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38,85 INTRODUCTION

The most important data on short-range effects are produced by
electromagnetic probes, and the central questions relating the three-
nucleon system to fundamental theory concern the role which axplicit
quark degrees of freedom should play in the three-nucleon dynamics.
Three-body forces do not necessarily play a pivotal role in these
problems. Requirements of relativistic invariance, however, can be
expected to have an important quantitative impact on all short-range

properties of the three-nucleon system.

The relativistic dynamics of any quantum system 1mplies the existence
of a unitary representation U(a,A) of translations and Lorentz trans-
formations (Poincaré g!:oup).l"2 The generators P! of the translations
have the physical significance of energy and momentum. For any system
the unitary representation of the Poincaré group also specifies the
dynamics. For Lagrangian field theories the Lagrangian which spec-
ifies the dynamiecs also determines the corresponding unitary

representation of the translatiomns and Lorentz transformationa.3'4

The covariance requirement for currents

U 3%y uTlea) = aMu¥aTlx) (1)

f

E

o |

as well as the continuity equation %
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imply consistency conditions which relate the strong-interaction ‘§

dynamics to the electromagnetic and weak currents. . %
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One of the most important qualitative features of relativistic quantum 5
dynamics stems from the fact that the group structure demands that S ~
some transformations, other than the time evolutions, depead on the %g

2 ’ a2
dynamics. £ ‘\Q
e :

It 1s possible to choose the representation of a kinematic subgroup to o



be independent of the dynamica. The choice leads to different "forms

w2

of‘dynamics which are unitarily equivalent as far as the observable

consquences are concerned.> In the familiar “instant form" the
kinematic subgroup (translations and rotations) leaves the hyperplane
tzxo-O invariant, and the Lorentz boosts are dynamical trans-

formations. In the “"front-form" dynamicsl"6

0

the kinematic subgroup

+x3=0 invariant, and the rotations about
any transverse axls are dynamical transformations.

leaves the light front T3x

In a Fock-space representation of a Lagrangian fleld theory, restric-
tion to a finite number of particles always destrcys the relativistic
invariance. However relativistic dynamics exists also for finite
numberas of particles, which need not be elementary.6’7 Both the
three-nucleon system and quark models consisting of a finite number of
light quarks are examples. I believe it is important to emphasize the
fact that the need for a relativistic dynamics does not in itself
imply the necessaity of descridbing the system in terms of its ultimate
elementary conastituents. Questions concerning the relevant subnucleon
degreeas of freedom can and should be separated from questions

concerning the relativistic invariance.

The construction of relativistic quantum particle dynamics is based on
the following observations.7 The generators of the infinitesimal
dynamical tranaformations can be obtained as functions of the kin-
ematic generators, the invariant mass operator of the interacting
system and additional operators which may be obtained from the
noninteracting system. In the instant form these additional operators
are the compounents of the Newton—-Wigner position operator,8 while i1in

the front form they are the transverse components of the spin.

The front form is particularly convenient because the kinematic
subgroup includes the Lerentz transformations which are important in
the calculation of electromagentic form factors and inelastic
structure functions. In the front form, relativistic quantum particle
dynamics and the Fock-space representation of quantum field theory are
more closely related than in the instant form.

RELATIVISTIC QUANTUM DYNAMICS

The geunerators of infinitesimal Poincaré transformations are the four-
momentum {PO,F}, the angular momentum 3, and the Lorentz boosts K.
The generators of the front-form kinematic subgroup are P+5PO+P3, the

transverse component of the momentum iT’ the longitudinal components



of the angular momentum J,, the boosts Kq, and
»
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{0,0,1} . (3)
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The dynamic generators are P =P P~ and the transverse components of
the angular momentum jT' The mass operator M 1s, of course, related

to the four-momentum by
H2 = P+P‘ - ?i . o (4)
A bound atate must be an elgenfunction of the spin operator fz as well

as the mass operator M. The spin 1s related to the Pauli-Lubanski’
vector {Wo,ﬁ} = {ﬁ-I,POI+§xi} by

+, +
I, =W /P ; MTT - ﬁT - iT . (5)

Conversely, 1f the mass M and the transverse spin f are known, then

T
the dynamic generators P~ and IT are determined by

P = >+ $211P+ , (6)
and
+ - ? Exﬁ
IT - §: fT + B "i axg + —% I, + +T K, (7)
P 2P P P

Projection of a meson field theory onto the two- or three-nucleon
sector of the Fock space produces an expression for MZ which is
invariant under the kinematic subgroup, but the projections of the

2

spin components do not commute with M® and do not satisfy the correct

commutation relations. Poincaré invariant dynamical models can be

2

constructed by assuring that M® commutes with the total spin of the

free particles.

The main advantages of the front-form dynamics are:

1. The Hamiltonian BEP--[MZ+§§]/P+ 1s a linear function of M2, while
the instant fq;m involves the square root relation HEPO-'VM2+52.

2., Since the aspectrum of pt 1s non-negative the Fock vacuum and the
physical vacuum of a field theory are the same if admixtures of p+-0

states of massless particles and ultraviolet divergencies at p+-0 are
cut off. ' C AT o ‘

3. The inital  and final states |p*,-1/2q,0> and |p*,172Q,0> of



elastic scattering are related by a kinematic Lorentz tranasformation,
and form factors can be extracted from the matrix elements of a single
component of the current, j+(0), which is invariant under the

kinematic group,
(5,571 =0 5 (3.7 =0 5 [xy, 3T ) = 1370 . (8)

The main disadvantage is the complicated relation between the spin and
the transverse angular momentum shown ia Eq. (7), and the complicated
relations between the spins of subsystems and the total spin. I

believe the advantages outwelgh the disadvantages.

TWO-BODY SYSTEMS

Sates lw) of a single nucleon are represented by square integrable
functions ¢(p,u), where py = +1/2 is the longitudinal component of the
spln and ps{p+,;T}. States |¢> of a two-nucleon system are represent-
ed by square integrable functions w(pl,ul,pz,uz). All the kinematic
generators are additive in the two nucleons. Appropriate internal
variables are
+,_+ + +>

£=p /P and Ky = pi. - gﬁT , (9)

where P = p1+p2. (1 am using £ instead of the usual x for the

momentum fraction in order to avold possible confusion with space-time
points.)

The mass operator M 1s given by

2 m2+§% 2
MU= ey AV T Mgt AuYy, (10)

and the Hamiltonian 1is

H=H) + lmvlz/P+ , (11)
where the operator Vlz 18 the nucleon-nucleon potential. Lorentz
invariance requires that V,2 comnmute with P and be independent of P.
Furthermore the dynamics so formulated is Poincaré invariant 1f, and
only if, M2 commutes with the apin . A bound-state wave function
w(E,iT,ul,uz) must be an eigenfunction of Hz and fz. The invariance

of M can be assured in the following manner., Define the longitudinal



component of the internal momentum k as a function of g and ﬁT by

2,22
m - +k
> + 1 T
ken = 3 {HOE ——HOE } . (12)

The spin of the noninteracting two-nucleon system can then be

expressed in the formlO
i- 1vkx1’£ + n(e,f{T,m,uo)El + n(1~g,-ﬁT,m,uo)§2 , (13)

where R denotes a Melosh rotation,11

mtM E-1de(Axk,_ )
R(E,Kp,m,Hy) = —— . (14)
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Expregssed as a function of the vector k the mass operator M is given
by

w2 = 4(k2+m2+mv12) , (15)
where V,, must commute with the spin (13). Thus the dynamical
equations for the internal coordinates have the same form as in the
nonrelativistic case. The relations of Kk and P to the individual
nucleon momentua p; and Pa differ, of course, from the nonrelativistic

relations. This difference becomes manifest in three—-nucleon systems

as well as in form factors of the deuteron. For slow nucleons we have

the nonrelativistic approximation

> +

py*B, = (BT-2m,B 1) 5 B B, » (m(2e-1),&.) . (16)

Larger relativistic effects can be expected in the bound states of
light quarks. As an i1llustration, consider a toy pion as a bound

gstate of a splnless quark and antiquark. The complete representation
of the bound state 1s given by

(B, 5,k |¥|P) = 8(B-R) w(E,&p) (17)

(Note that no specilal reference frame is involved in this desecription

of the bound state.) The well-known expression for the charge form
factor12

2 2 > >
F Q%) = [dgfdk w(E,E +(1-£)8)v(E, ) (18)



follows immediately. The fact that the plon has spin zero imposes a

néntrivial constralnt on the wave function,13
-1
WEkD = [6(1-0)17 2 x (el 21/ (201001} (19)

It follows that for large Q and zero quark mass F“(Qz) 8 proportional
to 1/Q2, while the nonrelativistic form obtains for heavy quarks.lavl4
By expressing £ as a function of kg and ﬁT one obtains by a Fouriler
tranaform a spatial distribtuilon of the quarks. For light quarks the
rma radiue of this distribution can differ substantially from the
standard "charge radius™ extracted from the charge form factor
F"(QZ).IQ

The two-body dynamics formulated here implies an obvious description
of two nucleons in the presence of a noninteracting spectator. The

transition to a fully intervacting three-nucleon system involves new

problems which I will address in the next Section.

THREE-NUCLEON SYSTEMS

As In the description of nonrelativistic systems the convenient choice
of internal variables distinguishes one of the three particles. Let

P = P, + P, + Py (20)
+,, + +, . L tot

E12 = Py/(py + ) 5 &y = pg/P (21)

+ + + + +

Ep = Byg = E1p(Fp - Byp) 5 gy = Byp - &gy - (22)

The mass operator “12 of the iateracting 12 subsystem 1is given by Eqs.
(10) or (15). All the Poincaré generators are additive in two-body
cluster and the spectator. The mass and spin operators are unambigu-
ously defined as functions of those generators. However, the gpin
operator so defined depends on the interaction Vi2, and the operator
“%2,3-

) M§Z+E§ m2+5% 4mV

12,3 © -, + E, - My + - (23)

M

does not commute with the spin IO of the noninteracting three-nucleon
syatem, which commutes with M%.



+2

m2+E2 2 q
Cud - Yy Rt Ry (24)
0 512(1-512)( 53) 53 E3 E3
10

The noniateracting spin operator is

>

+ + +
fo = ivqxq + R(I_E3| qT'M012‘MO)I12 + 3(53,QT,N.M0)83 ’ (25)
where the longitudinal component of the vector ; 1s defined by
> 1 m2+3§ :
qen = >{M E, - } . ’ : (26)
2-70"3 MOE3

The interaction-dependent spin operator ilz 3 that commutes with M12’3
3

can be obtained from (25) =and (26) by replacing M, and M012 by M12’3

and My, reapectively.

The Hamiltonian By, 3=P7, 3,

- - + +

= +
Pi2,3 E py + AuV,,/(pyp + py) (27)
has all the required invariance properties, but the addition of two or
three two-body interactions destroys the invariance unless an appro-
priate three-body interaction 18 added. The expected result for the

fully interacting three-ncuelon system is

- - + , + +
P = Z P, + 3 lnnvij/(pi + pj) + 6mV123/P (28)
£ 1<
and
2 .2 2 2,2
M™ = My, g ¥ M3y 5 * Myy ) = 2My + 6V, ), (29)

The task at hand is to show that a three-body potential v123 which
establishes the invarlance of the three-body dynamics exists, can be
constructed explicitly and is small. This is accomplished by
constructing an operator ﬁ12’3 that commutes with IO and Seacribes the
same two~body dynamics as M12,3' The two mass operators M12’3 and

M12,3 are related by Sokolov's15

By2,3-

unitary “"packing”™ transformation
The operator V;, in Eq. (23) has the matrix representation

(k')l"slvlzlsll'k) x (ai.ﬁ',uiz,u5|1|u3.u12.5.ar) H (30)

The operator 712 designed to commute with TO can be defined by the



matrix representation

(', 2',8|V, ]S, 2,k) x (q' L', I',u"|1]u,T,L,q) . (31)
12

Manifestly the dynamicsa of the two-body subsystem is completely spec-

ified by the operator V which 1s the same in (30) and {(31). The

12
subsystem mass operators

2 2 + 4mV and ﬁz = M2 + 4mV__ (32)

Mio = Mo12 12 12 012 12

yield the same two-body bound-state energies and the same scattering
observablea. The same ia true for M12,3 defined by Eq. (23) and

ﬁ12'3 defined by
= =2 2 2, 2
M12,3 = M12+q + m +q . (33)

They commute respectively with TIZ 3 and TO' Therefore, there exists
*

a unitary tfansformation 312’3 which transforms f12,3 into fo and

M12’3 into M12'3. It follows that

t - - [x.2 2,2 -1 _ w1l
312,35312'3 £ [neq + m+q ][H12,3 Mo ] (34)
and
t + > + »
312,3n'q 312’3 ~ neq =
2++2
Lotuy, ,MdE - —F 7L, -y (35)
2 12,3 70 E 12,3 0 * ‘

Equation (34) or (35) provide the basis for an approximation. The
effect of 312.3 is small, 1i.e. 312’3~1+ 1312‘3 with 312’3 of the order

-1
IVIZHO 1.

Since ﬁlz 3 commutes with the spin IO the mass operator
>

-2 -

M - N 2 =2

- 2 -
12,3 ¥ M3y o * Myy ; ~ 2My + 6uV,,, (36)

isa invariant for any three-body interaction 7123 that commutes with
the spin fo. The choice of 6123 is subject to the same arbitrariness
and restrictions as the nonrelativistic three-body potential.l6 A
three-nucleon dynamics based on M and fo satisfies all the invariance
‘requirements, but the dynamic generators do not become additive 1f one

of the particles i1s at a large distance. This property is essential



7,15 It can be

for the constructlon of a consiastent many—-body theory.
aéhieved by a unitary transformation B that transforms (36) into (29),
and IO into T.

pint = w ; BBt - 1. (37)
An appropriately defined product of 512‘3, 323,1 and 331’2 will serve

that purpose. The approximate form

B ~1 + 1(812.3 + 823’1 + 831’2) (38)

should be adequate for the three-nucleon system.

The three-nucleon dynamics 80 constructed satigsfies all the Poincaré
invariance requirements and has the correct cluster separability
properties. The transformatiom (38) introduces three-body interactions
in (29) even 1if 6122 vanishes. Since the B's in Eq: (38) are small,
of the order nvlzuo 1, the effects of the three—-nucleon forces
required by Poincaré invariance can be expected to be relatively

small.

SUMMARY

Questions concerning the effects of relativistic invariance can and
should be separated from questions concerning the relevant subnucleon

degrees of freedom that should be treated explicitly.

It is possible to formulate Poincaré invariant quark models with a
finite number of quarks. In such models hadron states have definite
spin, a feature which 13 abgsent 1in light—-front perturbative treatments
of QCD. Substantial differences from nonrelativistic quark models can
occur for very light quarks.

It 1s possible to formulate a Poincaré invariant three-nucleon
dynamics which has the same qualitative features as the
nonrelativistic dynamics, including semiphenomenological two- and
three~body forces. The invariance requirements do not constrain the
allowable two-body forces and impose only a weak constraint on
acceptable three-body forces.
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