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Abstract - This paper discusses the ability of an adaptive

line enhancfzr (ALE) driven by the~ least-nilea'n-sql}ares SAND--90-0231C
(LMS) algorithm to track the frequency of a chirping signal
in broadband noise. The dynamic behavior of the weights is DE9O0 006772

described and a weight tracking error bound is derived in
terms of the chirp rate. Frequency tracking and weight be-

havior are illustrated in examples.

1. INTRODUCTION

Sandia Labs is currently studying the detection of a chirping
sinusoid and the tracking of its frequency. Our subject of this
paper is the chirp resulting from passing an impulse through a
dispersive medium. The basic dispersion formula is

a
t= ‘"‘fz (1)
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where ¢ is time, fis frequency, and a is the dispersion constant. g 8¢ 8 g 23°
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A typical impulse response is shown in Fig. 1. Because of 282888
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Fig. 1 Typical Impulse Response

the dispersion represented in Eq. 1, the high frequencies arrive
first, followed by the lower frequencies.

We have studied several different approaches for detecting MAS
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and tracking the frequency of a chirping signal in the presence of
The adaptive line enhancer (ALE) is used in one of
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these approaches. We have investigated the dynamic tracking
characteristics under varying conditions of noise and chirp rate.
This paper discusses the way the individual weights in the ALE
change in response to the chirping signal in the presence of
noise.

2. THE ADAPTIVE LINE ENHANCER

The adaptive line enhancer (ALE) is usually in the form of
the linear predictor shown in Fig. 2, with the predictor weights

x(k)

e(k)

L yeseens Wi Z7(N-D )

Fig. 2. Adaptive line enhancer in the form of a linear
predictor.

[w,] driven by a normalized version of the well-known least-
mean-squares (LMS) algorithm [1,5]. The nth weight, w,, is
adjusted at the kth sample time as follows:

wp(k+1) = wp(k) + ]%y};e(k)x(k —n); O<u<l (2

The LMS convergence parameter is normalized by N, the filter
size in Fig. 2, and by P, the input signal power, P=E[x,%]. (The
latter may also be adjusted during the adaptive process [6].)

A stationary narrowband signal (spectral line) in the pres-
ence of wideband noise is "enhanced" by the ALE if the delay
(A) is long enough to decorrelate the noise. Then, in order to
minimize the mean-squared error (MSE), E[ei], the LMS algo-
rithm will adjust [w,] such that the filter, W(z), has a narrow-
band transfer function at the frequency of the line. Then the nar-
rowband signal is predicted, the noise is rejected as well as
possible by the filter, the MSE is minimized, and the frequency
of the line is the peak of the inverse predictor gain, i.e.,.

-1 '
line frequency = max [z_A - W(z)] with z = ¢/27f (3)

Here f is the frequency in Hz-s. In this paper we are primarily
concemned with the ability of the ALE to track the moving line of
a chirping signal.
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The performance of the ALE in Fig. 2 has been studied ex-
tensively, mostly for one or more stationary sinusoids in white
Gaussian noise. For this case Griffiths [1] has shown that the
convergence factor u in Eq. 2 should be in the range shown and
that certain constraints on the input correlation matrix (R,)

must be met for convergence. Treichler [2] has also character-
ized the convergence in terms of the eigenvalues of R,, and

Rickard and Zeidler [3] have provided a quantitative analysis of
the ability of the ALE to enhance a narrowband signal. Regard-

ing the choice of the delay (A), Yoganandam et. al. [4] have
shown that the ALE performance is significantly improved by

choosing an optimal value, Aop, , for a given situation.

3. TRACKING CONSIDERATIONS

In the present case the ALE is supposed to converge or lock
on to a nonstationary, chirping narrowband signal which appears
suddenly in broadband background noise, and to track the fre-
quency of the signal through time. We are particularly interest-
ed in the tracking capabilities and performance of the ALE. Sup-
pose that the ALE is successfully tracking a sinusoid at fre-
quency f (Hz-s) in broadband noise. With a low signal-to-
noise ratio (the condition in which we are most interested), the

magnitude of the filter transfer function given by |W(&2™)| will
ideally be a unit impulse at frequency f. The filter weights,
[w,}, will therefore be ideally sinusoidal, in the form

wp = ]%_sin(27rnf+a); 0<n<N-1 4)

If we assume that f is being tracked and that both f and [w,]

are functions of f, the time step, then the weights and their rates
of change are given by

w(k) = —-sm[27rnf(k) + a;

4mn f(k)

w(k) = ———=cos2rn f(k) + «af; (5)

From this result we see that the weights themselves
change sinusoidally with time (k) and that the rate of change is
bounded by

d7n

[ion(B)] < S5 A Ha—s/sample ©)

Thus, for a given chirp rate, the higher-order weights must
change faster. This result is fortuitous for high-signal-to-noise
cases where the lower-order weights tend to dominate (only 2
weights are required theoretically in the noise-free case). For
low-SNR cases, a further upper bound on the weight rate of
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change required for tracking is obtained using the final weight
(assuming N is large, we use n=N in Eq. 6.):

lon—1]| < 47r|f(k)| Hz—s/sample (7)

In Egs. 6 and 7 we have essentially established bounds on
the required tracking capability of the ALE. On the other hand,
the convergence of any gradient-search algorithm like the LMS
algorithm in Eq. 2 can be approximated [5] by

w(k) = wk +1) —w(k) = 2uwyp — w(k)] (8)

Here the weight tracking error is the difference between the op-
timal and current weight values, i.e., Wopt - w(k). The relation-
ship in Eq. 8 is really good only for a single weight or in the case
where R, has equal eigenvalues; however, the latter is approxi-

mately true in low-SNR cases. Since the weights themselves
are in general proportional to 2/N as seen in Eq. 4, we define a
normalized tracking error for weight w, as follows:

Bn(K) = 5 heapt — wa(b) ©)

Combining Egs. 6, 8, and 9, we have

En(k) £ —— (10)

During tracking, the range from O to 0.5 Hz-s is divided into N
intervals. We therefore express the chirp rate in terms of r(k),
the number of frequency intervals/sample, and obtain

En(k) < W (11)

Using this result, we can at least approximately predict the suc-
cess of an ALE tracking the frequency of a chirping signal. The
filter size (N) must be large enough to allow adequate frequen-
cy discrimination. For adequate performance of the LMS algo-
rithm in terms of weight noise [5], the convergence parameter
(v) must generally be much smaller than the limit in Eq. 2.
Since the weight variance due to noise is proportional to u [5], |
the actual choice of ¥ must be based on the SNR for which the
ALE is designed. In our present study we have SNR’s
around -10 dB, and typical values of N and u are N=32 and
u=0.01. The implication in Eq. 11 is that on the order of n/(Nu)
to m/u, or 10 to 300 samples, may be required for adjusting the
weights to switch the ALE response successfully from one fre-
quency increment to the next. In experiments we have found
that the bound in Eq. 11 is reasonable.

Regarding the choice of A, the forward delay in Fig. 2, the
optimal choice will decorrelate the noise but not the signal at
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the summing junction. With steady-state signals, A can be
chosen on the basis of noise characteristics alone, but when the

signal is chirping, any value of A will tend to decorrelate the
signal at the summing junction in Fig. 2. For example,
suppose the signal component of x(k) is chirping at a constant
rate ¢ Hz-s/sample. Then, in order to cancel the signal at the
summing junction, the weights must "tumble" [4] at

approximately cA Hz-s, the difference between the frequency of

the signal in x(k) and the frequency of the signal in x(k+A). On
the other hand, in Eq. 5 with the constant chirp rate assumed

here, the time-varying sine argument becomes 2nnck, so

neglecting tumbling, the nth weight must oscillate at the
frequency cn in order to track the signal. To summarize,

Constant chirp rate ¢ Hz-s/sample:
(maximum) tracking frequency of weight wy, = cN

additional tumbling frequency of any weight = cA (12)

From this result we can conjecture that if A is a significant frac-
tion of N, the tracking capabilities of the LMS-driven weights
will be affected.

The tracking characteristics discussed in this section are
demonstrated in the following examples.

4. TRACKING EXAMPLES

In this section we demonstrate the results above using the
type of signal described in section 1. First, a signal is illustrat-
ed with low noise (average SNR=0dB) in Fig. 3. The waveform

50 - R e b R LR DL TR

T T
2 5000 10000 15000

SAMPLE NO. (k)

Fig. 3. Signal with frequency described in Eq 13, k,=5000
and SNR=0 dB.
begins at k;=5000 samples and has the frequency in accordance
with Eq. 1
10

f(k)z\/k_——ko

The additive noise is Gaussian and has uniform power density
from 0.05 to 0.45 Hz-s. The signal first appears at k=5400 sam-

Hz—s (13)
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ples where, in accordance with Eq. 13, f{k) comes within the
range (0,0.5) Hz-s. From Eq. 13, the chirp rate amplitude is

'f(k)\ = 5(k — ko)_3/2 Hz—s/sample (14)

This rate has a maximum of 6.25E-4 Hz-s/sample at k=5400
where the signal first appears. Using #=0.01, Eq. 10 gives a
reasonable tracking error for the low-order weights. Thus we
would expect the LMS algorithm to begin tracking the signal
near its onset, and of course the amplitude in Eq. 14 decreases
rapidly with k, so the tracking should improve with k.

A tracking example for the waveform in Fig. 3 is shown in
Fig. 4. In the upper plot, the ALE is seen to improve the SNR

50 -

y(k)

L) 1
0 5000 10000 15000
0.5

0.4

™ ,,
(Hz-s) 0.2

0.0 < T T
0 5000 10000 15000

SAMPLE NO. (k)

Fig. 4. ALE tracking under low noise conditions. Input
waveform x(k) as in Fig 3 with k;=5000, A=1,
N=32, u=0.01, and avg. SNR=0 dB.

of the waveform in Fig. 3, and the frequency estimation in Eq. 3
(boxes) in the lower plot matches the actual frequency (smooth
curve) until the instantaneous SNR, which decreases during the
signal, decreases to a low value. For this example we used
N=32 weights, A=1, and u=0.01. The input power, P in Eq. 2
was tracked using a single-pole smoothing filter described in
[6] with forgetting factor a=0.001.
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. Plots of the weights wg(k) and w;(k) vs k, which exhibit
the relationship in Eq. 5, are shown in Fig. 5. The amplitude of

wy(k) " W
-0.05 + - 8

Wy, n=
-0.10 T v =
0 5000 10000 15000

0.10 -

0.05 - M/\/‘N\/—\/\/ﬂ\
0.00 -

w, (k) ,
-0.05 A w,, n=16

-0.10

L] L}
] 5000 10000 15000

SAMPLE NO. (k)

Fig. 5. Plots of weights wg and w,, illustrating the
behavior predicted in Eq. 5

the variation of wyg is close to the value 0.06 predicted by Eq. 5.
The amplitude of w,, is less because, with a high SNR, not all

of the weights are required for signal cancellation. The frequen-
cy of weight variation is found by taking the derivative of the

phase 0, (k), then substituting Eq. 13 for the present example:
phase 0 (k) = 27nf(k) + a
frequency f,, (k) = 2—17r—I0n(k)| = nlf(k)l Hz—s (15)
= 5n(k — ko)*/2 Hz—s

For example, at k=7500, this result gives f(K)=(4.E-5)n and
hence periods of 3125 and 1562 samples for weights wg and w4
respectively, which agree with the plots in Fig. 5.

The degradation in tracking caused by a larger value of A,
which in turn causes the weight tumbling expressed in Eq. 12, is

shown in Fig. 6 where A is increased from 1 to 5 samples. The

0.5 q

fik)
(Hz-s) .

24

3 y !

] 50'00 100'00 15;00
SAMPLE NO. (k)

Fig. 6. Loss of tracking from Fig. 4 caused by increasing
A from 1to 5.
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Gaussian noise was made white (with the same SNR) for this
case so that no other correlated components were present in the
waveform. As predicted, the tracking capability is affected by

making A a significant fraction of N.

A waveform similar to Fig. 3 but with SNR decreased
to -10 dB is plotted in Fig. 7 and tracked using the same ALE

0 5000 10000 15000

SAMPLE NO. (k)

Fig. 7. Tracking as in Fig. 4 but with avg. SNR=-10 dB.

used for Fig. 4. Two effects can be noted in the frequency track
in the lower plot. First, the tracking error, E,(k), in Eq. 10 has

not changed and, as expected, tracking is still accurate except
where the weights are misadjusted due to the increased noise
in the weight solutions [5,6] due to the lower SNR. Note, how-
ever, that lowering the convergence parameter u in order to low-
er the misadjustment would in this case produce a proportional
increase in E,(k), and produce an adverse effect on tracking.

Secondly, as we would expect, the overall frequency track is
noisier due to the increased misadjustment over the case in Fig.
4,

5. CONCLUSIONS

In this paper we have examined the ability of the ALE using
the LMS algorithm to track the frequency of a chirping signal in
broadband noise. We have found that the tracking error bound
in Eq. 11 and other conclusions arising from an analysis of the
expected behavior of the ALE weights are helpful in predicting
the tracking performance.
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