SCENARIO
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