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Abstract - This paper discusses the ability of an adaptive 
line enhancer (ALE) driven by the'* least-mean-squares 
(LMS) algorithm to track the frequency of a chirping signal 
in broadband noise. The dynamic behavior of the weights is 
described and a weight tracking error bound is derived in 
terms of the chirp rate. Frequency tracking and weight be­
havior are illustrated in examples.

1. INTRODUCTION
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Sandia Labs is currently studying the detection of a chirping 
sinusoid and the tracking of its frequency. Our subject of this 
paper is the chirp resulting from passing an impulse through a 
dispersive medium. The basic dispersion formula is

t
f2 (1)

where t is time, /is frequency, and a is the dispersion constant.
A typical impulse response is shown in Fig. 1. Because of
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Fig. 1 Typical Impulse Response

the dispersion represented in Eq. 1, the high frequencies arrive 
first, followed by the lower frequencies.

We have studied several different approaches for detecting 
and tracking the frequency of a chirping signal in the presence of 
noise. The adaptive line enhancer (ALE) is used in one of
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these approaches. We have investigated the dynamic tracking 
characteristics under varying conditions of noise and chirp rate. 
This paper discusses the way the individual weights in the ALE 
change in response to the chirping signal in the presence of 
noise.

2. THE ADAPTIVE LINE ENHANCER

The adaptive line enhancer (ALE) is usually in the form of 
the linear predictor shown in Fig. 2, with the predictor weights

Fig. 2. Adaptive line enhancer in the form of a linear 
predictor.

[wn] driven by a normalized version of the well-known least- 

mean-squares (LMS) algorithm [1,5]. The weight, wn, is 
adjusted at the kP1 sample time as follows:

2u
wn(k + 1) = wn(k) + jype(k)x(k — n); 0 < tz < 1 (2)

The LMS convergence parameter is normalized by N, the filter 
size in Fig. 2, and by P, the input signal power, P=E[jc|]. (The 
latter may also be adjusted during the adaptive process [6].)

A stationary narrowband signal (spectral line) in the pres­
ence of wideband noise is "enhanced” by the ALE if the delay 
(A) is long enough to decorrelate the noise. Then, in order to 
minimize the mean-squared error (MSE), E[e^], the LMS algo­
rithm will adjust [wn] such that the filter, W(z), has a narrow-
band transfer function at the frequency of the line. Then the nar­
rowband signal is predicted, the noise is rejected as well as 
possible by the filter, the MSE is minimized, and the frequency 
of the line is the peak of the inverse predictor gain, i.e.,.

line frequency = max - W{z)
-1

with 2 = ej27r-^ (3)

Here / is the frequency in Hz-s. In this paper we are primarily 
concerned with the ability of the ALE to track the moving line of 
a chirping signal.
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The performance of the ALE in Fig. 2 has been studied ex­
tensively, mostly for one or more stationary sinusoids in white 
Gaussian noise. For this case Griffiths [1] has shown that the 
convergence factor u in Eq. 2 should be in the range shown and 
that certain constraints on the input correlation matrix (Rx)
must be met for convergence. Treichler [2] has also character­
ized the convergence in terms of the eigenvalues of Rx, and
Rickard and Zeidler [3] have provided a quantitative analysis of 
the ability of the ALE to enhance a narrowband signal. Regard­
ing the choice of the delay (A), Yoganandam et. al. [4] have 
shown that the ALE performance is significantly improved by 
choosing an optimal value, Aopt, for a given situation.

3. TRACKING CONSIDERATIONS

In the present case the ALE is supposed to converge or lock 
on to a nonstationary, chirping narrowband signal which appears 
suddenly in broadband background noise, and to track the fre­
quency of the signal through time. We are particularly interest­
ed in the tracking capabilities and performance of the ALE. Sup­
pose that the ALE is successfully tracking a sinusoid at fre­
quency / (Hz-s) in broadband noise. With a low signal-to- 
noise ratio (the condition in which we are most interested), the
magnitude of the filter transfer function given by \W(ei2nf)\ will 
ideally be a unit impulse at frequency /. The filter weights, 
[wn], will therefore be ideally sinusoidal, in the form

2
wn = —sin(27rn/ + a); 0 < n < iV — 1 (4)

If we assume that / is being tracked and that both / and [wn]
are functions of /, the time step, then the weights and their rates 
of change are given by

2
w(k) = —sin[27m/(fc) + a];

cos[2imf(k) + <*]; (5)

From this result we see that the weights themselves 
change sinusoidally with time (k) and that the rate of change is 
bounded by

(6)

Thus, for a given chirp rate, the higher-order weights must 
change faster. This result is fortuitous for high-signal-to-noise 
cases where the lower-order weights tend to dominate (only 2 
weights are required theoretically in the noise-free case). For 
low-SNR cases, a further upper bound on the weight rate of
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change required for tracking is obtained using the final weight 
(assuming N is large, we use n=N in Eq. 6.):

Iw’jv-iI < 47r|/(fc)| Hz —s/sample (7)

In Eqs. 6 and 7 we have essentially established bounds on 
the required tracking capability of the ALE. On the other hand, 
the convergence of any gradient-search algorithm like the LMS 
algorithm in Eq. 2 can be approximated [5] by

w(k) = w(k + 1) — w(k) = 2u[wopt — u;(fc)] (8)

Here the weight tracking error is the difference between the op­
timal and current weight values, i.e., wop( - w(k). The relation­
ship in Eq. 8 is really good only for a single weight or in the case 
where Rx has equal eigenvalues; however, the latter is approxi­
mately true in low-SNR cases. Since the weights themselves 
are in general proportional to 2/N as seen in Eq. 4, we define a 
normalized tracking error for weight wn as follows:

En{k) — — \w0pt — Wn(&)| (9)

Combining Eqs. 6, 8, and 9, we have

mr\f(k)\
E„(k) < —------ !■ (10)

u

During tracking, the range from 0 to 0.5 Hz-s is divided into N 
intervals. We therefore express the chirp rate in terms of r(k), 
the number of frequency intervals/sample, and obtain

En(&) ^
n7r|r(A;)|

Nu (11)

Using this result, we can at least approximately predict the suc­
cess of an ALE tracking the frequency of a chirping signal. The 
filter size (N) must be large enough to allow adequate frequen­
cy discrimination. For adequate performance of the LMS algo­
rithm in terms of weight noise [5], the convergence parameter 
(w) must generally be much smaller than the limit in Eq. 2. 
Since the weight variance due to noise is proportional to u [5], 
the actual choice of u must be based on the SNR for which the 
ALE is designed. In our present study we have SNR’s 
around -10 dB, and typical values of N and u are N=32 and 
m=0.01. The implication in Eq. 11 is that on the order of kI(Nu) 
to k/u, or 10 to 300 samples, may be required for adjusting the 
weights to switch the ALE response successfully from one fre­
quency increment to the next. In experiments we have found 
that the bound in Eq. 11 is reasonable.

Regarding the choice of A, the forward delay in Fig. 2, the 
optimal choice will decorrelate the noise but not the signal at
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the summing junction. With steady-state signals, A can be 
chosen on the basis of noise characteristics alone, but when the 
signal is chirping, any value of A will tend to decorrelate the 
signal at the summing junction in Fig. 2. For example, 
suppose the signal component of x(k) is chirping at a constant 
rate c Hz-s/sample. Then, in order to cancel the signal at the 
summing junction, the weights must "tumble" [4] at 
approximately cA Hz-s, the difference between the frequency of 
the signal in x(k) and the frequency of the signal in x(k+K). On 
the other hand, in Eq. 5 with the constant chirp rate assumed 
here, the time-varying sine argument becomes 2nnck, so 
neglecting tumbling, the /Ith weight must oscillate at the 
frequency cn in order to track the signal. To summarize,

Constant chirp rate c Hz-s/sample:
(maximum) tracking frequency of weight wN = cN

additional tumbling frequency of any weight = cA (12)
From this result we can conjecture that if A is a significant frac­
tion of N, the tracking capabilities of the LMS-driven weights 
will be affected.

The tracking characteristics discussed in this section are 
demonstrated in the following examples.

4. TRACKING EXAMPLES

In this section we demonstrate the results above using the 
type of signal described in section 1. First, a signal is illustrat­
ed with low noise (average SNR=0dB) in Fig. 3. The waveform

50 ....................................... :..................................... .......................................

x(k) o

• $000 10000 15000

SAMPLE NO. (k)

Fig. 3. Signal with frequency described in Eq 13, k0=5000 
and SNR=0 dB.

begins at &0=5OOO samples and has the frequency in accordance 
withEq. 1

w> = yr*i Hz-S (13)

The additive noise is Gaussian and has uniform power density 
from 0.05 to 0.45 Hz-s. The signal first appears at £=5400 sam-
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pies where, in accordance with Eq. 13, f(k) comes within the 
range (0,0.5) Hz-s. From Eq. 13, the chirp rate amplitude is

f(h) = 5(fc - fc0) -3/2 Hz —s/sample (14)

This rate has a maximum of 6.25E-4 Hz-s/sample at £=5400 
where the signal first appears. Using u=0.01, Eq. 10 gives a 
reasonable tracking error for the low-order weights. Thus we 
would expect the LMS algorithm to begin tracking the signal 
near its onset, and of course the amplitude in Eq. 14 decreases 
rapidly with k, so the tracking should improve with k.

A tracking example for the waveform in Fig. 3 is shown in 
Fig. 4. In the upper plot, the ALE is seen to improve the SNR

toooo 15000

SAMPLE NO. (Jc)

Fig. 4. ALE tracking under low noise conditions. Input 
waveform x(k) as in Fig 3 with ^SOOO, A=l, 
N-Z2, m=0.01, and avg. SNR=0 dB.

of the waveform in Fig. 3, and the frequency estimation in Eq. 3 
(boxes) in the lower plot matches the actual frequency (smooth 
curve) until the instantaneous SNR, which decreases during the 
signal, decreases to a low value. For this example we used 
N=yi weights, A=l, and u=0.01. The input power, P in Eq. 2 
was tracked using a single-pole smoothing filter described in 
[6] with forgetting factor a=0.001.
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, Plots of the weights w8(k) and w]6(k) vs k, which exhibit 
the relationship in Eq. 5, are shown in Fig. 5. The amplitude of

-o.os - w- n=8
-0.10

10000

10000 15000

SAMPLE NO. {k)
Fig. 5. Plots of weights ws and w^6, illustrating the 

behavior predicted in Eq. 5

the variation of w8 is close to the value 0.06 predicted by Eq. 5. 
The amplitude of w16 is less because, with a high SNR, not all
of the weights are required for signal cancellation. The frequen­
cy of weight variation is found by taking the derivative of the 
phase 0n(&), then substituting Eq. 13 for the present example:

phase 0n(k) = 2Trnf(k) + a

frequency fw(k) = — Qn(k) = n|/(A:)| Hz —s (15)

= 5n(fc — fco)3/2 Hz —s

For example, at fc=7500, this result gives fw(k)=(4.E-5 )n and 
hence periods of 3125 and 1562 samples for weights w8 and w16 
respectively, which agree with the plots in Fig. 5.

The degradation in tracking caused by a larger value of A, 
which in turn causes the weight tumbling expressed in Eq. 12, is 
shown in Fig. 6 where A is increased from 1 to 5 samples. The

SAMPLE NO. (k)

Fig. 6. Loss of tracking from Fig. 4 caused by increasing 
A from 1 to 5.
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.Gaussian noise was made white (with the same SNR) for this 
case so that no other correlated components were present in the 
waveform. As predicted, the tracking capability is affected by 
making A a significant fraction of N.

A waveform similar to Fig. 3 but with SNR decreased 
to -10 dB is plotted in Fig. 7 and tracked using the same ALE

SAMPLE NO. (k)

Fig. 7. Tracking as in Fig. 4 but with avg. SNR=-10 dB.

used for Fig. 4. Two effects can be noted in the frequency track 
in the lower plot. First, the tracking error, En(k), in Eq. 10 has
not changed and, as expected, tracking is still accurate except 
where the weights are misadjusted due to the increased noise 
in the weight solutions [5,6] due to the lower SNR. Note, how­
ever, that lowering the convergence parameter u in order to low­
er the misadjustment would in this case produce a proportional 
increase in En(k), and produce an adverse effect on tracking.
Secondly, as we would expect, the overall frequency track is 
noisier due to the increased misadjustment over the case in Fig.
4.

5. CONCLUSIONS

In this paper we have examined the ability of the ALE using 
the LMS algorithm to track the frequency of a chirping signal in 
broadband noise. We have found that the tracking error bound 
in Eq. 11 and other conclusions arising from an analysis of the 
expected behavior of the ALE weights are helpful in predicting 
the tracking performance.
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