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K o : ABSTRACT

The technical th;or& of bending of circular plates under axisymmetric
lateral loads isvformulated in terms of'Hart'slstate-variable equations.
Then the method is applied to plates with simply'supported and clamped
- edges thfough a standard algorithm; All the analytical resultsAobtained
compare qualitatively with those reported in the literature.. The
influence of the state variable called "hardness"-is clearly demonstrated.
ThusAthe analysis and the results.provide g'basis for écceptance'of the

model applied to structural cbmpbnents in a multiaxial state of stress.



O SEA R g

' INTRODUCTION

Due to the high temperature operating conditions of structural com-
ponents used in the power generation industry and the aircraft industry,
progress is needed in analysis and design incorporating the effect of creep

[1]. Most of the engineering theories of creep are based on uniaxial-

" stress experimental data whereas components in service are usually in a

multi-dimensional state of stress. Attempts at generalizing fhe creep
theqrieé within the framework of classical plasticity have been made [2].
One of the interesting cases is the creepfbendiﬁg of thin circuiar
plates. Maliﬁin [3] analyzed the creep of symmetrically loaded plates
using Gélerkin's_method, Using the maximum shearing stress criterion of

plasticity, Venkatraman and Hodge [4] obtained fhe closed form solutions

:=of plates under uniform lateral loads. Penny and Marriot [5], and Odqvist"

[6] presented general methods for obtaining the creep deflections of cir-

cular plates. A différent approach involving simple analysis of moment

equations was chosen by Patel, Cozzarelli and Venkatraman [7], and Patel

[8]. Kachanov [9] introduced a variational principle to obtain solutions

.of plates under various loading conditions. Recently Sim [10] solved the

préblem of creep-bending of plates using the reference stress technique

and compared analytical results with experiments. It must be emphasized that

. either a steady-state creep law or a time-hardening law was used in all

the above analyses.

The classical creep theories with time, strain,etc.,as variables do

'Anot take into account the effect of past history upon subsequent deformation

and are incapable of representing creep recovery [1l]. To represent creep

behavior more closely, a state-variable theory due to Hart [12] has received

. much attention and tensile experiments to determine material parameters for
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a wide class of metals have been cafried out [13,14]. The theory was
recently chosen for analysis of creep-bending of beams by the present

authors [15], and for analysis of spheres and cylinders by Kumar and

“Mukherjee (16].

In this.paﬁer, first a general technical theory of bending of circu-

lar platés ié-formulated in terms of Hart's state-variable équatioﬁs. It
is felt that incorporation of a state variable, called "hardness", will
gccount‘for the past history of loading in the material. It should be
emphasized that "hardness" is a material parameter thch can be determined-
ekperimentally [14]. The aim here is to develop; using the technical theory,
solutions to classical problems in bending of circular plates Which can
be tested.experimentally, and .can be compared to the results of analysis
using classical creep theories quoted before. Such_comparisoﬁs may be
useful in establishing a basis for this new model in a multiaxial state of
stress. |

" Following fhe theoretical developmént, a simply'supportéd‘circular
plate under uniform latéral loads is analyzed. Numerical solutions for
ﬁoment, stress and deflection are presented. The same approach is carried
out for a clamped plate under the same loading condition.

| As in the previous report [15], our study shows that results based on
Hart's kinefié créep law generalizéd to a multiaxial state of stress through
the concept of incremental plasticity and the notion of "hardness" are

consistent with existihg results; past history of loading has a strong

influence on creep behavior.
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‘ w . FORMULATION OF A TECHNICAL PLATE THEORY

The basic problem of a plate undergoing creep is to determine its

. o deflection as a function of timé due ﬁo a ;uddeniy imposed loéd which may
% : subsequently vary with time. For éngineéfing design purposes,‘it is
equally essential to study other featureé of its mechanical behayior such
as moment and stress distributions at various pbints of the ﬁlate.
For the sake of simplicity, the formulatiﬁn i; devéioped for a thin A
cifcular plate undef axisymnetric -loading as in Fig. 1. Let the-radiﬁs
of the plate be a and the thickness be h. The assuﬁptions adopted in
the technical plate theory are: |
(i) the deflections w are small in comparison with the thickness h
of the plate,

(ii) linear elements which are perpendicular to the centrai plane befofe
strain rémain linear elements perpendicular to the centrallsurface
.after str#in,

(iii) the éentral-plane of the plate is not elongated; points in it are
only displaced vertically,

'(iv) the normal stresses and the direction transverse to the‘plate can
be neglected, and

(v) | loading is steady or slowly varying.

AAs creep is a time-dependent process, rate (evolution) equations must
be formuiéted. We assume that the total strain rate tensor is the sum of

- ‘ Aan elastic strain rate tensor éij and a non-elastic strain rate tensor

.n‘
e

. o . i.e.
. iz’ ’

.t . ‘n .
®1j ij- " Cij ()

= 30/t ; (1)
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‘ . Pwo séparate creep -strain rate components have been experimentally identi-
| . S , Y
| fiea [17], i.e., .

. -n oa . . . . '

S = e, + D,. - (2

. - i3 T Si3 p13>' o ( )

where e?j is the recoverable creep strain rate-and ;ﬁ is the irrecover-
able creep strain. rate. 'If the loading is steady or slowly varying as

assumed, e?j will readily,approabh a saturation value eis and consequent- .

- 1y its rate é?j ~ 0. Henceforth in the circular plate,
.t . .- . -t . . '
e, = e, + P, and 8g = €g + Dy - (3)

From assumption (ii), it follows that

where kr and Ee are curvéture rates of the plate defined by the rela-

tions

r

K. = =dvdr , k, = -v/r ' (5)

and v is the deflection slope rate, i.e.,
¢ v = dwfor . . ‘ o (6).

- '~ We denote the intensity rate of the distributed lateral load at a
distance r from the center of the plate as é(r,t), the shearing force
rate per unit length Q(r,t) and the bending moment rates per unit length

ﬂi(r,t) and Me(r,t) (Fig. 1). Equilibrium requireé



BM;/Br + (Mr-Me)/r + Q = 0 and ‘ o '(7)
L) r . ’ : . . ’ -
Q = (f2mtat)/(2xr) , . ()
-0
where M = 2[ oydy and M, = 2 [ qgydy . (9)
. ] r o r ) ) (] o 2]
In accordance with assumption' (iv),

g = O . ' - (10)

The constitutive relations include the generaliied Hooke's law and -
L *
Hart's kinetic equations of creep in terms of a state variable o,

called hardness [12],

é-ij - (&ij-v/(1+v)3£zsij)/(ee) | o ().
p = f(cr,'o*,T) . : . - ' (12)
. &* = g'(o, U*)T) P)

where f and g are experimentally determined functions, o 1is the
effective stress to be defined later, ﬁ,‘the effective irrecoverable creep
strain rate, ‘T, the femperature, v, the Poisson's ratio and G, the |
shear modulus. Following the concepts of incremental piasticity, we define

o - ((3A/2)sijsij)l/2 , P o= ((2/3)1.’1515’13)1/2 (13)°



where

S

ij oi,j - (1/3)02«261,] s

and the flowﬁrﬁle is given by
Pyy = (3/2)(p/0)sij

In the circular plate, equations (10), (11),.(12), (1k4) and (15) are

reduced-to:

'er = (5r—v&e)/E . eé = (&e—vér)/E
B, = (p/o)(o,-0,/2) , By = (B/o)(04-0_/2)
g = (offdg—crce)l/g

Vhére E = .2G(1+v), the Young's modulus.

It must be noted that the constitutive relations are cdnstrucﬁed
to.inélude classical theories of plasticity which are built upon
the concept of a yield fﬁnction and associated flow rule. Here

*

" the strain rate ﬁ and the hardness rate o are‘uniquély'defined5

¥ :
by the current values of o, ¢ and T, independent of the notion of
yield stress.

As stated before, the aim here is to obtain a complete set of

evolution equations. First we group (3), (4) and (16),

Qe
it

—yE(av/ar+ve/r)/ (1-v2) - B(p_+vpy)/(1-v7)

Qe
"

~YE(v/r+v3v/ar)/ (1-9°) = E(p+vp_ )/ (1-7)

(14)

(15)

(16)

(a7)

(18)

(19)



. and substitute

D

-T-

(19) in (9) and integrate,

-D(av/ar+vv/r) - Aﬁr R .  (20)

-D(v/r+vav/or) - AMB ,

2 B2 L |
2E/(1-v7) [ (p_*vpyly 4y » (21)
o .
2 h/2 e e
2E/(1-V7) [ (pe+vpr)y dy , and
(o]
Eh3/(l2(l—v2)) . _ (éa)

The governing equation is obtained by substituting (20) into the equili-

brium equation (7),

a((2/r)(a(xv)/or))/ar = &/D - (o /or+(al -l /r)/D . (23)

Under a set of loading rate conditions, Q is given by (8). For the

case of constant uniform lateral loading rate é,

Q

where I

1

rq/2 , and o (a)
_Ar + Br + ar3/(16D) - 1/(zD) , | " (25)
ro. . ) ro. .
cf)(AMr_AMe)dg/E (r7/2) + é(AM;AMe)gds /2, (26)

and A and B are integration constants to be determined by boundary

conditions of a speéific problem. The deflection raté w. is given by

(6) together with another boundary condition, whereas the stress rate



and moment rate are made available by inserting (25) into tl9)‘and (20)
respectively.. |
A The initial conditioné are the solutions of the corfesponding elastic
plate problem given by any standard text [18]} and o:, initial hard-
ness, is determined éxperimentaily<[lh]. |

As the above analysis is quite involved, wé will summarize the
) evblution algorithm:
(i) - solve the corresponding elastic plate problem - in particular

determine S.» g and v,

0

(ii)  substitute o, and oy in (18) to obtain the effective stress

* L%
which together with o give P and & through Hart's

kinetic equations (12),.

(iii) p. and ﬁe are deduced from the values of p, 0, o, and o©

r )

via (17 ) )

{iv) AMr~_and AMe

ing'tb (21),

ére determined by integrating ‘ér and 'ée accord-~

(v) I 1is related to Aﬁr and Aﬁe as given (26),

(vi) with appropriate boundary conditions Vv given by (25) is solved,

(vii) w, ér, &é,‘ﬁr and Me are deduced from v through (6), (19)

and (20),
* ' .
(viii) forward integration in time for 0.5 Ogs 0 5 Y, M and Me is

achieved with any standard routine,

. *

(ix) . with new values of 0. 0 o and v, steps (ii) through (viii) -

e’
are repeated.
Euler's method would lead to an increment of deflectioﬁ slope deter-

mined By the relation



| _ e . o .
M vl,tl(te, EY ad

and can provide numericaily accurate results as long as At 1is
sufficiently small, say O.lc/&, which has been adequéte for-the
problems discusSed‘heré. More refined numerical techniqﬁes such as
Rungé—Kutta or prediétor—édrrector‘can be used. The integration is
continued until 6 = € where ¢ is a sufficien£ly small number.

It is called the stationary state in the classical creep literature {5].



CIRCULAR PLATE UNDER AXISYMMETRIC LATERAL LOAD

As an example of explicit calculations of deflection, moménf and
stress, consider a circular plate under constant uniform lateral
load gq - which may subsequently vary with time according to §. For
the sake of definiteness,; a well-established fofonf Hart's law is

used [1h4],
ﬁ = (0*/Dl)m(iog(c*/o)).-(l/)\)

P T I L () = a()/at | (28)

vhere m, X, 8§, B, A and D are experiméntally'determined quantities.

1
Dl is the only strongly temperature-dependent parameter. Their specific’
values were given by [14] and [15].

Introduce the following quantities with respect to 00 which is

- given later in terms of gq, the applied lateral load,

_ 2 N 2
v, = 120.a(1-v°)/(Eh) , p, = o (1-v)/E , | (29)
_ 2 . _ 2 2 _
Mo = ooh . Io o 8 h . Do = Dl/oo ,
o 2 * -m *. 1/x
to = oo(l-v )/E(oo/Dl) (logoo/co)

Note that the above definition of to differs from that in the previous
report [15] by a factor of (l—v2) “which is close to unity for mést‘ma-
terials. Therefore the comments made in that rebort concerning the signifi-

.cance -of to apply equally well here.

- 10 -
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1 The following dimensionless quantities are defined:

Er = or/oo'_, 66 = ce/oo R 5 = ‘3/00 R - (30)
B, = p./p, > By = Pg/p, » b ;'.Aog'8+l(1fv2)/E ,

v = v/v. , I = I/T_ , ﬁ; = M.r/Mo R

M, = Me/Mo , Kﬁ;"= AMr/Ma , Kﬁg' = MM /M

y = v/ ,’.'.5 = rfa , E ~=_ £/a

T o= /g () = 2/

Henceforth, for simplicity, overbars will no longer be used to denote

. dimensionless quantities, except where emphasis is necessary.

. Two classical problems are examined in detail.

CASE A. Simply Supported Case:
Let o, = 3qa2(3+v)/)8h2), the maximum elastic stress. The boundary

conditions are,

at -t = 0 , v(0,0) = Mr(O,l) = 0 , (31)
for ©  t>0 , v'(t,0)= M!(t,1) = 0 , and (32)
Cwlt,1) = 0 . | S (33)

Following the algorithm stated in the previous section, step (i), i.e.



at t

f,lg -

o ,
oo (omy) = yasd) L M(or) = (0)/6
0y (0.r,y) = 2y(1-(1430)r7/(300)) , M(0,r) = (1-(1+39)r%/(3+9))/6,
Cw0,r) = (1) - 22/(3e)/6
o (0,r,y) = o  » p.(0,r,y) = pglOsr,y) = 0 . 3k ).

For t z;b, steps (ii) to (iv) corresponding to (18), (12), (17) and

.(21);

U(ﬁ,r,Y) » = (oifqg—crde)l/zA 5

p'(t,r,y) = (o*/oz)@(log(o*/c)/;ogo:)'(l/l)

YT e T L

P (t,r,y) = p'(o.-04/2)/0

pé(t’raYs) = 'p'(oé‘—qr/Q)/o

1/2 :
M (t,r) = 2 J (p;+vpé)y dy
(o]
‘ 1/2 o
aMy(t,r) - = 2 é (pé+vp;)y dy . _ - B5)

The ‘integrals deduced from (20), (25) and the boundary conditions (32)

are defined as follows (steps (v) and (vi))
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.
L) = 1 ag-aga/e
3, = L
Ié(r) = Ii(r) + AM;

P T '
13(r) = rIj(x)/2+ g(AM;+AMé)€d€)/2
I§3‘ = Ié(l)

Then o . oe, v', M; and Mé are determined; (19) and - (20) become

0l (tor,y) = 20y (1) + 220 ((A-WITY - Ty - G-Iy e L) - (o

ol (t,r,y) = 2q'y(l—(l+3v)r2/(3+v)) + 12y((1- v)Ié3 13, +(1-v)1} [ro4vT
- V‘(t,r) = —q'r(l/(l+v)-r2/(3+v))/6‘+.r((l v‘Ié3 ll)/(1+v) - Ié/r

M;(t,r) = q’(l—r )/6 + ((l-v)Ié3 11- -(1- v)I'/r +I) ) - aM!

M(t,r) = 'q'<1—(1+3y>r2/_<3¥v).>/6+((1-\») 13-, +(1-v)I3/r74vI}) - M

Finally deflections w are obtained by integrating v with boundary

"condition (32). For simplicity, all calculations were performed with

q' = 0, i.e. constant uniform lateral loads only. Fig. 2 shows the

(36)

1 1
r+vpe)

2) (p PgtVP. )

(37)

defiection profiles of the circular plate at 250°C with two different

' )
values of initial hardness,'oo. As intuitively expected, the plate
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crept faster in fhe softer material (3: =1.5, upber drawing) than

in the harder material (3: = 6.0, lowér drawing) undér the same loading.

The same conclusion can be drawn by comparing the two deflection profiles

of the plate at 22°C are given by Fig. 3. Note the ordinate scaleAchanges
for 'ﬁ/wo > 1.0. .' |

Thé_momeht digfributions of the plate with two values of initial
hardness 5: at 250°C are shpﬁn in Fig. I whiéh is similar in overali
features to that presented by Venkatraman and Hodge in [4]. To gain
‘further insight, stress distributions (these calculations w&uld not bé
feasible in [L4] due to the fact that they used a creep law which is a
function of moment multiplied by a function of. time) are given by Fig. 5.
At y = 0.5? i.e. the lower face of the plate; both o. and % decreaSed
in mggnitude whereas they increased in magnitude at y = 0.1, near
the central plane. That means a more uniform distribution of stress
(especially near the center) was attained at stationary state - as
éxpected from past experience. As reported earlier in the creep-bending
of beams [15], there was ﬁore stréss‘redistribufion in the softer material
(EZ = 0.5) than in the harder material (5: = 6.0). The moment distributiohs
at 22°C are showﬁ'in Fig. 6.

In all the above cases with initial hardness assumed to be uniform,
the change in hardness was less than 1%. However for thé case of variable
initial hardness, for example,'EZ(F,i) = EZS§ where EZS is the initial
hardness at the‘surfacerf thé plate, the effect of hardening is~evident,
as shown in Fig. T. 4As 5* strongly depends on the relative magnitudes
of - 5* and '5, it is not éurfrising to observe thaﬁ hardening is more
pronounced neai tﬁe center wherelthe §tress redistribution is the great-

est as pointed out before and shown in Fig. 5. Note that the rate of
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hardening decreases with time. The effect of initial hardness distribu-
tion on deflection is given by Fig. 8 - the deflection with

- - - ~%

o, = 3y (0 <y < 0.5) is much larger than that with C 1.5, as

intuitively -expected. Similar remarks on the creep-bending of beams

were reported [15].

CASE B. C(Clamped Case:
let to = 3qa2/(hh2), the absolute maximum elastic stress. The

boundary conditions are,

at t = 0 , v(0,00 = v(0,1) = o0 ¢8)
at t>0 , v'(t,0) = v'(t,1) = 0 , and B9 )
w(t,1) = 0 (40)
Again following the algorithm of the previous section, step (i) at
t =0,
3 2
0 (0,r5y) = y(1+v-r7(3+v))
o 2
09(0,1‘,3’) = Y(1+V—I‘ (l+3\))) s
y 2
v(0o,r) = -r(l-r )/12 ,
* *
o (O,ryy) = o
p.(0,r,y) "= py0,r,y) = 0 ,
. 2
M _(0,7) = (1+v-r"(3+v))/12 ,
Mé(o,r) = (l+v—r2(l+3v))/l2 . _ l _ (41)

For t.> 0, steps. (ii) to (iv) are identical to the expressions given
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vy (35). |
The integrals deduced from (20), (25) and the boundary conditions .-
(39) are also defined according to (36).

Then o;, oé, v', M; and Mé are deduced from (19) and (20),

‘ol',(t,r,y) = q"y(l+v-r2(3+v)') - l2y((l+v)Iéé+(l—v)I'3/r2—Ié) = (pl+vpy)
oytorsy) = @y (v (145)) - 12y((eT - (T vTy) - (pgevny)
vi(tir) = —q,'r(l—r2)/‘l2 + Iy - Ié/r

M;('t,r) - q'(l+v—r2(3+\)))/l.2. - ((l+v)Ié3 +:l(l-v)Ié/r2-—Ié) - AM;.

M (t,r) = g'(1+v-r2(1+3v)_)/12— ((1+v)18, _ (l—v)Ié/r2—vIé).- my o (k2)

Once again defiections w are obtained by integrating v according to
boundary condition (32) and all calculations were performed with q' = O.
Fig. 9 shows the déflection profiles of the plate at 250°C with two values
éf initial hardness GZ. Agaiq creep deformation took place more rapidly
in the softer material (5: = 1.5) than in the harder material (BZ = 610).
Comparing Fig. 9 in the clamped case vith Fig. 2 in the simply supported
case,; we find that the plate deformed at a slower rate in the formgr than
_ in the latter as intuitively expected._ Tﬁe deflection profiles at 22°C
are‘éiven by Fig. 10 and similar conclusions can be drawn.

The moment distfibutions of the plate at 250°C.With two values of
initial»hardheSS' E: are shown in Fig. 11. Note~that the stationary

state moment distributions are hardly distinquishable from each other.

This was also pointed out in [4]. Fig. 12 shows that there was noticeable
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difference between the stress distributions corrésponding to tﬁo values
of initial hardness (especially near the center aﬁd'the edge) although

their moment ‘distributions are almost‘identical. Similar remarks can

'be made for Fig. 13.

As a final»step in. analysis, the effept of variab;e initial hard-
nesé distribution is again examined. The growth of hardness of
hardness is most pronounced near the edge (r = 1), quife apparent in the
neighborhood of the center (r = 0), but almost indiscernible in between,
as shown in Eig.Aih.~ This correlateé well with the.intensity.of stress
redistribution along the radial diregtion noted earlier. Moreover the .
maximum change in hardness in this case is less ‘than that in the simpiy
»suppoftéd case because the stress redistribution is less in'the former.
The effect on deflection is given by Fig. 15 which is comparable to

Fig. 8 with relatively smaller magnitudes (see Fig. 9 versus Fig. 2).



DISCUSSION

Hart's kinetic equations in terms of a state variable called "hard—
ness" have been verified in uniaxial tensionifor a variety of metals at
high temperature [12]-[1L4]. The extension of this model to the creep-
bending Qf beams has recently been demonstrated by the present éuthors

[15]. 1Its capability to predict component behavior in a multiaxial state

~of sfress such as creep-bending of plates is, however, not evident. As

in ﬁhe pre#ious report [15], the aim of this paper is twofold:. to formulate

a technical plate theory, and then to énalyzé and discuss results obtained

by solving practical problems in lightAof previously published results.

Follqwing the analyses in the previous sections, it was oﬁserved‘that

(1) All the results showed stréng influence upon cre;p deformation of
the-state variable called "hardness", which is absent in creep
theories with time, strain etc. as variables.

(ii) The deflection profiles at 22°C and 250°C in both the simply sup-
portéd case and the clamped case as given by Figs; 2; 3, 9 and 10
compared qualitatively with flgures shown in [h] Compafing Figs.

2 and 3 with Figs. 9 and 10, we flnd that the plate deformed at a
faster rate in the former than in the latter, as expected.

(iii) The corresponding moment distributions as given by Figs. L4, 6, 11
and 13 also showed features similar to those reported in [L4]. It is

interesting to note that the'stafionary staté moment distributions
for two differgnt values of initial hardneés 3: were essentially.
indistingquishable in the clamped case.

(iv)  The stress distributions in both the simply supported caseland the.
clamped case, not -available in the literature,'are given by Figs.

5 and 12. Comparing these diagrams with Figs. 4 and 11, we notice

. - 18 -
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(vi)
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that there were more substantial. stress redistributions than cor-
respOnaing‘moment rgdistributioﬁs, ESpecially in the neighborhood
of the center for both cases and also near the edge for the clémped
case. Moreover in the simply suppbrted case, stress decreased in
magnitude at the lower face of the plate but increased in magnitude'
ﬁeér the central pléne, and thus approached.a more uniform disfribﬁ-
tion as iﬁ£uitively expected.

The choice of time steps was crucial in the numerical analysis us-

ing Euler's method. Nonlinear stepsx(small in the beginning) based

on stress redistribution have been employed. .A general guide-line

is to choose AT < 0.1 6/5'

In all the computations with initial hardness assumed to be uniform,

~ the change of hardness was less than 1%. However, with variable

iniﬁial hafdness, e.g. CZ = 3y(0 < ; <'0.5), the growth of hardness
was evident - especially in régions where stress redisfributions
were most pronounced, as givén by Figs;}T and 1k, It is found that
hardening rates decreased with time. Moreover the'deflecﬁions in -
simply‘supported and:clamped plates shown in Figs. 8 and 15 were
less than the correSpondiné cases with uniform initial hardnesé

%
00 = 1.5, as expected.

Note that (i), (v) and (vi) are identical to those stated. in the
creep-bending of béams [15]. 1In view of_thé anaiyseé in the p?evious sec—-"-
tion; and the above observations, we believe that the extension of Hart's

i, | model toufhe creep-bending éf circular plates which are in a biaxial state‘

‘of stress has been demonstrated.
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As pointed out in [15], a direct constitutive relation between global
parameters, i;e., moment, curvature rate and related state-variables will,
drastically simplify the creep deformation analysis. This will be the sub-

ject of a subsequent report.
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FIGURE CAPTIONS

A circular plate under axisymmetric lateral loads
Deflection profile - simply supported
(o = 6.89 MPa (1000 psi), T = 250°C)

Deflection profile - simple supported

(oo = 62.05 MPa (9000 psi), T = 22°C)

Moment distribution - simple supported ;
(o, = 6.89 MPa (1000 psi), T = 250°C)
Stress distribution ~ simply supported
(o = 6.89 MPa (1000 psi), T = 250°C)
Moment distribution - simply supported-
(o, .= 62.05 MPa (9000 psi), T = 22°C)
Growth bf.Hardness - simply supported
Effect of Initial Hardness Distribution on Deflection - simply supported
Deflection profile - clamped

(o = 6.89 MPa (1000 psi), T = 250°C)
Deflection profile - clamped

(oo = 62.05 MPa (9000 psi), T = 22°C)
Moment distribution - clamped

(o, = 6.89 MPa (1000 psi), T = 250°C)
Stress distribution - clamped

(oo = 6.89 MPa (1000 psi), T = 250°C)
Moment distribution - clamped

(o, = 62.05 MPa (9000 psi), T = 22°C)
Growth‘of Hardness - clamped

Effect of Initial Hardness Distribution Qh Deflection - clamped
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LIST OF SYMBOLS

B Greek lower case beta
8 Greek lower case delta

A Greek upper case delta

€ Greek lower case epsilon

& Greek loﬁer case theta

g.lGreek lowef case kappa
A Greek lower case lambda
CA 'Greek uppef_case lambdé

v Greek lower case.nu

£ " Greek lower case xi

6 Greek lower case sigma
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