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ABSTRACT

Creep of a symmetrically loadéd clamped circular plate sealing
an incompressible fluid is analyzed using a new coﬁstitutive relation
for inelastic_deformation behavior of metgls pfoposea by Hart and Li.
The probléms are solved numerically for éevéral cases at different’
temperatures and loading conditions. Thé salient  features of the
theory ére critically examined. It is concluded that the results
obtained are qualitativelylsimilar to the results of creep reported in

the literature.



INTRODUCTION

The problem of creep iﬁ metallic structures has been the sﬁbjectlof
many investigations in recent years. Since creép behavior is nonlinear
and hereditdry, in order to completely describe the creep deformation of
metals it may be necessary to baseAanalysis on a meqhanical equation éf
state relating the variables of stress, strain, time, and temperature
[1]. Thefefore, great attention in recent literature hés been devoted to
the development of appropriate constitutive relations for representing
time dependent inelastic behavior of metals.

Stﬁdy é; creep-bending of thin circular plates has been extensiQely
- treated by many investigators [2-12]. Most of these analyses use eithér
strain hardening laws or time hardening laws. These so-called classical
theories are, however, coﬁceptually inadequate to represent some of the
experimentally’obse?ved phehomena such as recovery since they fail to
account for the effect of past history upon creep deformation [13].

Several investigators have proposed modifications to remedy the
drawbacks of the classical creep theories. 1In particular, the state-
variable épproaéh proposed by Hart [14] has received much récent attention.
In this theory it is shown that each deformation state of the material is
a unique state of plastic hardness that can be characterized by a well

%

défined state variéble, the hardness o . All states of hardnesé are

shown to be related through an anaiytical scaling law. The stress-strain
rate curves that are characteristic of each state of hardness are expressed
in simple analytical terms, and the rate of change of 0* with strain
increments (absolute strain hardening) is also given in simpie form [15].

Ellis, Wire and Li [16] have conducted uniaxial constant load creep tests

at 250°C on 1100 Aluminum alloy specimens with different initial states.



They have repofted that the theoretical results afe iﬁ good agreement
with the experimental data for each case investigated. Also, uniaxial
tests to determine parameters for a wide class of metals have been
carried out [16,17].

As explained above, Hart's theory has a strong experimental basis.

Moreover, the constitutive equations are entirely incremental and have

‘explicit mathematical forms. Therefore the theory was chosen for analysis

of creep-bending of beams and plates by Wuang and Lance [18,19], and

for analysis“of creep in spherical shells and circular cylinders by Kumar

and'Mukherjee'[20,21,22]. It should also be mentioned that Waung and

Lance use simple Euler numerical methods, and Kumaf and Mukherjee use a
Runge;Kutta method‘of order four, for solving the rate equations with |
initial values in their analyses.

The problem of a loaded circular plate sealing an incompressible
‘fluid has been treated by some investigators previously. Lance and
Robinson [23], and Hodge and Suq [25] discussed thé plastic analysis of
axisymmetrically loaded circular plates sealing an incompressible fluid.
Earlier work by Kerr [26] was concerned with the elastic behavior of
plates similarly sealing an incompressible fluid. Tovthe best of the
authors' knowiedge, éreep analyses of similar plate problems have not
appeared in literature.

' In this paper, a state variable approach to the analysis of creep
of aﬁ axisymmetric plate is first introduced according to Hart's state
variable théory. ~As an analytical example, we consider the creep of a
clamped axisymmetrically loaded thin circular plate sealing an incompres-

’ .

sible fluid. In this analysis, the form of Hart's equations determined

" from uniaxial tests is extended directly to complex stress states. This
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serves as a test of the theory and provides a basis for further investi-
gations. It will be shown that solutions of creep-bending problems can
be obtained through direct application of Hart's theory and that such
solutions have the features of resﬁlts of creep analyses previously
published.

In the present analysis, a predictor-corrector method is utilized

for solving numerically the rate equations with initial values by use of

IBM 370/168. With this scheme the incremental time steps are controlled

by measuring-the relative error in the calculations, and we can be
cohfiaent that the time interval chosen by the computer program for each
step of the calculation is justifiable. As a special case, we apply the
method directly to the problem of thé creep of a regular clamped circular
plate. This case is more common and not difficult to study experimentally;'

For both cases, analysis have been made for 1100 Aluminum alloy

~at 22°C and 250°C; the parameters used in Hart's state variable theory have

been determiendwthrougﬁ experiments [17].

As in previous work [18-22] for creep under steady load, assuming
the anelastic components of strain are negligiblg, the change of hardness
0* is not significant during creep deformation. Furthermore the creep
phenomenon described in terms of the variables such as momént rates,
displacement rates, etc., depends strongly on the initial value of hardness.
This implies that c* accounts for the past history of deformation of the
material. If we take into consideration the anelastic components of

. *
strain the hardness o should show significant change during creep

deformation. This will be considered in a future investigation.

LN



I. THE CONSTITUTIVE RELATIONS OF THE STATE VARIABLE THEORY

Following Hart [14,15], the total strain eij at any time can be

'

decomposed into three components:
€., = e, +a, . +P_ (1)

where ’eij is the elastic strain governed by thé.laws of classical
elasticity; aij is the anelastic strain, a time dependent strain which
is fully recoverable upon release of applied stress; and ’Pij’ deviatoric
by definition, is the completely irrecoverable and path dependent permanent
strain which includes the time dependent as well as the time independent
‘plastic strains in the classical sense. The anelastic strain rate éij’
where‘ (:) = g% ,ig appreciable for relatively short times following
abrupt change of stress or strain rate, and has vital significance for
cyclic loading; however it can be ignored for relatively steady stress
cases. Therefore in the present analysis éij is assumed to be zero.
According to the state variable theory, the Behaviof of an isotropic
polycrystalline material is governed by the general Hooke's law for the
elastic part, together with tﬁe equation of state (2) and the kinetic
law (3), and the flow rule used in incremental plasticity. Based on
various experiments, Hart et al. [lS]»haVe proposed the equation of state

and the kinetic law respectively as follows

£(o,0°T) " 16)™F exp(-Z/RT)6(c/c") 2)

T
It

Q-
]

g(O,O*T) 130*1"(0,0*> | O ®3)

y .-

In the above equations, F is an arbitrary coefficient with the dimension

‘of frequency; R is the gas. constant; G- is the isothermal modulus of
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rigidity and is a function of temperature; m is a material constant

‘with value between 3 and 8; Z is a measure of thermal activation energy -

and is a function of temperature alone;. ¢ and T are measured functions
of their arguments. The explicit form of ¢ and T are experimentall&
determined for each material at hand; those used in the present analysis

will be presented later.

Also, in eq's. (2) and (3), o0 is the effective stress; p is

the irrecoverable effective strain rate, defined by Hart [15] as

3 1/2 |

o = Sijsij) , and )
2« - 1/2

- &P 7

b= G b (5)
where
- 1 :

5137 %15 73 by - - (6)

and éij is itself deviatoric by definition.
A complete description of the constitutive relations can be found in

[15].



II. A METHOD OF SOLUTiONS TO THE. PROBLEMS OF CREEP OF.AXISYMETRIC PLATES
(J

Consider an axisymmetric plate under lateral axisymmetric loading.

We propose to determine its deflection as a function of position and

time due to a suddehly imposed load which may subsequently vary with time.

We shall also study other features of its mechanical response such as

distributions of moments, curvatures, stresses and strains at various

points as functions of time.
To simplify the problem, the formulation is developed for a thin

circular plate under axisymmetric loading as shown in Fig. 1. Let the

1 \

radius of the plate be 'a' and the thickness be 'h'. The assumptions

adoptéd.in the present analysis are:

(ij ‘the deflections %(r,t) are small in comparison with the thickness
h of the plate,
(ii) linear elements‘perﬁendicular to the central plane before bending
remain linear and pefpendicular to the central surface after
‘ ben&ing,
(iii) in-plane stress resultants or ''membrane" forces are neglected,
(iv) the normal stresses in the direction transverse to the plate
can be neglected,
(v) following the initial application of load the loading is steady
| or slowly varying,
(vi) in-case there is an incompressible fluid sealed underneath fhe

are entirely incremental, rate equations must be formulated.

plate, the reaction of the fluid is assumed to be a constant
pressure uniformly distributed throughout the region, i.e. a
function of time only.

As creep is a time-dependent process and Hart's constitutive equations

With the
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assumption that the anelastic strain rate components éij can be ignored

at relatively steady or slowly varying loading, equation (1) becomes

€.. = é,. .+ p.. . : (7
ij 13 1]

In the case of an axisymmetric plate under axisymmetric loading, we use

cylindrical coordinates as given in fig. 2, and have

¢, (2,7,8) +b_(z,1,¢)

ér(z,r,t) =
| ‘ ®
Ee(z,rst) = ee(z,r,t) + PG(Z,r,t) -

From assumptibn (ii), it follows that
ér(z,r,t)_ = zKr(r,t) , ' ée(?,r,t) = zKe(r,t) (9)

where kr and K. are curvature rates of the plate defined by

8

.o Wr,e) s _ o V(r,t) 0 -
Kr(r9t) - or ’ Ke(rst) - r ,re[O,a], tE[Oa )
(10)
Q is the deflection slope rate, i.e.
Vir,t) = 2B om0 a], tef0,%) an

or

and ; .is thé deflection rate.

We shall first formulate the problem of a plate sealing an incompres—
sible fluid,, the ﬁore general of the two problems considered here; we shall
later extract from it, by a simple operation, the problem of a.plate wifh—

out fluid.



We denote the intensity rate of the distributed lateral load at a

i distance r from the center of fhé platelas é(r,t), the intensity rate

} of reaction of the fluid against the plate as é*(t), the shearing force:
rate per unit length.aé Q(r,t); and the bending moment rates per unit
length ag ﬁ?(r,t) ‘and ﬁe(r,t). The equilibrium équations and the

incompreésiblity condition take the following form [23,24]

M _(r,t) M (r,0)-M (r,0) _
T +Q(r,t) = 0, re[0,a], te[0,®)
(12)
and
j‘v’a(r,t)rd‘r = 0 |, - te[0,®) . | (13)
o) ’ A
'there
r .k '
Q(r,t) = [ 2w[q(g,t)-q (t)]&de/(2mr) ,. L (14)
(o]
) - h/2
M (xr,t) = [ o (z,r,t)zdz ,
r . _h/2 r
(15)
. h/2
Me(r,t) = [ 6e(z,r,t)zdz4.

~h/2

In accordance with assumption (iv)

5 (z,r,8) = 0 _' | | (16)

L2

I e o e o S



The constitutive relations include the generalized Hooke's law,

v ' ‘ '
ej5 = (945 T 1 Ozlaij)/zc , (17)

.where v 1is the Poisson's ratio, and G the shear modulus; the kinetic

equation by Hart given previously in eqs. (2) and (3), can be rewritten

as

o .
il

. ,
f(o,0 ,T) , and , - (18)

Q-
il

(0,0 1) ; ‘ | (19)

The flow rule used in the incremental plasticity, takes the following form

. _ 3 p , ' : - -
Pis = 7 (555 . (20)

In the present case, eq's. (17), (20) are reduced to

e, = (or—vce)/E " ey = (oe—vcr)/E s (21)
p. = (o o /2). p, = Cé)(O -0 _/2) (22)
r e’ M r T8 > 8 o't e r ?
in which- 6, from eq's (4) and (6),‘becomes
e (2,2 1/2 ‘
o = (cr+o6 orce) s (23)

Here E = 2G(1+v) 1is the Young's Modulus of the material.
To achieve the aim of obtaining a complete set of evolution equations,

we first group egs. (8), (9) and (21), and get
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. ZE . . . ’ .
o = 5 [(Kr+er) -_(pr+vPe)]
, -y . .
(24)
5. = ZE [K4+VK.) - (p.+ p )] |
6 2 e V0 Pg™ Py
1-v .
substittiting eq. (24) into eq. (15) and integrating we obtain
M= D(KHK) - MM,
(25)
Mo = D(RgHVK ) - M
where
. g /2
M = — (p +vp,)zdz
T 1-v “h/2 r )
(26)
. E h/2 . .
M, = (p,+vp_)zdz
0 T Tov i, e Pr
and
3 " .
12(1-v7)

The rate governing equation is then obtained by substituting egs. (10),

(25) and (26) into the equilibrium equation (12), which reduces to

' X ) MM (r,t)  AM (r,t)-AN (r,t).
3 G V0N = Q0,0 - (— S+ = A

L

D or or

(28)

o 5 L o P Y et e oo e o
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Eéuation (28) together with eq's (12); (13) and the appropriate boundary
conditions, form a well defiﬁed initial value préblem forhthe creep of
an axisymmetric pléte. |

The initial conditions are the solutions of the éorresponding elastic
plate probiem, which is defined below in' terms of the well-defined bound-

ary value problem

.a%{-]l_j;—;l;[rv(‘r,O)]} - 99;)’—0) 4' re[0,a] (29)
a
S w(r,0)rdr = 0 . (30)
o] i

where 

. r ' %
Q(xr,0) = S 2m[q(&,0)-q (0)]&dg/(2mr), ‘ (31)
(o] .

aﬁd

EED - v rel0,a] o

together with éppropriate boundary conditions. Note that the plastic
strain componénts P and pe are zero in the initial elastic state.

The reduction of the former formulation to the case in which no fluid
is sealed underneath the plate is achieved by‘simply putting’ q*(t) =0,
ts[O,w)  in éq's. (14) and (31) and ignoring eq's.. (13) and (30).

Thé foilowing formulas are used for obtaining Kr(r,t), Ke(r,t),
er(z?r,t), 8e(z,r,t), Or(z,r,t), ce(z,r,t), Mr(r,t) and Me(r,t) after
: V(r,t) is determined. THe same equations are true for the time rate of

chéngé of all the appropriate variables.
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= v "
S r (33)
e. = zKr s €y = zKe : (34)
o = —E [2(R 4K ) - (p +vp)]
r 2 r 6 r 0
1-v .
(35)
6, = —& [z(K +VK ) - (p_+vp_ )]
0 2 B¢ r 0 r
. l._\) .
Mr = D(Kr+er) - AMr
(36)
Me = D(K6+UKr),— AMe
where
E h/2
M = S (p_+vp,)zdz ,
r l—v2 ~h/2 r 0
‘ 4 (37)
y B h/2
M, = i) (p,+vp )zdz
] l_\)2 “h/2 0 r

The initial hardness 0*(z,r?0) in actual analysis must be determined
experimentally; we shall here assume initial values for c* in order to
conduct the proposed analysis.
The numerical scheme is summarized as follows
i) solve tﬁe corresponding elastic platé problem defined rpreviously by
eq's.'(29), (30), (3L, (32) and determine the expressions.in closed
form for V(r,0), w(r,0), q (0), K_(r,0), K (£,0), ¢_(z,r,0),
Ee(z,r,O), cr(z,r,O) and ce(z,r,O); these data are then used as

the initial conditions for the creep problem, i.e. as solutions at




ii)

iii)

iv)

v)

vi)

vii)
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time 't = 0; initial values of the plastic étrain components

pr(z,r,O) and pe(z,r,O) are zero throughout, and the initial

values of the hardness 0*(z,r,0) must be provided in this step,
substitute or(z,r,t) and oe(z,r,t) into eq. (23) to obtain the
effective stress o(z,r,t) which, together with 0*(z,r,t), give
p(z,r,t) and é*(z,r,t) by use of Hart's kinetic eﬁuations‘(l8)

and (19), |

ﬁr(z,r,t) and ée(z,r;t) are deduced from eq. (22), from which we
obtainw'Aﬁr(r,t) and - Aﬁe(r,t) by eq's,(26)7 The spatial integrals
involved here and in the following steps are carried out numerically
using Simﬁson's rule,

Qith Aﬁr(r,t) and Aﬁe(r,t), the rate equgt;on (28) together with
thé condition of sealing incompressible fluid (13) and the appropriate
boundary conditions,.are then solved numerically to determine V(r,t),
&(r,t) and é*(t)§ with help of egs. (10) the curvature rates Kr(r,t)
and ke(r,t) are also obtained, 4

forward in;egration in time for w, .V, Kr’ Ke, 0*, P> p.e is achieved
by use of a predictor-corrector method with an error control on the
displacement vector that adjusts and determines thg step size At

*

for further integration; up to this step, values of w, v, Kr’ K g,

e’

P and Py at time: t + At are obtained,

with new values of w, V, Kr’ Ke, pr and Py at time t + At, the

corresponding values of AMr’ AM Er’ €g> Or’ g

M :
o’ Jr and Me are

e,
then obtained using eqs. (33) to (37),

with new values of or(z,r,t), Oe(z,r,t) and cﬁ(z,r,t) steps (ii)

+ .

through (vi) are repeated.
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The above mentioned integration in time utilizes a self-starting

predictor-corrector method which proceeds as follows. Predicted values

*

% .
of o, V, w, q, Kr and Ke are obtained by means of the expression

a4 = u + unAt (38)

where u represents the variable under consideration. From these new

values of Kr and K, we obtain predicted values of o and o

0 6°

using eqs. (35). These predicted values are then used in steps (ii),

d X

ntl? “n+1? Onprc Kp o, @0d Ky L. Before

(iii) and (iv) to obtain V
proceeding to determine the values of all these quantities at a new time,
the process of error control is carried out by calculating first

wc n+1

- B SR
= wn + 5 [wn+wn+l]At . (39)

~Then a check is conducted to determine if the following expression is

satisfied

(40)

[w. | (41)

where N is the number of radial modes.. When eq. (40) is satisfied,

" . .
values of V, w, q , Kr and Ke at time ¢t + At are readily obtained

, .

by
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YAt (42)

1,- =
u Y +”§(un+un+l

n+1

Otherwise an adjusted value of At is given and the process restarts
from step (ii) until eq. (40) is satisfied. With this scheme, we are
sure that the integration step size of time we used at each step of

calculation are reasonable and justifiable.



ITI. ANALYSIS OF A CLAMPED CIRCULAR ALUMINUM PLATE UNDER
» AXISYMMETRIC LATERAL LOAD

As an example of explicit calculation of the creep problem described
above, consider a clamped circular plate under constant uniform axisymmetric

lateral load, fig. (1), of the type

?

q fE[O,na] ;
a(r,t) = | | | te[0,w) (43)

0 re[na,a] ,

where q, and n (< 1) are positive constants.

For 1100 Aluminum alloy, eq's. (18) and (19) assume the special forms

(o*/p)) " tn (s ™10y

o
Il

(44 a,b)

phol/ o™y Pt

Q.
I

where m =5, A = 0.11, 6§ = 7.82, B = 12.5 and A'= 1.17 x 1020 for both
22°C and 250°C [23]; Dl’ the only strongly temperature dependent para-
meter has the value 107'025 at 22°C and 105'03 at 250°C. It
shoqld be noted that the terms f and exp(-Z/RT) in eq. (2) do not

1

appear in the above equations since they are absorbed in D.. Further-

more, the Young's modulus E and the Poisson's ratio v for this material

are [24]:
At 22°Cc E = 9.975 x 10° psi v = 0.33
At 250°C E = 8.784 x 10° psi .v o=

0.358.

) In the fbllowing analysis, referring to fig's (1) and (2), all

quantities involved in the calclations are made dimensionless by introducing

- 16 -
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the following quantities, noting that o is a fﬁnction of "z, "y"
. . r .
and "t'.
o .
h = 9=
OO = Ur(_s030) ) s EO = E(l V) s
_ 64D 2(1-v)_ - - _
Qo - a3 > Ko Eh "o’ Mﬁ DKO
' (45)
% ’ %
o o
: o\ ~m o,,-1/% 1 '
to B (Dl) 8o[zn(o )] 3600

ol
~

where do‘ is a constant representing the initial reference hardness; to

has unit of hours. We then define the following dimensionless quantities:

- : - -% kS —% *
o, = ér/co s qe = .oe/oo , G = 0 /cO s 09 =" co/oo R
q = qo/Qo-. ; a" = q*/Q0 , Er = Er./e:0 , Ee = eglel
I;r - br/Eo i 1_:;6 = peleo - -7 AEOOS—B’
ir = Kr/KO , Ré = Ke/Ko , Vv - \Y s (46)
ﬁr. = Mr/Mo' , ﬁe = Me/MO , Aﬁr = AMr/MO , My ='AM6/MO ,
z = zh , t = t/a £ - ea
t = e/t

-énd
<.>' - 20D
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‘Henceforth, for simplicity, overbars will no longer be used to
denote dimensionless quantities, except where emphasis is necessary.

the general relations become

First ,
e, = er f P, = 22Kr s €y = g + Py = 22Ke R 47)
r a% ? ] ak r :
o}
6. = == [2z(K+K) - (p +vp)]
Tr 1+v T 0 T 8
(49)
G, = —l—[Qz(K +vK_) - (p,+vp )]
0 1+v 3] T 6 r
M = K 4+vK_ - AM
r r 8 T
(50)
Me = Ke+\)Kr - AMe
1/2
M = 6 f (p_+vp, )zdz
r -1/2 r 6 v
A (51)
1/2
M, = 6 f (p,+vp Jzdz ,
0 -1/2 6 Y

The rate forms of these equations also hold true and can be obtained by
applying ( )' to each of them.
Second., the initial conditions of the present problem are obtained

by solving the following boundary value problem

. .
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' %
32(q—q0)1‘ re[0,n]
d 14 B .

ir [r ir {rv(x,0)}] = ~ ‘ (52)

-32 *r+32 21 re[n,1)]
qO v n qr n,
with B.C. - .
v(©,0) = v(1,0) = 0 .,
with C.C. = +
‘ V(n ,0) = V(n ,0) |,

* : ‘
q, -represents the reaction pressure of the fluid against the plate at
t = o, which is obtained through the condition of incompressibility

1 _ , ‘
S w(r,0)rdr = 0 o (53)
o : '

and the auxiliary boundary value problem

with B.C.
w(l,0) = 0
Furthermore, other quantities such as Kr(r,O),'Ke(r,O), er(z,r,O), ee(z,r,O),
or(z,r,O), oe(z,r,O), Mr(r,O) aﬁd Me(r,O) are obtained through eqqations
(47) to (51) providing that pr(z,r;O) = pe(z,r,O) =0 .
‘ Third, the incfeméntal initial value problem is completed by solving

the rate equations which can be written as

EREE
ar® ‘r or

. 4 AMMI(r,t) AM'(r,t)-—AI‘Ié(r‘,‘,t)A”‘
Vel = =32 (2@ [ — + —F— 1

(55)
ref[0,1] y te[0,x)
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with B.C.
V'(@0,t) = V'(1,t) = 0
in which
‘ 1/2 .
MM ' (r,t) = 6 f [pl(z,r,t) + vp!(z,r,t)]zdz ,
r r 6
-1/2
(56)
, 1/2 _
M (r,t) = 6 S [pi(z,x,t) + vp'(z,r,t)]zdz
: 6 0 r
-1/2
tqgether with the condition of incompressibility
1 A
Jw'(r,t)rdr =0 : (57)
° .
and the auxiliary boundary value problem
t
- LT re[0,1], te[0,=) (58)

with B.C.
, w'(l,£) = 0
After obtaining V'(r,t),'K%(r,t) and Ké(r,t) are then determined through
the rate forms of eq's. (48).
In addition, the equation of state, the kinetic law, and the flow

rule become

P'(2r,0) = (0"/5)) [an(o"/0) /om0’ 1"/
. B-1
o'f(z,r,t) = p'Acs/q*
| \ (59)
Pi(zr,0) = E(o g /2)

2°e"°r/2)

[
ajo

pé(z,r,t)

T cm iy vaer e+ 4 e e e e
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in which

o 2 2 1/2 g
= - 60
o(z,r,t) (0r+0e Groa) (60)

Solutions of the elastic plate problem defined in eq's (52), (53)

and (54)- are obtained in closed form as follows

% ' 3
4q” (emr ) +ha[Gn tann" 34171 refo,n]
V(r,0) = ’ .'(61)
qu(r’r3)+4Q[n4(%"-r)+4n2r2nr] re[n,1]
% . . o
qo(—l+2r2—r4)+q[4n42nn—3n4+4n2)+(8n22nn—2n4)r2+r4] re[0,n]
w(r,0) = '
q;(—l+2r2—r4)+q[(2n4+4n2)(l—r2)+4na2nr+8n2r22nr] , rein,1]
.k 6 4 2
4, =  4(n"-3n"+3n")

Furthermore, from eq's (47) to (51),'keeping pr(z,r,O) = pe(z;r,O) = Q,
othef’quantities such as 'Kf(r,O), Ke(r,O), Er(z,r,O), ee(z,r,O), Gr(z,r,O),_
ce(z;r,O), Mr(r,O) and - Me(r,O) are obtained‘in closed form.

To solve the rate expressions, fifst calculate p'(z,r,t), p;(z;r,t),
pé(z,r,t) and 0*'(z,r,t) wifh values of Or(z,r,t), oe(z,r,t) and
0*(z,r,t) obtained froﬁ eqs. (59); next‘obtain AM;(r,t) and AMé(r,t)
from eqs. (46). Then eqs. (55), (57) and (58) can be solved directly in

the form of definite integrals as follows
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Vi), = 4g () (e )H2e (D) [r {1, (1,0)+L, (1,8) } - 2 {1, (5,04, (r, 0]
W'(r,t) = q '(t) (-—l+2r2—r4)+ao(%) [(x2-1) {1, (1,041, (1,8)}
+§{II1(1,t)+112(l,t)-IIl(f,t)—IIZ(r,t)}]
q*'(t) = 350(%)[~ %{Il(l,t)+l'2(l,t)}+é{IIl(l,t)+IIZ(l,t)}—4{IIIl(t)+IIIZ(t)}]
(62)
where
r
Il(r,t) = (f)péML(p,t)dp
T £ A (p,t)-0M) (o, t)
L(r,0) = JgJ L3 dodE
p
: (o] O
'
IIl(r,t) = iB—Il(o,t)dp
T
IIZ(r,t) = g,g Iz(p,t)do
1 1
IIIl(t) = é rIIl(r,t)dr R IIIZ(t) = .i rIIZ(r,t)dr

Finally eq's. (48) gives K;(r,t): and Ké(r,t) after V'(r,t) is
obtained. Thus all the rate quéntities necessary in the analysis are

obtained.
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As described above solutions are obtained from simple expressions
involving only integrals which can be easily integrated numeriéally.

Application of the scheme to the above analysis leads to.the numerical

" results which will be presented in the next sections. It should be

noted that the formulas given above are based on the problem of creep of
a clamped axisymmetrically ioaded circular plate.sealing incompréssible
fluid; solutions of the creep problem of a simiiar plate without fluid
can be obtained directly by éetting q*(t) and q*'(t) to zero through-
out the calculations. Furthermore, n Qf eq. (43) appears as a parameter
iﬁ our analysis, change of values of n in the calculations directly leads
to the numerical solution of the appropriate creep problém with different
loadiﬁg range.

Numerical results and discussion of the present problem are presented

for several cases in the following sections.




IV. NUMERICAL RESULTS AND DISCUSSION

Based on the above analysisAwe have performed detailed calculations
for five problems of plates under loading, with different initial hardness
and temperature conditions, as tabulated in Table 1. ©Note that through-
out this section, an overbar is used to indicate dimensionlesé quantities.
The results of the calculations are collected in Appéndices I = V. It is
not our intention to discuss in detail all the resﬁlts given there; rather
we shall focus first on the general features of the mechaniqal response of
the plates studied and then on some special features which may be of .interest
to designerét Note that in Table l,'as well as in all appendices, we use
the symbols WF, meaning a plate "with fluid," and NF, meaning 'no fluid,”'
referring to the conditions defining the general problem. Table 1 also
lists the material constants chosen for our analysis. Note in particular,
the initial hardness is assumed uniform in all cases, two values being
chosen. The higher value, o = 10,617 psi, corresponds to 10% cold work
[16].

As noted above to start the calculations it was neéessary to construct
elasﬁic solutions on which we based the definition of the dimensioﬁless
variables defined in the previous sections. Reference Values of the con-
stants derived from the elastic solution are given in Table 2. Because we
have based the formulation of the problem and all calculations on dimen--
sionless variables, the results may be applied to plétes of any physical
dimension, within the cﬁstomary limits of bending theory. Nevertheless to
proceed with the calculations it was necessary to choose a reference plate
to establish the values shown on Table 2. Subsequently, all calculations
are based op a plate with. the following physical dimensions: ‘radius

a = 16" and thickness h = 1".
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All calculations were started:by fixing the value of 'oo (sée Table
2), i.e., the value of the tensiie‘stress in the outer fiber at the center
of £he plate, from which the load and the pertinent constants can be
determined. This means that, from eq's. (35) and (36), for any loading
condition the same central curvature and moment are obtained. Thus we have
the samé starting conditiﬁn for each case: three plates at 250°C; and two
plates at 22°C.

As described above, forward integration in time was carried out‘by a

self—starting‘predictof—corrector scheme with ‘error control on the displacej

" ment vector. The trapezoidal rule has been-used to evaluate the spatial

integrals appearing in the relevant eéuations, in which the radius a and
the thickness h were divided into 50 and 32 equal segments, respectively;
to form the integrating mesh. The computations were carried out on an IBM
370/168 digital computer. |

All curves were produced on the automatic curve drawing facility
associated with the.cbmputef. A general attempt was made to produce iden-
tical-looking curves, sacrificing therefore identical scales..

Table 3 gives a correlation between the symbols representing the
variables introduced in the ﬁroblem formulation and the names of the same
variables used in the computer program, and hence in the computer-generated
curves.

As shown in figs. 1; 2, 3, and 8 of eaéh appendix, the magnitudes of
the time-rates-of-change of the displacements, the curvatures and the re-
action pressure decrease following application of the load and tend.to ap—.
proach asymptotically constant values as time increases. Thus, our model
contains the usual features of classical creep models, namely the primary

and secondary creep regimes.
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Figure 5a of each. appendix shows the stress profiles across the thick-

ness of the corresponding plate at the center and clamped edges. We note
that at the center of the plate, the radial and the circumferential stress
components remain equal for all times implied by equilibrium and symmetry.
Also, stresses at the outer fibers decrease with:time, while.those

near the middle fiber (z‘ﬁ 0) increase. Stresses'tend to approach constant
values as shown in figs. 6b and 6d of each appen&ix. This observation hés
two implications; The stress redistribution across the thickness does not
exhibit the-dinvariant stress point, defined by Marriott and Leckie [28] as
tHe skeletal point. On the other hand, since the stress field tends to a
constant distribution, the implication is that the plate reaches the station-
ary sfate as defined by Penny and Marriot [10].

Figures 7b and 7d of each appendix show the time dependence of the
plastic strain components. It is noted that each curve approaches asymp-
totically a straight line. This implies that the plastic strain rate fields
;chieve a stationary state aiong with. the stress fields.

It is interesting to note that, as shown in fig. 1 of each appendix,
the points at which the elastic displacements are zero, (in pérticular in
the WF plates at 5-5 0.48) remain undisplaced during creep. It is also
noted that during creep deformation the moment components do not change
significantly with time, whereas other variables such as the plastic strains,
the curvatures, the stresses and the displacements change coﬁsiderably with
time.

The above mentioned .general features of the present analysis are true
for all cases considerea in our calculations. The general features that we

LI

have discussed are those that have been considered in other analyses of
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similar problems. Similar conélusions have been reached by Kumar and
Mukherjee [20, 21, 22], and Waung and Lance [18, 19] applying the same
state variable approach to creep of other typés of structures.

Figure 3 shows the effecﬁ of initial hardness on displacement and
stress at the center 6f the plate, in the clamped plate sealing a fluid.

(WF). The plate was assumed to be at 250°C and initially loaded (t = 0) so

that the maximum normal stress at the center was 1000 psi. One important

result to note in fig. 3a is the trend we have denoted the "cross-over
effect", i.eiv, for a fixed time, say t = 30 hours, the displacement in the
pléte with high hardness.(c* = 10,617 which is equivalent to 10% cold work
[17]) is greater than that for a plate with low hardness (say 0* = 2,000 psi).
This remarkable result, which is contrary to results expectea initially,
indicates that the general mechanical behavior of the structure depends not
only on hardness, but the stréss level and the geometric constraints, for example.
The cross-over effect in analysis of structures based on Hart's relation was first
noticed by Kumar and Mukherjee [22J and is consiétant with the prediptions of
Hart.[15] in his studies of uniaxial tests. The work of Waung and Lance [19]
did not shoﬁ this effect because too few numerical examples were presenﬁed. The
curves in fig. 3b, showing the values of radial stress.(or = oe) at the outer
fibers of the'plate center, exbibit a sihilar cross-over effect.

Another significant feature of the displacément results (fig. 3a) is
the intersection of pairs of curves at small time. Note, in particular,
that the displacement curve for 0* = 10,617 psi intersects the curve for
0* = 2,000 psi at t = 5.5 hours. A similar intersgction occurs between the -
other pair of displacement curves shéwn. This phenomenon also has been noted

earlier by Kumar and Mukherjee [22], and is consistent with the observations

of Hart [15].



The physical significapce of the results described above is not yet
clear. Certainly, they ére the result of using the new constitutive
relations introduced above, neglecting the so-called anelastic effect.
Such an approximation may be too severe,vresulting in the introduction of’
seemingly paradoxical results in view of the physical motion of-”hardpggs”ga‘*'
Indeed the extension of Hart's uniaxial constitutive relations to multiaxiai
staﬁes of stress is still open to further investigation. It 1is necessary
to preceed with caution in interpreting these results, beqause we dp not yet
have experimégfal data obtained from tests on structures under multiaxial

states of stress.

The results of anélyses of plates without fluid are shown in fig..a.
Similar trends of mechanical behavior appear, particularly in fig. 4a which
shows the central displacement history of a clamped plate loaded with uniform
lateral pressure over its entire surface. Here again, for fixed time, say
t = 20 hours, tﬁe plate with larger hardness 0* = 10,617 psi undergoes more
displacement than a plate with lower hardness, 0* = 2,500 psi. The.results
shown in fig. 4b (stress vSs. time) exhibit the same cross-over effect.

It is interesting to note that, as expected, creep rates in plates
sealing fluid, case HTA (Appendix I), are less than the rates in identical
plate without fluid. This phenomenon is shown in fig. 5.

Although direct comparison between plates identical éxcept for temper-
ature is not possible, with the data given here it is easy to see that
temperature effect on the creep of plates is 6bvious in that creep rates of
plates at room teﬁperaturg are verylmucﬁ lower than those for plaﬁes at
higher temperature. The variation of corresponding variables has the same

tendency if the loading conditions are the same. This can be seen by
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cqmparing corresponding figures in the appendices, e.g., cases HTA and
RMA (Table 1). In'case HTA (250°C) the time required for the central
displacement to become 1.5 times the initiai (elastic) displacement is
around 20 hours, while the time in case RMA'-(22°C) is around 15 x 107
hours.

It isz perhaps, worthwhile noting that the me?hod of plate analysis.
used here can proceed without making anyvassumptions about the moment distri-
butions. Venkatraman and Hodge [3, 4] for example, found it.necessary to
assume, within the constraints of the theory they used, based on Trasca's

.yiéld criterion, that the moment distribution near the clamped edge téok
a special form. Here no such special conditions were imposed other than the
usual boundary condition of the plate theory. Bentson et al [5] basing
their analysis bn energy methods, also were able to construct creep

solutions without a prior specification of moment distributions.



V. CONCLUSIONS AND REMARKS

In this paper, the equation of state approach proposed by Hart and

Li has been applied to‘analyze creep of an axisymetrically loaded circular
plate. It is found that the results obtained here are qualitatively similar
to the results of creéep obtained by classicai theories. 'Furthermore, an
important new feature of this theory is implied,_namely the prior deformation
history has been taken into account by .introducing a state variagle called
hardness. In the present analysis, the anelastic strain components have been
neglected since steady loading is considered; these éomponents nust be
considered fég rapidly varying loading, and will be the subject of a future
study.

It should be remarked that Hart's theory has a strong experimental
basis and can be-written in explicit incremental mathematical form. The
scheme used in the present paper applies directly to any kind of structure.
Once the initial elastic solution of a structure under creep loading is
obtained, the calculations of the creep of .the structure are straight for-
ward. Thus, in conjunction with the finite element method, the present

scheme can be used to analyze creep of any type of structure.
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Table 1.

Configurations and Material Constants
Used in Each Case

Cases HTA HTB HTC R M A R M B
Quantities (1) (11) (IT1) (1v) V)
Tempi;;’t“e 250°c | 250°C 250°C 22°C 22°C
8 Laod R
- aod mange 1/2 1 1/2 1/2 1
9 (n) .
=
3
2
e Load Condition WF NF WF WF NF
8
Fluid Reaction
¢ 0 = 0 0 =0
(a%, q*') g 0 ’ *
Initial Hardness 10,617 10,617 2,000 10,617 10,617
o3 (psi) .
[0]
2
g Poisson's Ratio
o °1“*(v) 0.358 0.358 0.358 0.330 0.330
g .
(&)
o , . .
o Young's Hodulus | g 554108  {8.784x10° | 8.784x105 | 9.975x20° * | 9.975x10°|
3 E (psi)
)
2
. 5 5 5 7 7
D, 1.0715x10° }1.0715x10° | 1.0715x10° |1.059x10 1.059x10
Other m=5 , A=0.11 , 6§=7.82 , , A= 1.17x102°

Constants

g =12.5"




Table 2. Physical Quantities Appearing in Calculations for Each Case

(calculations based upon a plate of radius 16" and thickness 1'")

o]

Cases HTA HTB HTC RMA RMB
" Quantities (1) (11) (I11) (1IV) V)
% 1,000 1,000 1,000 6,000 6,000
(psi) .
: 4 4 4 4 4
(0sD) 1.3119x10 1.3119x10 1.3119x10 1.4575x10 1.4575x10
ty 5 5
5.268761 5.268761 2.774687 6.745x10 6.745x10
(hrs)
9 43.2092 7.6706 43.2092 264.7133 46.9925
(psi)
K _ - _ - -
° 0.1462%107° 0.1462x107° 0.1462x10° 0.8060x10 > 0.8060x10 >
(1/1n) .
Mo 166.7 166.7 166.7 1,000.0 1,000.0
(in-1b)
W - : _ _ - _
(ig) 0.3219x1072 0.9355x10 "2 0.3219x10 2 1.7751x1072 5.1585x10 2
[ - . - - _ -
o 0.7309x10™" 0.7309x19™% 0.7309x10™ 4.0301x10"" 4.0301x10
(in/in)
- 3 3,2
o, = 0_(n/2,0,0) ., Q= 6iD/a s D = ER°/12(1-v7)
o (ot -m * /2 1 . _
to (Oo/Dl) Co[ln(co/oo)] 3600 ’ Mo = M(0,0)
K= K_.(0,0) ., g, = €. (n/2,0,0), W = W(0,0)




. -Table 3. Symbdls used in the appendixes

Symbols Uséd in Charts

R, Z
A, H
T

TO

W

MR, MQ
KR, KQ

‘WO, MO, KO-

DW, DKR, DKQ
. s

PR, PQ

S0, EPO
QSTRN

DQSTR

Corresponding symbols used in equations

ot

r, z
a, h
t
o
W
Mr’ Me
Kr’ Ke
w.o’ M,» Ko
K .
v d ¢ dKe
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Figure 1. Symmetrically Loaded Circular Plate Sealing a Fluid
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Figure 2. Plate Element and Coordinates
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Figure 3. Creep Displacements .and Radial Stress Relaxation of Plate With Fluid,for
: ~ Various Values of Initial Hardness. T = 250°C, o, = 1,000 psi, n = 3 (WF)
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APPENDIX I

CLAMPED CIRCULAR
ALUMINUM PLATE

WITH FLUID

T = 250°C
INITIAL: HARDNESS = 10,617 psi

(HTA)
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Figure 1. Displacements and Displacement Rates
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APPENDIX II
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APPENDIX III
CLAMPED CIRCULAR
ALUMINUM PLATE

WITH FLUID

T = 250°C
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