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INTRODUCTION

The most important data on short-range effects are produced by

electromagnetic probes, and the central questions relating the three-

nucleon system to fundamental theory concern the role which explicit

quark degrees of freedom should play in the three-nucleon dynamics.

Three-body forces do not necessarily play a pivotal role in these

problems. Requirements of relativistic invariance, however, can be

expected to have an important quantitative Impact on all short-range

properties of the three-nucleon system.

The relativistic dynamics of any quantum system implies the existence

of a unitary representation U(a,A) of translations and Lorentz trans-

formations (Poincare* group). ' The generators Pu of the translations

have the physical significance of energy and momentum. For any system

the unitary representation of the Poincare' group also specifies the

dynamics. For Lagrangian field theories the Lagrangian which spec-

ifies the dynamics also determines the corresponding unitary

representation of the translations and Lorentz transformations. '

The covarlance requirement for currents

U(A)jU(x) U"1(A) - AWvjV(A~1x) (1) ft

as well as the continuity equation

imply consistency conditions which relate the strong-interaction

dynamics to the electromagnetic and weak currents.

One of the most important qualitative features of relativistic quantum o

dynamics stems from the fact that the group structure demands that o

some transformations, other than the tine evolutions, depend on the =>

dynamics.

It Is possible to choose the representation of a kinematic subgroup to



be independent of the dynamics. The choice leads to different "forms

of dynamics" which are unltarily equivalent as far as the observable

consquences are concerned. In the familiar "instant form" the

kinematic subgroup (translations and rotations) leaves the hyperplane

t =x "0 invariant, and the Lorentz boosts are dynamical trans-

formations. In the "front-form" dynamics ' the kinematic subgroup

leaves the light front xsx +X =0 invariant, and the rotations about

any transverse axis are dynamical transformations.

In a Fock-space representation of a Lagrangian field theory, restric-

tion to a finite number of particles always destroys the relativistic

invariance. However relativistic dynamics exists also for finite

numbers of particles, which need not be elementary. * Both the

three-nucleon system and quark models consisting of a finite number of

light quarks are examples. I believe it is important to emphasize the

fact that the need for a relativistic dynamics does not in itself

imply the necessity of describing the system in terms of its ultimate

elementary constituents. Questions concerning the relevant subnucleon

degrees of freedom can and should be separated from questions

concerning the relativistic invariance„

The construction of relativistic quantum particle dynamics is based on

the following observations. The generators of the infinitesimal

dynamical transformations can be obtained as functions of the kin-

ematic generators, the invariant mass operator of the interacting

system and additional operators which may be obtained from the

noninteracting system. In the instant form these additional operators

are the components of the Newton-Wigner position operator, while in

the front form they are the transverse components of the spin.

The front form is particularly convenient because the kinematic

subgroup includes the Lorentz transformations which are important in

the calculation of electromagentic form factors and inelastic

structure functions. In the front form, relativistic quantum particle

dynamics and the Fock-space representation of quantum field theory are

more closely related than in the instant form.

RELATIVISTIC QUANTUM DYNAMICS

The generators of infinitesimal Poincare transformations are the four-

momentum {P ,P}, the angular momentum J, and the Lorentz boosts K.

The generators of the front-form kinematic subgroup are P+=P°+P^, the

transverse component of the momentum ?_, the longitudinal components



of the angular momentum J,, the boosts K^, and

I = 2T + n x JT ; n = {0,0,1} . (3)

The dynamic generators are P~=P -P and the transverse components of

the angular momentum J . The mass operator M is, of course, related

to the four-momentum by

M2 - P+P~ - ?2 • (4)

A bound state must be an eigenfunction of the spin operator I as well

as the mass operator M. The spin is related to the Pauli-Lubanski

vector {W°,W} = {?.l,P°l+?xi£} by

I 3 - W
+/P + ; M?T - iST - fT . (5)

Conversely, if the mass M and the transverse spin t are known, then

the dynamic generators P~ and JT are determined by

P~ - [M2 + ?2]/P+ , (6)

and

Projection of a meson field theory onto the two- or three-nucleon

sector of the Fock space produces an expression for M which is

invariant under the kinematic subgroup, but the projections of the
2

apin components do not commute with M and do not satisfy the correct

commutation relations. Poincare1 invariant dynamical models can be

constructed by assuring that M commutes with the total spin of the

free particles.

The main advantages of the front-form dynamics are:

1. The Hamiltonian H=P~-[M2+?2]/P+ is a linear function of M2. while

the instant form involves the square root relation H=P •VM +? .

2. Since the spectrum of P is non-negative the Fock vacuum and the

physical vacuum of a field theory are the same if admixtures of p+-0

states of massless particles and ultraviolet divergencies at p+-0 are

C U t O f f . . ' • • • • . • , . - . • • . . • • V • : > • ; . . • : • , •

3. The inital and final states |p+,-l/2Q,0> and' \p*ti/2q's<»'of



elastic scattering are related by a kinematic Lorentz transformation,

and form factors can be extracted from the matrix elements of a single

component of the current, j+(0), which is invariant under the

kinematic group,

" 0 ; [J^,j+(O)] - 0 ; [K_,j (0)] - ij (0) . (8)

The main disadvantage is the complicated relation between the spin and

the transverse angular momentum shown in Eq. (7), and the complicated

relations between the spins of subsystems and the total spin. I

believe the advantages outweigh the disadvantages.

TWO-BODY SYSTEMS

Sates I i|>> of a single nucleon are represented by square integrable

functions iKp>u)» where y - ±1/2 is the longitudinal component of the

spin and ps{p ,p_}. States I i|>> of a two-nucleon system are represent-

ed by square integrable functions i|i( p , y ,p. , y~). All the kinematic

generators are additive in the two nucleons. Appropriate internal

variables are

5 - p+/P+ and £T - p 1 T - 5?T , (9)

where P « p.+p.. (1 am using g instead of the usual x for the

momentum fraction in order to avoid possible confusion with space-time

points.)

The mass operator H is given by

2 m + kT 2 , ,
M - , *- + 4mV,_ - M* + 4111V,- , (10)

g(l-g) 12 0 12

and the Hamiltonian is

H - HQ + 4mV12/P
+ , (11)

where the operator V,- is the nucleon-nucleon potential. Lorentz

invarlance requires that Vio commute with P and be independent of P.

Furthermore the dynamics so formulated is Poincare invariant if, and

only if, M commutes with the spin 1. A bound-state wave function

•(Sfk-.iU iM») must be an eigenfunction of N and t . The invariance

of M can be assured in the following manner. Define the longitudinal



component of the internal momentum k as a function of £ and k by

"-y 'V^s^ • < 1 2 >

The spin of the nonlnteracting two-nucleon system can then be

expressed in the form1-"

(13)

where R denotes a Melosh rotation,

(14)

Expressed as a function of the vector k the mass operator M is given

by

M2 - 4(k2+m2+mV12) , (15)

where V,- must commute with the spin (13). Thus the dynamical

equations for the internal coordinates have the same form as in the

nonrelativistic case. The relations of it and P to the individual

nucleon momentua pi and p~ differ, of course, from the nonrelativistic

relations. This difference becomes manifest in three-nucleon systems

as well as in form factors of the deuteron. For slow nucleons we have

the nonrelativistic approximation

p +p. « {p — 2m,P } ; i5-(Pi~Po) " {n*(2E—1) ,k_} . (16)

Larger relativistic effects can be expected in the bound states of

light quarks. As an illustration, consider a toy pion as a bound

state of a spinless quark and antiquark. The complete representation

of the bound state is given by

±) - 5(P-P1) Ke,£T) (17)

(Note that no special reference frame is Involved in this description

of the bound state.) The well-known expression for the charge form

factor12

(18)



follows immediately. The fact that the pion has spin zero imposes a

nontrivlal constraint on the wave function, J

T ^ • (19)

It follows that for large Q and zero quark mass F^Q*) is proportional

to 1/Q2, while the nonrelativistic form obtains for heavy quarks.**»*^

By expressing £ as a function of k^ and k one obtains by a Fourier

transform a spatial distribtuion of the quarks. For light quarks the

rma radius of this distribution can differ substantially from the

standard "charge radius" extracted from the charge form factor

Fff(Q
2).14

The two-body dynamics formulated here implies an obvious description

of two nucleons in the presence of a noninteracting spectator. The

transition to a fully interacting three-nucleon system involves new

problems which I will address in the next Section.

THREE-NUCLEON SYSTEMS

A.s in the description of nonrelativistic systems the convenient choice

of internal variables distinguishes one of the three particles. Let

P - P1 + P2 + P3 , (20)

hi " Pl / C pl + P 2 } ; C3 " P 3 / P + ' ( 2 1 )

*T " P1T ~ 512C?T ~ P3T> ; 5T " P3T ' 53?T ' ( 2 2 )

The mass operator M12 of the interacting 12 subsystem la given by Eqs.

(10) or (15). All the Poincare1 generators are additive in two-body

cluster and the spectator. The mass and spin operators are unambigu-

ously defined as functions of those generators. However, the spin

operator so defined depends on the interaction Vjo, and the operator

M12,3»

2 M?2+*T °2+*T 2 4mV12M12,3 " -T=tf- + -ff- - M0 + - T ^ • (23)

does not commute with the spin tQ of the noninteracting three-nucleon

system, which commutes with M £ ,



' M0 - g (1-e Ki-g ) + f" + g (I-g ) • (24)

The noninteracting spin operator is

where the longitudinal component of the vector q is defined by

m2++2

q.n - j{MQg3 - jf-g-^
} * ' ( 2 6 )

The interaction-dependent spin operator tj. , that commutes with M]^ 3

can be obtained from (25) and (26) by replacing MQ and M Q ^ 2 by M^2 ^

and Mio respectively.

The Hamiltonian 3»

P12,3 " I P l + ' 4 " V 1 2 / ( ' t + P2> <27>

has all the required invariance properties, but the addition of two or

three two-body interactions destroys the invariance unless an appro-

priate three-body interaction is added. The expected result for the

fully interacting three-ncuelon system is

I T ^ 6mV /P+ (28)
i ± i<j 1J X 3 1 Z 3

and

M' " M212,3 + M31,2 + M23,l " 2 MS + 6nV123 <29>

The task at hand is to show that a three-body potential V193 which

establishes the invariance of the three-body dynamics exists, can be

constructed explicitly and is small. This is accomplished by

constructing an operator M.. that commutes with fQ and describes the

same two-body dynamics as M,, ,. The two mass operators M,- o and
•f5 12,3

M12 3 a r e related by Sokolov's unitary "packing" transformation
B12,3'

The operator V 1 2
 i n Eq. (23) has the matrix representation

3.u12,5»qT) ; (30)

The operator ? I 2 designed to commute with fQ can be defined by the



matrix representation

(k',*',s|vi2|S,A,k) x (q'.L'.I'.u
1|l|y,I,L,q) . (31)

Manifestly the dynamics of the two-body subsystem Is completely spec-

ified by the operator V... which is the same in (30) and (31). The

subsystem mass operators

M12 - M012 + 4 m V12 a n d S12 " M012 + 4m^12 <32>

yield the same two-body bound-state energies and the same scattering

observables. The same is true for M 1 2 3 defined by Eq. (23) and

M 1 2 3 defined by

S12,3 " S 1 2 + q 2 + n 2 + q 2 ' ( 3 3 )

They commute respectively with J and I . Therefore, there exists

a unitary transformation B, - » which transforms I._ . into tn and_ ** > •> I^,J u
M12 3 i n t o **i2 3* lt f o l l o w a that

and

q B12,3 " Q # q "

» 2 + q1 -1 -1
2,3-V* - — i ^ lM12,3 " M0 » *

Equation (34) or (35) provide the basis for an approximation. The

effect of B12 3 ia small, i.e. Bj^ 3"1+ iSi2 3 w i t^ 012 3 °^ t n e or<*er

8V12 MO l 8-

Since H.. _ commutes with the spin fQ the mass operator

5 2 " 5212,3 + S31,2 + S23,l " 2 M0 + 6n?123 ( 3 6 )

is invariant for any three-body interaction V 1 0, that commutes with

.. The choice of V... is subject to the same arbitrariness

and restrictions as the nonrelativistic three-body potential.10 A

three-nucleon dynamics based on M and fQ satisfies all the invariance

requirements, but the dynamic generators do. not become additive if one

of the particles la at a large distance. This property is essential



for the construction of a consistent many-body theory. • It can be

achieved by a unitary transformation B that transforms (36) into (29),

and tQ into f.

BMBf - M ; BJQB1" - f . (37)

An appropriately defined product of B n », Boo i and Boi o will serve

that purpose. The approximate form

B - 1 + i(8l2 3 + B23 x + S31 2) (38)

should be adequate for the three-nucleon system.

The three-nucleon dynamics so constructed satisfies all the Poincare

invariance requirements and has the correct cluster separability

properties. The transformation (38) introduces three-body interactions

in (29) even if V vanishes. Since the B's in Eq; (38) are small,

of the order IV M~ |, the effects of the three-nucleon forces

required by Poincarg invariance can be expected to be relatively

small.

SUMMARY

Questions concerning the effects of relativistic invariance can and

should be separated from questions concerning the relevant subnucleon

degrees of freedom that should be treated explicitly.

It is possible to formulate Poincare' invariant quark models with a

finite number of quarks. In such models hadron states have definite

spin, a feature which is absent in light-front perturbative treatments

of QCD. Substantial differences from nonrelativistic quark models can

occur for very light quarks.

It is possible to formulate a Poincarg invariant three-nucleon

dynamics which has the same qualitative features as the

nonrelativistic dynamics, including semiphenomenological two- and

three-body forces. The invariance requirements do not constrain the

allowable two-body forces and impose only a weak constraint on

acceptable three-body forces.
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