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Abstract
As a crosslinking polymer cures, dramatic changes in molecular architecture occur. These 

structural changes in turn affect the viscoelastic behavior of the material. At a critical extent of 
reaction (the gel point), the polymer undergoes a transition from a viscous liquid to an elastic 
solid. We have monitored the evolution of structure and viscoelasticity in an epoxy encapsulant 
used at Sandia, the diglycidyl ether of Bisphenol A (BADGE) cured with diethanolamine (DEA). 
The structure evolves according to percolation theory, and the viscoelasticity evolves according 
to our dynamic scaling theory for branched polymers.
Introduction

Crosslinked epoxies are used extensively at Sandia as encapsulating compounds for 
electronic components. The rigid polymer physically holds component boards in place and 
provides increased dielectric strength. The purpose of this paper is to document the changes in 
the structure and viscoelastic response of a common encapsulating epoxy, the diglycidyl ether 
of Bisphenol A (BADGE) cured with diethanolamine (DEA).
Evolution of Structure

The simplest theories for describing how the average molecular weight and size of the 
clusters increases as the reaction progresses are the mean-field theories of Flory and 
Stockmayer [1], These assume that each functional group is equally reactive and that no intra­
cluster cyclization occurs. Therefore, at the beginning of the reaction, when there is mainly 
monomer, the molecular weight of a single cluster will increase by one monomer each time a 
reaction takes place. As the reaction progresses and many large clusters form, each reaction 
will join clusters. At some point, if each monomer has a functionality of f>2, we reach a critical 
extent of reaction, <xc, at which the average molecular weight approaches infinity. Beyond the 
gel point, finite clusters continue to attach to the infinte cluster (i.e. the gel) increasing the gel 
fraction and the equilibrium modulus.

In the rest of this report, we will not refer directly to the extent of reaction, a, but to the 
reduced extent of reaction relative to the gel point,e = |pc-p|/pc where p is the crosslink 
probability and pc is that at the gel point. To determine p, we must remember that our system 
does not consist simply of the crosslinker DEA as assumed in the previous paragraph, but also 
includes the difunctional epoxy. Therefore, the crosslink probability, p, is not just the epoxy 
reaction probability, a. Instead both epoxy groups on the BADGE must react to form a crosslink, 
and p = giving e = |ac2- a2|/ac2.

The simple mean-field arguments above can be solved analytically and predict that, near the 
gel point, the sol weight-average molecular weight as determined by light scattering should 
diverge as e"^. The distribution of molecular weights in this “critical regime” is predicted to follow 
the power law, n(M) ~ M"5/2, up to the z-average molecular weight above which it decays 

exponentially. The z-average cluster size as measured by light scattering is predicted to diverge 
as e‘^2.

Recently, another theory for gelation has been developed called percolation [2]. While not 
amenable to analytic treatment, percolation does offer simple physical insight into gelation. We 
first establish a lattice of arbitrary structure (e.g. cubic or hexagonal in three dimensions). Upon 
each node of the lattice, we place a monomer with the functionality of the lattice (e.g. 
functionality 6 for a cubic lattice). Now, at random, we connect adjacent monomers forming a 
bond or crosslink. Note that intra-cyclization is now allowed. The bond probability, p, is simply 
the number of bonds formed at a given time divided by the total number of bonds possible.



Computer simulations of percoiation have shown that it too exhibits power law divergences of 
the weight-average molecular weight and z-average cluster size when sufficiently close to the 
gel point but with different exponents than the mean-field theories. Specifically, Myy ~ s'16/9 and 
Rz ~ e"®/9. The distribution of molecular weights is described by n(M) ~ M'1up to Mz with an 

exponential decay. Percolating structures also exhibit the powerful feature of self-similarity, 
which implies that pictures of the sol taken at the gel point are identical regardless of 
magnification. This is equivalent to stating that the system at the gel point has no characteristic 
length scale. Self-similarity will become extremely important when describing the dynamics of 
crosslinking systems.

There also exists self-similarity within a single cluster as shown by the “fractal” nature of 
computer generated percolation clusters. That is, if we look within a cluster with a window of size 
r, we cannot gauge the size of the window by our view; again, there is no characteristic length. 
This in turn implies that the mass distribution within the window behaves as m ~ r^ where D is 

called the fractal dimension of the cluster. This relationship will also apply for the overall mass 
and size of a single cluster so that M ~ R^. Obviously, D must be greater than 1 (a rod) and less 

than 3 (a sphere) in 3-dimensional space. Percolation predicts that D = 5/2 whereas mean-field 
theories predict that D = 4. This is the first clue that mean-field theories are not correct. They 
generate clusters that cannot physically fit in 3-d space!

The percolation predictions for the critical exponents are independent of the type of lattice 
used. For example, Mw ~ e"^ for a cubic or hexagonal 3-d lattice and only the bond probability 

at the gel point changes. This implies that an exact description of the chemical kinetics is 
unnecessary since it should not affect the critical exponents, but only change the fraction of 
epoxy groups reacted at the gel point. However, the dimensionality of the lattice does change 
the numerical values for the exponents. In fact, mean-field theories have been found to be a 
special case of percolation for the spatial dimension equal to 6 (a rather unpleasant dimension in 
which to live), in 6 dimensions, there is enough room so that the mean-field assumption of no 
intra-cluster circuits becomes reasonable. This is another clue that the mean-field theory may 
not accurately describe gelation.

Of course, percolation may not accurately describe gelation either. For example, percolation 
ignores all dynamics of the clusters which may be important. By measuring the critical exponents 
describing the divergence of Mw and Rz near the gel point by light scattering, we can determine if 
either mean-field theories or percolation are models for the crosslinking of our BADGE/DEA 
epoxy. As shown in the following table, the predictions are so different that it should be easy to 
distinguish between the two.

critical exponent percolation prediction msaD-feld prediction
%-E-y Y = 16/9 y = 1
Rj, ~e"v v - 8/9 v = 1/2

The divergences of the molecular weight and radius were measured [3] by quenching aliquots 
taken from the reaction bath at known intervals up to the gel point by dilution in a 60/40 
toluene/isopropanol solution. The gel time, tc (approximately 3 hours), was taken to be the 
midpoint between the time at which the first insoluble aliquot was taken and the time at which the 
last soluble aliquot was taken. From this, we calculated e using FTIR measurements of extent of 
reaction versus time. The extent of reaction at the gel point corresponds to approximately 65% 
of the epoxy groups reacted that are present after the initial DEA amine endcapping. The weight 
average molecular weights were then measured with a low angle light scattering photometer (at



concentrations of 10 to 50 mg/ml and solid angles of 4-5 and 6-7°). The z-average hydrodynamic 
radii were measured using a HeNe laser operating at 633 nm at a scattering angle of 20°. A 
cumulant analysis obtained from a 256 channel Langley-Ford digital correlator was used to obtain 
the relaxation time, and the hydrodynamic radii were obtained using Stokes law and the known 
solvent viscosity.

In Figure 1, we show the divergences of the weight-average molecular weight and the z- 
average hydrodynamic radius as the gel point is approached. The slopes are 1.7 ± 0.1 and 1.4 + 
0.1 respectively. While the slope 1.7 ± 0.1 gives the critical exponent, y, the slope 1.4 ± 0.1 is 
not directly equal to v since the sol clusters swell as they are transferred from the reaction bath 
to the solvent. To relate the divergence of the swollen hydrodynamic radius to the unswollen 
divergence, we have used standard literature arguments that balance the osmotic swelling force 
against the elastic restoring force. These arguments reduce the slope 1.4 + 0.1 by a factor of 0.8 
such that v = 1.1 ± 0.1. The experimental results y = 1.7 ± 0.1 and v = 1.1 ± 0.1 should be 
compared to the mean field an percolation predictions in the table on the previous page. We see 
that the measured values are in good agreement with the percolation predictions. The measured 
v is slightly larger than predicted; however, it cannot be determined from these experiments 
whether this is due to the actual divergence of the average size or to the arguments used to 
account for swelling upon dilution.

Since percolation seems to describe the evolution of structure in our epoxy encapsulant, we 
can now use the concept of self-similarity to help derive a theory for the evolution of 
viscoelasticity during crosslinking.
Viscoelasticity: Theoretical Foundation

As we have seen above, a crosslinking system undergoes a liquid-to-solid transition at the 
gel point. However, the dynamic response of the system to an imposed deformation is more 
complicated than simply purely viscous or elastic. For example, the branched sol molecules 
formed during cure have a spectrum of relaxation times and, therefore, are purely elastic at short 
times (t<r1 where x-| is the shortest relaxation time) and purely viscous at very long times (tvc^ 
where is the longest relaxation time). The intermediate viscoelastic response is closely 
related to the structure of the molecules, so our previous studies on the evolution of structure 
will guide us.

Before discussing branched polymers, it is useful to present theories for the apparently 
simpler //hearpolymers [4]. If the chains in the melt are relatively short, the dynamical response 
of a single chain can be modelled as a string of N Brownian beads connected by N-1 Hookean 
springs. Therefore, the stress relaxation modulus G(t), which is the ratio of the resultant stress 
o(t) to a suddenly applied strain y, is just a sum of the individual relaxation modes G(t) ~ I exp(- 
t/xjJ where x^ are the relaxation times for the polymer. The longest relaxation time, x^, is 
dependent on the molecular weight of the chain. We can determine this molecular weight 
dependence as follows. Since a chain diffuses a distance proportional to its radius R in a time x^j, 
x^ ~ R^/Dj where Dt is the translational diffusion coefficient of the polymer. A linear chain in a 
melt traces a random walk configuration so R ~ N1^ (i.e. linear chains have a fractal dimension 
of 2). In the simplest version, Dt is simply proportional to (NQ‘^ where £ is the friction of one 
bead; that is, each bead contributes £ to the chain friction. Therefore, x^ ~ R2/Dt ~ N/(N'1) ~ N2.

If we calculate the spectrum of relaxation times for this simple model, we find that x^ - (k/N)a 

x^. The exponent a is found by noting that the first relaxation time, x^, is due to coordinated



motion of several atoms and, therefore, must be independent of the molecular weight (N) of the 
chain so t-j ~ N"a ~ N‘a N2 ~ N°. We find, then, that a = 2. The scaling behavior of the 

relaxation times reflects the self-similar nature of the linear polymer chains. Again, if we look at 
an ideal polymer chain with a window of size r<R, we cannot gauge the size of the window by our 
view. The fractal structure of the polymer simplifies the dynamics. We will use these concepts in 
our discussion of the dynamics of branched polymers as well.

Our first attempt at describing the dynamics of crosslinking polymers, then, will start from the 
same point: a bead-spring model for branched polymers [5,6], The theory is analogous to that for 
linear chains. The stress relaxation modulus, G(t), for a single chain again will be the sum over 
normal modes. Since the percolation clusters formed during crosslinking are fractal objects, we 
will again assume that the relaxation times scale as the longest relaxation time for that cluster 
~ (k/N)a Tjg where ~ R2/Dj. However, the fractal dimension of the percolation clusters is now 
5/2 instead of 2 as for linear chains. This leads to a = 9/5 so ~ N9/5.

Now we must account for the broad polydispersity exhibited by percolating systems. As we 
saw above, percolation predicts that the cluster distribution is given by n(M)~ M"11/5 exp(-M/Mz) 

where Mz is the z-average molecular weight. To calculate the stress relaxation modulus for the 
entire reaction bath, we simply sum the result above for a single cluster over all clusters

M
G(t)~jjMdMn(M) Xe't/Xk

k=l (1)

This integral cannot be solved analytically, but does yield closed form results in certain limits. 
For example, for ti«t«rtz, G(t) ~ fA ~ t'2/3. The time xz is the longest relaxation time for the 

cluster of mass Mz (which defines the cutoff in the power law polydispersity) and scales as tz ~ 
Rz2/Dt(Rz) ~ R-,^2. Using the percolation prediction for the divergence of the z-averaged radius 
(which we saw agreed well with our experimental value), xz ~ e'4 where e=|ac2- a2|/ac2 as 

before. Therefore, tz diverges as we approach the gel point. The power law relationship for G(t) 
reflects that the system has no characteristic time for <t<xz which itself arises from the lack of 
a characteristic length for a<r<Rz (where a is the monomer size). For t»xz, we can also solve 
the integral above and obtain G(t) ~ exp(-t/xz)*3where b=2/5. A useful form for fitting data over all 

time is

G(t) = A —■ r.-(t/xz)b
(2)

where b=0.4 and A is just a numerical prefactor dependent on the particular system chosen.
From the theory of linear viscoelasticity, the steady-state zero-shear rate viscosity is the 

integral of the stress relaxation modulus over all time. This integration yields T| ~ Mw3/4 ~ e‘4/3 

which describes how fast the viscosity diverges as we approach the gel point. Linear 
viscoelastic theory also states that the stored elastic energy in the sol is quantified by the 
reciprocal of the steady-state creep compliance, Je° = xz/t) ~ e'8/3.

We cannot directly calculate the equilibrium modulus, G^, beyond the gel point. However, we 
can make one of two physically reasonable assumptions: (1) G^, which defines the elastically 
stored energy in the gel, scales as its counterpart (Je°)'^ for the sol or (2) the longest relaxation 

time for the gel scales as its counterpart, xz, for the sol. Either of these assumptions yield G^ ~ 
e8/3. Using Eq. 2 and the scaling relationship G^ ~ t|/xz, we can now write an expression for the 

stress relaxation modulus for the gel



where B is another constant dependent on the chemistry of the chosen system.
Thus Eqs. 2 and 3 describe master curves when the absicca and ordinate are scaled by t2 

and (i.e. e2) respectively. This constitutes a viscoelastic superposition principle, time-cure 
superposition [7], and is, of course, valid for any viscoelastic function. For example, the 
complex shear modulus that describes the response of the system to a sinusiodal oscillation can 
be expressed as the universal function G’fcor^/G,*,.

It is important to emphasize that the theory presented above is dependent on the self­
similarity concepts of percolation. Remember that percolation only predicts self-similarity and 
power-law behavior when sufficiently “close” to the gel point. Therefore, our theory, which 
predicts critical exponents, will be valid only over some range or extents of reaction that must be 
determined experimentally, it is not possible to tell beforehand how large this critical regime will 
be.
Viscoelasticity: Experimental Studies

We first tested our theory by directly measuring the divergence of the bulk viscosity [3] at 
90°C using a Rheometrics RDS-2 with 50mm diameter parallel plates close to the gel point and a 
Brookfield viscometer LVTDV-II with spindle 1 in a 10-cm diameter beaker at 0.3 to 30 RPM 
farther away from the gel point. The instrumental torques were monitored continuously up to full 
scale at constant shear rate at 90®C . By taking several runs at different shear rates, we 

determined that the measured viscosity was Newtonian up to roughly 10,000 Poise at a shear 
rate of 4x1 Q"^ rad/sec. Determination of the gel time is difficult in this experiment. We followed 
the standard procedure of plotting log t| against log efor various values of the gel time and used 
that value which resulted in the most linear relationship. In Figure 2, the measured slope is 1.4 + 
0.2 which is excellent agreement with the theoretical prediction of 4/3. We also see that one 
exponent can describe the divergence of the viscosity for e < 0.52, or in terms of the extent of 
reaction, 0.45<a<ac (=0.65). Therefore, the “critical regime” where our scaling theory should 
apply is given by these bounds.

We next attempted to verify the time-cure superposition principle [8] suggested by Eq.s 2 and 
3. It is difficult to measure directly the time-dependent shear relaxation modulus, so we 
measured instead the in-phase (G’=storage modulus) and out-of-phase (G”=loss modulus) 
components of the complex shear modulus, G\ described above. The measurements were 
performed on the Rheometrics RDS-2 between 50mm parallel plates at 0.2 to 2% strain that were 
kept at 90°C. Frequency scans from 2 to 200 radians/second were taken approximately every 4 
minutes with each scan lasting just over a minute. The gel time of 188 minutes was not left as an 
adjustable parameter but was independently determined as the time at which G'(co) ~ G"(ro) ~ coA 

strictly applied.
Figures 3 and 4 show the master curves that result from time-cure superposition. Here the 

frequency and the modulus (G*) for each value of e were shifted by factors proportional to e'V 
and ez respectively. The parameters z and y were chosen to be those giving the best 
superposition for G' and G" both before and after the gel point. Therefore, there are four 
independent sets of data from which we have extracted the exponents z and y. Excellent 
superposition is achieved with z=2.8 (±0.2) and y=3.9 (±0.2), and these agree very well with the 
predictions z=8/3 and y=4 of the dynamic scaling theory.

We have also measured the increase in the equilibrium modulus with extent of reaction

G(t) = G. 1 + B
(3)



directly. The samples were cured at 9CPC in rectangular geometry (2.5" x 0.5" x 0.25”) to differing 
extents past the gel point and placed in the RDS-2. The storage modulus G' was measured at 
90°C as a function of time at a fixed frequency of 1 radian/second. In Figure 2, we have plotted 
the increase of the equilibrium modulus as determined by time-cure superposition and by these 
direct measurement on partially cured BADGE/DEA samples. The measurements agree well with 
each other and are within experimental error of the theoretical predictions (z=8,3). The breadth of 
the critical regime where the theory applies is surprising. Within error, the divergence of the 
equilibrium modulus is described by a single exponent over the entire post gel regime. This broad 
critical regime is no doubt due in part to the extremely low molecular weight of the epoxy chains 
(MW=380), but that it extends over the entire post-gel region is very surprising.
Conclusions

We have seen that percolation accurately reflects the evolution of structure in our most 
common epoxy encapsulant, DEA-cured BADGE. We can benefit from this agreement by using 
the self-similarity concepts from percolation to help develop a scaling theory for the 
viscoelasticity for crosslinking systems. The critical divergences predicted by such a theory are 
in excellent agreement with those measured in our 828/DEA epoxy. In addition, the theory 
suggests that data taken at various extents of reaction should have identical functional forms 
and simply rescaling the ordinate and abscissa by the appropriate factors should produce 
master curves. Such superposition is observed in the BADGE/DEA system, and the shift 
factors agree well with the theoretical predictions.

While we studied a system of interest to Sandia, we should stress that the dynamic scaling 
theory should apply equally well to any crosslinking system in the critical regime. The question 
remains “How large is the critical regime?” We showed that the critical regime extends over half 
of the reaction for the BADGE/DEA system due to the small size of the reacting monomers. For 
other small monomer systems, the theory should be equally valid and the critical regime should 
extend over a comparable range.
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Figure Captions
FIG. 1: Divergence of the weight-average molecular weight and z-average radius for the sol.
FIG. 2: Divergence of the viscosity for the sol and the equilibrium modulus for the gel.
FIG. 3: Time-cure superposition of the storage and loss moduli for the sol.
FIG. 4: Time-cure superposition of the storage and loss moduli for the gel.
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