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ABSTRACT

This report investigates the feasibility of constructing a
directional VHF (30 MHz to 300 MHZ) antenna to physically fit into
a small borehole. The study was carried out in a test chamber con-
taining a 15 cm diameter borehole surrounded by sand which can be
moistened with water or Brine to adjust the dielectric constant
and electrical conductivity. Electric fieid measurements were
made‘for an eccentricallydoositioned monopole, a corner reflector
and a two-element array for a number of possible configurations.
Ueing an eccentric monopole, the best beamwidth obtained was 78°
and. the front -to- back ratio was 3.5 db. The front to back ratio
was increased to 8.5 db when two element arrays were arranged in
such a way as to- provide the optimum radiation pattern. However,
the best results were achieved using a cormer reflector: '60? v
beamwidth and 13 dbifroﬁtéto-back.ratio. It is cOnoloded that a

directional‘VHF antenna can be designed for downhole‘application.v
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. L -~ * SECTION 1 5o
INTRODUCTION g

In geothermal and petroleum exploration, a "non-productive" dry hole con~-
stitutes the main frustration in drilling and fieldbdevelopnent Since exten-
sive surface electromagnetlc (EM) and selsmlc surveys usually are conducted
prior to drllllng, operators have reason to believe that a reservoir exists in
the general area. However, the 1nab111ty to pinpoint an eX1st1ng reserv01r
fracture system (1nto which a well can be drllled) is one of the main
def1c1enc1es of - these surface survey technlques. The low frequen01es used in
the surface EM and selsmlc surveys have limited resolution and cannot identify

a fine structure such as millimeter th1ck fractures. In addition, the skin
depthoeffect limits the depth that ahvEM'technique can "see" ffom'the surface,

Downhole instruments conceivably will provide more information on the sub-
surface structure than the surface techniques. ' (Such instrumentation could be
used in existihg wells.) According to preliminary calculations, a VHF radar -
can penetrate up to 100 meters into the rock from a borehole and also provide
high-reéolutionvdata. If such a radar system has a directional capability,
its return may locate the naturally occurring fracture zones and provide
gquidance for drilling offset vells~that-are "productive”,

A directional VHF antenna. designed for free space application would have
dimensions on the order of feet and thus cannot be fitted into a small bore-
hole. The objectlve of th1s effort was to conduct 1aboratory experlments
Wthh would gather the necessary time domain data for development of an
optlmlzed VHF directional ‘antenna for use in remote detection of fracture

 Zones down a borehole. ThlS is the first known measurement for the eccentrl-
cally located dlpole or monopole in a high dielectric cylinder, although
theoret1ca1 predlctlons have been reported (ref 1.1).

This eXperiment accurately modeled a full-scale antenna element operating
in a water-filled borehole,_together'with the surrounding rock modeled by sand
having appropriate electrical properties. These properties may be adjusted by




introducing fresh or salt water to vary the dielectric constant and
conductivity of the sand. '

The antenna element was driven with a fast rise time, short duration pulse
and the resulting broad band azimuthal electric field response was recorded
for that element located at numerous positions on the radius of the borehole.
In a few instances, the antenna system was excited with a fast rise time step
function to aid in the understanding of the antenna/borehole’systemrre5ponse.,

From monopole data, an optimizedvtwo-element antenna array,pattern was
synthesized to illustrate the optimization procedure and feasibility.
Finally, this two-element array was constructed and its measured field patterh

was compared with that found in the sYnthesis pfbcedure above. 1In addition, a

corner reflector des1gn was 1nvestlgated and the resulting field patterns and
path losses were recorded '

This‘repott is divided into six major sections. Section 2 covers the
experimental design, including special electromagnetic considerations and

detailed mechanical design. Section 3 outlines the test procedure and details

calibration specifications. Sectibnk4 presents the experimental results for
the monopole, the corner reflector and the two-element array. Finally,
Section 5 discusses the results and Section 6 draws conclusions.

£




N -+ - SECTION 2
'  EXPERIMENTAL DESIGN

2.1 Electrical Considerations

- The electrical design for this experiment was constrained primarily by the
mihimum~borehole size that would be of interest. That size was selected to be
15 cm. Also considered was the fact that we "expect to find many boreholes
filled with some aqueous solution either fresh water or brine.  To minimize
the discontinuities seen by tbe outward traveling waves emitted by the
antenna, it was decided to immerse the antenna in distilled water. This, of
course, electrically lengthens the antenna by a factor of the square root of
the relative dielectric constant or about nine for water. We also wanted to
investigate antenna performance for this configuration in the VHF radio band.
Thus, the antenna length for the monopole element was selected to be 5.08 cm
(2 inches). . R

2.1.1 Teét Chamber

A test chamber similar to that pictured in Figure 2.1 has a borehole of
about 15 cm diameter with the surrounding media, sand, simulating the electri-
cal properties of granite. - This simulation was accomplished by using kiln
dried sand-blasting sand. The test box was designed so that the sand could be

- moistened with water or brine to adjust the dielectric constant and electrical
condhctivity. Drain holes were provided in the bottom of the box and plastic
was placéd on the floor to catch any water percolating through. This arrange-
ment modeled at full scale, the physical properties: of -a downhole
electromagnetic radar probe. ' ' SRR |
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Plastic Moisture Barrier

Figure 2.1. Test chamber for borehole simulation.
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2.1.2 Ground Screen'

The test chamber topwsurfa;ev(sand) was covered with a bf;ss ground
screen that forms a surface in which the entire test chamber is imaged.
This provides‘an exabt simulation of the downhole situation, yet provides
the test operator ready access for repositioning the antenna and test
equipment for the various measurements.

2.1.2 Reflection Managément

Because of the practical limits of the test chamber size, a low
power, fast rise time (0.7 ns), short duration>(1.3 ns) pulse (Fig. 2.2)
was used to excite the various. antenna configurations. This is also a very
practical pulse to generate in a downhole environment. Our ability to time
window the responses by designing the relative distances between trans-
mitter antenna, receiver antenna and the test chamber walls and floor
allowed us to avoid undesired reflections from cohtaminatihg the early time
data. ' B

1 ns/div.

Figure 2.2. Transmitter pulse.
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2.1.3 Monopole Characteristics

The monopole is 5.08 c¢m long, 0.15875 cm 1in radius and
immersed in a lossless dielectrié with a relative dielectric

constant of 78.5.‘

The travel timebis found from the antenna length divided
by the velocity of propagation in the media. For thé antenna
length 6f 5.08 em and a velocity of pfopagation theISpeed of
light in the media or 3.39 x 107 meters/second (relative
diélectric‘constant of 78.5). Then the travel time is 1.498

nanoseconds (ns).

From this calculation you would expect to see a ring down
response,with a périod of about 2.996 ns or a frequency of

334 MHz which agrees well with that measured.
2.1.4 Fileld Pattern Measurements

It is our desire to measure the field patterns both in
the near zone and the far zone. The far zone, in this instance,
starts at a distance of about 7.5 meters from the transmitter.
Because of the constraints in the size of the test box, we can
only measure the field pattern one meter away from the trans-
mitter. We hope to set up this experiment in a larger area in

the future to carry out far field measurements.

12




2.1.5 Corner Reflector

The corner reflector design_was constrained to be the largest practi-
cal reflector that could be fit into the borehole. This was, however, con-
sistent with normal design guidelines for corner reflectors (Ref.'2 3).
Recommended dimensions are to place the driven element between 0.25 and 0. 7
wavelengths from the apex and for the sides of the reflector to be about
0.5 wavelength from apex to front ‘extent with a height of at least 5/16
wavelength for a monopole over a ground plane,

2.1.6 Pulse Generator Feed Line

_ ‘The pulse generator was connected to the antenna via a long low loss
50 Ohm cable. It was 13,365 meters long and had a velocity of propagation
of 0.81 the speed of light. Andrews FSJ4- 50 heliax was used for this cable
and was fitted with a type "N" connector on one end and a type GR 874 con-
nector on the other end. With this cable iength the antenna reflection
due to impedance mismatch was_not be seen for about 110 ns. This allowed
ample c]ear time for recording the data of primary interest. ' o

2.1.7  Reference Signal for Timing
A reference signa] is needed for data recording to provide a common

time from which to measure time of arrival. "This is important for the
synthesis of multi-e]ement arrays using the measured data from the eccen-

trically positioned monopole.  To provide this reference with the greatest o

resolution in time we used the "V-1 Probe" that was originally designed

13
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for frequency domain impedance measurements (Section 4.5) to pick up a sig-
nal .near the drive point on the monopole. This'signal was proportional to
the derivative of the driving pulse and as such provides an exceilentv
reference with a stable zero crossing in the waveform from which to measure
time. Figure 2.3 illustrates the overall measurement setup and the rela-
tive location of the various devices.

2.1.8 O0Oscilloscope Bandwidth

Since it was our intent, to investigate the VHF band. response of an
antenna in the borehole environment, our‘selection,of an oscilloscope was
directed to one that had flat response up to 300 MHz., This is reasonable
in the sense of modeling a realistic downholevihstrumentation package as
‘this frequency bandwidth is achieved readily. - This bandwidth limitation
does however affect our data in that it will attenuate in a graceful man-
ner, that is with a smooth roll off, all energy above 300 MHz. Specifi-
cally at 300 MHz the scope response is down 3 dB and this is why the
apparent rise time on the pulser looks like 0.7 ns rather than the 0.25 ns
as specified by the manufacturer (Section 3.1.3).

2.1.9 Two-element Drive Lines

The array that was investigated was selected to be a two-element array
of monopoles driven with a relative time delay so that the first positive
pulse arriving at the target would add constructively when the target was
on a line passing through the two elements (i.e., endfire array). This is
illustrated in Figure 2.4 where we see the two feed lines are édjusted SO
that the one feeding the forward element is just a bit longer that the
other to provide the appropriate delay to cause the first pulse’responses
to add at the target. A section of GR 874 trombone air-line was used to
“tune” the feed lines while using two matched length sections of low loss
50 Ohm heliax cable. o

14
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Figure 2.3. Electric field measurement setup.
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Figure 2.4. Test setup for two-element array measurements.
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2.1.10 Media Electrical Properties Measurement

The technique used to determine the electrical properties of the
media is that of measuring the input impedance of the receiving monopole
in the VHF Band. Figure 2.5 shows the hookup using an oscillator to
excite the antenna radiating into the media which couples back to the
antenna causing its impedance to be uniquely determined by the electrical
- properties of the media. This method is described in Reference 2.4 and
was developed by Scott (Ref. 2.4)av”WifhvthiS setup, the Vector Voltmeter
measures volfage and current signals from the V-I Probe which are
directly related to the apparent impedance on the transmission line at
the probe reference plane. This impedance is translated to the antenna
feed point by the classical transmission line equations and the media
dielectric constant and conductivity found by solving these equations.

2.2 Mechanical Considerations

‘The mechan1ca1 de51gn for this experiment was constralned by the
requ1rement to have an indoor fac111ty in which to investigate the bore-
hole antenna design. This leads to the maximum size constraint based on
floor space and floor loading considerations. The electromagnetic
modeling considerations discussed above, lead to the minimum size con-
straints in cons1der1ng our exper1menta1 ability to resolve undesired
echos or reflections from the desired responses to be recorded within the

test environment.
2,2.1 Test Chamber andiSimulated quehole; v

The test chamber consists of a moisture resistant'treated box'4,feet
high by & feet square constructed primarily of 4 feet by 8 feet by 3/4
inch plywood. A platform, also made of plywood and two-by-fours, was
constructed to place. the test equiprent on during measurements. The
/borehele consisted of a thin walled plastic cylinder placed in the center
of the box (see Fig. 2.6).

17
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Figure 2.5. Test setup for measuring media electrical properties.
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Figuré 2.6. Test container for borehole simulation.
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Details of the plastic cylinder used to simulate the borehole are
illustrated in Figure 2.7. |

The plastic cylinder was secured in the center of the box by a plywood
collar attached to the bottom of the box. Then 12.5 tons of kiln dried
medium grit sand-blasting sand was placed in the box up to within 1/4 inch
of the top of the plastic cylinder (i.e., 1 inch of the top of the box).
Then a machined brass plate was placed over the open end of the simulated
borehble (see Fig. 2.8 for machining details) and the brass ground screen
attached.” The ground screen covers the entire top surface of the sand and .
is held in intimate contact with sand bags.

2.2.2 Transmitting Antenna Mounting Hardware

The brass plate was machined to receive either of two antenna mounting
plates shown in Figures 2.10 and 2.11. Figure 2.9 gives the location of
indexing holes and provides a cross section view. The plate in Figure
2.10 is used for the monopole and corner reflector measurements. It has
five holes along the radius in which to place the antenna element and it is
indexed every 22.5 degrees for convenient field pattern measurements. The
. plate shown in Figure 2.11 is used for the two-element array measurements.

2.2.3 Receiving Probe Mounting Hardware

Figure 2.12 shows the machined plate used for the receiver probe
mounting. This plate is placed 1 meter from the center of the borehole
along the diagonal to the box corner. The plate is intimately attached to

the ground screen and held in place by sand bags.

A number of antenna hole plugs were machined to fill any unused hole
during measurements if needed. These are shown in Figure 2.13.

20




14

"119.4 cm

I__ .318 cm
~ Wall

14.61 CM

_15.24 em

/ 0D Tube

1
et

N .953 cm

15.24 cm

Material: C1ear'acry11c p1astic;

o

Figure 2.7. Cross sectional view of plastic watertight vessel.
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Figure 2.9.
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Figure 2.10. Hole pattern for rotating antenna carriage (monopole) (1 each).
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Figure 2.11, Hole pattern for rotating antenna carriage (2-element) (1 each).
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Figure 2.12. Field probe plate (1 each).
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Figure 2.13. Antenna hole plugs.
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2.2.4 Antenna Feed Assembly

Finally, the antenna elements and their driving hardware is shown in
Figures 2.14 and 2.15. The elements were made of thin brass rods as shown
that are screwed into a section of modified General Radio type 874, 50 ohm
air dielectric, transmission line. The collar in Figure 2.15 was soldered
to the GR line to allow good mechanical ahd electrical mounting of the
antenna element onto the rotating carriage. The inSu]ator at the antenna/
transmission line junction was machined for a snug fit and treated with
silicon grease to form a water tight seal.

2.2.5 Corner Reflector Assembly
The last mechanical assembly to be described is the corner reflector.
It was formed from sheet brass into a right angle attached with four screws

to the rotating antenna mounting plate (Fig. 2.10). Its dimensions are
shown in Figure 2.16.
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Figure 2,14, Detai]s-offantenna assembly.
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SECTION 3
TEST PROCEDURE

This section summarizes first the test equipment specifications for
all special equipment used for this experiment; second, the data collection
and processing and; finally the test procedures.

3.1 Calibrations

\

A1l equipment had been through recent periodic inspectfon and cali-
bration procedures. The following specifications are those relevant to
this experiment and are not represented as entire specifications for the
particular piece of equipment.

3.1.1 Oscilloscope Specifications (Ref. 3.1)

Tektronix Model 2465

sensitivity: chl 5 mv-5 v/div
ch2 "
accuracy: +/- 1.25% of V/div setting
for 4 to 5 division signal
bandwidth: >300 MHz
step response: 1.17 ns

channel isolation: 50:1 @ 300 MHz

Tektronix Camera Model C-30B Series (Ref. 3.2)
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3.1.2 Vector Voltmeter Specifications (Ref. 3.3)

Hewlett Packard Model 8405A£'

: sepsitivity: <20 microvoits
- frequency range: 1 to 1000 MHz
- -accuracy: 2% amplitude

2 degrees phase
3.1.3 Pulser Specifications (Ref. 3.4)

Tektronix Model 109

rise time: 0.25 nano-seconds
- output voltage: - 0 to 50 volts with internal power
pulse duration: determined by length of charge line

(experiment used 10 cm air line)

TABLE 3.1. PULSER CALIBRATION

Pulser Dial Meésured Output Photo ID

~Setting Peak Value = Number
- 50 volts- 44 volts 445
'single»cable 40 . 38 - 444
. 50 Ohm load . 3 27 3 o 442
12.5 - -~ 9.2 - 441
twin cable 20 11.4 - 440

each 50 Ohm 15 8.4 438
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3.1.4 V-1 Probe Specifications (Ref. 3.5)
o P :
TSC Model Z-DAP

characteristic Zc: 50 Ohms

impedance range: 1 to 10K Ohms

accuracy: - 2% for Zc/8 to 8ic
2/(32c)% for >400 Ohms
(0.3Zc)/Z% for <6 Ohms -

electrical length to sensors: 20 cm or 10 cm

3.2 Data Collection and Processing

Data was recorded primarily by oscilloscope photographs along with a
log sheet recording the scope settings, pulser level, setup, configuration
and other pertinent information. Selected raw data was processed by tabu-
lating, normalizing, plotting, digitizing, Fourier transforming and taking
ratios.

" 3.2.1 Raw Data

Data is collected in raw form by photographing the oscilloscope traces
of the time reference signal together with the received field signal. The
pulser was operated in a repetitive mode so that medium speed film was
adequate for recording the traces. Also, it was possible to view the
oscilloscope screen with the unaided eye.

3.2.2 Digitized Data

A1l data was digitized to some degree. For field patterns, it was
necessary only to pick the peak values for the first and second peaks in
the waveform. These were positive and negative respectively for the test
setup used. These values were tabulated and normalized to produce the
field patterns displayed in Section 4.
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The whole waveforms for eccentrically mounted monopoles were
digitized in their entirety with particular care in starting time at the
zero crossover for the time reference signal (see Fig. 3.1),

Also, the overall best configuration for the eccentric monopole, the
corner reflector and, the measured two-element antenna array was
completely digitized for subsequent Fourier transforming and ratioing
with the transformed pulser.signal.

3.2.3 ‘Fourier Transforms

In order to better understand the borehole antenna responses and
performance, wéfsélected the three cases mentiohed above to transform and
plot. We also took the ratio of the pulser voltage to received signal to'
get a look at ‘the system transfer functlon. ‘Since no rigorous
calculations  were to be performed with these results, but just to view
the data in a,differentrdomain; only the magnitude of the Fourier trans- '
form was plotted. Since all of the data is archived, the complex
transfer function can be calculated at a future time should it be needed.

3.3 Measuremont Procedures

In this sectlon we discuss and point out some of the special COn-:ff

siderations necessary to execute a successful experimental investigation.
3.3.1 Standard Precautions
‘The measurement procédures used were straightforward consisting of
~ assuring oneself that all of the equipment was operating within specifi-

cations and that a11 settlngs were correct and logged accurately. Caro
was taken to ensure that the borehole was completely filled w1th d1st111ed ;
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Time Reference

Signal

Figure 3.1. Typical field waveform with time reference.
(2 ns/div)
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water and that no air bubbles were trapped under the antenna rotating car-
riage. Also, care was taken to insure that the ground screen was in
intimate contact with the sand at all locations, especially near the bore-
~hole and the receiving prob3.1~1n all cases the ﬁﬂfger was operated at vol-
tages of 50 volts or less in a repetitive mode. -

3.3.2 Leakage Tests

Tests were performed to insure that no leakage signals were contami-
nating the desired data by replacing either the transmitting or rece1v1ng
antennas ind1vidually with ‘50 Ohm dummy loads while maintaining normal
cable routing and connection for the remaining antenna.

3.3.3 Maximum Bandwidth

Al oscil]éScope'sensitivity settings were maintained at 5 milli-volts
or greater to aehieve the greatest bandwidth. /The scope was triggered on
the time reference signal, where the reference cable length was selected to
have the time refefenee pulse arrive a few nano-seconds before the received
signal. In additlon, the SCOpe 1nputs were operated in the internal 50 Ohm
termination mode. oo '

3.3.4 ldentifying Chamber Wall Reflections

Test chamber wall reflections were observed by looking at greater
times while superimposing, by double exposure, the reflections off the
normal sand/air interface and a sand/metal interface formed by placing
aluminum foil on the wall surface. As seen in Figure 3.2, the wall
reflection is measurably beyond the primary ring down response of the
system,
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3.3.5 'Other Reflections

Other possible reflections consist of chamber floor, intra-borehole
and, signal cables. As mentjonéd in Section 2.1 on the experiment design,
all of the reflection sources were considered and either cable lengths,
matched'termihations, critical distances were selected to either eliminate
or provide. clear time for uncontaminated time domain measurements.

Onset of Wall Reflection

Figuré 3.2. Wall reflection identification.
(2 ns/div)
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SECTION 4
_RESULTS

In this section we discuss the resu1ts of the varions antenna con-
figuration.measured responses as well as the determination of the test
media electrical properties.. Each antenna type that was measured will
have its field patternsldisplayed_and the collected data summarized in
tabu]ar form. Also, for the most promising configuration of each antenna
type, the Fourier transform is shown along with the transfer function
formed by dividing thehreceived‘signal by the transmitter pulse.

8.1 Monopoyf'iﬁfs%mylatgd quéhple-

: The eccentr1ca11y pos1t1oned monopole in the water f111ed borehole
represents the s1mp1est antenna conflgurat1on to be tested and is also the
simplest to imp1ement. It is ‘also of 51gn1f1cance because from the data
collected, certa1n mu1t1—e1ement array responses can be synthesized by
simple computat1ona1 techniques.‘ These technjques will be‘dlscussed in
Section 4.3 a]ong{nlth a sample’problem.” e

.

- 4,1.1 Excitation

' Data was collected for the monopole excited by an impulse having an
amplitude of 50 volts or less and a pulse width of about 1.3 ns at half
amplitude with a rise-time of about 0.7 ns (see Fig. 4.1).

4.1.2 Field Patterns

A po]ar scan of 360 degrees was made in 22.5 degree increments for
each poss1b1e monopole location. prov1ded for in the exper1ment des1gn.
These locations are tabulated in Table 4.1.
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Figure 4.1. Pulser output used to drive antennas (Scale = 1 ns/div).
TABLE 4.1. MONOPOLE LOCATIONS BY NUMBER ON BOREHOLE RADIUS
Location ID Radius

0.00 cm
2.37 cm
3.19 cm
4.85 cm
6.35 cm

N PHow N =

In anticipation that in future applications, radar signal. processing
will permit use of the first and possibly the second pulses seen by the
target (i.e.; positive or negative), we have determined the resulting field
patterns and front-to-back ratios for each of these pulses. Figure 4.2
illustrates the field patterns derived in this manner for one of the
eccentrically positioned monopoles.
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3 Figure 4.2. Field pattern for the eccentric monopole pTaced
i at 3.19 cm off center.
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Since location #1 is centered in the borehole, it was used as an omni-
directional reference and as such has no directional pattern. Location #5
proVed to be too close to the borehole wall to‘be practical and had a
poof]y behaved pattern. Hence, its pattern and summary data are not
included ih this report. The field patterns related to the first positive
and first negative arriving pu]ses'for locations #2, #3,and #4 are shown
in Figurés 4.3a,b;v4.4a,b; and 4.5a,b respective]y. v

It is from these figures that we derive the beam width angles for the
positive (+) and negative (-) pulses tabulated below:

. f TABLE 4.2, BEAM WIDTHS FOR THE ECCENTRICALLY POSITIONED MONOPOLE.

Beam Width
Radius + -
1 360 360
2 84 109
3 78 78
4 n/a 48

©'4.1.3 Tabulated Results

~ We have tabulated below, the measured peak received signals for the
eccehtrically located monopole for each of the four radii mentioned above.
The raw digitized peak values with photo ID numbers are listed. Then, the
ratios of these values are presented for each angle with respect to the
forward direction, or zero angle. Then, these ratios are turned into
decibels for convenient evaluation of performance.

4,2 Corner Reflector Antenna

The corner reflector in the water filled borehole represents another
simple antenna configuration that was tested and is also easy to
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Figure 4.3a.

Field pattern using first pulse for monopole.
(radius = 2.37 cm)
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350° .

(radius = 3.19 cm)
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Figure 4.4a. Field pattern using first pulse for monopole.
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TABLE 4.3. MONOPOLE IN RADIUS #1 (CENTERED)

MONOPOLE IN RADIUS 1

RATIOS WRT @ LOG OF RATIOS RAW DATA
ANGLE POS NEG © POS NEG POS  NEG 1D #
ALL 1.88 1.0 .80 .90 .90 2.30 2450

TABLE 4.4. MONOPOLE IN RADIUS #2 (2.37 cm)

MONOPOLE IN RADIUS 2

RATIOS WRT @ LOG OF RATIOS RAW DATA
ANGLE POS NEG POS NEG POS NEG ID #
8 1.08 1.08 .08 .09 1.38 2.8@ 2428
22.50 . 93 =.78 ~.64 1.20 2.50 2429
45 880 &9 . -3.19 -2.89 99 2.20 2430
47.50 .54 44 -5.38  -3.84 .70 1.80 2431
9@.08 58 57 -4.78  -4.86 .75 1.68 2432
112.50 .54 .57 -5.38  -4.94 .70 1.40 2433
135.20 .58 &1 -4.82  -4.33 45 1.79 2434
157.50 .54 .57  -5.38  -4.8é .70 1.40 2435
18000 .58 81 -4.78  -4.33 .75 1.78 243¢
TABLE 4.5. MONOPOLE IN RADIUS #3 (3.19 cm)
MONOPOLE IN RADIUS 3
RATIOS WRT @ LOG OF RATIOS  RAN DATA
ANGLE POS NEG POS  NEG POS. NEG ID #
.8e 1.60 1.00 .00 .

I B B R B

§7.50 : .58 -4.68  -4.02 % a5

A 54 48 -5.33 4.3 .65 1.35 2414

35. .58 . ~4,48  ~4.85 .78 5 5313

2738 98 97 -4.48  -4.86 .78 1.40 2411

: * . . ? .'3-52 ’ “4.86 -8@ 1168 2418
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TABLE 4.6. MONOPOLE IN RADIUS #4 (4.85 cm)

MONOPOLE IN RADIUS 4

RATIOS WRT @ LOG OF RATIOS

RAW DATA .
ANGLE POS NEG POS NEG POS NEG
.88 1.00 1.08 .08 .08 .88 2.15
22.50 .63 .74  -4.88  -2.57 .58 1.40
45.88 .58 .37  -é.82  -8.59 .48 .80
67.58 .50 .28 -6.02 -11.89 .40 .40
98.06 54 .37 -5.88  -8.59 .45 .86
112.50 .75 .56 -2.58  -5.87 .68 1.20
135.60 75 .43 '-2.58  -4.84 .68 1.35
157.50 1.00 .70 .88 -3.13 .80 1.5
188.00 1.00 .74 .60 -2.57 1.48

¥X%  NOTE  ¥X¥ , L
FOR ALL DATA, THE FOLLOWING VALUES REMAIN

SIGNAL SENSITIVITY = SE-3 VOLTS
REFERENCE SENSITIVITY = 1E-2 VOLTS
- SWEEP SPEED = 2E-9 SECONDS
PULSER LEVEL = 12.5 UOLTS
RADIUS 1 = 9.68 CM
RADIUS 2 = 2.37 CM
RADIUS 3 = 3.19 CM
RADIUS 4 = 4.85 CM
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implement. It is interesting because it is directly related to a four ele-
“ment array through imaging as implemented for this study. The relation to
four elements is because of the 90 degree angle used at the apex.

4.2.1 . Excitation

Data was collected for the monopole in front of the corner reflector-
excited by an 1mpulse having an amplitude ‘of 50 volts or less and a pulse
width of about 1.3 ns at half amplitude with a rise-time of about 0.7 ns
(the same as for the eccentric monopole,,see'Fig.’4.1).

4.2.2 Field Patterns

A polar scan of 360 degrees was made ‘in 22.5‘degree<increments for
each possible monopole location provided'for in the experiment design with
the corner reflector in place. These locations have already been tabulated
in Table 4.1 in the previous section.

As discussed in Section 4.1. 2, we anticipate that in future applica-
tions, radar signal processing will permit use of the first and possibly
the second pulses seen by the target (1.e., positive or negative), we have
determined the resulting field patterns and front-to-back ratios for each
of these pulses. ’

In this case, the monopole located at radius #1 is of interest even -
though 1t is Jocated at the center of the borehole. In fact, this is of
special interest because a radar could be implemented with the monopole
fixed and the reflector rotating about it. The field patterns related to
the first positive and first negative arriving pulses for locations #1,#2,
#3,and #4 are shown in Figures 4 6a,b; 4.7a,b; 4. 8a b and 4 9a,b respec-
tively.
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Figure 4.6a.

Field pattern using first pulse for corner reflector.
(monopole at radius = 0.00 cm)




210°

90°

170° 160° 150°

150° 160° 170° 180° 190° 200° 210°
i ‘_? - | i *_
L i
ERAEE
o 140°
o T 220°
|
I
20° 130°
130° I 230°
T
. 120°
120° 1 240°
250° 110°
110° 250°
. 100°
100° 260°
270° : 90°
90° + : 270°
280° 80
w° m.
290° 72°
700 29%0°
n
300° 60°
0" ] 300°
)
10° 50°
-3 3i0°
1
320° 4
‘o. 3200
o I 350° 10° 20° 30°
e e oo Y 350° 340° 330°

Figure 4.6b.

Field pattern using second pulse for corner reflector.

(monopole at radius = 0.00 cm)

53




210° 170° 160° 150°
150° 190 200° 210°
; /
] 220° < LN 140°
i
|
\
230" 130°.
130° 230°
54
| ¢/
t
| 240° X 120°
i 120° 240°
250° g \ ! 110°
110° S Sk ifs 250°
N\ S5 it :
mo \ - 'wﬂ
100° X 260°
270° SESS = = SE===2 %0°
%° A w 3 = 220°
= 7 =
\\‘ )
280° 80°
80° 280°
Hfife
290° i 70°
70° . 20°
1
i :
i
300° 60°
60° 11t T s“' ; 300°
‘.ln 14
T
|
\ \
310° I ety , 50°
50° ) 1 AT 310°
{ c
I
AN EEARARRAS! :
2, i / T l i L
’ ] Ho X
s 2 10T
{ / L ul ; 3
320° - ] ! v 40°
40° 7 ) ! lt! \ \ 3200
- : VAT A
I e ’
. [ } e gl
330° 340° 350° 0 10° 20° 30°
30° | =20° 10° . 350° 340° 330°

(monopole at radius = 2.37 cm)

54

Figure 4.7a. Field pattern using first pulse for corner reflector.
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It is from these figures that we derive the beam width angles for the ’
positive (+) and negative (-) pulses tabulated below:

TABLE 4.7. BEAM WIDTHS FOR THE CORNER REFLECTOR ANTENNA

Radius Beam Width

+ -

1 124 97
2 80 90
3 62 93
4 84 108

4.2.3 Tabulated Results

We have tabulated below, the measured peak received signals for the
corner reflector antenna for each of the four radii mentioned above. The
raw digitized peak values with photo ID numbers are listed. Then, the
ratios of these values are presented for each angle with respect to the
forward direction, or zero angle. Then, these ratios are turned into
decibels for convenient evaluation of performance.

4,3 Synthesized Two-element Array

The two-element antenna array in the water filled borehole represents
another simple antenna configuration that was synthesized from the data
obtained on the eccentrically positioned monopole reviewed in Section 4.1.
It was also constructed and measured for comparison. That discussion is
found in Section 4.3.2. It is of interest because the synthesisvmethod,'
when shown to be usefully accurate,pefmits computer simulation of other
mofe»complicated multi-element arrays utilizing the measured data from that
famiTy collected for the eccentrically positioned monopole. This is
evident if the mutual coupling of the elements in the array to be
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TABLE 4.8. MONOPOLE IN RADIUS #1 (CENTERED)

MONOPOLE IN RADIUS 1

SIGNAL SENSITIVITY = .81 VOLTs
REFERENCE SENSITIVITY = .@81 VOLTS
SWEEP SPEED = 2E-% SECONDS

PULSER LEVEL = 36.8 VOLTS

RATIOS WRT @ LOG OF RATIOS RAW DATA
ANGLE POS NEG POS NEG POS NEG
.00 i.00 1.88 T .08 1.20 3,28
22.50 1.00 .91 .00 -.83 1.20 3.00
45,08 .82 76 -1.58  -2.41 1,44 2.50
§7.58 .67 .55 -3.52  -5.24 .30 1.80
96 .86 .5 .36 -6.82  -8.79 .40 1.28
112.50 .33 .18~ ~-9.54 -14.81 .49 .68
135.08 .25 18 -12.84 -14.81 .30 .68
157.50 17 .24 -15.54 -12.31 .20 .89
180.00 47 .27 -15.58 -11.29 .28 .50
TABLE 4.9. MONOPOLE IN RADIUS #2 (2.37 cm)
MONOPOLE IN RADIUS 2
SIGNAL SENSITIVITY = .@1 VOLTS
REFERENCE SENSITIVITY = .81 VOLTS
SWEEP SPEED = 2E-9 SECONDS
_ PULSER LEVEL = 36.6 UOLTS
RATIOS WRT 8 LOG OF RATIOS RAW DATA
ANGLE POS NEG POS NEG POS NEG
.00 1.60 ~  1.e8 .86 .88 .90 2.50
22.50 .94 .93 -.50 -, 44 .85 2.60
45,08 .67 21 -3.52 -2.92 .40 .00
675 e . . ? "5-11 _4-86 . 0 1-60
90.08 .33 43 -9.54  -7.3 . 1.26
112.50 . .36 “13-86 ""8.94 .23 1-60
135.00 .22 29 -13.86 -18.88 .20 .80
157.50 .22 .21 -13.96 -13.38 .20 .
180.29 .22 .18 -13.86 -14.96 .28 .5@
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TABLE 4.10. MONOPOLE IN RADILS #3 (3.19 ;m)

MONOPOLE - IN RADIUS 3

SIGNAL SENSITIVITY = .81 VOLTS
REFERENCE SENSITIVITY = .81 VOLTS
SWEEP SFEED = ZE-% SECONDS

PULSER LEVEL = 3@.8 VOLTS

RATIOS WRT 8 LOG OF RATIOS - RAW DATHA .

POS NEG POS NEG POS NEG

1.84 1.048 .08 .88 .76 2,68
.89 .92 ~1.82 -.78 .80 2.449
.36 73 -5.11 -2.72 .58 1.78
.44 .94 -7.84 -5.38 .48 1.48
.33 .38 -9.54 -8.38 .38 1.00
.22 .31 -13.86 -~18.24 .29 .86
.22 .23  -13.86 -12.74 .28 .40
-1} l15 -19-08 "16-2‘& -10 -
22 .18 -13.84 ~16.2& .28 48

TABLE 4.11. MONOPOLE IN RADIUS #4 (4.85 cm)

MONOPOLE IN RADIUS 4

SIGNAL SENSITIVITY = .81 VOLTS
REFERENCE SENSITIVITY = .81 VOLTS
SWEEP SPEED = 2E-% SECONDS

PULSER LEVEL = 48.8 VOLTS

RATIOS WRT 8 LOG OF RATIOS RAN DATA

POS NEG POS NEG POS NEG
1.08¢ i.00 .88 .48 .50 1.7@
1.68 1.00 .88 .08 .50 1.78
.87 .82 -3.52 -1.69 .46 1.46@
.59 l59 -6.92 —4-61 -30 1-98
.33 .47 -9.54 ~4.95 .28 .88
229 33 -12.84 -9.85 .15 » 68
l] 024 -15l56 -12l5? .13 .43
.17 .18 -15.% -13.87 .18 .30
.17 . 1 -15.56 -18.5% .18 .
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3

synthesized\is negligible and the lotation of each element within the con-
fines of the borehole was measured in the monopole study.

- 4.3.1 Excitation
Thé‘excitation used for the synthesized array was simply that recorded

for the monopole when located in hole #3 (3.19 cm) with a delay added (1.68
ns) to the forward element sufficient to cause the first pulses from each
driven element to arrive at the same time at the target receive probe.

'1  To create the resulting data set, we added the delayed monbpolé
responses to the ‘'un-delayed for the appropriate angles shown in Table
4,12. . ' '

TABLE 4.12. SYNTHESIS TABLE FOR TWO-ELEMENT ARRAY PATTERN

‘YE1ement 1 Element 2

(no delay) - (1.68 ns delay) Result
0 degrees - 180 degfees 0 degrees
22.5 157.5 . 22,5
45 135 45
67.5 112.5 67.5
90 90 - 90
112.5 - 67.5 112.5
135 45 135
S 1875 22,5 157.5

18O 0 180

- This. procedure involved the digitization in detail (apprdximately'zoo
‘data points per photo) of nine photos. Followed by standardization of the -
‘time,incrementé by interpolating to a standard of 200 evén]y spaced time"
steps for the 8 division reébrds. This allowed a 0.08 ns resolution to be
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used in the delay and addition of wave forms (i.e., data was recorded at
2 ns per division).

4,3,2 Field Patterns

The resulting synthesized field response for the two-elemént array
was digitized for peak values at each 22.5 degree increment calculated.
Again as'.discussed in Section 4.1.2, we anticipate that in futhre'appli-~'
cations, radar signal processing will permit use of the first and
possibly the second pulses seen by. the target (i.e. positive or nega-
tive), we have determined the resulting field patterns and front-to-back -
ratios for each of these pulses. Figures 4.10a,b show the 'reSUlting
f1e1d patterns for the first and second (pos1t1ve and negat1ve) pulses
seen at the receiver.

It is from these figures that we derive the beam width angle for the
positive pulse of 70 degrees and negative pulse of 80 degrees.

4.3.3 Tabulated Results

We have tabulated below, the predicted peak received signals for the
two-element array antenna. The digitized peak values with ID numbers are
listed. These numbers are formed from the combination of original mono-
pole ID numbers (i.e., 241810 is derived from 2418 added to a delayed
2410). Then, the ratios of these values are presented for each angle
with respect to the forward direction, or zero angle. Then, these ratios
are turned into decibels for convenient evaluation of performance.

4.4 Measured Two-element Array
After looking at the two-element array as synthesized from the eccen-
tric monopole data, we constructed the same and fed the two elements with

the prescribed delay of 1.68 ns. The main interest here was to test the
accuracy of the synthesis procedure and the practical implementation of a
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TABLE 4.13.° SYNTHESIZED TWO-ELEMENT ARRAY :
Lo (ELEMENTS PLACED AT RADIUS = 3.19 cm)

MONOPOLE IN RADIUS 3

SIGNAL SENSITIVITY = .aos YOLTS
REFERENCE SENSITIVITY = .81 VOLTS
SWEEP SPEED = 2E-9 SECONDS
- PULSER LEVEL = 12.5 VOLTS
RAT10S WRT 8 LOG OF RATIOS = RAW DATA N
ANGLE ©  POS ~ NEG  POS ' NEG  POS NEG 1D #
.8 1, 1.6 .08 .88 2.86  4.58 241819
RPN R S - BTSSRy 1.74  3.82 241711
- 35.80 81 le8 - -4i27  -3l32 126 3,88 241412
6756 ‘42~ Lap -7.48  -7.92 .87 1.81 241513
s 00 . .35 14 -9.89 -16.88 72 - les 241414
112.50 37 .27 -8.73  -11.32 .75 1.22 241315
e 3 3 2R 3% & B AND

-~ 1ge. 08 - .38 . .38 -8.48 -8.42 .78

mu]ti-e]ement'array although it was only two elements. - Section 5 makes a

comparison between the actual and synthes1zed array response for th1s con-
f1gurat1on.

. 4.4;1hatgqitation |

Each element of the array was exc1ted wlth the fast rise time (0 7ns)
short duration (1 3 ns) pulse. w1th one element delayed with respect to the
other by 1. 68 ns. “For all measurements, the pulser voltage was set at 50

volts or less.’ Since the pu]ser has a 50 Ohm source 1mpedance, and the. two
elements feed lines were connected to the same pulser by a "T“'connector,
each rece1ved about one ‘half the voltage as set on the pu]ser dia].-

'"4.4;2"FieldfPatternSr
: The measured field response for the two-e]ement array was dig1tized

for peak values at each 22.5 degree increment, Aga1n, as discussed in .
Sect1on 4.1. Z,ZWE antlcjpate that 1nwfuture appllcat1ons, radar signal
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processing will permit use of the first and possibly the second pulses
seen by the target (i.e., positive or negative) and we have determined the
resulting field patterns and front-to-back ratios for each of these
pulses. Figures 4.11a,b show the resulting field patterns for the first
and second (positive and negative) pulses seen at the receiver.

It is from these figures that we derive the beam width angle for the
positive (+) and negative (-) pulses tabulated below:

TABLE 4.14, BEAM WIDTHS FOR THE SYNTHESIZED TWO-ELEMENT ARRAY

Beam Width
Radius + -
3 86 90 degrees

4,4,3 Tabulated Results

We have tabulated below, the measured peak received signals for the
two-element array antenna. The digitized peak values with photo ID numbers
are listed. The ratios of these values are presented for each angle with
respect to the forward direction, or zero angle. Finally, these ratios are
turned into decibels for convenient evaluation of performance.

4.5 Media Electrical Properties

Sand blasting sand, specified as medium grade was used to simulate the
downhole granite. This sand was used in order to have a uniform mixture of
particles and because of its availability in a controlled dry state.

Electrical properties for the sand used in the test chamber was mea-
sured for two cases, that of dry and wet. By dry, we mean the sand as it
was delivered from the gravel company after being kiln dried as Specified
for sand blasting. Wet, means saturated with tap water found in the
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"TABLE 4.15.- MEASURED TWO-ELEMENT ARRAY
~ {ELEMENTS AT RADIUS%=?3.19 cm)

SIGNAL SENSITIVIT .85 gous

Y =
REFERENCE SENSITIVITY 9 VOLTS
SWEEP. SPEED = 2E-9 SECONDS
PULSER LEVEL = 15.6 VOLTS
‘ RATIOS WRT 0 LOG OF RATIOS RAN DATA

ANGLE ‘POS NEG POS NEG FOS NEG ID #
S .00 ‘1.08 1.6 .- ,08 - .00 1.46 3.40 419
22.50 .88 .89 ~1,1é6 -1,82 - 1.40 3.28 420
45.00 49 o P2 -3.25 -2.83 1.18 2,468 421
67,98 .44 .90 ~7.18 ~4.82 .. .78 . 1,88 422
?6.60 .38 25 -8.52 -12.64 .44 .90 423
112.56 .38 .22 -8.52 -13.84 .40 .80 436
135.66 .38 .33 -8.52 -2.94 .68 1.28 425 .
157.56 .38 33 -8.92 -%.94 48 1.20 428
18a.a@ .38 - 439 ~8.52 -8.28 .68 1.48 427
202.56 .38 .36 ~-8.52 -8.85 240 1.30 428
225.88 .38 W31 -8.52 ~16.360 4a 1.1@ 429
247.58 . 22 ~8.92 -13.66 -] .80 436
270,08 .31 .22 -18.19 -13.84 1] 431
:: 8 R &8 o 2% i

315.68 . . b= 1% “Le . .
8 94 .92 -.96 -.74 1.5 3.3¢0 434

laboratory area. The dry density was measured to be 1.63 g/cc and the
saturated was 1.95 g/cc. Thus the saturatedlsand had 19.33% water by
weight. It is believed that this is'the‘only_practica] moisture level to
try to maintain in a uniform fashion through out the test chamber. This 15
done by un1form1y sprinkling the surface until water starts to percolate
through into the’ drip pan beneath the chamber.' '

4.5.1 Dny Sand

_ Electrical measurements of ‘the sand‘s die]ectf%c constant and con-
duct1v1ty were made using the V-1 Impedance Probe as described: in Sect1on
2.1.10 in ‘the VHF band Th1s was done over a period of about 30 days.
Over this t1me Tittle. varlation was observed in the d1electr1c constant
while greater variation- was observed for the conductivity. '~ The reason for
these results is. that byeusihg‘the“same probe as that used for. the radar .
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receiver and operating in the VHF band, the data reduction.is more accurate °
for the dielectric constant than for the conductivity. That is, the probe
appears highly reactive for the VHF band while immersed in dry sand.. Table
4, 16 details these results. ‘ ' :

. TABLE 4.16. DRY MEDIA ELECTRICAL PROPERTIES

Frequency . Relative Conduct1v1ty

) batev" (MHz) D1e1ectr1c (mho/meter)
09-29-83 100 - 3.9 nja

" 180 3.14  5.77E-3

" 200 2,98 1,26E-3

L 250 3.32 4.85E-3

" 300 , 3.13 8.39E-3
10-03-83 150 « 3.08 2.27E-3
10-18-83 300 3,92 9.40E-3
10-24-83 50 3.49 n/fa

" 100 3,1 1.36E-3

" 150 - 3.95 2.30E-3

" 200 3.31 3.77E-3

average-value --> 3,40 --> 4,374E-3

Using these average values are not strictly rigorous since we know the
the electrical properties of moist earth is some what frequency dependent
(Ref. 4.1). Since our system response is seen to have a principal com-
ponent around 300 MHz that is, much of the energy is in a modest band cen-
tered about that frequency, it is reasonable to use these averages for
engineering approximations. '
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_’4.5.2';Wet Sand

Electrical measurements of the wet sand's dielectric constant and
conductivity were made using the V-I Impédance Probe as described in
Section 2.1.10 in the VHF band. . This was done after the sand had remained
in the saturated condition over a period of 24 hours. The same probe as
that used for the radar receiver and operating in the VHF band was used‘fdr
the data collection but the reduction is more accurate for both the dielec-
tric,Cohstant and‘for‘the-Conductivity. This was because the probe appears
less reactive for the VHF band than while it was immersed in dry sand.
Table 4.17 details these results. '

TABLE 4.17. WET MEDIA ELECTRICAL PROPERTIES

Frequency ~Relative Conductivity

Date (MHz ) Dielectric (mho/meter)
. 10-28-83 - - 50 ~10.20 1,40E-2
" 160 - 9.74 1,17E-2

average value --> 9.97 --> 1.29E-2

Rgain, using these average values are not strictly rigorous as stated
above but, in this case, since the measurement is so much more stable and
the values are so close to each other at 50 and 150 MHz, 1ittle error is
introduced by using these average values for VHF band engineering calcula-
tions. ' S ' : : ' ' o
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SECTION 5
"DISCUSSION

A promlslng techn1que for detect1on and locat1on of fractures in
geothermally active granite matrix is that of an electromagnet1c radar type
downhole probe. Range is. determined by time delay of the return echo while
direction is determined by rotation of the’ d1rect1ona1 transm1tt1ng antennav
while observ1ng the SIgnal strength. To 1mprove both detect1on range and -

. directional resolution, the transm1tt1ng antenna shou]d have max1mum for-‘
ward gain perpendicular to the borehole. That is, the narrowest .beam width
and the lowest side lobes, that can be designed to phys1ca1]y fit w1th1n
the conf1nes d1ctated by the borehole d1ameter.

Until now, no measurements have been reported of the fieldipatterns
for the'eécentricai]y 1ocated dipole of monopole antenne‘within a high
dielectric constant media surrounded by a lower dielectric constant media.
However, theoretical predictions have been reported (Ref. 5-1).

The reasons forvse]ectingya high dielectric constant media within the
confines of the borehole are twofold. First, the borehole is likely to be
filTed, at depths of primary interest, with water (high relative dielectric
constant, ~80), hence to minimize the number of diseontinuities traversed
by the radar pulse the antenna should be immersed in a siﬁi]ar_die]ectric
constant media. Secondly, a directional antenna design is enhanced by the
electrical length shortening factor afforded by the antenna immersed in the
media. To effectively control an antenna array pattern, separation dis-
tances of the order of element ]engths‘are'needed. The preSence of water
then, as the dielectric in which the array elements ere immersed, permits a
relatively higher gain (improved directional) antenna to be'designed within
the confines of a water or brine filled borehole with minimal electrical
discontinuities to scatter the radar energy. '
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5.1 Utility of Three Designs

The measurements. made in this study have shdwn that reasonable beam
widths and front-to-back ratios can be achieved by proper selection of
driven element ‘positioning within a water filled cylinder. An. eccentr1-
cally posit1oned monopo]e, a corner reflector and a two-element array were .
measured for a number of ‘possible conflgurations. The summary table (Table
5.1) was prepared from the data in Section 4 for ease of comparison. From
this table we selected in some sense optimal configurations for the nar-
rowest beam w1dth together with the larger front-to-back ratios and sum-
marized them in Tab]e 5.2. '

In anticipation that future radar signal processing will permit use
of the first and possibly the second pu1ses‘seen by the target (i.e.,
pos1t1ve or negative), we have determined the result1ng field patterns and
front-to-back ratlos for each pu]se. ' :

- 5;1.1--Eccentrically‘Positioned Monopole - -

, _The_eccentricallynpositioned monopo]e is of special interest for
several reasons. One, it is the simplest to construct and implement. Two,
the data derived from its performance in this environment can be used to
synthesize more complex arrays through simple. computational procedures.
That is,‘one Can'synthesize a number of symmetric arrays such as 2,4,8 and
16 element circular arrays. And finally, ‘having one element makes. it
easier to understand the physics. of . its performance. F1gures 5. 1a and
5.1b 11lustrates the field patterns. der1ved from the first and second pulse.
received from the monopole positioned at the 1ocation found to be optlmum
for the size borehole and antenna height used. "
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. TABLE 5.1.

Radius

N =

PWNE-

SUMMARY OF BEAM WIDTHS AND FRONT-TO-BACK RATIOS FOR THE
ECCENTRIC MONOPOLE, CORNER REFLECTOR AND TWO-ELEMENT

ARRAY

ECCENTRIC MONOPOLE

Beam Width

~Degrees

(«) ()
360 360
84 109
78 78
N/A 48

CORNER REFLECTOR

124 97
80 90
62 93
84 108

TWO-ELEMENT ARRAY

(Synthes1zed)
70 80 ”
(Measured)

86 90

76

Front-to-Back Ratio

as

(+) (-)

0 0

3.52 4,86
N/A 2,57
15.56 11,29
13.06 14.96.
13.06 " 16.26
15.56 18.59
8.40 8.42

8.52 '8.20




*TABLE.5.2, ~ SUMMARY. OF OPTIMAL CONFIGURATIONS FOR THREE ANTENNAS

BEAM WIDTH | FRONT-TO-BACK

ANTENNA. (degrees) (ratio in dB)
(monopole location) A{+) (=) : (+) (=)
eccentric monopole 78 78 3.52 4,86
(located at r = -3.19 cm)
corner reflector - 62 93 13.06 16.26
| (Tocated at r = 3.19 cm) :
| two-element (computed) 70 80 8.40 8.42.
(both at r =3.19 cm) o 1 ”
two-element'(measured |l 8 90 | 8.52 . 8.20
(both at r = 3,19 cm) t‘ s | '
Note: (+) and (-) denote the first pos1t1ve and negative
' pulses to arrive at the target. 7

Note that the first pulse field pattern is omnidirectional for about
180 degrees with forward energy developing a beam width of 78 degrees, but
the omnidirectional portion is so large the front-toQback ratio is only '
3.52 dB. The second pulse (negative) however, is a bit better formed with
the beginning of nulls at 90 and 270 degrees. The rearward radiation is
still high, yielding a front-to-back ratio of 4.86 dB.

5.1,2 Cornebeef]ector Antenna

The corner reflectob is another interesting antenna implementation '
becadse'it is directly related to the 4-element circular array with each
neighboring element being a negative image. Also, it is 51mple to con-
struct and if the monopo]e were to be centrally located, a directional
system can be constructed where the reflector rotates about the monopole.
This location, although not excessively poor in performance, was not
optimum. The optimum location was found to be with the monopole at a
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Field pattern for the eccentric monopole.
(First pulse with radius = 3.19 cm)
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radius of 3.19 cm with the 90 degree reflector apex at the outer limit<of
the borehole. Figures 5.2a qnd b are the resulting field patterns for this
antenna. ' ' ’

We note the the pattern for the first pulse is quite nicely formed
with a relatively narrow beam width of 63 degrees and a front-to-back ratio
of 13 dB. Since these patterns were measured only a meter away from the
radiat1ng antenna, it is possible that the pattern is being filled out to
some degree by near field energy. That is to say that if we had a larger
simulation chamber, it is likely that the pattern would have a better

front-to-back ratio.

' f_The'pattern for fhe second arriving pulse (negative) is some what
broader in beam width but improved in front-to-back ratio. Although it is
certain that chamber wall reflections were abundant (at late time), for the
time window from which this data is derived, we could observe no contami-
nation due to reflections. This was tested by placing large pieces of
conducting material at each wall while recording with multiple exposures
the primary (early time) antenna response.

"5;1.3 Two-element Array Antenna

The two-element array was particularly interesting because it gave us
a chance to test our ability to predict array performance using simple
procedures working on measured data from the family of data collected for
the eccentrically positioned monopole. As described in Section 4, we
synthesized a two element array from the measured monopole date for a
radius position of 3.19 cm. From this process we determfnedrtheeoptimum
delay needed for beam enhancement and actual]y'constrUCted_the two-element

array. The resulting field patterns are shown in Figures 5.3a and b where -

we have overlayed the predicted patterns with the actual measured pattern X
for a full 360 degrees.
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For this antenna system, we note a much improved front-to-back ratio
but with a slightly broader beam width than afforded by the eccentrically
located monopole alone.- The front-to-back ratio for the measured and
synthesized (predicted) cases are quite close, 8. 52 dB and 8.40 dB respec-
tively, while the beam.widths were’86 and 70 degrees. Its is likely that a
larger test chamber would have yielded better agreement with the absence of
a small amount of near field energy. In Figure 5.3b, for‘the‘second pulse,
- we can see a definite null filling in the measured data as compared with
the predicted data. Again this suggests either near field contamination or
more likely some mutuai coupling between the two elements not accounted for
in the synthesis procedure. '

P SN

: 5.2 Fourier Transforms '

To better understand the response and performance of each antenna
system and to aid in the engineering design of possible radar systems |
utilizing these antennas, we have digitized the wave forms recorded for
each antenna type measured in preparation for the Fourier integral trans-
form. Limitations in the high frequency validity for these transforms, as
stated below, is based on the methods and error determination techniques
reported in Reference 5.2 by Scott. o

"v5,2.1‘vEccentrically“Positioned Monopolev

Figure 5.4 is the photo of the oscilloscope trace showing the received
signal from the monopole driven by an approximation to an impulse function
shown in Figure 5. 5. In Figure 5.4 note that the time reference signal is
on the Tower portion of the photo.‘ . o ' :

After digitizing the waveform andfpriorsto transfdrming it to the fre-

quency domain,‘a truncation~point was seletted‘to eliminate the test cham-
ber wall reflections.- Ihis:isgshown_in'Figure 5.6. The scales shown are
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.

still in units of oscilloscope graticules. ~Actual ‘time units were intro-
duced in the Fourier transform program.

Finally, Figure 5.7 shows the Fourier transform for the eccentrically
positioned monopole for radius = 3.19 cm (i.e., the optimum case). The
frequency range shown is from 10 MHz to 1000 MHz. The transform is only
valid for frequencies lower than about 500 MHz since the measurement system
starts to roll off at 300 Mz. We note a broad peak of energy centered
around 288-MHz which is not too surprising after looking at the time domain
response in Figure 5.4, ' '

5.2.2 Corner Reflector

Figure 5.8 is the oscilloscope photo showing the received signa] from
the corner reflector antenna driven by the near impulse function shown in
Figure 5.5. In Figure 5.8 note the time reference signal in now on the
upper portion of the photo.

After digitizing the waveform and prior to transforming to the fre-
quency domain, a truncation point was selected to eliminate the test cham-
ber wall reflections. This is shown in Figure 5.9. The scales shown are

still in units of oscil1oscopé graticules. Actual time units were intro-

duced in the Fourier transform program.

Finally, Figure 5.10 shows the Fourier transform for the corner
reflector antenna for radius = 3.19 cm (i.e., the optimum case). The fre-
quency range shown is from 10 MHz to 1000 MHz.

The transform is only valid for frequencies lower than about 500 MHz
since the measurement system starts to roll off at 300 MHz.  We note a
broad peak'of energy centered around 302 MHz which is similar to that seen
for the eccentric monopole. ‘ | '
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Frequency ih Her'tz -
. Figure 5.7. Fourier transform of monopole response.
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Figure 5.8.

Corner reflector response. (2 ns/div)
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5.2.3 Two-element Array

Figure 5.11 is the oscilloscope photo showing the received signal from
the two-element array antenna driven by the near impulse function shown in
Figure 5.5. In Figure 5.11 the time reference signal is back on the lower
portion of the photo. After digitizing the waveform and prior to trans-
forming to the frequency domain; a truncation point was selected to elimi-
nate the test chamber wall reflections. This is shown in Figure 5.12. The
scales shown are in units of oscilloscope graticules. Actual time units
were introduced in the Fourier transform program. '

Finally, Figuré 5.13 shows the Fourier transform for the two-element
array antenna for radius = 3,19 cm (i.e., the optimum case) The frequency
range shown is from 10 MHz to 1000 MHz.,

The transform 1sron1y valid for frequencies lower than about 500 MHz
since the measurement system starts to roll off at 300 MHz. We note a
broad peak of energy centered around 263 MHz which is similar to that seen
for the other two antennas. ‘ . ‘

5.2.4 Driving Pulse

The pulse used to-drive all of these antennas turned out to be a rea-
sonable approximation to that of an impulse for the limitations of the
measurement system (i.e., 300 MHz -3 dB point). The pulse is pictured in
Figure 5.5 and was recorded at a faster sweep speed (1 ns/div) than the

~ other photos (2 ns/d1v)

"The Fourier transform ofrthis pulse; shown in Figure 5.14 is probably-
more representative of the overall measurement system response than of the

‘true energy content of the pulse. We note a smooth roll off above 300 MHz

as specified for the oscilloscope. The pulser specifications call for a
rise time of 0.25 ns while our system was only able to resolve 0.7 ns.
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Figure 5.11. Two-element array antenna response. (2 ns/div)
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Amplitude (Arbitrary Units):

K3

Figure 5.12. Digitized two-element array response.
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i}5;3 fransfer‘FUnetions

Many times. transfer functions are qu1te useful when the dr1v1ng func-
tion is not as well behaved as that used for th1s experiment., Now we will
look at transfer functions formed by dividing the frequency domain . '
responses for each type antenna measured by that of the measured dr1v1ng
pulse. :

5.3.1 Eccentrically Positioned Monopole

Figurev5;15.is the magnitude of the transfer function for the eccen-
trically positioned monopole. The function is valid in frequency up to the
’h1gh frequency dip at about 575 MHz where noise renders the transfer func-
tion 1nval1d. ‘ '

5.3.2 Cerner Reflector
‘ F1gure 5 16 shows the transfer funct1on for the corner reflecton
antenna and appears to be valid up to about 537 MHz Judging from the high
frequeney dip seen.

5.3.3 Two-element Array

Figure 5,17 is the transfer function for the two-element array;antenna
that was actually constructed and measured. Its validity seems to be up
to about 513 MHz as seen by the dip location.

5.4 Path Loss

To illustrate the utility of these antennas for a practical sunsurface
" radar system, we present in the table below, the measured responsesffor the
three optimal cases together with the received levels at a range of one
_meter norma]ized to a. 1000 volt. pu]se for a driver. . . . ... . :
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Amplitude (Arbitrary Units)
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Figure 5.17.

Frequency in Hertz

Fourier transform for two-element array.
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Note that the“puTsen“diéi -settings are Fecorded aIOng‘wfth*tﬁefméa-
sured pulse- output into a 50 Ohm load for calibration purposes (see Table
3.1, Section 3) c o

TABLE 5.3. ANTENNA RESPONSE AND PATH LOSS AT ONE METER RANGE

| o ‘Norméiized Signal
Pulser Voltage Measured Signal (for 1000 v pulse)

Antenna ‘(dial/measured (actual values) ()
Eccentric - e
Monopole 12.5/9.2 6.0E-3 14.0E-3 0.65 ~ 1.52. -
Corner : R S
Reflector 30/27 - 9.0E-3 26.0E-3 ~ 0.33 0.95 .
Two-element o ST A S
Array - (syn) 12.5/9.2 * 10,3E-3° 22,.5E-3 0.56 1.22
Two-element ' . T TR e
Array (meas) 15/16.8 * 8.0E-3 18,0E-3 0.47 1.07

*Note: voltage delivered to the power splitter

In order to extrapolate these signal levels to greater ranges we let
the signal -attenuate as 1/R as well as the dissipative losses, ‘
exp(-alpha*range), where alpha is the exponent1a1 loss constant for the
media.

Consider three ‘media having the following electrical properties:

Media 1 conductivity = 1.0E-4 mho/meter
| relative dielectric =,10 e
Media 2 conductivity = 1.0E-3 mho/meter
' . relative dielectric =:10'
Media 3  conductivity = 1.0E-2 mho/meter
' relative dielectric = 10°
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3

‘We will usé'p1ane wave‘techniques and assume a centér frequency of 300
MHz to obtain .the necessany loss constants. Thus the overa11 attenuation is
expressed as- AR : o

; -eR o
ﬁ»g e (attenuation_f;ctor)

.'A;

where .-R.

‘ll

range (total path length)v

m/EF'g(P)

Q' . 'A.—
n

where - o

2nf ..

R
"

frequency

media dielectric constantvn

o
f

]

media permittivity

)

wy .
o
e

]

and

<
]

where ¢ = medié;conduétivity:;;Tnbléi5,4 iiétg,tné§é yélues'for;several .

ra_ngeSO o R RO SR ‘, Sa Shia

¥ 't.ll“ S

TABLE -5.4. ATTENUATIQN‘FOR’VARIOUSSCONDUCTIVITIES AND RANGES

!,.,

© Range - Media1l' Medfa 2 Media 3

10m9.42-2 5.50E-2  2.56E-4
30m  2.78E-2  5.78E-3  5.72E-10
U 100m Tt 'SBOE<3T 2.586-5 (131E-28

L S 0 S P . v ,;..-'v *
RS A H - : M : R : T
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.Now by applying these attenuation factors to our normalfzed 1000 -volt
responses we predict the results shownvin Tables 5.5, 6 and 7. :

TABLE 5.5. MEDIA 1: RADAR RETURN SIGNAL LEVELS FOR A 1 kV,PULSE DRIVER

‘Radar Range in Mediéklrn

Antenna 5 m 15w 50 m
Eccentric (+) 6.12E-2 volts '1.81E-2 ~  3,58E-3
Monopole (-) 1.43€-1 4.23E-2 8.36E-3
Corner (+) ~ 3.11E-2 9.176-3 - 1.82E-3
Reflector (-)  8.95E-2 2.64E-2  ° 5.23E-3
2-element (+)  4.43E-2 1.31E-2 2.29€-3
Array = (-) 1.01E-1 . 2.98-2 . 5.89E-3 .
Reflector (-) 8.95E-2 2.64E-2 . i 5.23E-3: -

" 2-element (+) 4.43E-2 1.31E-2  72.298-3
Array (-) 1.016-1 -~ 2.986-2 . ~ : 5.89E<3 . -

TABLE 5.6. MEDIA 2: RADAR RETURN SIGNAL LEVELS FOR A 1 kV PULSE DRIVER

: Radar Range in Media 2
Antenna 5 m ~ 15m 50 m

Eccentric (+) 3.57E-2 volts 3.76E-3 1.68E-5
, Monopole (-) - 8.36E-2 8.79E-3 3.92E-5
Corner (+) 1.82E-2 1.91E-3 8.51E-6
Reflector (-) 5.23E-2 5.49E-3 2.45E-5
2-element (+) 2.59E-2 2.726-3  1.21E-5
Array (-) 5.89E-2 6.18E-3 2.76E-5
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TABLE 5.7. ‘MEDIA 3:  RADAR RETURN SIGNAL LEVELS FOR A 1 KV PULSE DRIVER

: _ Radar Range in Media 3
Antenna . 5m . . 15m. - 50m

Eccentric (+) 1.68E-4 volts  3.726-10 ~ 8.52E-29
Monopole (-) 3.92E-4 - B8.69E-10 -  1.99E-28
Corner ~ (+)  8.51E-5 1.89E-10 4.326-29
. Reflector (e)‘ﬁ  2.45E-4 . 5.43E-10 i.zss-za
2-element (+)  1.21E-4 2.69E-10 6.16E-29

CRrray (<) 2.76E-4 . 6.126-10  1.40E-28

From these tables we can see that if the radar receiver can detect and
process signals as low as 1 micro-volt then, even these simple antennas
will provide useful radar returns from good reflectors (large media dis-
continuities) at ranges on the order of 50 meters for conductivities of
1E-3 mho/meter and to ranges of a little over 5 meters for conductivities
of 1E-2 mho/meter. ‘ |
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SECTION 6
CONCLUSIONS

This study concluded that it is possible to“design a. directional antenna
to fit into a 15 cm diameter borehole to be operated at around 300 MH
Because of the constralnts of our experlmental space, the field patterns were
measured at the near zone and the antenna was operated at the hlgh end of the
desired frequency bands. : ’ A '

We will investigate in our next project whether similaridesigns'as des-~
cr1bed in this report can still lead to sufficient directivity and beamw1dth
as the antenna's mld-frequency is reduced to about 100 MH Such an experl—
ment will be carried out. in an outdoor- open space SO that the far f1eld
'patterns can be measured. ' '

In thlS report, the main empha51s on the antenna s d1rect1v1ty has been in
the horizontal plane since this is the most difficult area to obtaln good
directivity due to the small radius of a borehole, However, the directivity
in the axial plane is also desirable in some applications. In such ‘cases,
phased-array in the axial d1rect10n may be requlred to accompllsh this
ob]ectlve. ' ' :
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