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‘Abstract
of
Models of Slow Intergranular Void

Growth due to Void Surface and
Grain Boundary Self-Diffusion

by
Keith Isamu KagaQa.
Brown University, 13976

Iptergfanular void growth at elevated temperature is studied here in
cases for which the shape of the void is determined by vdid surface diffu-
sion and growth occurs by diffusion from the void tip and along the grain
boundary. Equations governing the void shape are linearized and this
linearization shown nbt to lead to gross erfors in light of the large dif-
ferences in the reported values of diffusion coefficients. A similarity

Asdlutibn for void shape is derived, and assuming.growth in a particular

manner, the similarity shape is shown to be determined by the choice of

ofe

aav/Qv" where a is the‘void half-length, v 1is the speed of propaga-

tion of the void tip, Q 1is the atomic volume, and v* is a temperature
dependent. material parameter. An iterative soluEion for void shape which
depends on asvlﬂv* is derived also.

By assuming the grain boundary flux to be distributed in such a manner
thét the grains separate as rigid bodies, the similarity and iterative shapes
are linked to the applied stress, and the resulting growfh models compared to
the limiting cases of equilibrium and crack-like growth. The compaﬁison indi-
cates that void growth can be represented by a two-part solution where either

. . 3 , =
the linearized equilibrium or the similarity model applies for small a v/uv

and the crack-like model applies for larger 'a3v/ﬂv" .



vi
4
t
An Appendix presents an analysis of relaxation times associated with a

variety of diffusion mechanisms which are useful in determining the dominant

mechanisms of matter transport.



1. Introduction

Structures and machine elements operated under conditions of high

' temperature and sustained loading often fail by excessive time-dependent

" deformation or the fracture that follows, even when the stresses involved are

far below the "yield" stress of the material. In laboratory SPecimens testad

| under fhese conditions (témperature significantly above room temperature but
below the melting temperature and tensile loadiné considerably below yiéld

".stress), voids have been observed to form preferentially on grain boundaries
1 §ér§endiéuiar fo the tensile axis [1-3], suggesting that grain boundary void

'.; nucleation and growth play a major role in fracture at high temperature.

Sintering, the shrinking of existing voids at high temperature and
under sustained compressive loading, is well known in powder metallurgy and

is attributed to the diffusion of atoms'by four main mechanisms: vapor

"evaporation and condensation, self-diffusion along free surfaces, self-

diffusion along grain boundaries, and bulk diffusion through the lattice of

the crystal. A general view is giVen by Ashby [4] who has made estimates

of the contribution of each mechanism in relation to sintering in powder
cohpacts.
It is reasonable to expect then, that the growth of voids through dif-

fusion should play a major role in high-temperature fracture. Voids on the

- grain boundary can be nucleated at junctions of grains and at grain boundary-

inclusion interfaces through an accumulation of vacancies. Once nucleated,
these voids can grow by diffusion from the cavity tip and along the grain
boundary, or by bulk diffusion from the surface of the void to the grain

boundaries until the ligament is sufficiently reduced for' fracture to occur.




Numerous studies of the growth of voids on a planar grain boundary per-
pendicular to the appiied stress have been made. Hull and Rimmer [2] ‘and
Speight and Harris [5] estimated the time to rupfure of a material with an
array of spherical voids located on a planér grain boundary and in -which
atoms were transported from the surface of the cavity along the graip inter—
face. A correction to the model was made by Weertman [6], who considered the
appropriate boundary condition to be one of zero vacancy flux on the grain
boundary at the midpoint between voids. Vitovec [7] then estimated the strain
rate while taking into account the change in stress acting across the grain
boundary due to changes in the ligament size.

Recently, Raj and Ashby [8] have'done a study of void growth.and nucle-
"ation taking into account grain boundary sliding7

All the above have assumed that surface diffusion is sufficiently active
to assure that the voids retain shapes made up of spherical segments. This
condition'may not always hold and has led Chuang and Rice [9,10] to study
the problem of a long, crack-like cavity located on a ﬁlanar grain boﬁndany
whose shape and rate of growth (measured és tip velocity) are governed by,the
chemical potential at the surface and grain boundary. The grains themselves
are assumed to be elastic and isotropic. The study indicates that below some
critical growth velocity an adequate model of void growth cﬁn be constructed
by assuming the grain boundary flux such that the grains separate as rigid
bodies.

The present study examines 2-dimensional models of void growth that
span the gap between the constant-curvatqre{.Hull-Rimmgr type éf void and the
long, crack-like .cavity.of Chuang and Rice. The material is considered
to be isotropic and homogeneous and the continuum viewpoint will be maintained

(lengths of interest are large compared to atomic dimensions). Voids are




assumed to have. been nucleated and only their growth is studied here.

A similarity solution in which shape and velocity are determined by the
~ choice of one parameter isAobtained along with an itefative solution in which
void shape is also a function of the same parameter. Both are compared to
the constant-curvature .and long, crack-like void shapes.

For a_ténsile load appliedAperpendicular to.the grain boundary, the
Iassumption of rigid grains is then shown to impbse.the<conditions necessary
for determination of the void shape and rate of groﬁth.through the chemical
pofential and atom flux evaluated at the void tip. The models are then com-
‘'pared to the Hull-Rimmer (H-R) typé and Chuang-Rice (C-R) models of void
‘ growth. |
Although only two-dimensional models are considered here, a similar anal-

ysis can be carried out for the axisymmetric case.



2. Discussion of the Chemical Potential

Diffusion analyses usually do not consider nonhomogeneous stress fields
as contributing to the chemical potential for diffusion, and thus the driving
force is often expressed in terms of concentrations of the diffusing species.
But, for those problems in which significant stress fields are present, it is
necessary to include fluxes due to the nonhomogeneous stress field and it
becomes convenient to express the flux J as prdportional to the gradient of
the chemical potential of the species.

Consider a crystal at constant temperature T and subjected to a con-
stant macroscopic pressure Po .‘ The atom flux due to self-diffusion is given

by the expression
J= - == - (2.1)

where D 1is a diffusion coefficient,  is the atomic volume, k is
Boltzmann's constant, and u is the chemical potential defined as the work
required to reversibly add an atom to the stressed crystal (as an interstitial
or in a vacancy), and is referred to an unstressed reference érystal at T and
P .
o

Stevens, Dutton, and Puls [11] have shown that assuming local equilibrium

between vacancies, divacancies, and interstitials allows the driving potential

¥ to be expressed as

BEou, - My (2.2)

is the chemical potential of an atom on a lattice site and u is

he
where u v

A
is the chemical potential of a vacancy.
To determine the chemical potential for self-diffusion, consider a very

large crystal held rigidly at a large distance from its surface and with a.




>normal traction on applied at the surface. The chemical potential at the
interface is My since the surface can be considered a sink for vacancies.
Assuming the concentration of defects just below the surface to be in equi-

- librium with the surface allows the calculation of up, . It can be shown

A
[12,13] that to the first order in stress,

_ . 1 1y -
W= oM Qon (pl + p2)YSQ (2.3)

where ué is the chemical potential of the reference crystal, Py and pé
are the radii of curvature of the surface (with the center of curvature taken
outside the crystal), and g is the surface energy.
Assuming fhe concentration of defects to be constant with respect to
time, conservation of mass dictates that within the crystal,
Vg =0, | ' : o (2.4)
or combining eqns. (2.1) and (2.4),

“u=o0. : (2.5)

If the value of u can be determined at the bouﬁdariés of the crystal, the
evaluation of the atom fluxes in the interior reduces to finding a solution
to Laplace's equation with the appropriatg boundary conditions given by
eqn. (2.3) |
Equation (2.3) will be used extensively in the fbllowing chapters to

describe the chemical potential on the void surface and on the grain boundary.

~



3. The Shape of a Void on a Grain Boundary

Changes in the shape of a void located on a grain boundary can be accom-
plished by self-diffusion along the surface of the cavity, by bulk diffusion
through the lattice, and by evaporation and condensation. It is expected
that at temperatures significéntly below the melting poinf of the material it
should-be more difficult to move an atom (or a vacancy) through the lattice
than along a free surface, and thus lattice diffusion should be negligible
compared to surface diffusion [14]. However, as the temperature approaches
the melting'point, lattice diffusion should contribute a significant part to
the total atom flux.

In order to know the conditions under which surface diffusion is the
dominant mechanism in determing the shape of the void, it is useful to com-~
pare the characteristic relaxation time of a free surface with periodic cur-
vature when the atom flux is due to lattice diffusion and when it is due to
surface diffusion.v If Ts , the characteristic time for surface diffusion,
and 12 > the characteristic time for lattice diffusion, are such that
Ts/TL < .1 , it can be expected that surface fluxes will be the more sig-
nificant part of matter transport. Characteristic wavelengths for Ts/Tl = .1
of some common metals at .5 Tm and .8 Tm are given in Table‘I and are
seen to be of the same order of magnitude as observed inter-void spacings,
leading one to assume that lattice.diffusion can. usually be neglected in the
determination of void shape. (See Appendix for a more complete discussion
and the derivation of characteristic times.)

In a similar manner, the contribution to matter'transport from surface

diffusion and from evaporation-condensation can be compared. Table I gives

the characteristic wavelengths for rs/rv = .1 of some common metals at




.5 Tm and .8 Tm , where Té and T, are the characteristic times for
surface diffusion and evaporation-condensation respectively. Since the wave-
lengths are of the same order of magnitude as the observed inter-void spacing,
surface diffusion can:reasonably be assumed to be the dominant mechanism
involved in determining the shape of voids.

The problem to be studied here is one of a void whose shape is altered
by diffusion along its surface and in which matter is removed only from the
void tip by grain boundary aiffusion. In the hope of determining shapes
between the extremes of 'the constant curvature and long, crack-like voids, a
linearized governing eduation is derived and two methods of solution are
explored. The first leads to a‘similarity solution in which void shape is
determined by fixing a dimensionless paraﬁeter and the second is an iterative
scheme based on the constant curvature, equilibrium shape.

A short derivation of the limiting cases (correéponding to very slow and
very rapid growth) will also be given to provide a basis for comparison and
evaluation of the two solutions for void shape.

Expressions for curvature and flux at the void tip will also be derived
and will be shown in the next section to be the link between the prablem of
determining the shape of the void and that of-its'growth due to an applied
stresg.

3.1. Derivation of the Linearized Governing Equation

For void spacings much smaller than the g?ain'diameter, the grain can be
modelled as a very large solid held rigidly at a distance from the surface
that is large compared to the void length. ‘The grain boundary void can be
represented as a symhetric, cylindrical gavity on the surface of the solid

described by y(x,t) with the coordinate system fixed at the center of the

‘void as in Figure 3.1.



The void tip angle ¢ - is assumed to be constant for all time and is
determined by the usual surface energy considerations,

. Y. ‘
cos ¢ = = » (3.1)

2Ys

where Yo and Yb are the energies for a free surface and a grain boundary

respectively.

Assuming the cavity shape to be governed only by surface diffusion sig-

nificant to some depth Gs (usually taken to be 91/3), the surface flux is
given by
o Dsas du N T '
. atoms, . . .
where Js .is the surface flux (;rgzz), Ds is the surface diffusion co-

efficient, and 3s is an increment of length along the surface.

Conservation of mass requires

'aJs v
ey S (3.3)

where 'vh 'is the normal velocity of the void surface, and, combining

eqns. (3.2) and (3.3),

32u vﬁkT .
——-2 + D 6 =0 - (3.“)
9s s s

Since the void surface is traction free, and since « = - %-,'eqn; (2.3)

requires‘fhe chemical potential to be proportional to the curvature K-

u = Q?sm . (3.5)

If the rate of change of void height is considered to be small, that is,

y' << 1 (where the prime denotes differentiation with respect to x ), the

curvature can be expressed as




k=y" . : -(3;6)

and from eqns. (3.4),(3.5), and (3.6), the governing equation can be written

as
a” 1l 3y
L ly=L=9 , S (3.7)
3xu g ot )
Dsfsasa
where 9 = T (In practice, y' is not small for most metals and

this limitation is discussed later.)

" Void symmetry requires that the slope and flux be zero at x = d-
(y'(0,t) =0 and y"(0,t) =0) . Thg othef two boundary conditions are
. obtained by specifying the void length and tip angle (y(a,t) =0 and
y'(a,t) = - V). |

3.2. Limiting Cases

The limiting cases of constant curvaturé and long, crack-like shape are
" discussed here to facilitate later comparison with the similarify and itera-
tive solutions. Both linearized and non-liqearized solhtions are given and'
.compared for each limiting case. v

.3.2.1. Equilibrium Void Shape

If surface diffusion is much more active than grain boundary diffusion

so that the void shape can be assumed to be one of constant curvature

K o= - M‘, (3.8)
a
the void shape is given by
T a - x2 2
y = sIn v | cos ¢ +\ 1 - =5 sin v . ‘ (3.9)
a.
The surface flux at the void tip (Js)t' to be used later in coupling
. ip

void shape to the rigid grain model, can be evaluated by relating the rate of
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change of void volume to the flux at the tip to get

v
() == |2~ - cotw (3.10)
s'tip @ sin2w : )

where v = %% i; the tip velpcity.

The case just,discussed éorresponds tq very slow growth since the assump-
tion of constant curvatﬁre implies that each point on the void surface is in
equilibrium with évery other point oﬁ the surface.

3.2.2. Linearized Equilibrium Void Shape

Under the linearization, constant curvature implies
y" = Constant . (3.11)
After integration and evaluation of the constants, the linearized eQuilibrium

void shape can be shown to be given by

ya x2 '
y=5 ({1~ > (3.12)
a
and the curvature by _
k==Y, ‘ (3.13)
a ' .

Again, relating the rate of change of void volume to the flux at the tip
gives

_l2¢av )
(Js)tip = =a (3.14)

where the volume is evaluated by integrating the void éhape of eqn. (3.12).
Since the curvature and flux at the tip are of primary importance in the
void growth model, the error introduced in the linearization can be estimated
by comparing the tip curvature and flux of the equilibrium and linearized
equilibrium shapes for various tip angles. Figure 3.2 shows - (K)tipa vs. ¥

and Pig. 3.3 shows E(Js)t' Q]/av.vs. ¢ . The linearized e@uilibrium shape
ip : ~
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can be seen to give a reasonable representation of the equilibrium shape for
smaller values of ¢ with larger error as ‘¢ approaches n/2 .

3.2.3. Chuang-Rice Crack-like Shape

Consider a long, cra;k-l;ke void such that it can be described as a

- semi-infinite cavity growing at constant velocity v . Chuang and Rice 9]
have studied the shape of such a cavity without maklng the small angle
llnearlzatlon ‘and have shown the curvature and flux at the void t1p to be

approximated well by the expressions

v l/é '
(K)tip = - ¥2(1 ~ cos ¥) EZJ (3.15)
and | 1/3
2 .
(Js)t’ = v¥2(1 - cos Y) —=——™ (EZ . : (3.18)
. ip

This solution corresponds to the steady-state situation in which the void
is growing so rapidly that matter is removed only f?om the tip of the void and
the surface far away is not affected by the behavior of the tip region.

3.2.4. Linearized Crack-like Shape

A linearized form of the long, crack-like void can be derivedlas follows.
Suppose the void can be modelled as a semi-infinite cavity growing at con-

stant velocity Vv and that void shape is depéndeht‘only on the distance from

the tip,
y(x,t) = g(g) | (3.17)
where: 7 = x - a and a=%+w. Then,
EY. = - .dj. . . !
ot Vi (3.18)

and the linearized governing equation becomes

d'g

v
— . (3.19)

Rls
1
o
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The void shape is found to be

1/3

g3 1/3
g(g) = waﬁ {1 - exp £Q§ﬂ 1} . o (3.20)

From eqns. (3.6) and (3.20), the curvature at the void tip is

3

Y .
SONIEE w(zi) , } . (3.21)

- (
and from egns. (3.2), (3.5), (3.6), and (3.20), the flux at the tip is

1/3
. (DD :
J = L ] 3. 2
cs)tip b= (3.22)

The error introduced in linearization can be estimated by examining the

2,1/3 (Js)ti @
curves in Fig. 3.4 which represent plots of -(x)_. G—J or —=2P
; tip‘v (52v2)l/3

vs § for the C~-R and linearized - crack-like shapes. The linearized shape
is seen to be a gobd approximation to thé C-R shape and together with the
linearized equilibrium shape discussed éarlier, will be useful in the evalu-
ation of the similarity and iterative shépes yet to be derived.

3.3. Similarity Solution

An examination of the void profiles for the linearized equilibrium and
crack-like voids given by eqns..(3.l2) and (3.20) indicates the void shape
to be independehf of the physical dimensions of the void. Solutioﬁs havingA'
this property are known as similarity solutions which are obtained by sub-
stituting particular dimensionless variables into a partial differential
equation, resulting in an ordinary differential equation only in terms of
these dimensionless variables. Consider then, the pair of dimensionless

variables

X
£ = ——7r (3.23a)



and

n (3.23b)

i (Qt)l/“

where n is a function of & only. Differentiation and substitution into
eqn. (3.7) gives a fourth order linear ordinary differential equation in

n(g) and & ,

n .
an _Ledn 1., ‘
m u£d£+un 0. (3.24)
<t '
For a particular choice of § = a » the location of the void tip
(gnt’*

in dimensionless coordiﬁates, the boundary conditions can be shown to be:
n'(0) =0 , n(0)=0 , n(go) =0 , and n'(go) = -y .
A pover series solution of the form

n(g) = ] A€ " | (3.25)
) n=0 : :

can be obtained where the coefficients are given by

n-1

Aney T Ay D (me2) (2e3)(ar ) (3.26)

Because of the symmetry conditions (n'(0) = 0 and n"' (0) = 0)), the

coefficients of the odd power terms must be zero and n can be shown to be

- C 1 .4 1 .8 ~
ﬂ(g) - WBo(l - '9_6— g = 2150u0 g . L] o)

2 1,6 1 10 '

+B, (8" * 55 & *Spoeoso ¢ttt ) (3.27)

where Bo and B, are constants evaluated by fixing a Eo and solving sub-

2
ject to the tip conditions (n(&o) = 0 and n'(&o) = - P).
The void shape given in egn. (3.27) is expressed in dimensionless quan-

tities and hence is not dependent on the actual dimensions of the void but is

determined by the choice of 50 .
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If during growth of the void, the shape changes so that 50 can be
taken to be a constant with respect to time, a relation for tip velocity can

b= obtained by differentiating eqn. (3.23a) to get

a_ v | (3.28)

where v is the void tip velocity, v = da/dt , and v* = /0 = Yénsés/kT .
Thus, the shape can be related to the dimensionless group (as/ﬂj(v/v*) and
allows the comparison of the similarity solution with the linearized constant-
curvature and long, crack-1like lihiting.cases described earlier.

For very small choices of 56‘,'a good approximation to n can be made
by neglecting all but the first two terms of eqn. (3.27), reducing the
expression for n to the same form as eqn; (3.12). Thus,'the Similarify
solution approaches that of the linearized equilibrium void when (aslﬂ)(v/v*)
is chosen to be very small. Thexshapesvpredicted by the similarity solution
for Eo =1, 2 and 3 are compared to the linearized equilibriﬁm shape in
Fig. 3.5..

For somewhat larger choices of Eo , the power series truncated at 4

terms gives an adequate representation of the void shape and the solution

becomes
A 1 .4 2 1 6
n = Ao(l - 36 & ) + A2(£ * 150 £7) (3.29a)
where o
1 4 1 .04 1 8

A = ¢€°(l +,1ﬁﬂa‘€°)/(2 + EGTEO - ggiaa-io) (3.29b)

and
_ 14 14 1 .8 |
A, = - W1 - 52 €)/6 (2 + 45 & - 55120 Bo) (3.29¢)

It will be shown in a later section that the curvature and flux at the

void tip are needed to cohple the shape to the stress applied to the rigid
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| grain model. The curvature of the similarity solution can be obtained by
taking derivatives of eqn. (3.27) with respect to £ and the curvature at
the void tip is

|
| .
| i 1.2 1 .6
8

. - - -
(K)tip T a [Bo( & ~ 380 %0 " ¢ . )
| 1y 1.8
+ 32(2 * ot EmT et 1. (3.30)

From eqns. (3.2), 3.5), (3.6) and (3.27), the flux at the void tip is

2
11714 ’
= ° I T I
YUt T a2 (B¢ - F & " B0 S0 ™ 0 ¢ )
NI AL R S S I (3.31)

2'12 "o ' 8064 o @ °
For large choices of. Eo , numerical error associated with the evaluation
of a sufficient number of terms to assure convergence of the power series

necessitates a different scheme for the solution of eqn. (3.24). The ordinary

differential equation ‘and its associated boundary conditions make up a two
point boundary value problem amenable to solution by methods knoﬁn as two point
shooting techniques [15]. Although more costly to evaluate than the series
solution, the‘shooting'technique is much more accurate for large choices of

Eo .

If the similarity solution is a reasonable representation of void shape,
it should approach the shape of the linearized, c?ack—like cavity given in
eqn. (3.20) as Eo is chosen to be very large (fast growth). Figures 3.5a
and 3.6b compare the shapes predicted by the similarity solution évaluated
using a two point shooting technique to those of the linearized, crack-like
cavity having the corresponding tip velocities given by eqn. (3.28). The

shapes are not alike since choosing a 50 imposes an acceleration and higher
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order time derivatives as weil as a velocity. An examination of d2a/d.t2
reveals a deceleration of the void tip, and it is both the decélefation and
the high velocity associated with large choices of &o that allow~matfer to
be removed from the void tip to form a bulge.

However, it should be‘noted that the tip profiles of the similérity and
the linearized, crack-like shapes are very much.alike and that it is the tip
parameters (nc)tip and (J )tip that will be of importance in the void

growth models discussed later.

3.4, Iterative Solution

In the similarity solution the}assumption that the rate of change of
dimensionless void length, dEo/dt, does not significantly contribute to the
void tip velocity is made in order to incorporate velocity in the determina-
tion of void shape. A different approach can be adopted in which the
velocity enters explicitly in the expression 6f void shape.

The governing partial differential equation as seen earlier is

" .
3y . _ 13y '
ax“ T 3t . ] (3.32)

Assume that y can be represented by a series of functions,
Yy, tY e e (3.33)

where y_ is the linearized constant-curvature shape of eqn. (3.12) and Yn

satisfies

'] y : 3y .
ol L _°n (3.34)

2 e —— ——
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A

Since thg boundary condition for slope at fhé.void tip (y'(a,t) = —‘w)

is satisfied by Yo » the boundary conditions to be satisfied by the other

y, are: yA(O,t) =0 , y;'(o,t) =0 , yn(a,t) =0 , and y'n(a,t) =0 .
The first three such functions are: )
v = ya - 1 (x)'2 i - | . ' .
Yo =5 |+ - 3 ) . | (3.35)
cwall 1o x® 1wt w2 17) [ (5. 35)
Y172 [T %0 ‘a’ "2 'a 120 a 360 QV*J K y
and |
cval_ 1 %10 w5 x® w2 x®
Y2 ° 72 [mluuoo (?  * Ts1w00 (&)~ T8Ine00 3
3570 x)% 593 x)2 2785 ] a7 d%a
1814400 “a 181@00 a 1814400 92 dt'2
cva L2 2 e x® w280 )%
2 1814400 'a 1814400 'a 1814400 'a
. 3 )
25778 ,x,2 . 12u24 | {a’v)? .
- Teiwwoo &) * 1aluuoo] {nv*] - (3.37)

As mentioned in the previous section, a diéadvantage of the similarity
solution is that it imposes a deceleration of the void'tipf It is useful,
“thén, to look at.the iterative solution;for gonstaht velocity. The Y, for
constant v can be straightforwardly obtained By computer_énd are shown in
Fig. 3.7 for aav/QV* =5 and 1, 2, 3, 4, and 5 iterations. The shapes
are seen to oscillate and an examination of the- Yo suggests that for a suf-
ficient number of iterations, the solution y oscillates infinitely for any
value of a3v/9v* chosen.

It now becomes hecessary to determine under what consitions a reasonable
estimate of void shape is given by the iterative solution. Since the itera-

. ‘ % 2
tive shape is dependent on the choice of a3v/Qv,A (a7/§? )Ldza/dtz) , etc.,
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which are the same dimensionless groups found in the similarity solution,
one can compare the two. Figure 3.8 shows tﬁe'similarity solution for
a3v/Qv* = EZ/# = 5, 10, and 20 and the two itération solution, y = Yo t yi + Y,
with the appropriate dimensionless velocity and acceleration groups. Good
agreement between the two'solutions gives some basis for using a tw§ term
iterative solution to represent a.void growing at constant velocity for
a3v/9v* < S . These two iteration, constant velocity void shapes are shown
in Fig. 3.9 for aavlﬂv* =1, 3, 5, and 10. |

The curvatﬁre and surface flux hecessary for coupling the void shape and
the rigid grain model of the next section can be obtained from eqns. (3.2),
(3.5), (3.6), (3.35), (3.56), and (3.37). Evaluation of the resulting ex-

pressions at the void tip for the two iteration solution gives

' 2

(x) - _ ¥ 1+ 1 aav} _ 359 asv}

tip a 5 gy J 14175 |0 * J
(s &% (3.39)

14175 92 dtzj
and 2 2
Gy =¥12 N I 02 IS G-\ T (3.39)
S'tin 02 |3 |eu”] 63 |ouF 315 | 2 . 2|1 ° T
P Qa Qv Qv | g dat

3.5. Discussion

A viable model of void shape should predict growth in an equilibrium
mode for velocities considered in some sense to be small and growth corre-
sponding to the C-R model for larger velocities.

The linearized equilibrium, similarity, iterative, and linearized crack-

. ~ . 3, =

like models of void shape are compared by plotting - (K)tip a/y vs. av/av

in Fig. 3.10 and (Js)t' Qa2/¢22 vs. aavlﬂvn in Fig. 3.11. Curves for the
ip ‘




constant velocity, two iferation model (eqns. (3.38) and (3.39), neglecting
acceleration terms) ére shown, as well as curves for the similarity solution.
(egns. (3.30) and (3.31)) using the first 20 terms in the series soiutionv
for y .

Thelcurves for the similarity solution are in good agreement with those
of the linearized equilibrium model for small choices of aav/Qv* and with
the curves for the linearizea crack-like modgl at larger values, indicating
a smooth_transition from the equilibriuﬁ mode to the steady‘state mode of
void growth at approximately a3v/ﬂv* =5, |

The curves for the two iteration model follow those for the linearized
equilibrium shape closely but do not épproach the behavior of the linearized
crack-1like model, leading one to expect that the iterafion model is only use-
ful in a limited range, a3v/9v* £5.

As noted previously, both the similarity and iterative approaches to void
shape are based on the assumption that y' << 1 (small angle). Table II
shows the tip angles of common metals to range from 1.2 to 1.45 and thus the
small angle assumption cannot be justified a priori. However, as demonstrated
by the comparison of tip curvature and flux for the linearized and non-
linearized limiting cases, the small angle aséumption does not lead to grosas
errors, and since the experimentally determined values of Ds are often not
even in order of magnitude agreement [16], it seems reasonable to make thsa

small angle assumption in order to obtain a simple model of void shape.

g

Void shape has been shown to be determined by the choice of a3v/9v
and in the next chapter the applied sfress will be coupled to the shape
througﬁ the curvature and surface flux evaluated at the void tip. It éhould
be noted, however, that the shape predicted by the similarity solutlion assumsas

a particular manner of growth corresponding to Eo constant.




4, Rigid Grain Models of Void Growth

The growth-of ‘a void-on a grain boundary is accomplished by removing
matter from the void-surface and transporting it to the grain boundary by

diffusion through the grain or by diffusion from the void tip along the grain

boundary. To determine the conditions under which one of the above‘is the
dominant meéhanism of matter transport, a comparison of characteristic times
similar to that of the previous chapter can be made where the characteristic
relaxation times are now for a periodié thickening at the grain interface.
Characteristic wavelengths for Tb/Tl = .1 of séme'common metals- at 'S.Tm
and .8 fﬁ , where 2 and T, are the chafacteristic times due to grain
boundary and lattice diffusion respectively, are given in Table I and are

of the same order of magnitude as the observed void spacing. For this reason,
lattice diffusion is neglected in the models considered here and only the
flux along the grain interface is taken to account for the increase in volume
of the void and the local grain boundary thickening & . (See Appendix for
the derivation of relaxation times and a more complete discussion.)

'As mentioned earlier [10], for void tip velocities less than Vep

where
3 3
vcr = 5.66 Dsds Ql/BE ] (4.1)
% v 8 2 ’
v D, b Ys(l-v )J

(E is Young's modulus, v is Poisson's ratio, Db is the grain.bouﬁdary
coefficient, and 6b is the depth through which.grain boundary diffusién is
considered to act), a model of void growth can be constructed by assuming the
grains to separate as rigid bodies, i.e., the grain boundary thickening 8

is uniform along the grain interface.
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In this section, the relation between applied stress and void growth fof
such a model will be explored. The applied stress will be found to determine
the void shapé through the flux and curvature of the void tip. The similarit&
and iterative shapes obtained earlier will be coupled to theirigid grain model
and compared to the models utilizing the linearized equilibrium and linearized
'créck—like void shapes. |

4.1. The Rigid Grain Assumption

In order to model the growth of void; on a grain boundary perpendicular
to an applied stress, consider a Qery large crystal with a periodic array of
symmetric, cylindrical voids with center to center spacing of 2b and located
on a planar grain boundary as shown in Fig. 4.1. A uniform stress a_ is
applied at a distance large compared to 2b.

Conservation of mass requires

a8

—a—t—= 0 c (‘4.2)

b,
Ix

Ol

where & is the grain boundary thickening and . J, is the grain boundary

b
flux given by

Dp8h am

b = - kT 3% ° (u.3)

J

On the grain boundary, the significant part of the chemical potential
is due to the normal stress transmitted across the grain interface, o -
Equations (2.3), 4.2), (4.3), and the fact that the rigid grain assumption

implies that &6 is not a function of x give

d20
- 2 = Constant . (4.4)
dx

At the point midway between two voids, symmetry requireé the flux to be

zero, or from eqns. (2.3) and (4.3),
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'o;(b -a) =0 . (4.5)

where the prime denotés differentiation with respect to x . The other two
béundary conditions necessary for a solution of eqn. (4.4) are given by o
and dé , the value of the stress and its derivative, respectively, evaluated -
at the void tip.

The resulting expression for 9 is

1 2

= ' - = X .
on‘x) 09.+ oo(x 3 b-a) _ | (4.6)
and the.applied stress is given by
Om = B—J on(x)dx ] (4._7)
' o
_ b-a b-a ",
= —S—-(oo + —5—-00) . : 4 (4.8)

4.2, Void Growth Models

In order to obtain a complete model of void growth, the void profiles
obtained earlier must beAcoupled,to the rigid grain model 6f the previous
section through the values of ¢, and oé . From eqn. (2.3), equating the
chemical potential of the surface and of the grain boundary at the void tip
gives

o = - Ys(K)tip : : (4.9)
where « is the'cﬁf?atufé 6f.the void. |

Also, at the void fip, the surface fluxes must be equal to the grain
boundary flux, ép from eqns. (2.3) and (4.3)

D 4.

: “bb ,
= . 4,10
2(Js)tip T % (4.10)

where J_ is the surface flux.

-3
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The expressions for (x)_. Cand (J)) for the various models of
tip S tip

void shape can now be used through eqns. (4.8), (4.9), and (4.10) to couple

the shape to the applied stress. For .the linearized equilibriwn shape,

eqns. (3.13), (3.14), and (4.8-4.10) give

_ b-a
%% = Vs §

mIH

| 5
51”"“ ’s°s) [ ",] . (4.11)
*3 a2 DbébJ QV-J | |

From eqns. (3.21), (3.22), and (4.8-4.10), the expression for the linear-

ized crack-like shape is

1/3

' 2/3
b-a (1 a3v - 2 b—a-Dsés] aav
R ol e Lt owr (4.12)
: Qv a b bJ v ’
(K)tip ‘and - (J ) . for the similarity solution are given by eqns.
tip

(3.31) and (3.32), respectively, but for a limited range of a v/Qv a four
'term solution for n may be used and from eqns. (3.28), (3. 29a-c), (3.30),

(3.31), and (4.8-4.10), ,
3,2

-
3
b-ajl 1 fa v} 1 fa'v)
" 7's b (a 2[:va uao[mJ
2"1
+b—a Dsds1 8 a3v 1 fav }
2 DbiJ EI P, 135 |o,

.1 K 1 2 |

a Vv av

2+ — [&¥] -, 4 . (4.13)
/{ 10 [QV] §320 [sva }

The two iteration, constant velocity expression from eqns. (3.38),

(3.39), and (4.8-4.10) is




4.3, Discussion

From a practical. viewpoint, it is useful to know the void growth rate as
a function of the applied stress, geometric parameters, and materia;ﬁpfoéer_.
ties, but because of the nature of the similafity and iterative models of
void shape an eipression of growth rate valid for all veloéifies is diffi-‘
cult to 6btain. However, eqns. (4,13) and (4.14), the expressiop$‘for o
of the simiiarity model using only the first foup'terms of the seriés solu-
tion for void shape and.of the two iteratioh model réspectively, can-be‘
expected to be valid over a limited range of aav/ﬂv* and are easily inverted
to obtain bav/Qv* aé a function of Dsés/DbGb » a/b , ‘and owp/wys .

The linearizgd equilibrium, linearized crack—like, 4 term similarity, and
“constant velocity two iteration models afe compared in Fig. 4.2 where
b3v/9v* is plotted against a/b for D ) /D'G =10 and ¢ ble = 10 .,

The similarity and 2 iteration solutions agree with the linearized equilibrium

model for small a/b (corresponding to small a v/Qv ) and predict a critical

void size
. o by-1 o
[.3} (1 + -——] ' (4.15)
b)er vy .

below which void growth does not occur by diffusive mechanisms. Both solu~
tions also approach the behavior of the linearized crack-like solution for

. 3 % . e s cp .
larger a/b (correspondlng‘to larger a v/Qv ) with the similarity solution
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giving a smoother transition from equiiibrium to crack-like growth, approach-
Aing the curve fof the crack-like model at a3v/Qv*:= 5 .

| As discussed in a previous section, the similarity void shape used here.
has acceleration and higher order terms impésed'when the velocity is fixed.
However, due to. the resemblance of the general behavior of tﬁe similarity and
constant velocity, 2 iteration'models of void growth for asv/Qv* =5 ,.
the éimilarity expression can beAused-with some confidence o?er the limited
range.

An adequate representation of void growth can be made by using the
’ linearized'equilibrium-of the similarity model for aav/Qv*‘i 5 and the
cﬁaék—like‘model for a3v/9vf.3 5. .Tﬁe linearized equilibrium model has
the a@vantage of a simple expression for veloéity in terms of applied stress,
geometric parametérs, and material properties, while :the similarity model
gives a smoother transition to the crack-like mode of gréwth.

The behavior of a two part model based on. the similarity and crack-like
'models is shown in‘Figs. 4,3 and 4.4, where b3vlﬂv* vs. a/b 1is plotted for
var;ous values of DSGS/DbGb and owb/¢vs . AS the applied stress is in-
creased, the transition from equilibrium to crack-like growth should occur
at lower values of a/b and is borne out by the curves in Fig. 4.3 where
D%és/Dbéb is held constant and owb/st i;(varied. Also, as Dsés/DbGb
becomes larger the void is expected to remain in an equilibrium growth mode
for larger velocities and the transition regioq is expected to occur at larger
values of a/b . Thisitrend is shown in Fig. 4.4 where omb/wys is held con-
stant as DSGS/DbGb is varied..,Thus, the 2 part model exhibits the behavior

necessary for an adequate model of void: growth.




S, Conclusion

Two dimensional models of grain boundary void growth have been discussed.:
Void shape ﬁas been assumed to be determined by surface diffusion and the
change of void volume has been assumed to be accomplished by diffusion from
the void tip and along the grain boundary. .Equations governing the void
shape have been linearized and the linearization shown not to be a particu-
larly restrictive assumption. Assuming a particular mode ‘of growth, a.
similarity solution has been obtained in which the'void shape is dete;mined
by the choice of a3v/9vﬁ . An iterative solution whose shape. is dependent
on aav/Qv* has Seen derived also.

Assuming rigid grains, the similarity and iterative solutions have been
coupled to the applied stress through the curvature and surface flux at the
void tip. While the determination of the stress necessary for void growth at
a given velocity can be obtained straightforwardly, the inverse problem of
determining void growth when the applied stress is known is not as easily
solved and, finally, voia growth has been déscribed by a two part solution in
which'either the linearized equilibrium or an approximation to the similarity
solution is used for a3v/9v*15 5, and the crack-like model is used for
a3v/Qv*2 5 . The two part model has been shown to exhibit the behavior
expected of a reasonable model of void growth: a minimum véid size for dif-
fusive growth as well as growth iﬁ an equilibrium mode at low velocities
and growth in a steady-state, crack-like mode at larger velocities.

It should be noted that under conditions of large applied stress and low
Dsds/Dbi , estimates of time to rupture based on this model may differ from
those obtaine@ using Hull-Rimmer type models and these differences should be

ezplored as well as void nucleation and the eventual rupture of the material

due to plastic flow in the ligaments.
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Appendix: Characteristic Relaxation Times

In order to determine the conditions under which self-diffusion along
the surface of the void and along the grain boundary are the only significant
mechanisms of mattér transport, it is usefui to compare the characteristic
relaxation time for each mode of trénsport due to a periodic disturbénce.
Mullins [17] has derived characteristic times for a periodic curvature on a
free surface in the two dimensional case and the extension to ‘three dimensions
is given here. The characteristic times for a pgriodic grain boundary thick-
ening, modelled by a pgriodic normal stress on a free surface, are also:
derived here.

A.l. The Free Surface

Consider a semi—infinite,fisotfqpic solid occupying the half space

z 2w , where w 1is a free surface given by : ‘
. 2mx] . 2my
w(x,y,t) =-A(t) exp |i | e |1 T . , (A1)

A(t) 1is taken to be much smaller than both & and L .
From eqn. (2.3), the chemical potential on a free surface is propor-

tional to the curvature and is

_ 2 | A
(u)surface S He T QYs ¢ wlx,y,t) . (42)

where

cfewT e

A.1.1. Relaxation Due to Surface Self-Diffusion

If only surface diffusion is considered active, and then only through

1/

some depth from the surface Gs (usually taken to be Q 3), conservation of

mia3S requires
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a(J > a(J )
s’x s’y
9% 3y

(au)

where (Js)x and (JS)y are surface fluxes in the x and y directions
respectively. Substitution of eqn. (3.2) and eqn. (Al) gives

N
' st DSGS c

A(t) + T A(t) =0, ' (AS)

and the relaxation time is

R N ‘[(251]2‘ : [%jl)"] . (46

A.l.2. Relaxation Due to Lattice Self-Diffusion

For the casé in which only lattice diffusion is active, an estimate of
the relaxation time can be made by assuming the concentration of defects to
be time independent. Then, continuity.requires that . the cﬁemical potential
satisfy Laplace's equat ion'.

It is reasonable to expect that the magnitude of the atom flux tends
to zero at large distances from the surface, leading to the condition that
u' is equal to a constant as z > . Thé expression for - y at the surface
is given by eqn. (A2) and the.determination of the atom flux throughout the
solid reduces to the problem of finding the solutién to Laplace's equation;

given the boundary conditions outlined above. The expression for u is
2
M=M= @y o exp [-cz] w(x,y,t) . (A7)

Conservation of mass at the surface requires
: /
1l ow _ ’
T (J)z (A8)

where (J)z is the flux in the 2z direction, given by

D .
' S Y
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Substitution of eqns. (Al), (A7), and (A9) into eqn. (A8) results in an

ordinary differential equation in A(t) with a characteristic time

« = KT &q"’ + 2m 2 Y (Al0)
G |7 (7B |

A.1.3. Relaxation Due to Evaporatioanondensation

Consider the surface to be in equilibrium with its own vapor at pressure
P . Assuming the vapor to be a perfect gas, P can be found by equating the
chemical potential of the solid and of the vapor at the surface, with both
referred to a common reference crystal, and is given by
py_ Ys¥

in [i"'] = K% ' (A11)

where Po is the vapor pressure over a flat reference crystal and «k is
the curvature of the surface under consideration.

From kinetic theory [18] the flux from the surface can be approximated

by
0-0 = —L0 ] (A12)
°  (2mxm)Y/? '
where Oo is the rate of evapofation from'a flét surface, AP = P - P° s
and m is the mass of a molecule of the material.
| A mass balance at the surfacé requires
—*—@"‘17'2' =: . (A13)
(2mmkT) '
For AP small,
g_iz X _YES; i (A14)

and substituting eqn. (Al) and (Ald4) into (A1l3) results in a first order,




linear ordinary differential equation in A(t) with a characteristic time

1/2,. .3/2 . 5171 '

(2 kT 24y 2 2m 2 .

X, = _"m>P Qg ) ,[(_.ii) SN (A15)
(o] YS ’

A.2. The Grain Boundary

Consider a local grain boundary thickening ¢ and its associated normal

stress distribution on the grain interface o, .produced by placing matter
.selectively on the grain boundary.
4 The grain interface can be modelled as the surface of a semi-infinite

lSOlid occupying z > 0 ° If the solid is isotropic and linear elastic and

the stresses at.the surface are qf the form

- _ . 2WX s 2Ty
o =0, = B(t) exp [1———- 2-:.' exp [1, .L:' : (al62)
and o
o =0 =0, , ‘ (A18b)
vz Xz

the linear elasticity solution [19] gives a grain boundary thickening
§ = - 21V, | (AL7)

'Gc n

1172
2 1k
c = [(_2.9:’&) + (ZLE)J | |  (A18)
1l-v . )

and —E—-B(t) is much smaller than 1 .

From egns. (2.3) and (Al6a), the expression for chemical potential on

where

the surface is

(u)surface =M T Qon * (a19)

A.2.1. Relaxation Due to Grain Boundary Self-Diffusion

If only grain boundary diffusion is assumed to be active, conservation

of mass at the interface requires
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2l + )y s 238 .4 . (A20)
ax 3y Q ot * : o

Substitution of eqns.»(4.3); (AlGa), (A17),'and (A19) into (A20) results in
‘a first order linear ordinary differential equation in B(t) with character-

istic time' | o
| _‘2(1-V) kT | 2n'2 ;2“ 2 -3/2 :
T TG Bea. [(T) + &) ] . . (a21)

A.2.2, Relaxation Due to Lattice Self-DifosiQn'

ﬁow, assume bulk diffﬁéidn and neglect diffusion along the grain boundary.
If the céncentration of defécté'is fime in&ependent, conservation of mass re- -
quires that the chemical potentiai sétisfy'Laplace's equation in the material.
Again, it is reasonable to expect thaf the‘ﬁagnitude of the flux tends td
zero at disténces from the grain boundary that are large compared to £ and
L . The expression for u"at the boundary intefface is given by eqns. (Al6)
and (Al19) and the determin#tion of'the_flux throughout the solid then reduces
to the éolutioﬁ of.Lépl;ce's equatién subjecf to the‘apprdpriate boundary cén—
ditions. The expression for n is.:

p=u -’Qon exp [- cz] : (A22)
Conservation of mass at the interface gives

138 ‘ - | ‘
Saset 1), . - (A23)

Substitution of eqns. (4.3), (Al6a), (A17), and (Al9) into (A23) results in
a first order linear ordinary differential equation in B(t) with character-

istic relaxation time

feian e o emd™
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A.3. Remarks

An estimate of the contribution.tq,thé total atom flux on a frez surféce
due to surface sélf-diffusipn, lattice diffusion, and evaporation—éondensation
gan be made by examining the ratios of the characteristicvrelaxation times for
each mechanism. In the two-dimensional case, taking 2 or L tending to
infinity, eqns. (A6) and (A10) givé

T D .
== : g% ‘ : (A25)

S 2 Dsés

and eqns. (A8) and (Al5) give

T POQ -l-z
1/2 ‘“2n *

(a26)

s
T
v DSGS(2ﬂka)

If rs/rz << 1 and 'ts/'rv << 1 for a given ) , surface diffusion can
be expected to be the dominant mechanism of matter transport for free surface
disturbances of wavelength less than A .

In a similar manner, a cbmparison of grain boundary diffusion and latfice
diffusion can be made. For the two dimensional case, from eqns. (A21) and

(A2u),

T (A27)
T

©
U‘O
o

and, if Tb/Tl << 1 for a given X , grain boundary diffusion can be expected
to be dominant for matter transport near grain boundary disturbances of wave-

length less than A .

The diffusion coefficients are found to obey an empirical law of the

form - ‘ - Jl
D = Do exp [ RTJ (A28)

" where Do is a constant known as the frequency factor, R is the universal

gas constant, Q is an activation energy, and T 1is the absolute temperature.
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Reprecentative values of the diffusion coefficients for some metals
are given in Table I as well as values for Amax » the characteristic wave-
length for the ratios of characteristic time equal to }l; atn.5 Tﬁ and .8 Tm.
In practice, theré are ;arge discrepanciesiin the reported values.of the
coefficients and activation energies for surface and grain boundary‘diffucion
and are usually attributed to.difficulties in mcacurement of appropriate

parameters and impurity effects.




Table

I. Material properties and A
max

“for

T /t, =
s

.1, ts/rv =.,1,

2
and Tb/rR =.,1 at T= .5 Tm and T = .8 Tm .
Cu Ag Zn aFe - YFe Ni
Tm(K)(l) 1356 1234 694 1809 1809 1723
‘Q(m3) x 1029(3) - 1.18 1.71 1.52 1.18 . 1.18 1.10
Atomic weight (kg/kmol)(l) 63.54 107.87 65..37 55.85 55.85 58.71
Dso(mz/sec)(z) 2.0 .25 9.4 x 16'6 10. n 4,2 x 10’2
Qs(kcal/mol) 49,0 41.6 6.17 ‘55,6 49.0 47.7
Dbo(mz/sec)(l)(a) L2 x10% | 22x1070 | 2.5 x 207" | 3. x 107t |1.75 x 10
ob(kcal/mol) 21.5 14.3 40,0 39,0 28,2
_ _ e . _ e ) .
Dzo(m2/sec)(l) 3.3 x 10 S 4.9 x 107° | 3.55 % 107> 1.9 x 1077 1.8 x 10 5 12.59 x 107" ”
; [ ) R (9]
Qi(kcal/moi) '48.3 uy.,5 23.0 57.2. 64,5 69.5 -
At T =.5T
m .

A . -y o 2 . _ -3
Drés/Dbi 8.1 x 10 2.8 % 10 3.1 2.0 1.2 x 10 ™
Po(Pa)(l) 13.8 x 107° 5.3 x 1070 2.6 x 1073 1077 1077 7.4 x 107/
A“ay(um)(b) 5.1 8.8 1.7 x 10* 18, 1.8 x 10" 7.7 x 10

(for 1 /1t = .1
A (um) 1.0 .98 5.8 2.2 x 102 2.8 x 102 26.
‘max

(for TS/TV = .1)

. 3 3 6

A (pm) 5.5 x 10 30. 3.0 4,3 x 10 3.2 x 10
maz

(for Tb/Ti = .1)




Table I. (Continued)

Cu Ag Zn . aFe YFe Ni
At T=.8T
m
D.8_/D,6, .38 3.4 . 80. 1. 8.5 x 1072
P (P, ¢ 6.2x 1072 | 2.9 x 1072 { w1 c2.3x207" [ 2.3x 207 | Bsx1072
(b) : ‘ , 2
max(um)_ 6.3 3.6 ) 1.8 . 13.. 7.0 x 10 65.
(for t© /1, = .1)
s & .
‘ 3 3 .
max(um) | | 8.4 1 8.7 ‘ .89 1.7 x lO_ 1.1 x 10 51.
(for rs/Tv = .,1) .
A Lm) 4,8 . .26 | 8.2.x 10'2‘ 21. - | 3.8 x 10°
(for :b/rz =.1)
References: (1) Smithells, C. J., '"Metals Reference Book," uith ed., Butterworth (1967).
(2) Neumann, G., and Neumann, G. M., "Surface Self-Diffusion of Metals," Diffusion Information
Center (1972)
(3)

"Handbook of Materials Science," ed. C. T. Lynch, CRC Press (1974).
A N , .

(a) Values for 5b =5x10  um .

(b) Calculated assuming Gs = Q .

.—98_
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Table II. Values of Yo Vg

and ¢ for some métals,

Material Yg(g‘—g%) , YS,(_‘eigsz_) ' " - COS-l 5;&
_cm 4 o , — S
Ag 790 ©11u0 1.22
Au 36k - 1wes | 1.45
_.Cu o6 1725 | 1.38
Fe " 780 1950 1,37
Ni 90 1725 1.37
Pt 1000 3000 | 1.40

Data fromP, J. Hirth and J. Lothe, "Theory of Dis-
locations," McGraw-Hill (1968).
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Figure Captions

Coordinate system for void shape..

Comparison of —(K)tipa for equilibrium and linearized equilibrium
void shapes for various tip angles.

Comparison of (Js)tin/av for equilibrium and linearized equilibrium
void shapes for various tip angles.

' : : 2.1/3
Comparison of —(K)tip(_.@/‘»')l/3 or ~(Js)tip9/(59v2) / for the Chuang-

Rice and linearized crack-like void shapes for various tip angles.
Void shapes predicted by the similarity solution for Eo =1, 2, and 3.

Comparison of void shapes predicted by the similarity and linearized

crack-like solutions for (a) Eo = 8 and (b) E‘o = 16 .

Void shapes predicted by the iterative solhtion for constant velocity,

%
v, where (aav/ﬂv') =5 .
Comparison of the two iteration and sihilarity void shapeS'for
(aBV/Qv") = 5, 10, and 20.

Void shapes predicted by the two iteration solution for constant

%
velocity v  where (a3v/9v ) =1, 3, 5, and 10.

&
Plots of (K)tip (a/y) vs. (asvlﬂv ) for the linearized equilibrium,
similarity, constant velocity two iteration, and linearized crack-like
void shapes. v -
Plots of (Js)tip (Qa2/w22) vs. (a3v/9v } for the linearized equilib-
rium, similarity, constant velocity two iteration, and linearized

crack-like void shapes.
Coordinate system for the rigid grain model.

Void growth models using the linearized equilibrium, 4 term similarity,
constant veldcity two iteration, and linearized crack-like void shapes

for (D_8_/D 8. ) =10 and (o b/yy ) = 10 -
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Void growth using a 2 part solutlon (4 term °1mllar1ty and linearized
crack-like) for (DSGS/Dbéb) § 10 and (U,b/¢Y ) = (a) 1, (b) 10,

and (c) 20 . The dashed line indicates transition at (a V/QV) =5
Void growth using a 2 part solution (4 term similarity and linearized

crack-like) for (c /WY ) = 10 and- (D 8 /D 8 ) (a) 2, (b) 10,
and (c¢) 100 . The dashed line " 1nd1cates tran51tlon at (a3v/Qv ) =



LLLLSLS LS LSS s

FIGURE 3.1




0.0

1.3

1.0

—d (K)’flp

- WL~

0.5

inequil.——o

— equil.

FIGURE 3.2

a0

1.5



- 42 -

|
cquil.

o 9
G
,.i% >
:):» fJ

v

O

lin. equil.-
Ot |
OT— — T — I
0.0 0.5 1.0 1.5

FIGURE 3.3




1.5

lin. crack-like ——

(Js)tip 2
(D v¥’s
1.0

)

)
Y,

N Chuang—Rice |

- -(K)fip(
0.5

0.0

00 05 10 5

FIGURE 3.4




yfav

e
S
| -
TSSs —lin. equil.

< =< -
O \\/ |

=2 '
|
o |

£=3

o L : . { 1 |
0.0 02 0.4 0.6 0.8

FIGURE 3.5

0



y/av

O~ T — < | 1 '
0o 02 04 06 o8
FIGURE 3.6 (a) .4 R
S £,=16

e

Q

O
0.0  op 04 0.6

0.2

similarity

lin. crack-like

e e cmm e e —— T T - e —— G G = — . WA e G e — — —— —— — — e —
— —

—
‘h\\
—

1.0

lin. crack-lik

1 R | L

FIGURE 3.6 (b)

1.0

=GR



o
O
. N4 n = number of ifr,eraﬁons
=D > lin. equi
o« ~< D _
S 2 n=2
' 9_ - \\\\ n=1
5) n=3 AN
N | N
n=5
o f ' AP '
0.0 0.2 0.4 0.6 0.8
x/a ‘

" FIGURE 3.7

1.0




06

o
O~

_ 2 'iTer‘aJrionf‘
--- similarity

10

0.0 02

FIGURE 3.8

- Lh—



0.6

- .
a%v - 5
S Qv
L a’v
> _: Qv = 3
- N | '
) O
| O |
@) T
| 0.0 0.2

 FIGURE 39




107

1
—{>
>

 similarity

lin crack—like

-2

lin. cqui’l.

: &L 2 iteration

|
10 10 1

| | Qv
FIGURE 3.10 | |

- 6 -



lin. equil.
el |
§§ lin crack like — o o
o / | similarity
o A
A\ 2 'ti’rcra’rion_' o
» o
S IPR ™ T T L 2 R
107 10 | T sy 10 10 1:O

10°

FIGURE 3.11

- oS -



Y
\
2bi~ . —
T T
. Cw |

FIGURE 4.1



70

- 52 -

0.0

- 2 iteration

lin. equil.

in. crack-like

00 02

G

FIGURE 4.2

T

04 06 08
- a/b o

T ™

Ry



140

similarity

0.0

!
|
!
I
X
3
\
\

: ] ‘

lin. crack-
~like

04

FIGURE 4.3



- 54 -

140

120

similarity

in. crack-like




