

DISCLAIMER

Conf 9209160-9

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ANL/CP-77195

DE92 041119

COMBINED SO₂/NO_x REDUCTION TECHNOLOGY

by

C. David Livengood and Hann S. Huang
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439

Joanna M. Markussen
U.S. Department of Energy
Pittsburgh Energy Technology Center
P.O. Box 10940
Pittsburgh, PA 15236

Presented at the
International Symposium
on
Energy, Environment, and
Information Management
Argonne, Illinois

September 15-18, 1992

The submitted manuscript has been authored by a contractor of the U. S. Government under contract No. W-31 109-ENG-38. Accordingly, the U. S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U. S. Government purposes.

*Work supported by the U.S. Department of Energy, Assistant Secretary for Fossil Energy, under contract W-31-109-ENG-38.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

COMBINED SO₂/NO_x REDUCTION TECHNOLOGY

ABSTRACT

Enactment of the Clean Air Act Amendments and passage of state legislation leading to more stringent nitrogen oxides (NO_x) regulations have fueled research and development efforts on technologies for the combined control of sulfur dioxide (SO₂) and NO_x. The integrated removal of both SO₂ and NO_x in a single system can offer significant advantages over the use of several separate processes, including such factors as reduced system complexity, better operability, and lower costs. This paper reviews the status of a number of integrated flue-gas-cleanup (FGC) systems that have reached a significant stage of development, focusing on post-combustion processes that have been tested or are ready for testing at the pilot scale or larger. A brief process description, a summary of the development status and performance achieved to date, pending commercialization issues, and process economics (when available) are given for each technology.

INTRODUCTION

The development of advanced FGC technologies for the control of SO₂ and NO_x emissions continues to be a very active area of research and development, both in this country and abroad. This activity is driven both by legislation (such as the recent revisions to the Clean Air Act) and by the desire to develop technologies that surpass current options in terms of performance, costs, operability, and waste/by-product properties. New issues, such as concern over global climate changes and the health effects of toxic air emissions ("air toxics"), are also helping to shape and prioritize the development programs.

Commercially applied control technologies have typically involved combustion-modification techniques for NO_x and some form of wet scrubbing for SO₂. Recently, both selective catalytic reduction (SCR) and selective noncatalytic reduction (SNCR) for NO_x control have achieved commercial status for some applications, spray-dryer technology has led to the development of a wet/dry scrubber system for SO₂ that produces an easily handled dry waste, and various duct-injection processes have demonstrated moderate levels of SO₂ control. Ongoing development programs address a wide variety of alternative technologies that include a number of integrated processes for the removal of both SO₂ and NO_x in a single system. Such integration generally reduces system complexity and costs, enhances operability/reliability, and takes advantage of beneficial synergisms between pollutants in the removal process.

This paper provides a status report on a number of integrated FGC systems that have reached a significant stage of development, focusing on post-combustion processes that have been tested or are ready for testing at the pilot scale or larger. Although a wide variety of technologies is discussed, it should be noted that there are a number of other integrated approaches, such as slagging combustors, fluidized-bed combustion, gasification/combined-cycle systems, and various

processes combining low- NO_x burners with SO_2 -sorbent injection in the furnace. These other approaches also offer features that should not be overlooked when evaluating alternatives for a specific application.

TECHNOLOGY SUMMARIES

In order to achieve mandated air quality objectives as rapidly as possible, it is clear that emissions control equipment will have to be installed at many existing facilities. Almost any technology can be installed as a retrofit, given sufficient resources, but the realities of plant layout, operating characteristics, and/or remaining service life can make such an installation exceedingly difficult and inordinately expensive. The first two technologies described in this section are especially relevant to these issues, having been developed specifically for retrofit of NO_x control to existing flue-gas desulfurization (FGD) systems, a particularly important consideration for the many facilities with existing scrubbers. The third technology, in-duct sorbent injection, is being developed as a low-cost retrofit of both SO_2 and NO_x control that avoids the installation of major equipment items. The remaining technologies are complete systems that are not only designed to remove both species (and perhaps particulate matter (PM) as well), but that also involve more extensive equipment requirements. Note that unless explicitly stated otherwise, the existence of an electrostatic precipitator (ESP) or baghouse for PM control is assumed in all cases. While the performance of the PM-control device is not emphasized here, its importance can be expected to increase in the future in connection with the capture of fine-particulate matter carrying air toxics.

Wet Scrubbing with Metal Chelates

The dominant FGD technology today is wet scrubbing based on limestone, lime, or sodium carbonate. All of these processes are capable of over 90% SO_2 removal, but they are largely ineffective for NO_x removal due to the low solubility of the principal species, nitric oxide (NO). In view of the large number of wet scrubbers already in place or planned for the near future, a process that promotes NO_x removal simply through the addition of chemical additives, as indicated in Figure 1, could have a significant impact on control strategies.

It has been found that some metal-chelate additives, such as ferrous ethylenediaminetetraacetate ($\text{Fe(II)}\cdot\text{EDTA}^{2-}$), promote NO_x removal because they quickly remove any absorbed NO from solution and thereby maximize the absorption driving force. The coordinated NO can react with a sulfite ion, freeing the ferrous chelate for further reactions with NO. This synergism makes external regeneration of the $\text{Fe(II)}\cdot\text{EDTA}$ to release the NO unnecessary. Laboratory tests at Argonne National Laboratory (ANL) have given NO_x removals of up to about 60% for SO_2 removals of 90% (1). Higher levels of removal can be achieved with more vigorous gas/liquid contacting. Wastes contain the usual FGD products (e.g., $\text{CaSO}_3/\text{CaSO}_4$), together with nitrogen-sulfur compounds and perhaps other species.

A significant process problem is oxidation of the iron in the additive to the inactive, ferric state. Research efforts have been directed at the investigation of "secondary" additives with

antioxidant/reducing properties (1), reduction of ferric to ferrous ions using bisulfite ions in the scrubber liquor (2), and reduction using an electrochemical cell (3).

Pilot-scale tests of the technology were conducted during 1991 by the Dravo Lime Company with support from the U.S. Department of Energy (DOE). The tests utilized a 4.5-MW pilot plant constructed by Dravo at the Miami Fort Station of the Cincinnati Gas and Electric Company. Conditions investigated during the experiments included the liquid-to-gas ratio, gas velocity, scrubber packing materials, flue-gas SO_2 and NO_x concentrations, and ferrous ion concentration in the scrubber liquor. An antioxidant was used to maintain the desired ferrous ion concentration. Nitrogen oxides removals of up to 60% were obtained using packing in the scrubber tower. The corresponding SO_2 removals were essentially 100% (4). A thorough physical and chemical characterization of the waste produced is currently being conducted by Dravo and ANL.

Modified Spray-Dryer Scrubbing

Dry scrubbing technology is based on the spray drying of an alkali sorbent, typically lime slurry. The slurry is atomized and mixed with hot flue gas, which evaporates virtually all of the water while SO_2 is simultaneously absorbed and reacted with the alkali. The resulting dry powder and fly ash are collected in either a baghouse or an ESP and sent to a landfill for disposal. Process simplicity, low energy and water consumption, and the dry state of the waste are significant advantages. Sulfur dioxide removals of up to 90% have been demonstrated in both low- and high-sulfur applications (5).

Very little NO_x is removed under normal operating conditions, but small-scale research at the Pittsburgh Energy Technology Center (PETC) showed that elevated spray-dryer exit temperatures and the addition of sodium hydroxide (NaOH) to the lime can promote significant NO_x removal (6, 7). Full-scale (20-MW) demonstration of this technology was carried out in two series of tests at ANL using flue gas from the firing of high-sulfur (3.5%) coal and the process configuration shown in Figure 2. Raising the spray-dryer exit temperature from the normal value of about 65°C to above 82°C initiates NO_x removal, which is accompanied by some net nitrogen dioxide (NO_2) increase in the stack gas, ranging from 6-18 ppm. The addition of NaOH at 2.5-10% by weight of lime improves NO_x removals and reduces the lime requirement for SO_2 control. Most of the NO_x removal occurs in the baghouse, and extended intervals between bag cleanings produce the best performance, with average values of about 35% being attained at ANL. With some operating modifications, NO_x removals up to 50% should be attainable. Removals also depend strongly on the SO_2/NO_x ratio, being higher for high SO_2 concentrations in the flue gas (8). It should be noted, however, that the temperatures needed to promote NO_x removal also tend to suppress SO_2 capture, making it difficult to simultaneously optimize both NO_x and SO_2 control.

Detailed costs for the process are not available, but one preliminary estimate projected operating costs about 20% higher than those for normal SO_2 scrubbing (8). Process uncertainties are related to waste characteristics (solubility of sodium compounds) and long-term steady-state performance. Note that this technology represents a fully integrated $\text{SO}_2/\text{NO}_x/\text{PM}$ process.

In-Duct Sorbent Injection

Several process concepts (summarized in Figure 3) use in-duct injection of sorbents to achieve combined SO_2/NO_x control or to supplement other removal measures. One of these processes, being developed by Research-Cottrell Environmental Services and Riley Stoker, injects alcohol-hydrated lime into the convective section of the boiler (at about 540°C) for primary SO_2 control. Sodium bicarbonate is injected in the flue-gas duct at about 150°C for NO_x removal and additional SO_2 control. Urea injected with the sodium bicarbonate helps control unwanted NO_2 production. Small-scale tests have given 90% SO_2 removal, and overall NO_x removals of up to 75% have been projected for the process when combined with low- NO_x burners (9).

Process development is continuing on a 7,000 scfm proof-of-concept unit. Uncertainties involve trade-offs between temperature and urea for NO_2 control, demonstration of high SO_2 removals at reasonable sorbent consumption, and disposal properties of the waste generated. A preliminary economic analysis reported in 1990 gave capital costs of \$50/kW and levelized operating costs of about 10 mills/kWh (10).

Another process, which was selected for testing under the third round of the Clean Coal Technology Program, is being developed by a team led by the Public Service Co. of Colorado. Process plans call for a combination of several subsystems utilizing different emission control mechanisms to achieve the desired reductions. For NO_x control, Unit 4 (100-MW) of the Arapahoe Power Plant is to be retrofitted with Babcock & Wilcox low- NO_x burners and overfire air, supplemented by urea injection into the furnace. In-duct injection of either calcium or sodium-based sorbents, supplemented by flue-gas humidification, will be used for SO_2 control. A baghouse will control PM and provide a site for additional SO_2 removal. Up to 70% removal of both SO_2 and NO_x is expected (11). The urea injection system has been installed and is in the process of shakedown, while the other various subsystems are in the design phase. Process testing is expected to begin in the fall of 1992.

Dry sodium bicarbonate injection has also been tested at five coal-fired utility boilers by NaTec Resources, Inc., and has been commercially installed at several industrial sites. Removal values have been as high as 75% for SO_2 and 0-40% for NO_x on systems equipped with ESPs. Sulfur dioxide removals as high as 90%, with 25% NO_x removal, were obtained in small-scale tests with injection upstream of a baghouse. Solubility of the wastes requires a lined pond with a leachate collection system for disposal. To enhance the attractiveness of the process, recent development efforts have been focused on recovery of sodium sulfate (Na_2SO_4), a commercially valuable by-product. However, full-scale tests have yet to be conducted for a complete scrubbing/by-product system. Projected costs reported by the developer in 1990 for such a system were \$81/kW capital cost (including a new baghouse) and 5.05 mills/kWh levelized cost (12).

NOXSO Process

The NOXSO process is a dry, regenerable FGC system designed to simultaneously remove over 95% of the SO_2 and 70% of the NO_x from flue gas. The gas is cleaned as it passes through a fluidized bed of sodium-impregnated alumina sorbent at about 120°C . Removal of PM can be

accomplished either before or after the process. The reaction mechanisms are complex, giving a variety of sulfur- and nitrogen-containing compounds in the spent sorbent (13).

Regeneration of the sorbent is performed separately for NO_x and SO_2 . Adsorbed NO_x is released as the sorbent is heated to about 620°C with hot air in a second fluidized bed, as shown in Figure 4. The off-gas can be recycled to the combustor with the combustion air. As a result of chemical equilibria in the combustor, NO_x formation is suppressed, resulting in a new, slightly higher, steady-state NO_x concentration in the flue gas. Thus, the only NO_x removal by-product is nitrogen (N_2). After heating, the sorbent is treated with a reducing gas, such as methane, and steam to produce a concentrated stream of SO_2 and hydrogen sulfide (H_2S). These species are converted in a Claus reactor to elemental sulfur, which is sold as a by-product.

Small-scale process tests have been conducted at the Tennessee Valley Authority's Shawnee Plant and PETC. Parametric testing and corrosion experiments are currently being conducted in a 5-MW pilot plant at Ohio Edison's Toronto Plant. A 115-MW demonstration of the process will be conducted at Ohio Edison's Niles Station under the third round of the Clean Coal Technology Program. Process uncertainties appear to be in the areas of NO_x -recycle performance, sorbent attrition rates, and materials corrosion in some parts of the system (14). A recent independent cost study estimated capital costs for the process at \$257/kW (1990 dollars) with levelized costs of 11.7 mills/kWh (15).

SNRB Process

The SNRB (SO_x - NO_x -Rox-BoxTM) process of Babcock & Wilcox combines injection of an SO_2 sorbent with a hot catalytic baghouse for NO_x and PM removal (Figure 5). A calcium- or sodium-based sorbent is injected either upstream or downstream of the boiler economizer and reacts with SO_2 in both the duct and the filter cake on the bags. Ammonia (NH_3) injected into the flue gas reacts with NO_x over a catalyst suspended within the filter bags, producing N_2 . A key process feature is the use of woven ceramic filter bags to withstand temperatures on the order of 425-450°C. Low exit SO_2 and sulfur trioxide (SO_3) levels may permit lower air preheater exit temperatures and greater system thermal efficiency.

Laboratory pilot tests demonstrated 90% NO_x removal at 0.95-1.05 NH_3/NO_x molar ratios and 70% to 80% SO_2 removal for $\text{Ca}(\text{OH})_2/\text{SO}_2$ stoichiometries of 2.0-2.5 (16). Future small-scale testing will assess other bag filter fabrics and the SO_2 removal capabilities of alternative sorbents. A 5-MW process demonstration is being conducted at Ohio Edison's R.E. Burger Plant under the second round of the Clean Coal Technology Program. Construction of the facility has been completed and testing began in May 1992.

Development issues to be resolved include demonstration of satisfactory long-term performance for the integrated system, demonstration of high SO_2 removals at reasonable sorbent consumption, demonstration of economic filter bag and catalyst lifetimes, development of a control philosophy for response to load changes and system upsets, and verification of the enhanced heat-recovery capabilities. A thorough economic analysis of the process is not available, but a preliminary estimate by the developer put operating costs at about one-half those of a wet FGD/SCR system (17).

SNOX and DESONOX Processes

The SNOX (WSA-SNOX) process, developed by Haldor Topsøe A/S, is designed to catalytically remove 95% or more of both the SO_2 and NO_x in the flue gas while producing a salable by-product of concentrated sulfuric acid, as shown in Figure 6. Selective catalytic reduction of NO_x to N_2 using ammonia is followed by catalytic oxidation of SO_2 to SO_3 . The SO_3 is hydrated to sulfuric acid, which is then concentrated to 95% acid strength in an air-cooled falling-film condenser constructed of glass. Although the process consumes a significant amount of energy, extensive energy recovery within the process is claimed to give net energy savings for the plant of 1-4% (1% for each percent of sulfur in the fuel), due mainly to the exothermic heat of formation of sulfuric acid (18). Ammonia slip from the SCR reactor is oxidized in the SO_2 converter and does not present an emissions problem. A baghouse or ESP upstream of the SCR unit removes most PM. Any remaining fine particulates are retained in the SO_2 converter catalyst bed, which undergoes periodic cleaning by means of a semi-automatic system for sifting the catalyst. Lifetimes of 7-10 yr for the SO_2 catalyst and 3-6 yr for the NO_x catalyst are projected at this time on the basis of previous tests (19).

In Denmark, a 3-MW process demonstration unit operated on a low-sulfur flue-gas stream from 1987 until 1991, and a 300-MW full-scale SNOX plant began operation in November 1991 on a boiler firing medium-sulfur (1.6%) coal. A 30-MW unit has been in operation on a petroleum-coke-fired boiler in Italy since April 1991. That unit has maintained greater than 96% NO_x removal and over 96% SO_2 removal (20). In the United States, a 35-MW demonstration of the technology is being conducted at Ohio Edison's Niles Station under the second round of the Clean Coal Technology Program. Asea Brown Boveri (ABB) has completed the facility construction, and process operation has been initiated. An independent study evaluating NO_x/SO_2 technologies according to EPRI guidelines estimated process capital costs of \$375/kW and a leveled cost of 10.5 mills/kWh (1990 dollars) (15).

A similar process called DESONOX was conceived by the German firm Degussa and is being developed jointly with Stadtwerke Münster, Lentjes, and Lurgi. A single reactor tower containing both reduction and oxidation catalysts is used. The sulfuric acid by-product is claimed to be of sufficient purity to be used in producing fertilizers. The process has been demonstrated on a 98-MW boiler at the Hafen cogeneration plant in Münster since November 1988; a second unit is planned to go into operation at the same facility in the summer of 1992. Removals for low-sulfur coal operation have been approximately 80% for NO_x and 94% for SO_2 (21).

Copper Oxide Process

The copper oxide (CuO) process developed at PETC combines SO_2 capture with catalytic reduction of NO_x in a single fluidized-bed reactor containing a CuO -impregnated alumina sorbent (Figure 7). Regeneration of the sorbent produces a concentrated SO_2 stream that can be processed into a salable by-product. Small-scale tests have yielded approximately 90% removal of both species (22). Under DOE contract, UOP is to complete a conceptual design and economic evaluation of a 500-MW commercial-scale unit. Previous estimates have placed capital costs at \$177/kW (1984 dollars), with leveled operating costs of 20.3 mills/kWh (23). A

moving bed variation on the process, developed by Rockwell International Corp., also removes PM and is scheduled for small-scale testing at PETC.

E-Beam Process

Irradiation of flue gas with high-energy electrons initiates chemical reactions that convert SO_2 and NO_x to their acid forms, which can be further reacted with a suitable base to form solid salts. An E-beam process being developed by Ebara (Figure 8) demonstrated removals of over 90% and 80% for SO_2 and NO_x , respectively, in a 5-MW pilot plant. An ammonium-sulfate/ammonium-nitrate by-product with potential value as an agricultural fertilizer was produced. A similar process developed by Research-Cottrell using lime rather than ammonia as the base achieved removals of 90% for SO_2 and 60% for NO_x in pilot-scale tests. Ebara is currently investigating the concept of zone irradiation to achieve high efficiencies at lower total dose rates. It is hoped that this will reduce the process energy use by about one-third, to no more than 2% of the plant's gross output (24). Other commercialization issues include uncertainties regarding by-product utilization and economic scaleup of the electron-beam guns. One economics study puts process capital cost at about \$400/kW (1990 dollars) and levelized costs at about 13 mills/kWh, although both values could be significantly reduced with successful development of the zone-irradiation concept and favorable by-product economics (15).

Activated-Coke Process

Activated coke can both adsorb SO_2 and catalyze the reduction of NO_x by ammonia. The use of two sorbent beds allows optimization of removal for each species, as shown in Figure 9. Regeneration of the spent sorbent at high temperature produces a concentrated SO_2 stream that can be further processed to yield a salable by-product, such as sulfuric acid. Such systems have been applied commercially by Bergbau-Forschung GmbH (now Deutsche Montan Technologies) and others in Japan and Germany, where SO_2 removals of 90-99% and NO_x removals of 50-80% have been reported (25). However, most experience has been with low- to medium-sulfur systems, and there is some question regarding process suitability for high-sulfur systems because of high coke consumption. Capital costs of \$220-240/kW have been projected for a 500-MW system in the United States firing medium-sulfur coal (26). However, no operating costs were reported.

Recently, the Electric Power Development Co. Ltd. of Japan has been investigating a single moving-bed activated char process for application to NO_x removal and SO_2 removal "polishing" on a fluidized-bed combustion system. Pilot-scale tests have given removals of over 80% for NO_x and 90% for SO_2 . Development issues appear to include the char loss rate, start-up temperature response of the char bed, and negative effects of high moisture and SO_2 levels on NO_x removal (27).

Parsons Process

Very high levels of SO₂ and NO_x removal (up to 99%) are the objective of the Parsons Process. Simultaneous catalytic reduction of SO₂ to H₂S and NO_x to N₂ occurs in a hydrogenation reactor using steam-methane reformer gas, as shown in Figure 10. The resulting H₂S is recovered and processed to produce elemental sulfur, a marketable by-product, through the combination of two commercial technologies (FLEXSORB and Recycle Selectox). The performance of the catalytic hydrogenation reactor has been tested with high-sulfur coal in a pilot plant at the St. Marys Municipal Power Plant in Ohio. Results showed that SO₂ reduction of 98+% and NO_x reduction of 92-96% were achievable (28). Although the long-term performance of the catalyst in a particulate-laden gas stream is unknown, a two-day test with high dust loading in the flue gas showed no change in the performance of the catalytic SO₂ and NO_x removals and no pluggage of the honeycomb catalyst openings (28). On the basis of EPRI economic procedures, projected capital costs for a 500-MW plant are \$285/kW (1982 dollars) and leveled busbar costs are about 26 mills/kWh (29). A significant process development issue may be the effects of flue-gas O₂ content on increasing hydrogen consumption and, hence, operating costs.

Other NO_x/SO₂ Control Technologies

Other NO_x/SO₂ control technologies undergoing development, but for which limited information is available, are described below.

The SOXAL™ process is a regenerable sodium-based scrubbing system coupled with urea/methanol injection in the boiler with the goal of 90% SO₂ and NO_x removal. A sodium-sulfite scrubbing solution absorbs SO₂ and is regenerated by an electrochemical process using bipolar membranes. Urea reduces 50-70% of the NO to N₂, and methanol oxidizes the remaining NO to NO₂, which is then removed in the sodium sulfite scrubber. A 3-MW pilot facility will be operated by Aquatech, a division of Allied-Signal, at the Niagara Mohawk Power Corporation's Dunkirk Station under a demonstration program initiated in September 1991 (30).

The Sorbtech (formerly Sanitech) Mag*Sorbent process uses magnesia-coated expanded-vermiculite granules for 90% SO₂ removal and moderate levels (30-40%) of NO_x removal (31). The flue gas is humidified upstream of a radial panel-bed filter containing the dry magnesia (MgO) to within a 30°C approach to the adiabatic saturation temperature. The sorbent is regenerated at 600°C with air or a reducing gas. A 2.5-MW pilot plant has been installed at Ohio Edison's Edgewater Station and was undergoing shakedown tests in late 1991 (32).

The Lively Intensified Lime-Ash Compound (LILAC) process is being developed by Hokkaido Electric Power Co. and Mitsubishi Heavy Industries Ltd., both of Japan. The process uses a sorbent that is produced by hot-water curing of a mixture of fly ash, lime, and gypsum for about 12 hours. The sorbent can be sprayed as a slurry into a spray-dryer vessel or as a powder into the flue-gas duct. The resulting solids are collected in either a baghouse or an ESP downstream of the injection point. Bench-scale tests of the slurry process gave SO₂ and NO_x removals of about 90% and 70%, respectively. When seawater was used in the curing process, SO₂ removals up to 95% were obtained. A pilot-scale facility is now under construction, with operation scheduled to begin in 1993 (33).

A dry FGD process using a circulating fluidized-bed reactor has been in commercial operation on five coal-fired utility boilers in Germany since 1987, and a combined NO_x/SO_2 version of the process is currently under development. It uses a hydrated lime sorbent for SO_2 capture and an unsupported FeSO_4 catalyst plus ammonia for reducing NO_x . Typical operating temperatures are on the order of 385°C, requiring placement of the absorber upstream of the air preheater. Pilot-plant tests on a low-sulfur system (inlet SO_2 concentrations of 450-630 ppm) gave SO_2 removals up to 97% for Ca/S mole ratios of 1.6-1.8. Removals of NO_x up to 88% were achieved with an NH_3/NO mole ratio of 0.7 (34). High sorbent recycle rates (up to 98%) are used in the large-scale FGD systems, but no data were reported for catalyst recycle or loss rates in the pilot plant.

The SONOX™ process was developed at Ontario Hydro Research Corporation and has been licensed to Research-Cottrell Cos., Inc. It involves in-furnace injection of a slurry consisting of lime or limestone for SO_2 capture plus a nitrogen-based additive (such as urea) to control NO_x . Reaction products are captured in a downstream PM collector. Calcium to sulfur mole ratios of 2-3 are expected, together with 1.5-2 moles of NO_x -control chemical per mole of NO_x . Pilot-scale tests have been conducted in Canada, giving performance projections for a full-scale unit of 60-70% SO_2 removal and 50-60% NO_x removal. Currently, capital costs are estimated at \$50-150 per kW and operating costs could be 3-4 times higher than those for wet FGD (35).

SUMMARY

There is an increasing probability that flue-gas cleanup for NO_x removal will be required at some installations in the United States. If that is the case, integrated systems that combine control functions in a single process offer a number of advantages for both retrofit and new situations. In recent years, considerable progress has been made in developing and characterizing a number of such systems, and new concepts continue to emerge from the laboratory.

The variety of concepts under development provides many technical and economic options to system designers:

- Retrofit versus totally new systems
- Tradeoffs between cost and removal capabilities
- Tradeoffs between SO_2 and NO_x removals
- Salable by-products versus throwaway waste

The spectrum of possibilities is certainly challenging to those who must sort through and evaluate the options on the way to a multi-million dollar technology selection. On the other hand, this same spectrum will make it possible to tailor an optimal energy/environmental system for the unique site and business characteristics of any particular installation.

REFERENCES

1. Mendelsohn, M.H., C.D. Livengood, and J.B.L. Harkness, "Combined SO₂/NO_x Control Using Ferrous-EDTA and a Secondary Additive in a Lime-Based Aqueous Scrubber System," 1991 SO₂ Control Symposium, Vol. 2, Session 5B - Paper 7, Washington, D.C. (Dec. 3-6, 1991).
2. Walker, R.J., and M.B. Perry, "Simplified Wet Scrubbing Process for SO₂, NO_x, and Particulate Removal from Flue Gas," Paper No. 47e, AIChE Spring National Meeting, Houston, Texas (April 1989).
3. Tsai, S.S., V.B. Hodge, L.H. Kirby, and J.V. VanLandingham, "Experience in the Reduction of Nitric Oxide in Flue Gas Utilizing the Dow Chemical Company's NO_x Abatement Technology," Paper No. 90-101.4, AWMA Annual Meeting, Pittsburgh, Penn. (June 1990).
4. Benson, L., Dravo Lime Co., Pittsburgh, Penn., personal communication (Feb. 3, 1992).
5. Huang, H., J.W. Allen, C.D. Livengood, W.T. Davis, and P.S. Farber, "Spray-Dryer Flue-Gas-Cleaning System Handbook," Argonne National Laboratory Report ANL/ESD-7 (April 1988).
6. Markussen, J.M., J.T. Yeh, and C.J. Drummond, "Enhanced Removal of Nitrogen Oxides in a Spray Dryer Using a Lime Slurry Containing Sodium Hydroxide," AIChE Spring National Meeting, New Orleans, La. (April 6-10, 1986).
7. Huang, H.S., P.S. Farber, C.D. Livengood, J.T. Yeh, J.M. Markussen, and C.J. Drummond, "Simultaneous NO_x and SO₂ Removal in a Spray Dryer System," AIChE Spring National Meeting, Houston, Texas (March 29-April 2, 1987).
8. Huang, H., J.W. Allen, and C.D. Livengood, "Combined Nitrogen Oxides/Sulfur Dioxide Control in a Spray-Dryer/Fabric-Filter System: Summary Report for the Field Research Program," Argonne National Laboratory Report ANL/ESD/TM-8 (Nov. 1988).
9. Helfritch, D., S. Bortz, R. Beittel, P. Bergman, and B. Toole-O'Neil, "SO₂ and NO_x Control by Combined Dry Injection of Hydrated Lime and Sodium Bicarbonate," 1991 SO₂ Control Symposium, Vol. 2, Session 5B - Paper 4, Washington, D.C. (Dec. 3-6, 1991).
10. Bortz, S., D. Helfritch, R. Beittel, and B. Toole-O'Neil, "Subscale Testing of an Integrated Dry Injection System for SO₂/NO_x Control," 1990 SO₂ Control Symposium, Vol. 3, Session 6B - Paper 7, New Orleans, La. (May 8-11, 1990).
11. U.S. Department of Energy, "Comprehensive Report to Congress, Clean Coal Technology Program - Integrated Dry NO_x/SO₂ Emission Control System," DOE/FE-0212P (Jan. 1991).

12. Bennett, R., and E. Darmstaedter, "Sodium Bicarbonate In-Duct Injection with Sodium Sulfate Recovery for SO₂/NO_x Control," Fifth Symposium on Integrating Environmental Controls and Energy Production, New Orleans, La. (March 4-5, 1991).
13. Yeh, J.T., C.J. Drummond, J.L. Haslbeck, and L.G. Neal, "The NOXSO Process: Simultaneous Removal of SO₂ and NO_x from Flue Gas," AIChE 1987 Spring National Meeting, Houston, Texas (March 29 - April 2, 1987).
14. Neal, L.G., J.L. Haslbeck, and M.C. Woods, "The NOXSO Clean Coal Technology Demonstration Project," 1991 SO₂ Control Symposium, Vol. 2, Session 6B - Paper 2, Washington, D.C. (Dec. 3-6, 1991).
15. Cichanowicz, J.E., C.E. Dene, W. DePriest, R. Gaikwad, and J. Jarvis, "Engineering Evaluation of Combined NO_x/SO₂ Controls for Utility Application," 1991 SO₂ Control Symposium, Vol. 2, Session 5B - Paper 5, Washington, D.C. (Dec. 3-6, 1991).
16. Redinger, K.E., P. Chu, G.A. Farthing, J.M. Wilkinson, R.W. Corbett, and H. Johnson, "SNRB Catalytic Baghouse Process Development and Demonstration," 1991 SO₂ Control Symposium, Vol. 3, Session 7 - Paper 13, Washington, D.C. (Dec. 3-6, 1991).
17. Kitto, J.B., Jr., "The SO_xNO_xRO_xBO_x Uses Hot Catalytic Scrubbers," Modern Power Systems (Jan. 1989).
18. Kingston, W.H., S. Cunningham, R.J. Evans, and C.H. Speth, "Demonstrating the WSA-SNOX Process Through the CCT Program," ASME Paper 90-JPGC/FACT-17, Joint ASME/IEEE Power Generation Conference, Boston, Mass. (Oct. 21-25, 1990).
19. Borio, D.C., and W.H. Kingston, "High Efficiency SO₂ and NO_x Abatement with No Waste Generation - The SNOX Process," Paper 92-113.08, 85th Annual AWMA Meeting & Exhibition, Kansas City, Mo. (June 21-26, 1992).
20. Collins, D.J., R. Ricci, C.H. Speth, and R.E. Bolli, "Initial Operating Experience of the SNOX Process," 1991 SO₂ Control Symposium, Vol. 3, Session 7 - Paper 16, Washington, D.C. (Dec. 3-6, 1991).
21. "DESONOX Is Put Through Its Paces in Münster," Modern Power Systems 11(12): 41-44 (1991).
22. Plantz, A.R., C.J. Drummond, S.W. Hedges, and F.N. Gromicko, "Performance of the Fluidized-Bed Copper Oxide Process in an Integrated Test Facility," Paper No. 86-47.3, 79th Annual APCA Meeting, Minneapolis, Minn. (June 22-27, 1986).
23. Drummond, C.J., J.T. Yeh, J.I. Joubert, and J.A. Ratafia-Brown, "The Design of a Dry, Regenerative Fluidized-Bed Copper Oxide Process for the Removal of Sulfur Dioxide and Nitrogen Oxides from Coal-Fired Boilers," Paper No. 85-58.7, 78th Annual APCA Meeting, Detroit, Mich. (June 16-21, 1985).

24. Frank, N.W., and S. Hirano, "The Production and Utilization of By-product Agricultural Fertilizer from Flue Gases," Fifth Symposium on Integrating Environmental Controls and Energy Production, New Orleans, La. (March 4-5, 1991).
25. Richter, E., "Active Coke Processes for SO₂ and NO_x Removal from Flue Gases," Third Symposium on Integrated Environmental Controls for Fossil-Fuel Power Plants, Pittsburgh, Penn. (Feb. 3-6, 1986).
26. Tsuji, K., and I. Shiraishi, "Mitsui-BF Dry Desulfurization and Denitrification Process Using Activated Coke," 1991 SO₂ Control Symposium, Vol. 3, Session 8A - Paper 1, Washington, D.C. (Dec. 3-6, 1991).
27. Murayama, H., "Advanced Flue Gas Treatment Using Activated Char Process Combined with FBC," 1991 SO₂ Control Symposium, Vol. 2, Session 5B - Paper 6, Washington, D.C. (Dec. 3-6, 1991).
28. Kwong, K.V., R.E. Meissner, III, and C.C. Hong, "Recent Developments in the Parsons FGC Process for Simultaneous Removal of SO_x and NO_x," 1991 SO₂ Control Symposium, Vol. 2, Session 5B - Paper 8, Washington, D.C. (Dec. 3-6, 1991).
29. Meissner, III, R.E., V.K. Kwong, J.B. O'Hara, C.C. Hong, and A.B. Stiles, "Parsons FGC Process Development: A Progress Report," 1990 SO₂ Control Symposium, Vol. 2, Session 6A - Paper 1, New Orleans, La. (May 8-11, 1990).
30. Byszewski, C., and D. Hurwitz, "Combined SO_x/NO_x Control via SOXALTM, A Regenerative Sodium Based Scrubbing System," 1991 SO₂ Control Symposium, Vol. 3, Session 7 - Paper 6, Washington, D.C. (Dec. 3-6, 1991).
31. "Ohio Edison Tries Magnesia-Based Control," Coal & Synfuels Technology, p. 3 (Dec. 9, 1991).
32. Nelson, S.G., "Sanitech's 2.5-MWe Magnesia Dry-Scrubbing Demonstration Project," 1991 SO₂ Control Symposium, Vol. 3, Session 7 - Paper 8, Washington, D.C. (Dec. 3-6, 1991).
33. Nakamura, H., Y. Katsuki, S. Kotake, and M. Kagami, "Simultaneous SOX, NOX Removal Employing Absorbent Prepared from Fly Ash," 1991 SO₂ Control Symposium, Vol. 2, Session 5B - Paper 1, Washington, D.C. (Dec. 3-6, 1991).
34. Toher, J.G., G.D. Lanois, and H. Sauer, "High Efficiency, Dry Flue Gas SOx/NOx Removal Experience with the Lurgi Circulating Fluid Bed Dry Scrubber - A New, Economical Retrofit Option for U.S. Utilities for Acid Rain Remediation," 1991 SO₂ Control Symposium, unpresented paper, Washington, D.C. (Dec. 3-6, 1991).
35. Roy, K.A., "Slurry Injection Process Simultaneously Removes SO_x and NO_x," Hazmat World, 84-85 (Feb. 1992).

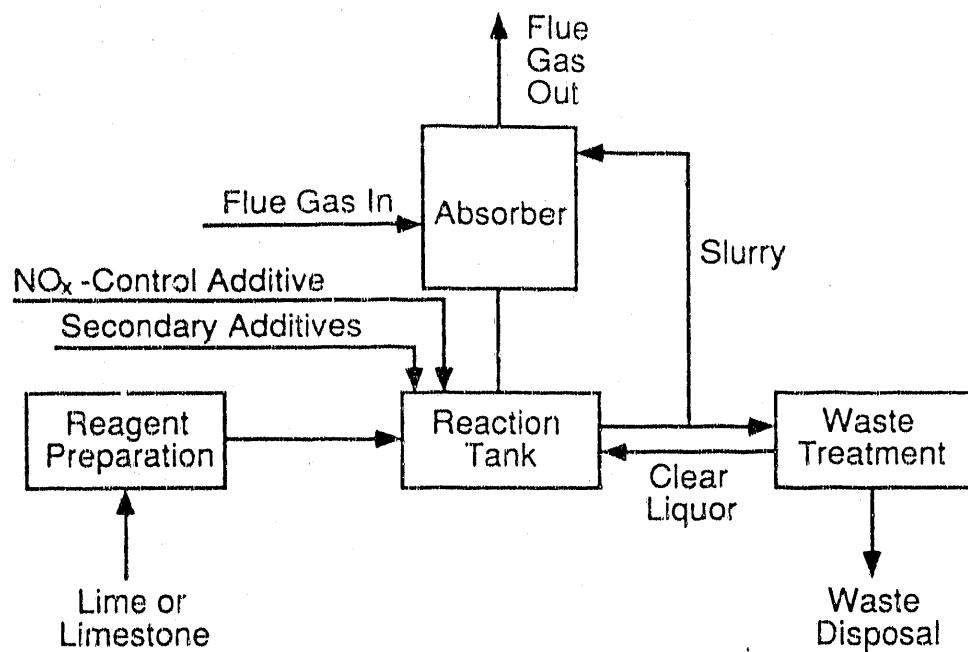


Figure 1. Wet FGD/Metal-Chelate Process

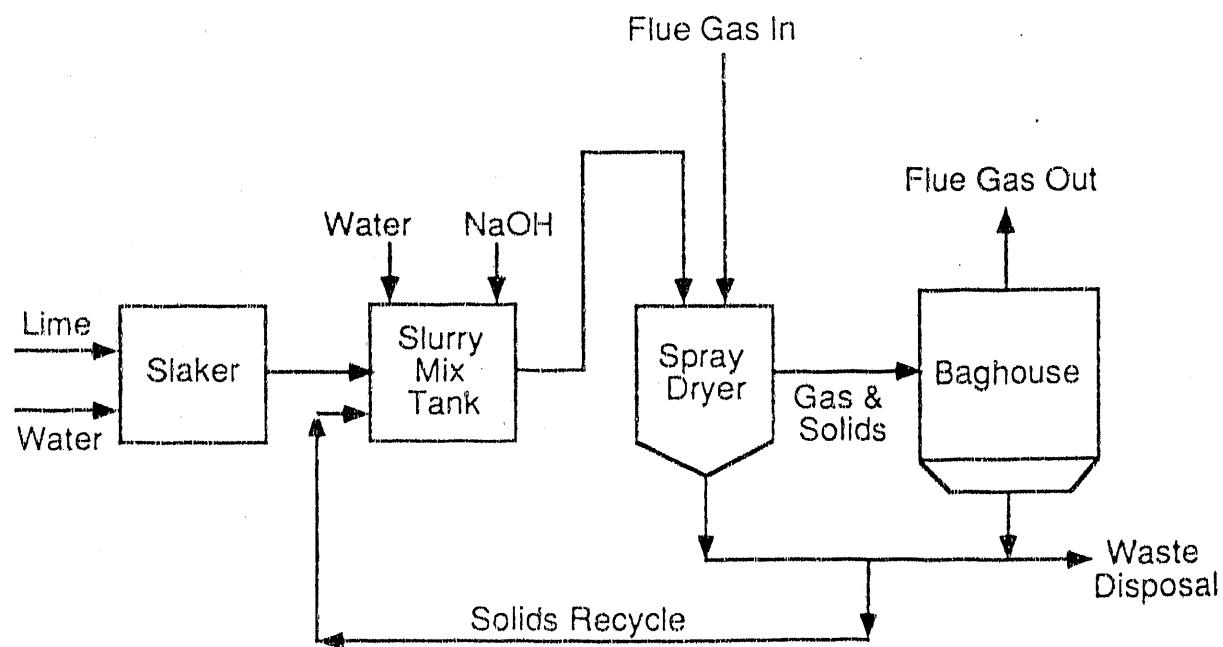


Figure 2. Modified Spray-Dryer Process

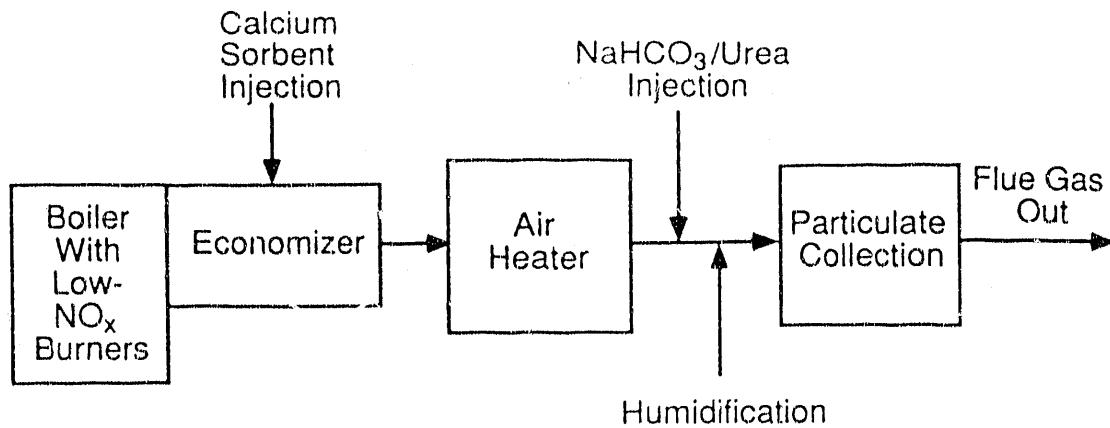


Figure 3. Integrated Dry-Injection Process

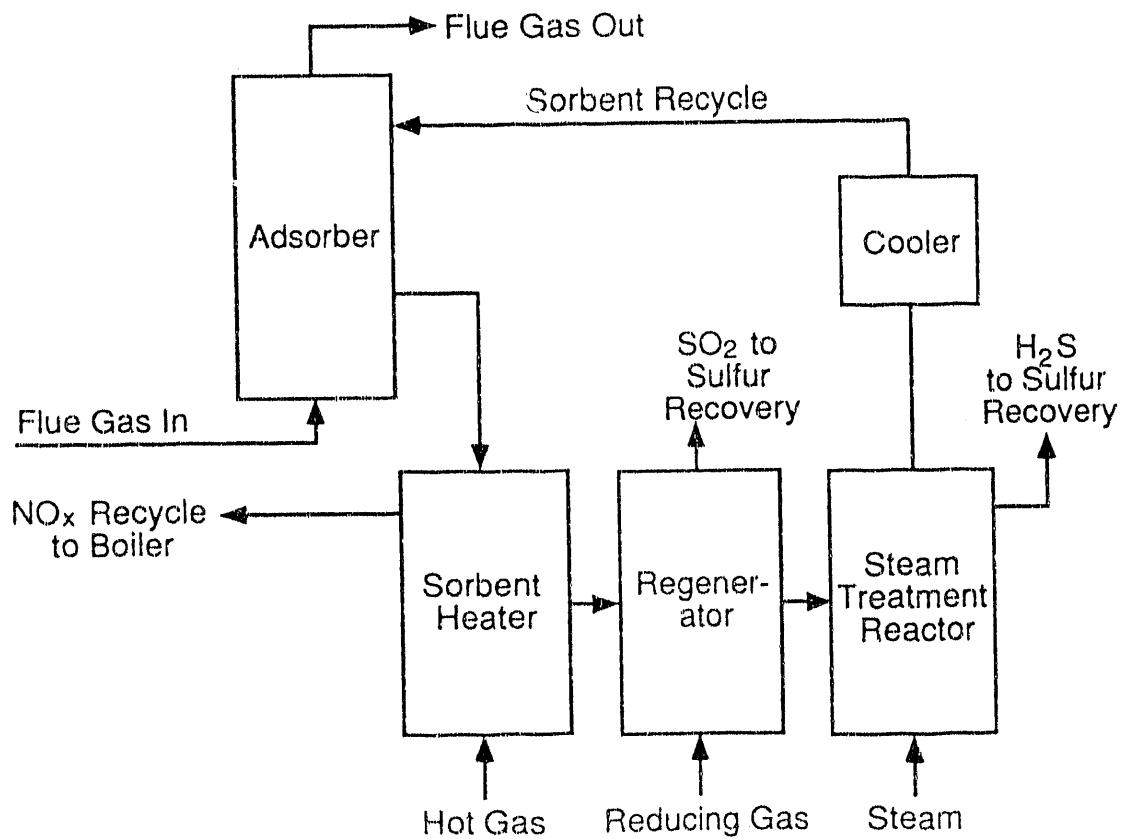


Figure 4. NOXSO Process

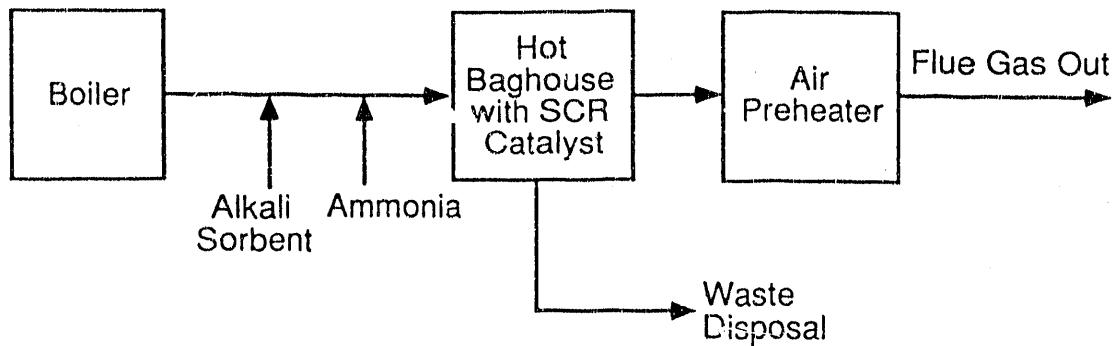


Figure 5. SNRB Process

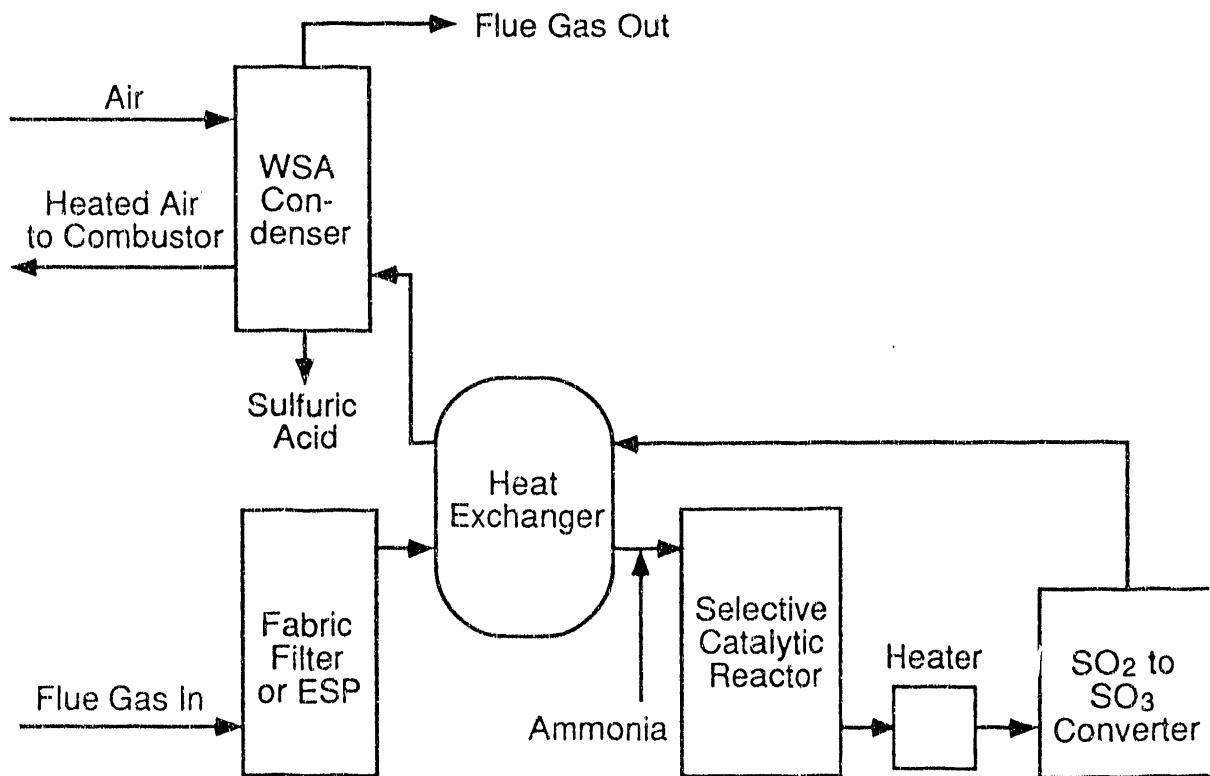


Figure 6. SNOX Process

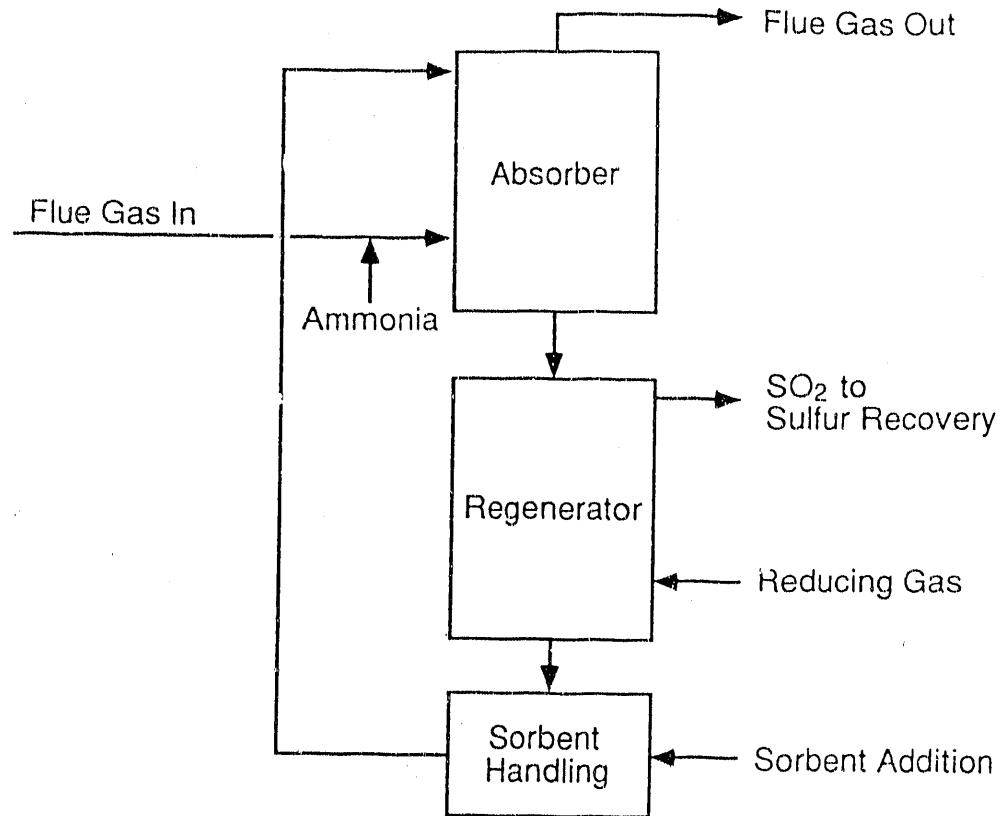


Figure 7. Fluidized-Bed CuO Process

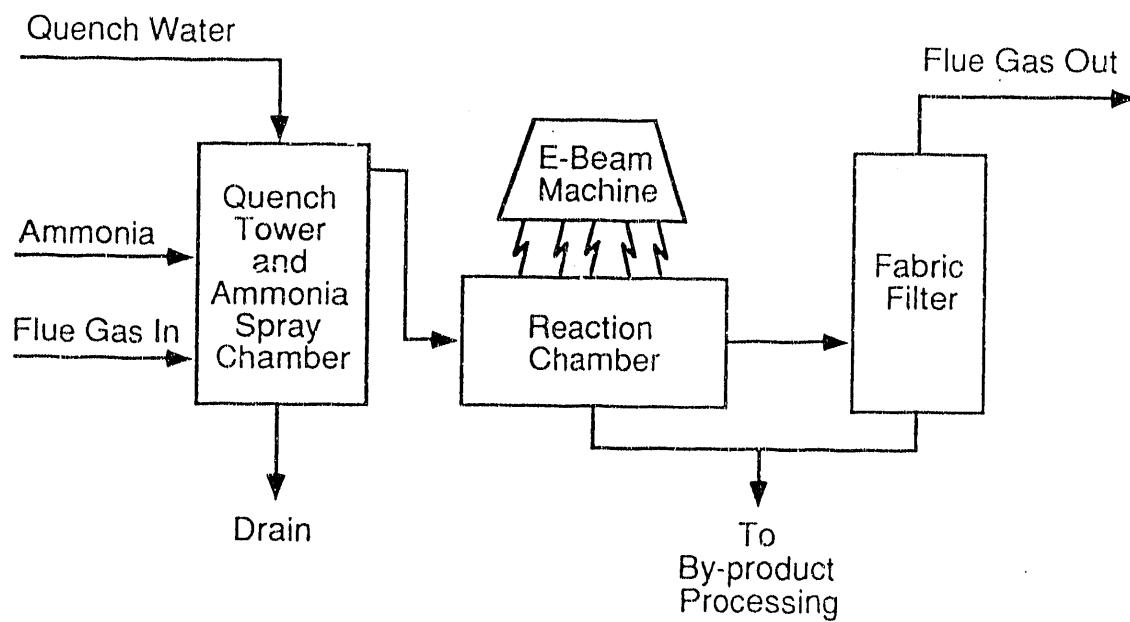


Figure 8. E-Beam/Ammonia Process

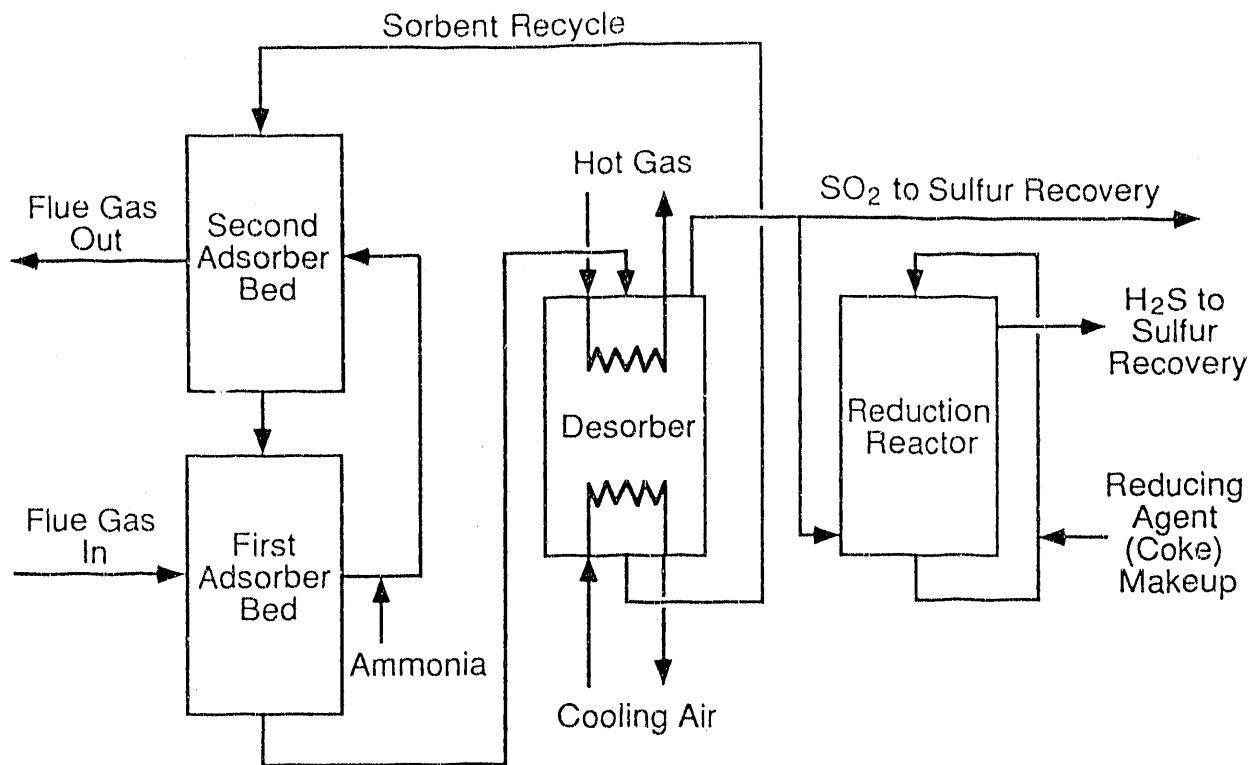


Figure 9. Dual-Bed Activated-Coke Process

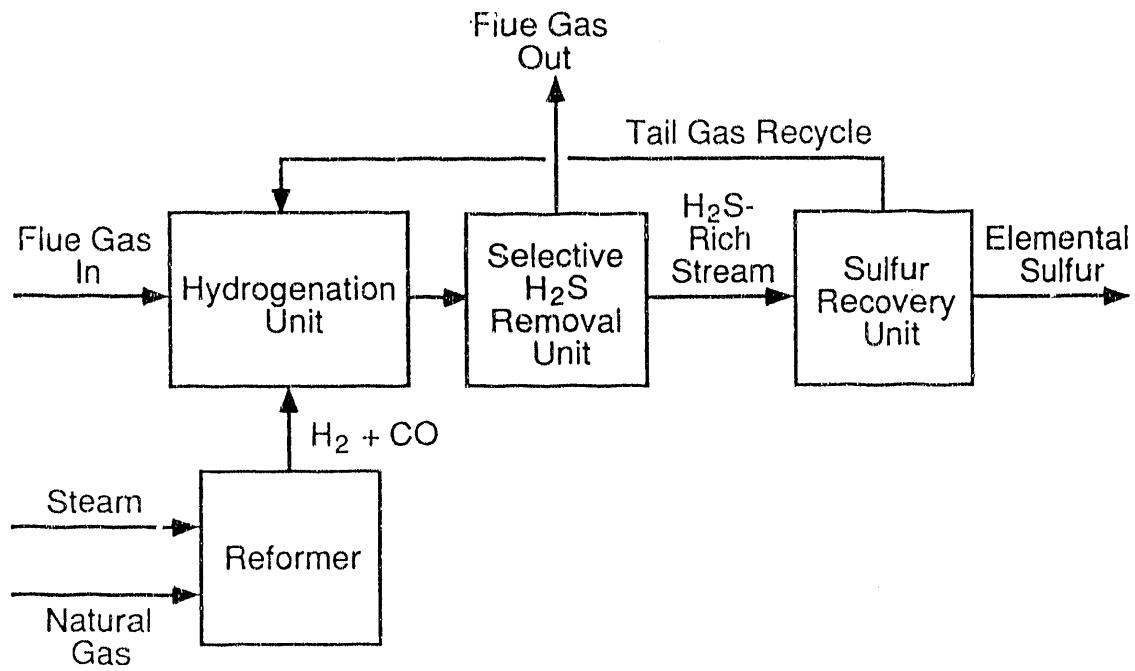


Figure 10. Parsons Process

END

DATE
FILMED

11/12/92

