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Abstract

As a crosslinking polymer cures, dramatic changes in molecular architecture occur. These
structural changes in turn affect the viscoelastic behavior of the material. At a critical extent of
reaction (the gel point), the polymer undergoes a transition from a viscous liquid to an elastic
solid. We have monitored the evolution of structure and viscoelasticity in an epoxy encapsulant
used at Sandia, the diglycidyl ether of Bisphenol A (BADGE) cured with diethanolamine (DEA).
The structure evolves according to percolation theory, and the viscoelasticity evolves according
to our dynamic scaling theory for branched polymers.

Introduction

Crosslinked epoxies are used extensively at Sandia as encapsulating compounds for
electronic components. The rigid polymer physically holds component boards in place and
provides increased dielectric strength. The purpose of this paper is to document the changes in
the structure and viscoelastic response of a common encapsulating epoxy, the diglycidy! ether
of Bisphenol A (BADGE) cured with diethanolamine (DEA).

Evolution of Structure

The simplest theories for describing how the average molecular weight and size of the
clusters increases as the reaction progresses are the mean-field theories of Flory and
Stockmayer [1]. These assume that each functional group is equally reactive and that no intra-
cluster cyclization occurs. Therefore, at the beginning of the reaction, when there is mainly
monomer, the molecular weight of a single cluster will increase by one monomer each time a
reaction takes place. As the reaction progresses and many large clusters form, each reaction
will join clusters. - At some point, if each moncomer has a functionality of -2, we reach a critical
extent of reaction, o, at which the average molecular weight approaches infinity. Beyond the
gel point, finite clusters continue to attach to the infinte cluster (i.e. the gel) increasing the gel
fraction and the equilibrium modulus.

In the rest of this report, we will not refer directly to the extent of reaction, o, but to the
reduced extent of reaction relative to the gel point,e = |p.-pl/p; Where p is the crosslink
probability and p,, is that at the gel point. To determine p, we must remember that our system
does not consist simply of the crosslinker DEA as assumed in the previous paragraph, but also
includes the difunctional epoxy. Therefore, the crosslink probability, p, is not just the epoxy
reaction probability, .. Instead both epoxy groups on the BADGE must react to form a crosslink,
andp= o2 giving € = lacz- (12]/(1(_.2.

The simple mean-field arguments above can be solved analytically and predict that, near the
gel point, the sol weight-average molecular weight as determined by light scattering should
diverge as ¢"1. The distribution of molecutar weights in this “critical regime” is predicted to follow
the power law, n(M) ~ mS/2, up to the z-average molecular weight above which it decays
exponentially. The z-average cluster size as measured by light scattering is predicted to diverge
asg1/2,

Recently, another theory for gelation has been developed called percolation [2]. While not
amenable to analytic treatment, percolation does offer simple physical insight into gelation. We
first establish a lattice of arbitrary structure (e.g. cubic or hexagonal in three dimensions). Upon
each node of the lattice, we place a monomer with the functionality of the lattice (e.g.
functionality 6 for a cubic Iattice). Now, at random, we connect adjacent monomers forming a
bond or crosslink. Note that intra-cyclization is now allowed. The bond probability, p, is simply
the number of bonds formed at a given time divided by the total number of bonds possible.



Computer simulations of percolation have shown that it too exhibits power law divergences of
the weight-average molecular weight and z-average cluster size when sufficiently close to the
gel point but with different exponents than the mean-field theories. Specifically, M, ~ £16/9 ang
R, ~ £"8/9, The distribution of molecular weights is described by n(M) ~ M 115 410 M, with an
exponential decay. Percolating structures also exhibit the powerful feature of self-similarity,
which implies that pictures of the sol taken at the gel point are identical regardless of
magnification. This is equivalent to stating that the system at the gel point has no characteristic
length scale. Self-similarity will become extremely important when describing the dynamics of
crosslinking systems.

There also exists self-similarity within a’single cluster as shown by the “fractal” pature of
computer generated percolation clusters. That is, if we look within a cluster with a window of size
r, we cannot gauge the size of the window by our view; again, there is no characteristic length.
This in turn implies that the mass distribution within the window behaves as m ~ D
called the fractal dimension of the cluster. This relationship will also apply for the overall mass
and size of'a single cluster so that M ~ RD. Obviously, D must be greater than 1 (a rod) and less
than 3 (a sphere) in 3-dimensional space. Percolation predicts that D = 5/2 whereas mean-field
theories predict that D = 4. This is the first clue that mean-field theories are not correct. They
generate clusters that cannot physically fit in 3-d space!

The percolation predictions for the critical exponents are independént of the type of lattice
used. For example, M, ~ £-16/9 for a cubic or hexagonal 3-d lattice and only the bond probability
at the gel point changes. This implies that an exact description of the chemical kinetics is
unnecessary since it should not affect the critical exponents, but only change the fraction of
epoxy groups reacted at the gel point. However, the dimensionality of the lattice does change
the numerical values for the exponents. In fact, mean-field theories have been found to be a
special case of percolation for the spatial dimension equal to 8 {a rather unpleasant dimension in
which to live). In 6 dimensions, there is enough room so that the mean-field assumption of no
intra-cluster circuits becomes reasonable. This is another clue that the mean-field theory may
not accurately describe gefation.

Of course, percolation may not accurately describe gelation either. For example, percolation
ignores all dynamics of the clusters which may be important. By measuring the critical exponents
describing the divergence of M,, and R, near the gel point by light scattering, we can determine it
either mean-field theories or percolation are models for the crosslinking of our BADGE/DEA
epoxy. As shown in the following table, the predictions are so different that it should be easy to

where D is

distinguish between the two.

itical ati o 4 -
Mw~g'Y v=16/9 v=1
R, ~eV v=28/9 V=172

The divergences of the molecular weight and radius were measured [3] by quenching aliquots
taken from the reaction bath at known intervals up to the gel point by dilution in a 60/40
toluene/isopropanol solution. The gel time, t, (approximately 3 hours), was taken to be the
midpoint between the time at which the first insoluble aliquot was taken and the time at which the
last soluble aliquot was taken. From this, we calculated £ using FTIR measurements of extent of
reaction versus time. The extent of reaction at the gel point corresponds to approximately: 65%
of the epoxy groups reacted that are present after the initial DEA amine endcapping. The weight
average molecular weights were then measured with a2 low angle light scattering photometer (at



concentrations of 10 to 50 mg/ml and solid angles of 4-5 and 6-7°). The z-average hydrodynamic
radii were measured using a HeNe laser operating at 633 nm at a scattering angle of 20°. A
cumulant analysis obtained from a 256 channel Langley-Ford digital correlator was used to obtain
the relaxation time, and the hydrodynamic radii were obtained using Stokes law and the known
solvent viscosity.

In Figure 1, we show the divergences of the weight-average molecular weight and the z-
average hydrodynamic radius as the gel point is approached. The slopes are 1.7 £ 0.1 and 1.4
0.1 respectively. While the slope 1.7 + 0.1 gives the critical exponent, v, the slope 1.4 + 0.1 is
not directly equal to'v since the sol clusters swell as they are transferred from the reaction bath
to the solvent. To relate the divergence of the swollen hydrodynamic radius to the unswollen
divergence, we have used standard literature arguments that balance the osmotic swelling force
against the elastic restoring force. These arguments reduce the slope 1.4 £ 0.1 by a factor of 0.8
such that v = 1.1 £ 0.1. The experimental resulis y = 1.7+ 0.1 and v = 1.1 £ 0.1 should be
compared o the mean field an percolation predictions in the table on the previous page.  We see
that the measured values are in good agreement with the percolation predictions. The measured
v is slightly larger than predicted; however, it cannot be determined from these experiments
whether this is due to the actual divergence of the average size or to the arguments used to
account for swelling upon dilution.

Since percolation seems to describe the evolution of structure in our epoxy encapsulant, we
can now use the concept of self-similarity to help derive a theory for the evolution of
viscoelasticity during crosslinking.

Viscoelasticity: = Theoretical’ Foundation

As we have seen above, a crosslinking system undergoes a liquid-to-solid transition at the
gel point. However, the dynamic response of the system to an imposed deformation is more
complicated than simply purely viscous or elastic. For example, the branched sol molecules
formed during cure have a spectrum of relaxation times and, therefore, are purely elastic at short
times (t<tq where 14 is the shortest relaxation time) and purely viscous at very long times (t>ty
where 1) is the longest relaxation time). The intermediate viscoelastic response is closely
related to the structure of the molecules, so our previous studies on the evolution of structure
will guide us.

Before discussing branched polymers, it is useful to present theories for the apparently
simpler finear polymers [4]. If the chains in the melt are relatively short, the dynamical response
of a single chain can be modelled as a string of N Brownian beads connected by N-1 Hookean
springs. Therefore, the stress relaxation modulus G(t), which is the ratio of the resultant stress
oft) to a suddenly applied strain v, is just a sum of the individual relaxation modes G(t) ~ Z exp(-
t/7) where 7, are the relaxation times for the polymer. The longest relaxation time, 1y, is
dependent on the molecular weight of the chain. We can determine this molecular weight
dependence as follows, Since a chain diffuses a distance proportional to its radius R in a time 1y,
W™~ R2/Dt where Dy is the translational diffusion coefficient of the polymer. A linear chain in a
melt traces a random walk configuration so R ~ N1/2 (i.e. linear chains have a fractal dimension
of 2). In the simplest version, Dy is simply proportional to (NL;)'1 where { is the friction of one
bead; that is, each bead contributes { to the chain friction. Therefore, Ty ~ R2/Dt ~N/ANT) ~ N2,

If we calculate the spectrum of relaxation times for this simple model, we find that 7, ~ (k/N)®
TN The exponent o is found by noting that the first relaxation time, 14, is due to coordinated



motion of several atoms and, therefore, must be independent of the molecular weight (N) of the
chain so 14 ~ N® 1y ~ N N2 ~ N°. We find, then, that o = 2. The scaling behavior of the
relaxation times reflects the self-similar nature of the linear polymer chains. Again, if we look at
an ideal polymer chain with a window of size r<R, we cannot gauge the size of the window by our
view. The fractal structure of the polymer simplifies the dynamics. We will use these concepis in
our discussion of the dynamics of branched polymers as well.

Our first attempt at describing the dynamics of crosslinking polymers, then, will start from the
same point: a bead-spring model for branched polymers [5,6]. The theory is analogous to that for
linear chains. The stress relaxation modulus, G(t); for a single chain again will be the sum over
normal modes. Since the percolation clusters formed during crosslinking are fractal objects, we
will again assume that the relaxation times scale as the longest relaxation time for that cluster 1
~ (k/N)a Ty where 1y ~ R2/Dt. However, the fractal dimension of the percolation clusters is now
5/2 instead of 2 as for linear chains. This leads to o= 9/5 so Ty ~ NO/5,

Now we must account for the broad polydispersity exhibited by percolating systems. As we
saw above, percolation predicts that the cluster distribution.is given by n(M)~ M11/5 exp(-M/M,)
where M, is the z-average molecular weight. To calculate the stress relaxation modulus for the
entire reaction bath, we simply sum the result above for a single cluster over all clusters

G(0)~ MaM n(M) S/
k=1 &)

This integral cannot be solved analytically, but does yield closed form results in certain limits.
For example, for 14<<t<<t,, G(t) ~ ™ ~ 213, The time 1, is the longest relaxation time for the
cluster of mass M, (which defines the cutoff in the power law polydispersity) and scales as 1, ~
Rzz/Dt(Rz) ~ Rzg/ 2, Using the percolation prediction for the divergence of the z-averaged radius
(which we: saw agreed well with our experimental value), T, ~ £4 where e=]aC2- azflacz as
before. Therefore, 1, diverges as we approach the gel point. The power law relationship for G(t)
reflects that the system has no characteristic time for 1<t<t, which itself arises from the lack of
a characteristic length for a<r<R, (where a is the monomer size). For t>>1;, we can also solve
. the integral above and obtain G(t) ~ exp(-t/tz)bwhere b=2/5. A useful form for fitling data over all

A
G(t):A.T.l(EE) e—(t/”cz)b
, ot

Tz

timeis

2
where b=0.4 and A is just a numerical prefactor dependent on the patrticular system chosen.

From the theory of linear viscoelasticity, the steady-state zero-shear rate viscosity is the
integral of the stress relaxation modulus over all time. This integration yields n ~ Mw‘?’/ 4. g4
which describes how fast the viscosity diverges as we approach the gel point. Linear
viscoelastic theory also states that the stored elastic energy in the sol is quantified by the
reciprocal of the steady-state creep compliance, Je° =T,/M ~ £8/3,

We cannot directly calculate the equilibrium modulus, G, beyond the gel point. However, we
can make one of two physically reasonable assumptions: (1) G, which defines the elastically
stored energy in the gel, scales as its counterpart (Jeo)'1 for the sol or (2) the longest relaxation
time for the gel scales as its counterpar, 1, for the sol. Either of these assumptions yield G, ~
873, Using Eq. 2 and the scaling relationship G, ~ 1/1,, we can now write an expression for the

stress relaxation modulus for the gel
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where B is another constant dependent on the chemistry of the chosen system. ;
Thus Egs. 2 and 3 describe master curves when the absicca and ordinate are scaled by Ty
and G__ (i.e. £2) respectively. This constitutes a viscoelastic superposition principle, time-cure

@)

superposition [7], and is, of course, valid for any viscoelastic function. For example, the
complex shear modulus that describes the response of the system to a sinusiodal oscillation can -
be expressed as the universal function G*(w1,)/G ..

It is important to emphasize that the theory presented above is dependent on the self-
similarity concepts of percolation. Remember that percolation only predicts self-similarity and
power-law behavior when sufficiently “close” to the gel point. Therefore, our theory, which
predicts critical exponents, will be valid only over some range or extents of reaction that must be
determined experimentally. It is not possible to tell beforehand how large this critical regime, will
be.

Viscoelasticity:  Experimental  Studies

We first tested our theory by directly measuring the divergence of the bulk viscosity [3] at
90°C using a Rheometrics RDS-2 with 50mm diameter parallel plates close to the gel point and a
Brookfield viscometer LVTDV-II with 'spindle 1 in a 10-cm diameter beaker at 0.3 to 30 RPM
farther away from the gel point. The instrumental torques were monitored continuously up to full
scale at constant shear rate at 90°C . By taking several runs at different shear rates, we
determined that the measured viscosity was Newtonian up to roughly 10,000 Poise at' a shear
rate of 4x1073 rad/sec. Determination of the gel time is difficult in this experiment. We followed
the standard procedure of plotting log v against log & for various values of the ge! time and used
that value which resulted in the most linear relationship. In Figure 2, the measured slope is 1.4 £
0.2 which is excellent agreement with the theoretical prediction of 4/3. We also see that one
exponent can describe the divergence of the viscosity for £ < 0.52, or in terms of the extent of
reaction, 0.45<a<a (=0.65). Therefore, the “critical regime” where our scaling theory should
apply is given by these bounds.

We next attempted to verify the time-cure superposition principle [8] suggested by Eq.s 2 and
3. It is difficult to measure directly the time-dependent shear relaxation maodulus, so we
measured instead the in-phase (G'=storage modulus) and out-of-phase {G"=loss madulus)
components of the complex shear modulus, G*, described above. The measurements were
performed on the Rheometrics RDS-2 between 50mm parallel plates at 0.2 to 2% strain that were
kept at 90°C. Freguency scans from 2 to 200 radians/second were taken approximately every 4
minutes with each scan lasting just over a minute. The gel time of 188 minutes was not left as an
adjustable parameter but was independently determined as the time at which G'(w) ~ G"(®) ~ o?
strictly applied.

Figures 3 and 4 show the master curves that result from time-cure superposition. Here the
frequency and the modulus (G*) for each value of € were shifted by factors proportional to ¢
and £Z respectively. The parameters z and y were chosen to be those giving the best
superposition for G' and G* both before and after the gel point. Therefore, there are four
independent sets of data from which we have extracted the exponents z and y. Excellent
superposition is achieved with z=2.8 (£0.2) and y=3.9 (£0.2), and these agree very well with the
predictions z=8/3 and y=4 of the dynamic scaling theory.

We have also measured the increase in the equilibrium moduius with extent of reaction



directly. The samples were cured at 90°C in rectangular geometry (2.5" x 0.5" x 0.25") to differing
extents past the gel point and placed in the RDS-2. The storage moduius G' was measured at
90°C as a function of time at a fixed frequency of 1 radian/second. In Figure 2, we have plotted
the increase of the equilibrium modulus as determined by time-cure superposition and by these
direct measurement on partially. cured BADGE/DEA samples. The measurements agree well with
each other and are within experimental error of the theoretical predictions (z=8.3). The breadth of
the critical regime where the theory applies is surprising. = Within error, the divergence of the
equilibrium modulus is described by a single exponent over the entire post gel regime. This broad
critical regime is no doubt due in part to the extremely low molecular weight of the epoxy chains
(MW=380); but that it extends over the entire post-gel region is very surprising.

Conclusions

We have seen that percolation accurately reflects the evolution of structure in our most
common epoxy encapsulant, DEA-cured BADGE. We can benefit from this agreement by using
the self-similarity concepts: from percolation to help develop a scaling theory for the
viscoelasticity for crosslinking systems. The critical divergences predicted by such a theory are
in excellent agreement with those measured in our 828/DEA epoxy. In addition, the theory
suggests that data taken at various extents of reaction should have identical functional forms
and simply rescaling the ordinate and abscissa by the appropriate factors should produce
master curves.. Such superposition is observed. in the BADGE/DEA system, and the shift
factors agree well with the theoretical predictions.

While we studied a system of interest to Sandia, we should stress that the dynamic scaling
theory should apply equally well to any crosslinking system in the critical regime. The question
remains "How large is the critical regime?”: We showed that the critical regime extends over half
of the reaction for the BADGE/DEA system due to the small size of the reacting monomers. For
other small monomer systems, the theory should be equally valid and the critical regime should
extend over a comparable range.
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Figure Captions

FIG. 1: Divergence of the weight-average molecular weight and z-average radius for the sol.

FIG. 2: Divergence of the viscosity for the sol and the equilibrium modulus for the gel.

FIG. 3: Time-cure superposition of the storage and loss moduli for the sol.

FIG. 4: Time-cure superposition of the storage and loss moduli for the gel.
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