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1                             ABSTRACT
*

The technical theory of bending of circular plates under axisymmetric

lateral loads is formulated in terms of Hart's state-variable equations.

Then the method is applied to plates with simply supported and clamped
:

edges through a standard algorithm.  All the analytical results obtained

campare qualitatively with those reported in the literature . The

influence of the state variable called "hardness" is clearly demonstrated.

Thus the analysis and the results provide a basis for acceptance of the

model applied to structural components in a multiaxial state of stress.
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'                             INTRODUCTION
.R

Due to the high temperature operating conditions of structural com-

ponents used in the power generation industry and the aircraft industry,

progress is needed in analysis and design incorporating the effect of creep

[1].  Most of the engineering theories of creep are based on uniaxial-

stress experimental data whereas components in service are usually in a

multi-dimensional state of stress.  Attempts at generalizing the creep

theories within the framework of classical plasticity have been made [2].

One of the interesting cases is the creep-bending of thin circular

plates.  Malinin [3] analyzed the creep of symmetrically loaded plates

using Galerkin's. method.  Using the maximum shearing stress criterion of

plasticity, Venkatraman and Hodge [4] obtained the closed form solutions

of plates under uniform lateral loads.  Penny and Marriot [5], and Odqvist

[6] presented general methods for obtaining the creep deflections of cir-

cular plates.  A different approach involving simple analysis of moment

equations was chosen by Patel, Cozzarelli and Venkatraman [7], and Patel

[8].  Kachanov [9] introduced a variational principle to obtain solutions

of plates under various loading conditions.  Recently Sim [10] solved the

problem of creep-bending of plates using the reference stress technique

and compared analytical results with experiments.  It must be emphasized that

either a· steady-state creep law or a time-hardening law was used in all

the above analyses.

The classical creep theories with time, strain, etc.,as variables do

not take into account the effect of past history upon subsequent deformation

and are incapable of representing creep recovery [11].  To represent creep

behavior more closely, a state-variable theory  due  to  Hart   [ 12 ] has received

much attention and tensile experiments to determine material parameters for
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a wide class of metals have been carried out [13,14]. The theory was

recently chosen for analysis of creep-bending of beams by the present

authors [15], and for analysis of spheres and cylinders by Kumar and

4 Mukherjee [16].

In this paper, first a general technical theory of bending of circu-

lar plates is formulated in terms of Hart's state-variable equations.  It

i s   felt that incorporation   of a state. variable, called "hardnes s",    will

account for the past history of loading in the material.  It should be

emphasized that "hardness" is a material parameter which can be determined

experimentally [14].  The aim here is to develop, using the technical theory,

solutions to classical problems in bending of cirtular plates which can

be tested experimentally, and can be compared to the results of analysis

using classical creep theories quoted before.  Such comparisons may be

useful in establishing a basis for this new model in a multiaxial state of

stress.

Following the theoretical development, a simply supported circular

plate under uniform lateral loads is analyzed.  Numerical solutions for

moment, stress and deflection are presented.  The same approach is carried

out for a clamped plate under the same loading condition.

As in the previous report [15], our study shows that results based on

Hart's kinetic creep law generalized to a multiaxial state of stress through

the concept of incremental plasticity and the notion of "hardness" are

consistent with existing results; past history of loading has a strong

-           influence on creep behavior.



r              ·     FORMULATION OF A TECHNICAL PLATE THEORY

The basic problem of a plate undergoing creep is to determine its

deflection as a function of time due to a suddenly imposed load which may

subsequently vary with time.  For engineering design purposes, it is

equally essential to study other features of its mechanical behavior such

as moment and stress distributions at various points of the plate.

For the sake of simplicity, the formulation is developed for a thin

circular plate under axisymmetric loading as in Fig. 1.  Let the radius

of the plate be  a  and the thickness be  h.  The assumptions adopted in

the technical plate theory are:

(i)    the deflections  w  are small in comparison with the thickness  h

of the plate,

(ii)   linear elements which are perpendicular to the central plane before

strain remain linear elements perpendicular to the central surface

after strain,

(iii)  the central plane of the plate is not elongated; points in it are

only displaced vertically,

(iv)   the normal stresses and the direction transverse to the plate can

be neglected, and

(v)    loading is steady or slowly varying.

As creep is a time-dependent process, rate (evolution) equations must

be formulated. We assume that the total strain rate tensor is the sum of

an elastic strain rate tensor  e..  and a non-elastic strain rate tensor
1J

Jn .  i·e.,
ij.

.t      A.. + 4:.   ,   (.)     3()/at                    (1)eij      iJ    13
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Two separate creep strain rate components have been experimentally identi-

fied [17], i.e.,

2.     e... + p..                                        (2)•a    ·

-                         1J      1J    1J

•a                                              ·
where  e..  is the recoverable creep strain rate and p  is the irrecover-

1J

able creep strain rate.  If the loading is steady or slowly varying as

as
assumed,   e:. will readily approach a saturation value  e. . and consequent-

1 J                                                1J

ly its. rate  e:. Z 0.  Henceforth in the circular plate,
1J

·t ·             .t     ·    ·
er     er + pr  and ee ee + Pe 0                     (3)

From assumption (ii), it follows that

't                't
e      Y.Ar   '   ee     yke                               (4)r

where  kr  and  Ke  are curvature rates of the plate defined by the rela-

tions

er -34/ar , Re -6/r                           (5)

and  v  is the deflection slope rate, i.e.,

C 4
3*/ar      .                                                                                                                              (6)

-               We denote the ihtensity rate of the distributed lateral load at a

distance  r  from the center of the plate as  q(r, t), the shearing force

rate  per unit length      Q(r, t)      and the bending moment rates   per unit lehgth

Mr(r, t)  and MG(r, t)  (Fig. 1). Equilibrium requires
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1

BAr/Br + (Ar-Ae)/r +4    0    and                     (7)

-                                                                                r

Q =  (/ 2*qtdi)/(2*r) , (8)
0

h/2 .                     h/2
where     M      2 f   a y dy  and Me 2 f   Gey dy  .          (9)

r 0 0

In accordance with assumption (iv),

.

ay      0 . (10)

The constitutive relations include the generalized Hooke's laW and

*
Hart's kinetic equations of creep in terms of a state variable  a ,

called hardness [12],

Jij  =  (a. .-v/(1+v) £15ij)/(2G) (11)
1J

.

p     =   f(a,· a ,T) (12)

&*         =       g(a, 6*,T)

where  f  and  g  are experimentally determined functions, a  is the

effective stress to be defined later,  p, the effective irrecoverable creep

strain rate,  T, the temperature,  v,  the Poisson's ratio and  G, the.

shear modulus.  Following the concepts of incremental plasticity, we define

a = ((3/2)s..s  )1/2 p ((2/3)18 ··$. ')1/2
1J 1J 1J 1J (13)
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where

sij  =  a.. - (1/3)0 · 6 (14)iJ          ZE ij  '
'

and the flow rule is given by

Bij  =  (3/2)( /a)sij .
.

(15)

In the circular plate, equations (10), (11), (12), (14) and (15) are

reduced to:

e      Car-vae)/E  , ee (6 -vJr)/E (16)r 0

pr     (P/a) (ar-ae/2)  ,  60  =  (6/a) (ae-cir/2) (17)

,2 2
0      la +0 -a a )1/2 (18)re  r e

where  E = 2G(1+v), the Young's modulus.

It must be noted that the constitutive relations are constructed

to include classical theories of plasticity which are built upon

the concept of a yield function and associated flow rule.  Here
*

the strain rate  p  and the hardness rate a are uniquely defined
.*

by the current values of  a, a and  T, independent of the notion of

yield stress.

As stated before, the aim here is to obtain a complete set of

evolution equations.. First we group (3), (4) and (16),

a      -yE(3*/ar+v4/r)/(1-v2) - E( r+v60)/(1-v2) , (19)r

60     -yE(v/r+vaG/ar)/(1-v2) - E( 0+v r)/(1-v2)  ,
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and substitute (19) in (9) and integrate,

A      -D (34/ gr+v*/r) - AAr  '                              (20)
-                                                                    r

'                       Me     -D(v/r+vav/ar) - AMe

where

2 h/2 .   .AAr =  2E/(1-v ) f '(pr+vp0)y dy , (21)
0

2 h/2
AAe  =    2E/(1-v   )   I  ( 0+v r)y  dy     ,     and

0

D     Eh3/(12(1-\12)) .. (22)

The governing equation is obtained by substituting (20) into the equili-

brium equation (7),                                        '

3((1/r)(3(rv)/3r))/3r .4/D - (38Ar/ar+(Afir-AAe)/r)/D .  (23)

Under a set of loading rate conditions, Q  is given by (8).  For the

case of constant uniform lateral loading rate  q,

Q    rq/2  , and (24)

4    -Ar + Br + 4.r3/(16D) - i/(rD) , (25)

Ir

where    I     f(bAr-AAe)dE/E .(r2/2) +  (ARr+Af[0)EdE /2 ,     (26)\0

and A  and  B  are integration constants to be determined by boundary

conditions of a specific problem.  The deflection rate  4  is given by

(6) together with another boundary condition, whereas the stress rate



-                                          -8-

1

and moment rate are made available .by inserting (25) into (19) and (20)

respectively. .

The initial conditions are the solutions of the corresponding elastic
*

-            plate problem given by any standard text [18 ], and  c , initial hard-

ness, is determined experimentally [14].

As the above analysis is quite involved, we will summarize the

evolution algorithm:

(i)    solve the corresponding elastic plate problem - in particular

determine  ar' a0  and v,

(ii)   substitute  ar  and  00  in (18) to obtain the effective stress
* *

which together with a give  0  and 6 through Hart's

kinetic equations (12),

(iii)   r  and  pe are deduced from the values of  p, 0, ar  and  00
via (17),

(iv)   8Mr  and  AAe are determined by integrating  pr  and pe accord-

ing to (21),

(v)       is related to  AM   and AN[0 as given (26),

(vi)   with appropriate boundary conditions  *  given by (25) is solved,

(vii)  w,  r' ae, Mr  and Me  are deduced from v through (6), (19)

and (20),
*

(v:iii) forward integration in time for  ar' c0, a ,  v, Mr and M   is
e

achieved with any standard routine,

(ix)   with new values of  a ' 00'  0  and  v, steps (ii) through (viii)

are repeated.

Euler's method would lead to an increment of deflection slope deter-

mined by the relation
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V|t2    vitl + fltl(t2-tl)
(27)

and can provide numerically accurate results as long as  At  is

sufficiently small,.say  O.la/6, which has been adequate for·the

problems discussed here.  More refined numerical techniques such as

Runge-Kutta or predictor-corrector can be used.  The integration is

continued until  a=E  where  E  is a sufficiently small number.

It is called the stationary state in the classical creep literature [5].



'                  CIRCULAR PLATE UNDER AXISYMMETRIC LATERAL LOAD

As an example of explicit calculations of deflection, moment and

stress, consider a circular plate under constant uniform lateral

load  q which may subsequently vary with time according to  4.  For

the sake of definiteness, a well-established form of Hart's law is

used [14],

;  =  (a*/Dl)m(iog(a*/a))-(1/A)

*         6   * 8-1
8   =  Abc /(a )             (') 3()/at (28)

where  m,  X, 6, B, A  and Dl  are experimentally determined quantities.

Dl  is the only strongly temperature-dependent parameter.  Their specific

values were given by [14] and [15].

Introduce the following quantities with respect to  aQ  which is

given later in terms of  q, the applied lateral load,

2

v      12(Ia(1-v2)/(Eh)  ,
p

ao(1-v )/E , (29)
0 0

2                 2 2
M  ah , I = a a h , DO D./0
0 0 0 0    10

t      co(1-v2)/E(ao/Dl)-m(logao/ao)1/A

-            Note that the above definition of  t   differs from that in the previous

report [15] by a factor of (1-v2)  which is close to unity for most ma-

terials.  Therefore the comments made in that report concerning the signifi-

cance ·of to apply equally  well  here.

- 10 -
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The following dimensionless quantities are defined:

*
0                      Cr'Go        ' 38 9 ela o    ' -  also , (30)r

6-8+1
Pr  =  Pr Po  ' Pe pe/po  , A

Aao    (1-v2)/E ,

v  , =  v/vo ,   I   =   I/Io   ,   Ar  =  Mr/Mo

Re  = Me/Mo  ,  AMr  =  8Mr/M0  , AMe 8   0
AM /M

F  =  y/h  ,.r  =  r/a  ,  g  -  E/a

E  = t/t6 C )'  =  3( )/3E

Henceforth, for simplicity, overbars will no longer be used to denote

dimensionless quantities, except where emphasis is necessary.

Two classical problems are examined in detail.

CASE A. Simply Supported Case:

Let  a  = 3qa2(3+v)/)8h2), the maximum elastic stress.  The boundary

conditions are,

at        t    0  , v(0.,0)  = Mr(0'1) 0 , (31)

for
t   2-  0             ,       v' (t,0)    =      Mr(t,1 )                 0       ,

and (32)

w(t,1)  =  0 . (33)

Following the algorithm stated in the previous section, step (i), i.e.
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'

at t 0  ,

ar(O,r,y)  =  2y(1-r2)  ,  Mr(O,r)  =  (1-r2)/6  ,

00(O,r,y)  =  2y(1-(1+3v)r2/(3+v))  ,  Me(O,r) = (1-(1+3v)r2/(3+v))/6,

v(O,r)  =  -r(1/(1+v) - r2/(3+v))/6  ,

*                  *
a (O,r,y)  =  ao  ,  pr(o'r,y) ·=  pe(O,r,y)  = 0 (34 )

For  t, 0, steps (ii) to (iv) corresponding to (18), (12), (17) and

(21),

a(t,r,y)  =  (02+a2-a a  1/2
re  r e

p'(t,r,y)  =  (a*/a'):(log(a*/a)/loga )-(1/A)

*                 6   *,8-1
a '(t,r,y)  =  Ap'a·/(a )

pr(t,r,y)  =  p'(ar-ae/2)/a

pe(t,r,y,)  =  p'(a -a /2)/a0 .r

*                                 1/2

8Mr(t,r) 2    f    (pr+vp )y  dy0

1/2

AM (t,r) 2 f (Pe+vpr)y dy (35 )

-                                                                                                0

The integrals deduced from (20), (25) and the boundary conditions (32)

are defined as follows (steps (v) and (vi))
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r

Il(r). =  f (AM'-AM,)dE/Er  B
0

11I'   =  It(1)

I; (r)       =       I l(r)    +   AM;

r

Ii(r)  = r2Ii(r)/2 +  f(AM;+AMB)EdE)/20

I'
IJ(1)

(36)
33

Then  d'. a'.  v', M'  and M   are determined; (19) and (20) becomer'  0'       r

a;(t,r,y)    =    2q'y(1-r2)  +  127((1-v)I'     -  I'     -  (1-v)Ii/r2  +  I2)  -  (pr+upe)33    11

08(t,r,y)  = 2q'y(1-(1+3\1)r2/(.3+v)) + 12y((1-v)I' -I' +(1-v)Ii/r2+VI2)-(pe+vpr)33  11

v'(t,r)  =  -q'r(1/(1+v)-r2/(3+v))/6 + r((1-v)Ij3-Ill)/(1+v) - Ii/r

Mr(t,r)  = q'(1-r2)/6 + ((1-v)I 3-Ill-(1-v)I3/r2+I2) - AM;

M;(t,r) = q'(1-(1+3v)r2/.(3+v))/6+((1-v)I' -I' +(1-v)I3/r2+vI;) - AMe . (37)33  11

Finally deflections  w  are obtained by integrating  v  with boundary

condition (32).  For simplicity,.all calculations were perf6rmed with

q' = 0, i.e. constant uniform lateral loads only.  Fig. 2 shows the

deflection profiles of the circular plate at 250'C with two different

               values of initial hardness, a .  As intuitively expected, the plate0
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*
crept faster in the softer material (8  = 1.5, upper drawing) than

0
*

in the harder material (a  = 6.0, lower drawing) under the same loading.
0

-           The same conclusion can be drawn by comparing the two deflection profiles

of the plate at 22'C are given by Fig. 3.  Note the ordinate scale changes

for  w/w  > 1.0.0

The moment distributions of the plate with two values of initial
*

hardness  a   at  250'C  are shown in Fig. 4 which is similar in overall
0

features to that presented by Venkatraman and Hodge in [4].  To gain

further insight, stress distributions (these calculations would not be

feasible in [4] due to the fact that they used a creep law which is a

function of moment multiplied by a function of time) are given by Fig. 5.

At  y = 0.5, i.e. the lower face of the plate, both a and a decreased
r e

in magnitude whereas they increased in magnitude at  y = 0.1, near

the central plane. That means a more uniform distribution of stress

(especially near the center) was attained at stationary state - as

expected from past experience.  As reported earlier in the creep-bending

of beams  [15 ], there was more stress redistribution in the softer material
*

(3* = 0.5) than in the harder material (a  = 6.0).  The moment distributions
0                                      0

at 22'C are shown in Fig. 6.

In all the above cases with initial hardness assumed to be uniform,

the change in hardness was less than 1%.  However for the case of variable
* -* -*

initial hardness, for example, a (r,y) =a y where a is the initial
OS OS

hardness at the surface of the plate, the effect of hardening is evident,
*

as shown in Fig. 7.  As a strongly depends on the relative magnitudes

-*
of a and  a, it is not surprising to observe that hardening is more

pronounced near the center where the stress redistribution is the great-

est as pointed out before and shown in Fig. 5. Note that the rate of
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hardening decreases with time.  The effect of initial hardness distribu-

tion on deflection is given by Fig. 8 - the deflection with

-* -*
a  =3 9(0<y< 0.5)  is much larger than that with  a  = 1.5, as0

intuitively ·expected. Similar remarks on the creep-bending of beams

were reported [15].

CASE B. Clamped Case:

Let  a  = 3qa2/(4h2), the absolute maximum elastic stress.  ·The
0

boundary conditions are,

at t 0  ,  V(0,0). = V(0,1) 0 , 08)

att,0    ,  v'(t,0) =  v'(t,1) =  0  , and 09 )

W(t,1)  =  0 . (40.)

Again following the algorithm of the previous section, step (i) at

t = 0,

ar(O,r,y) = y(1+\)-r2(3+v)) ,

ae(O,r,y)  =  y(1+v-r2(1+3v))  ,

v(O,r)  =  -r(1-r2)/12  ,

*                *
a (O,r,y)  =  c0

prCO,r,y)  =  peCO,r,y)  =  0  ,

Mr(O,r) = (1+V-r2(3+v))/12 ,

Me(O,r)  =  (1+v-r2(1+3v))/12
. (41)

For  t., 0, steps. (ii) to (iv) are identical to the expressions given
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by (35).

The integrals deduced from (20), (25) and the boundary conditions

(39) are also defined according to (36).

Then      or,    06,    v' ,   Mr      and      Me
are deduced   from   (1 9)    and    (2 0) ,

ar(t,r,y)    =    q'y(1+v-r2(3+v))  -  12y((1+v)I'  +(1-v)IJ/r2-I2)  -  (pr+vp;)33

08(t,r,y)     =  '  q'y(1+v-r2(1+3v))   -  127((1+v)I'   -(1-v)Ii/r2-vI2)   -   (pe+\'pr)33

v'(t,r)  =  -q'r(1-r2)/12 +'I' r - Ii/r
33

M;(t,r)  =  q'(1+v-r2(3+v))/12 - ((1+v)I33 + (1-v)Ii/r@-I2) -.8Mr

M;(t,r) = q'(1+v-r2(1+3v))/12- ((1+v)I'  - (1-v)Ii/r2-vI2) - AM;   (42)
33

Once again deflections  w  are obtained by integrating  v  according to

boundary condition (32) and all calculations were performed with  q' = 0.

Fig. 9 shows the deflection profiles of the plate at 250'C with tw6 values

of initial hardness 30. Again creep deformation took place more rapidly

in the softer material (3  = 1.5) than in the harder material (6  = 6.0).

Comparing Fig. 9 in the clamped case with Fig. 2 in the simply supported

case,   we  f ind  that the plate deformed  at a slower   rate   in the former  than

in the latter as intuitively expected.  The deflection profiles at 22'C

are given by Fig. 10 and similar conclusions can be drawn.

The moment distributions of the plate at 250'C with two values of
*

initial hardness a are shgwn in Fig. 11.  Note that the stationary0

state moment distributions are hardly distinquishable from each other.

This was also pointed out in [4].  Fig. 12 shows that there was noticeable
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difference between the stress distributions corresponding to two values

of initial hardness (especially near the center and the edge) although

- their moment distributions are almost identical. Similar remarks can

be made for Fig. 13.

As a final step in analysis, the effect of variable initial hard-

ness distribution is again examined.  The growth of hardness of

hardness is most pronounced near the edge (r = 1), quite apparent in the

neighborhood .of the center (r = 0), but almost indiscernible in between,

as shown in Fig. 14.  This correlates well with the intensity of stress

redistribution along the radial direction noted earlier. Moreover the

maximum change in hardness in this case is less than that in the simply

supported case because the stress redistribution is less in the former.

The effect on deflection is given by Fig. 15 which is comparable to

Fig. 8 with relatively smaller magnitudes (see Fig. 9 versus Fig. 2).



DISCUSSION

Hart' s kinetic equations in terms   of a state variable called   "hard-

ness" have been verified in uniaxial tension for a variety of metals at .

high temperature [12]-[14].  The extension of this model to the creep-

bending of beams has recently been demonstrated by the present authors

[15].  Its capability to predict component behavior in a multiaxial state

of stress such as creep-bending of plates is, however, not evident.  As

in the previous report [15], the aim of this paper is twofold:  to formulate

a technical plate theory, and then to analyze and discuss results obtained

Following the analyses  in the previous sections,   it was observed  that

by solving practical problems in light of previously published results.

.

(i) All the results showed strong influence upon creep deformation of

the state variable called "hardness", which is absent in creep

theories with time, strain etc. as variables.

(ii) The deflection profiles at 22'C and 250.'C in both the simply· sup-

ported case and the clamped case as given by Figs. 2, 3, 9 and 10

compared qualitatively with figures shown in [4].  Comparing Figs.

2 and 3 with Figs. 9 and 10, we find that the plate deformed at a

faster rate in the former than in the latter, as expected.

(iii)  The corresponding moment distributions as given by Figs. 4, 6, 11

and 13 also showed features similar to those reported in [4].  It is

interesting to note that the stationary state moment distributions
*

for two different values of initial hardness  a   were essentially

'                    indistinguishable in the clamped case.

(iv) The stress distributions in both the simply supported case and the

clamped case, not ·available in the literature,' are given by Figs.

5 and 12.  Comparing these diagrams with Figs. 4 and 11, we notice

- 18 -
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that there were more substantial stress redistributions than cor-

responding moment redistributions, especially in the neighborhood

of the center for both cases and also near the edge for the clamped

case. Moreover in the simply supported case, stress decreased in

magnitude at the lower face of the plate but increased in magnitude

near the central plane, and thus approached a more uniform distribu-

tion as intuitively expected.

(V) The choice of time steps was crucial in the numerical analysis us-

ing Euler's method.  Nonlinear steps (small in the beginning) based

on stress redistribution have been employed.  A general guide-line

is to choose  At < O.1 8/6, .

(Vi) In all the computations with initial hardness assumed to be uniform,

the change of hardness was less than 1%.  However, with variable
*

initial hardness, e.g.  a  = 39(0 <F< 0.5), the growth of hardness

was evident - especially in regions where stress redistributions

were most pronounced, as given by Figs. 7 and 14.  It is found that

hardening rates decreased with time.  Moreover the deflections in

simply supported and clamped plates shown in Figs. 8 and 15 were

less than the corresponding cases with uniform initial hardness
*

a  = 1.5, as expected.0

Note that (i), (v) and (vi) are identical to those stated. in the

creep-bending of beams [15].  In view of the analyses in the previous sec-

tions and the above observations, we believe that the extension of Hart's

model to the creep-bending of circular plates which are in a biaxial state

of stress has been demonstrated.

A U/#....7---------i---  . I
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As pointed out in [15], a direct constitutive relation between global

parameters', i.e., moment, curvature rate and related state-variables will

drastically simplify the creep deformation analysis.  This will be the sub-

ject of a subsequent report.
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FIGURE CAPTIONS

Figure 1 A circular plate under axisymmetric lateral loads

Figure 2 Deflection profile - simply supported

(a  = 6.89 MPa (1000 psi), T = 25000)0

Figure 3 Deflection profile - simple supported

(a  = 62.05 MPa.(9000 psi), T = 220C)0

Figure 4 Moment distribution - simple supported

(a . - 6.89 MPa (1000 psi), T = 250'C)
0

Figure 5 Stress distribution - simply supported

(ao =.6.89 MPa (1000 psi), T = 250°C)

Figure 6 Moment distribution - simply supported

(a· = 62.05 MPa (9000 psi), T = 220C)0

Figure 7 Growth of Hardness - simply supported

Figure 8 Effect of Initial Hardness Distribution on Deflection - simply supported

Figure 9 Deflection profile - clamped

(a  = 6.89 MPa (1000 psi), T = 250°C)0

Figure 10  Deflection profile - clamped

(a  = 62.05 MPa (9000 psi), T = 220C)0

Figure 11  Moment distribution - clamped

(a  = 6.89 Mpa (1000 psi), T = 2500C)0

Figure 12  Stress distribution - clamped

(a  = 6.89 MPa (1000 psi), T = 25O0C)0

Figure 13  Moment distribution - clamped

(a  = 62.05 MPa (9000 psi), T = 220C)
0

Figure 14  Growth of Hardness - clamped

Figure 15  Effect of Initial Hardness Distribution on Deflection - clamped
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LIST OF SYMBOLS

B  Greek lower case beta

-                6  Greek lower case delta

A  Greek upper case delta

E  Greek lower case epsilon

0  Greek lower case theta

K. Greek lower case.kappa

X  Greek lower case lambda

· A Greek upper case lambda

v  Greek lower case.nu

6 .Greek lower case xi

a  Greek lower case sigma
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