oM 77340 |

: MATHEMATICAL SOFTWARE PRODUCTION
W. R. Cowell and L. D. Fosdick
Prepared for
Symposium on Mathematical Software
The Mathematics Research Center
University of Wisconsin
Madison, Wisconsin
March 28-30, 1977
e I

> RIRLITAN (Y THTIC M P eV > 173 T
DISTRIBUTION OF THTIS DOCLARERY ® MESMITED

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Uof C-AUA-USERDA

operated under contract W-31-109-Eng-38 for the
U. S. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

The facilities of Argonne National Laboratory are owned by the United States Govern-
ment. Under the terms of a contract (W-31-109-Eng-38)between the U. S. Energy Research and
Development Administration, Argonne Universities Association and The University of Chicago,
the University employs the staff and operates the Laboratory in accordance with policies and
programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona Kansas State University The Ohio State University
Carnegie-Mellon University The University of Kansas Ohio University

Case Western Reserve University Loyola University The Pennsylvania State University
The University of Chicago Marquette University Purdue University

University of Cinclunall Michigan State TIniversity Saint T.ouis University

Illinois Institute of Technology The University of Michigan Southern Illinois University
University of Illinois University of Minnesota ~ The University of Texas at Austin
Indiana University University of Missouri Washington University

lowa State University Northwestern University Wayne State University

The University of Iowa University of Notre Dame The University of Wisconsin

NOTICE

This report was prepared as an account of work sponsored
by the United States Government. Neither the United States
nor the United States Energy Research and Development Ad-
ministration, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any
warranty, express or implied, or assumes any legal liabil-
ity or responsibility for the accuracy, completeness or use-
fulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe
privately-owned rights. Mention of commercial products,
their manufacturers, or their suppliers in this publication
does not imply or connote approval or disapproval of the
product by Argonne National Laboratory or the U. S. Energy
Research and Development Administration.

.__|4:.‘_- § ‘ " :-. H { - : ! ' 1 i

i L i | i i i 1

K

= | 1 i Rl i 7 { v [}
i
i

i

i
H
]

i
!
t

JA—

TBeGin Whing neiel You mioy e over thuse words, Type sty -
G FREIERLY: 1a] ¥ Y
]
i
|
[;o
\\7/«) e ! Z. ,/) : / / ¢ /.. !
LN A WV AR P B e W N A e ,/‘Zﬁ&f ‘.
! /f
[
Py
N
. i i :
N AR Y.
L. . A At L K Y W S e A
i
:
;
1
;
1
i
¥
i
s Type within Solid Blue Lines Gt
ABSTRACT o

—--—-Locally constructed collections of mathematical rou- """~

tines are gradually being replaced by mathematical software
that has been produced for broad dissemination and use. The
process of producing such software begins with algorithmic
‘analysis, and proceeds through software construction and i
documentation, to extensive testing, and finally to distrib-

ution and support of the software products. These are

demanding and costly activities which réquire such a range
of skills that”they are carried out in collaborative pro-""
jects. The costs and effort are justified by the utility
of high quality software, the effiqiency of producing it

for general distribution, and the benefits of providing a

conduit from research to applications.
In this paper we first review certain of the early
developments in the field of mathematical software. Then

we examine the technical problems that distinguish software

production as an intellectual activity, problems whose dés-

criptions also serve to characterize ideal mathematical i

software. Next we sketch three mathematical software pro- :

jects with attention to their emphasis, accomplishments, f
ce{ organization, ‘and costs.” Finally, we Gommént on possible” L
igj:future directions for mathemaFical software production, as _£§§
;&l_extrapolations of the present involvement of universities,l_Lg.

s9-t-government laboratories,--and private-industry.
]

G o
0 o

I

%

- 59

!
v
i
i
{
i
|
!
f

b s e e e

SN AR LT T
I. ' Introduction

The term "mathematical software" refers to computer
programs which perform the basic mathematical computations
of sc1ence and engineering. As with most broad concepts,
an understandlng of what mathematical software is may be

best inferred from reading the subject matter, for instance

"t the proceedings of the Purdue Mathematical Software Symposia

i

i
i

!
1

54 —+

55 -1

56~
57 ~

58—

b1, 2] and the contents of the ACM Transactions on Mathe-
r—-———-- -

4mat1cal Software (TOMS). It will be apparent that programs'
! to approximate functions, solve equations, analyze experi-

i mental data, etc., are included while compilers, assemblers,
_and operating systems are not, although many of the prac-

tical problems of producing and using mathematical software

. . Stem directly from such "systems" software.)
Before about 1970, most mathematical software was
! _written by users or individuals closely associated with
users and was available to workers in a particular group or
at a particular installation. Early efforts to develop
mathematical software for a wider audience (e.g., [3, 4, 5])
_led to increased interest in the production process and
stimulated several major projects which have matured during
the past half-dozen years.- Consequently, mathematical
software intended for general distribution has begun to
,_replace "home-made" routines while libraries of mathematical’
routines are being accepted as software products in the
same sense as compilers and operating systems. In Section V
we shall comment on the stability of thlS trend. ‘ |
_Mathematical software production is not a 51mple I
extension of do-it-yourself programming. Programs intended
for public distribution must perform as advertised across
a broad fange of input data, compilers, operating systems,'
_and .hardware characteristics. The nature of their usage
must be clearly specified in'functional-terms-and they must
'detect and recover from (or at least report) anomalous-
situations. Production of software of such quality requires
—detailed analysis and planning, exten51ve testing,; and ;uy

comprehensive documenting. These, together with distrib- Af:

L ution and maintenance of the software products, are demand- .;

/3

ing and costly activities. ; 58

R
!
!

59

. However,

[
§

! will sometimes do the job but in many other cases (e.g.,

' _with difficult problems in data analysis;

+ v s s —— et o o b v

. L -
Sy amt e T L e

TRegin typing he T ou e e 2
the costs of mathemati-

From"an accountlng standp01nt
cal software production are justified in terms of wide
distribution which results in a saving of expensive effort.
there are more profound questions of science
resource management that help provide meaningful justifica-
tion of the costs.
have both
_the scope

As computer power has increased, so
the complexity of the computing environment and
of problems undertaken by users. Now expert
knowledge is required for effective utilization of present

computing power. We can no longer expect that chemists,
mechanical engineers, and physicists will have enough
_special knowledge about computing to develop the best
algorithms for their own use. Roughly fashioned software
(1)
the success of singular value decomposition for dealing
‘ (2) the develop-
ment of ordinary differential equations algorithms for stiff
systems), expertly crafted algorithms were the difference

between solving a problem or not solving it. There is no

__obvious end .to the growth of computing power and hence to

the need for expert attention to the expanding problem set.
This demand for expertise has inspired advances in algorithm

construction and analysis whose embodiment in widely-

_distributed software is one of the fruits of mathematical

software production.

We must also view the production of mathematical

'| software from the standpoint of the mathematicians and

}_computer scientists who construct algorithms in the course.

of their research. Software provides the means whereby

| algorithms are utilized and thus deserves the attention that

a responsible scientist gives to the use of his creations

—and -discoveries. In the case of the proof of a mathematical

theorem or the discovery of an elementary particle, the
i simple reporting of the information is generally a fulfill-

i ment of this reeponsibility. But new ideas in algorithms

Sai—are-intimately associated with machines and the relationship -’

“is so complex that software is one of the means of communi-

i ¢ | L ! X |] . e b

|
|
i
|

i

i

E.

|
|

e

T { =~ I i

Qégaﬁﬁﬁgmideasl' From this’ standp01nt, mathematlcal software

production bridges the gap between algorithmic research and
effective machine implementations.
We hope that readers will recognlze how many of these

i problems of mathematical software production are intellec-
tually challenging and worthy of the best efforts of tal-
ented individuals. To cultivate such interest we shall
first review selected early developments 1n mathematlcal
software, then examine current act1v1t1es, and finally B
offer a few predictions about the future.

II. The Evolution of Mathematical Software Production

Criteria for good software have changed w1th experience

and technology Broadly speaklng, we have always insisted

that good software be accurate and efficient, but over the

years the meanings of these terms have changed and a more

§ explicit standard for good software is still evolving.

Looking back several machine generations to the late 1940's
and early 1950's, the computers were much slower and had

very small memories. High level languages could not be

supported on such machlnes, so programming was done at a

very low level, not far from machine’ language. The small

. memories forced programmers to employ various tricks

SR

| For example, in the description of a Runge-Kutta subroutine, ..

permitting multiple use of memory cells.
Good programs generally employed such tricks since
they allowed more powerful programs to fit in the limited
memory. Indeed it was amazing how much computing power
could be packed into a small amount of memory. For example,
| the assembly program written for‘the_lLLIACAby“David Wheeler
occupied just 25 words of memory. It was primitive by
‘current standards but it did permit such things as decimal
.addresses, decimal constants,irelative and absolute i
|_addressing, and block loading.of MEeMOYY e oo
The tricks employed to cope with the. small memories
resulted in code which was difficult to understand and

which sometimes imposed strange constraints on the user.

~Gl, for the EDSAC library [6], the following comment is e

_found: 15/

; ! '
1 1 | !

hebit el S i - """ 1 7 1 =

Rl 5 PR
.f"C[!ll! VW

i
t
i
i
i

61 'should ‘be placed in the upper half of the
store to obtain maximum:accuracy (the ideal posi-
tion is 386 onwards). This is because one of the
orders forms part of a constant which thus depends

-slightly on the location of the routine. 1In normal“
use the effect is quite negligible..." '

- Another example from the same source is this comment:

"...The conversion of decimal fractions is slightly

simpler if the least significant digit is read
first and subroutines R5 and R7 are designed in
this way. The number tape can, however, be
punched in the ordinary way with the most signi- =
fibant digit first and reversed during the process
~vof copylng onto the final tape. |

With our present notions of good programs we would ex-

clude programs with these properties. However, at the time,

these programs were among the best and they exerted a strong
influence on program library development because of the way

they were injected into the bloodstream of scientific compu-

" ting. First, the principal contributors to the EDSAC li-

brary,.Wilkes, Wheeler, and Gill, wrote the unique book [6],
quoted above, the first in which a subroutine library was
published. It was widely read and the authors visited the

- small number of computing laboratories of that time and con-

|
i

‘ported to these other machines and became the basis for

tributed their ideas. 1In visiting the University of Illi-
nois for extended periods, David Wheeler and Stanley Gill

wrote a good portion of the ILLIAC library. The order code

__of the ILLIAC was copied on other machines: _SILLIAC (Uni-__ .

versity of Sidney), CYCLONE (Iowa State'University), MISTIC

|
. !
Ground) , MUSASINO I (Nippon Telegraph and Telephone Public . .

(Michigan State University), ORDVAC* (Aberdeen Proving

. _Corp.). Through this process, the ILLIAC library was trans-.

their program libraries. Here we see the first instance of

the distribution of software as a consequence of the exis-

i
i
i

541 tence of several copies of a machine.. 54
T . b
55 - ? -5
56—+ =56
.~ _l. *This machine was completed Sll htly earlier than the A
57— 9 57
9[ILLIAC. . : A +58
59 59
!

- 59

e et

g e e e e e+ s e e et n 0 o s 4 oo

20 vy
. ¥

fhéﬁaéyé Bf thé‘oﬁe %hoﬁéén&lﬁé;dmﬁémory soon disap-
peared but a residue of tricky programming remained. It is
finally becoming widely recognized [7] that clarity of
programming style is a criterion for good software.
Programming languages, made practical by larger memories
and faster machines, permitted programé to be written in a
fashion more clearly understood by humans. Also, these

. languages appeared for a time to make machine independent
‘programming possible, whetting'dppetites for the wide dis-
tribution of programs. In this atmosphere, style and por-
tability emerged as criteria for good suftware.

wor._.Another important factor influencing our notions about

software was the enormous growth in the number of computers

...and the size of the user community. User groups were S

formed in response to the need for exchange of software

.. and other forms of information, the first and largest being

SHARE for IBM computers. For some years a group within

SHARE was responsible for a program "library" which was

. .essentially a repository and exchange point for programs

—-whose quality varied so widely that all the programs in the

library became suspect. Attempts were made to impose
standards and to critigque the programs without much success.

One fact emerging from this experience is that a collection

-Lmof_high quality software cannot be produced through such a

P
i
'

' process. '
As attitudes toward programming evolved, the publication

of algorithms in professional journals reflected the state

_of -the art. The early articles emphasized programming - -—~——

‘techniques rather than algorithms as illustrated by a 1949
program for solving a Laplace boundary value problem on a

rectangle [8]. As indicated by the following excerpt the

—intent of this article was to introduce UNIVAC programming, -

~rather than to communicate a program to potential users:
"It is believed that there is wide i

interest in the question of instructing

54 —~high-speed electronic computers now — " ~54
55—) -+55
56 —4— under design to pe;form the sequences 4e5g
57 1= of operations pertinent to selected 57
59t) : -+ 538

30

i . i 59

-

Baegin typinnhere “problems. “This article, submitted

engaged in the development and con-

o
.i by members of the staff of a company
i

struction of electronic digital
computers, is considered to be a
useful introduction to the use of

the instruction code for the computer
therein discussed." ‘

"Around this period there were a number of articles

calculator was reported in 1948 [9], ‘the computlng time

}@ was 59% hours.) In January 1953, Joe Wegsteln 1n1t1ated

" the publlcatlon of a bibliography of codlng procedures

in MTAC [10]. Later, in February, 1960, through his
] efforts, the regular publlcatlon of algorithms in the

Communications of the ACM began. As with the example cited

earlier, it seems that.the main purponse of this was to

illustrate and promulgate the use of a new tool: in thlS
"case, the programming language Algol However, by 1966,
it was recognized that the algorithms appearing in CACM
were a valuable resource and they were collected and
published separately in Collected Algorithms of the ACM.
The Algorithms Department of CACM was transferred“to the

new ACM Transactions on Mathematical Software in 1975.
g Other journals, too, (BIT, Computer Journal, Numerische
I Mathematzk) began the publlcatlon of algorithms.

i.—._-... ———— -
| The programs available from the publlshed llterature

i have been of mixed quality. While the refereeing process
| these journals have used represents more control on the
__programs submitted for publication than 'in the case of
SHARE, it has not been sufficient to assure a collection

of high quality software. Refereeing is a voluntary
activity and it is extremely difficult to find good people

'willing to devote the time and energy required to_thoroughly

54 ,
55— check the programs submitted. Also, authors have rights R

5G -1
57 -4~

58-

and opinions that must be respected; therefore, there are

t-1limits to the rules on style that one can impose in this R

59

i] 1 1 : .t i

A

{
|

i
}—
i
I

|
j
.
i

t
.
i
1
i

|

54 —

e

~ environment. Certainly,

_software but now it is a far more significant issue.

_stances, the production .of reliable software requires a
'faisciplined approach to the design and creation of the soft- .

ware itself, as well as very sophisticated tools to assure
the reliability of the product.

i 1 1 f
i
thé:publiéafibﬁ”of programs has

been an important mechanism for the exchange of algorithmic
ideas and programming techniques but, unfortunately, it

has been less successful as a mechanism for communicating
éxecutabie programs. To support this assertion, we remark
that from June, 1975 when the algorithm distribution service
started in the Transactions on Mathematical Software, making

ublished programs available in machine readable form (tape

or cards), to Decembér, 1976, only 44 orders have been

received for the 18 algorithms published; i.e., less than
three requestls per alyorilhm.

Users' expectations have significantly changed over a

quarter-century, including attitudes toward the ease of use.

~Amp;;ogram which is the fastest and most accurate will be

ignored even if there are a small number of impediments to
its use. The commercial developers of software understand
this, but many researchers do not and they will expend great -
effort to produce a program embodying'the very best algor-
ithm only to see the fruit of their labor ignored. For
example, consider the matter of consistency among the
It is common for several sub-
If

the global variables for these subroutines are not defined

subroutines in a library.

routines from a library to be used within a program.

in a consistent way, then passing information from one
program to another becomes error prone and awkward, and .
users are repelled.

Reliability has always been a -criterion for good

Programs are larger and much more complex than they were

"in the early years, so the problem of determining whether

or not they are error free is a problem of major proportions.

|_At_the.same.time computers are being used in very sensitive .

situations where an error is extremely costly. In the
early years, it was sufficient to employ a few debugging

tools and run some test cases. Under the present circum-

|
}

T ledin vt

Effibiencymtodlhéé aiwé§é'beéd'auéfiterion for judging

1
]
1

s

software, but the notion of what constitutes efficiency has

changed.

s - . - - - Uy

In the early years, efficient use of memory was

- a matter of primary concern as we have already mentioned.

ngompoﬁent of efficiency is less important, relatively

i
|
i
i
i

i

Memory is now so large and cheap that its efficient use

is of less concern.

Naturally, speed'of,computation is

important, but machines have become very fast and so this

speaking, than it once was.

of efficiency is the importance we

Lime involved in using a program.

it executes twice as fast, say, as

._human effort are required to use a

The big change in our notion

assign to the human
If large amounts of
program, even though

any other program

f“for the same task, then that program is inefficient in a

iﬁof a program.

i.

;*mw_m~4l)-w~Algorithmic foundations.

very real sense. Similar remarks apply to the maintenance

Thus the early preoccupation with raw speed

and minimal use of memory has been replaced with a growing

concern for the interrelationship between man and machine.
III. Intellectual Challenges

.. —.. By about 1970 there was enough.experience with software

to enable those who had acduired a taste for quality to

articulate their requirements.

something like the following:

—
N
e

The check list would look

The algorithm employed

should be the best available for the intended

purpose, as demonstrated by careful analysis.

clearly exhibit the logical organization of the

computation. System dependencies should be

minimal, localized

, and well-identified.

(3)

Documentation. Thé documentation must be clear

and thorough. It must be organized in a way

that permits an occasional user to obtain

-necessary -informat

ion easily. -
|

Style. - The -.program must be written so as to —— -

- 59

54 -]
55—

56 -

58 -

i Consider the issue of good documentation. How does

57- then, by a well-defined process, refine this initial

T2y 'Reliability: The operation of the progréﬁ must

be consistent with its documentation; there must
be no surprises in its use. Provision must be
made to verify that all conditions on input
data are met. Extensive testing must show
evidence of satisfactory numerical performance.
In addition, if the software is part of a distributed
collection, the requirements include:

(5) Consistency. Documentation and conventions

for use of programs in the collection must

be consistent.

| ST, i —— .- UV U U ..

Maintenance. Responsibility for maintenance

~must be assumed. This includes_responding
to users queriés, making modifications,

- extensions, and correcting errors. o
Attitudes in the early 1950's tended to discriminate
between the "intellectual" task of algorithm formulation
and the "clerical" task of coding. The challenges implied
by the above requirements for high quality software makes
such a division of labor and difference of status an
anachronism. The computer-science community has come to
realize that the brainpower needed to create such software

_is as great, if somewhat differently oriented, as that

: which‘provides the algorithmic foundations. Moreover,

é there are significant research questions associated with

' software creation. We suggest several in the rémainder

; ‘

e]

. _of this section.

one guarantee the consistency of documentation with the
.software'it purports to describe, given the complexities
_of a typical program and the fact that it will change . ____ _

from time to time? It seems reasonable to consider some
.automatic way of assuring this consistency. One avenue

~of approach might be to use the ideas of stepwise refine-

o

__ment [11]. In particular, let the initial description. _. . .

1

X N O U a

- of the program be the documentation or some part of it;

YUY

1

!

(&3]

]
i

. 1 . — - e smerin b oo —— e
ey Rt S - -
- =

S

!

|

i
i
e
i
i
'

¥ Tt '

!

Sy e

desCrlptiéghihES.the éoééniég;iff*ﬁAﬁdéﬂ;r apprdach might
be to use ideas from the work on proving programs correct.
In this approach.one might let relevant parts of the

vdbcumentation play the role of assertions, or conversely,

and attempt to prove automatically from the code that these

assertions are correct. Another aspect of the documentation

problem is the automatic preparation of documentation for

“différent versions of a program corresponding to different. .

computing environments. ; '
Programming style is a matter of considerable interest

to programmers these days. As we have already observed,

our notions of good style have changed. In the early I

years, that style was good which used the least amount of

. memory. (Now we seem to wish to use the smallest. number

of go to's!) The ultimate objective of the style formalized

,'as "structured programming" is to produce programs which .

are less likely to contain errors. The guidelines for
structured programming are heuristics which people believe

programmers should follow to meet this objective. One way

.this approach could be put on a firmer foundation would be

to tie it to the relative ease of automatic error detection.
For example, one technique for automatic detection of errors

in a program uses data flow analysis [12]. Certain program-

L_ming practices greatly complicate data flow analysis (e.g.,-

i
1

!

|
1
i

'
H

!

.__is_another aid to error detection.

the use of EQUIVALENCE), reducing the error detection
capability. It would seem reasonable to recommend that

programmers avoid the use of such constructs. Redundancy

gfeater redundancy would, in this sense, encourage a better
‘programming style. ‘

The new machine architectures and microprogrammable

designer. It is becoming possible to mould a machine to a
class of problems through micro-programming. Perhaps it
would be fruitful to think of designing algorithms with

s4-L this additional degree of freedom in mind. Here we see — -~

B8 -
.
ERAI SR b

7
3

[Soa 61

4

e
!
I-—
1
i

59

the need for an important, but all too rare, combination ofi;:

talents in numerical analysis, algorithm design(and com-

puter architecture. : .

i

.Languages which permit --

i
|

i

r~-machines pose new and challenging problems for the algorithm-

i

T BeginnTay

The T

Artlcles “in the area of software rellablllty have
appeared with increasing frequency in recent years and
there have been several conferences and a recent book
devoted to this subject [13, 14, 15, 16]. We are still
a long way from being able to prove the correctness of a
sizeable numerical routine in a formal sense. However,
it does seem that good progress can be made in the area

of 1nformal proofs ang, if we are ever to achieve truly

- v

o rellable software, more serlous attention should be given

to this subject (e.g., see [17])

; There is a very 1nterest1ng connectlon between

i optimization techniques ‘and error detection in programs

f that is worth mentioning here. 1In data flow analysis the

. flow graphaofua program is:examined and certain patterns _
of data flow are reoognized [12]. Some patterns are

~ symptomatic of errors; however, if these patterns arise
on a path which is not executable then they are of no
interest. Thus it becomes important to distinguish the
executable paths. One attack on this problem has been
_described by Clarke [18] where it is shown that the problem
reduces to a non-linear programming problem, and frequently
to a linear programming problem.

The exploration of such problems may appropriately

. be labeled computer science research. It has become
fashionable to call the application of the knowledge thus
acquired "software engineering." We shall see in the '
remainder of the paper how software engineering links to
i numerical analysis and to a delivery system to form inte=_. ..

; grated production projects that are carried out in the

. real world where economies anq politics leave their mark.

IV. Projects to Produce Mathematical Software

i
l____ __Because the people who can contribute the required .- -
] ;

skills are dispersed geographically and have various

"primary sources of financial support, mathematical software

! projects are organized as collaboratlve endeavors involving

gaw.lnd1v1duals in unlver51t1es, government laboratorles, and i

55 -3
H6 -

57— ’ : ' ety

(o]

D0

! =65

private enterprises.

- =55

’)
o

59

P INGY L L s

- an ‘. . "‘j - . (k d" .,',.(,“E ‘ /
. IR x‘; : .
o . The accompllshments of a mathematlcal software prOJect

can be listed under the following three headings:
1. Utility: |
_Software provided by the project is readily
available to and usable by the scientific and
i} englneerlng public.
2. Research Exploitation:
| ___ The project is a conduit for the flow of
research results in numerical analysis and

algorithmics into applications.

3. Software Production Improvement:

m;;m”m“mwm,M_M"Production tools and techniques have been

developed and knowledge about the production
feew weweee. .. .-.. Process has been acquired by the project,'
Every successful mathematical software project we have
.fobserved could claim accomplishments under all three-
headings although each project is characterized by a
particular distribution of‘emphasis._ Opinion will vary
among individuals on a particular project as to ﬁhe
.relative importance of these categories. We believe that
all three orientations are necessary to mathematical
software production and that the success of a project
(assuming adequate funding and physical resources) is
._largely measured by the extent to which differently moti-
. vated individuals have merged their efforts to everyone'é
i satisfaction. These differing perspectives will emerge
l’as we . describe three representative mathematical software
..projects, namely NATS (National: Act1v1ty to Test Software) ,
! NAG (Numerical Algorithms Group), and IMSL (Internatlonal
i Mathematlcal and Statistical Libraries), Inc..

!
; |
I
¢
)
!

S s e e e e w4 et NATS P i e mi e e ata e e e e = e e e

NATS [19] commenced in early 1971 when grants from the
! National Science Foundation were awarded to Argonne National
,Laboratory, The University of Texas at Austin, and Stanford

Suf—Unlver51ty, The objectives of the project were (1) to

iassemble, test, certify, disseminate, and’support packages

f”—Lof mathematical software for eigensystem computation and P
5% -1- . . . : T
't-!function approximation;_(2) to. explore the methodology, --———uu
igly —dre e e e N N H

TR e T T e ATV

T RGN
| costs, and resources requlred to do (l)

first as a prototypical effort. Therefore,

The second objec—
tive was primary and was approached by carrying out the
NATS was a

 _study of the means of mathematical software production,

more'explicitly so than any other project we know.

By

focusing on two computational areas with such intensity

that great care could be taken in code construction,

ing,

test-

and documentation, NATS attempted to establish bench-

marks and guidelines for mathematical software production.

By organizing the project as a university-government lab-

5
|
-
‘ 1nst1tutlons.

collections" [20]. There were two, EISPACK [21,

oratory collaboration, NATS explored the intertaces and

division of respon51b111t1es among several collaborating

_ The software products of NATS were called "systematized
22] and

._FUNPACK [23] in the areas of eigensystem computation and;u,u“,

function approximation respectively.

collection have been distributed, the second release,

each case,

. is available in six machine versions (IBM 360-370,
DEC PDP-10,

7000, Univac 1108-1110, Honeywell 6070,

extending the capabilities of the first.

Two releases of each

in
EISPACK
CDC 6000-

Burroughs 6700) and has been distributed to approximately

450 installations.
—-(IBM 360-370, CDC 6000-7000,
: distributed to about 165 installations. Thus,

cant computational resource has been produced.

FUNPACK exists in three machine versions
Univac 1108-1110) and has been
a signifi—

It is

i limited in the number of computational areas it covers but

%—ismof very high quality within its scope.
culmination of years of work.
—-representing state-of-the-art methods,

Release 2 of EISPACK
In the

penetrating error analysis.
| contains the algorithm discussed in [25].
|

i approximation area, the algorithms were expressed

~*—runn1ng Fortran codes that had been developed for

o oo
;:1 i
-_,

Argonne National Laboratory. However, such codes

ot
-4~h1ghly machine-dependent and a significant amount

~
3 -

[}

The algorithms realized by the NATS software

use at - - --H”7

were the

The eigensystem algorithms
published in Algol [24], are génerally acknowledged as
supported by s

also
function

as

are

of work 7

e
et
t

i

Qo u;
O &

) (

'>—-pr03ect has been organized and commitments made. They are.

l)‘

f’*~b111ty of a particular package development involve those

H4y

.
1 4

i

“'was requlred to prepare dlfferent machine versions, assemr
ble a modularized package for each machine, test and fine-
tune the software, and write the documentation required

for widely distributed software. As the work progressed,

_NSF grants to the University of Kentucky and Jet Propulsion

Laboratory brought collaboration with those institutions
in the function approximation area. By producing EISPACK
and FUNPACK the NATS progect made analytlc and algorlthmlc

research results in these areas of computation readlly

accessible to scientific users for application in many

fields. , !

An 1mportant form of collaboration was field-testing
in whlch some two dozen computer installations at univer-

sities and research laboratories, representing the machines

'for which the package was being developed, cooperated by
running tests supplied by the software developers and by

-making the software locally available for application to

"real" problems.
Satisfactory performance at the test sites leads to

"certification" of the codes; i.e., issuance of a warranty

that the codes have performed satisfactoéorily in extensive

testing and assurance of the continued interest of the

developers. Certified NATS software is distributed by the

Argonne Code Center.

The importance of coordlnatlon from some central point
becomes very real when one considers the information flow

among the various collabérators: numerical analysts

_'supplying algorithms expressed as code developed on differ-

i

ent machines in different locations, field test represen-
tatives attempting to implement code on a different

machine than used by the developers, numerical analysts and

__software specialists writing documentation, the enormous . . .

clerical task of accurately processing many hundreds of
requests for a package, and finally a continuing responsive
~point of contact for questions about the codes and their

performance. _These are the operational issues after the . R

i preceded by an exploratory effort to determine the feasi- 7

USRI) - ——— P a:

i

~

[

I

'
L

RS Y B B &1 B
SN O n
LG

e

"'who could contribute, and seek funds to support the activi-

ty. Indeed a significant investment is required before a

major mathematical software project can begin. Argonne

~National Laboratory played the central coordinating role

for these pre-NATS organizational and operational activi-
ties.)

The clerical burden on fhe project stimulated the
development of computer based techniques for managing the
large volume of source code and documentation for several
computers. From this beginning there evolved a system,

now called TAMPR [26, 27], which analyzes Fortran source

_programs, constructs an abstract form of the code which

can be manipulated to prdduce alternate versions (e.g.,
for different computers, with various subroutine options,

in greater or less precision, using real or complex

_arithmetic) which are reconstituted as running Fbrtran.

This innovative work on the production process was
intimately associated with the mathematical software
development activities of NATS. It has long range research
goals but is applicable in a very practical sense. It is
an example of the delicate balance between short-term

-and long-term needs. If NATS had been under greater
pressure to meet production deadlines, TAMPR necessarily
.would have focused on helping to meet those deadlines,
probably to the detriment of the system's genérality and
its larger computer science implications. On the other

hand, an attack on program transformation problems without

i _relevance to real production needs could have led to more

i

abstract formulations of less help in the production
process.

The NATS project, having lived out ‘its prototypical

. _life, is now deceased. Its products, EISPACK and FUNPACK,

have been well-received and its descendents are alive and
well. These include the LINPACK project [28, 29], a

' collaborative effort among Argonne, the University of

.-Maryland, the.University of New Mexico, the University

of California at San Diego, and the test sites to produce

- a systematized collection of linear systems routines; the

4]

;
O ASUUOU VOGSO VUSROS RSO PO SO U QR

e e Rt U,

"MINPACK project [30] aimed, in the long term, at produc1ng
a systematized collection of codes to solve non-linear
optimization problems and systems of non-linear equations;
and the research in program transformation exemplified by
TAMPR. } |

NATS was supported by funds from the National Science
Foundation and the Energy Research and Development Admin-
istration. We offer the follow1ng information (see [31])
..to convey a sense of the resources requlred for such a
project.

EISPACK, Relcasc 1

Duratlon - 34 months

Total Personnel Effort - Senlor Profes51onal Staff
(Ph.D. or equlvalent).

... 96 months;
Professional Staff (M.S. or
equivalent): 16 months;

.Clerical Staff: 14 months.
Cost -~ $528,000

Size - 34 routines totalling about 6000 source cards
for each machine version; ‘
The IBM version includes a control program
. of about 2500 cards. A :

EISPACK, Release 2

Duration - 41 months (About 16 months overlap with
work on Release 1).

Total Personnel Effort - Senior Professional Staff:
60 months;
Professional Staff:
32 months; .
Clerical Staff: 17 months.

r——~—«———Cost~— $371,000 -~ - o - e

. 8ize - 70 routines plus certified drivers totalllng
about 12,000 source cards for each machine
version;

The IBM version includes a control program
of about 3500 cards;

Machine-readable documentatlon requlres
about 12,000 cards.

i

S

In 1970 a group of British universities, all users
of the ICL 1906A, initiated joint action to produce a
numerical software library for that machine. Now run from
a central office in Oxford, the NAG (Numerical Algorithms
Group) project [32] has considerably enlarged its original
scope. It aims at the creation of a comprehensive numerical
software library that can readily be implemented in vir-
tually any scientific computing envirdnment. The current
library is available in Fortran and Algol 60 (an Algol 68
version is under construction) for a number of machines
manufactured by Burroughs, CDC, DEC, Honeywell, IBM, ICL,
Prime, Siemens, Telefunken, Univac, and Varian. There is
widespread use of the library, especially in British
universities. NAG maintains more than 100 copies in 8
countries [33].

The NAG library project remains a collaborative
endeavor among British universities and government research
laboratories, notably the National Physical Laboratory
and the Atomic Energy Research Establishment at Harwell.
Its activities have been subsidized in part by the govern-
ment; however, it has become a non-profit corporation which
will attempt to achieve financial self-sufficiency by

.renting its library products and services.

The NAG project emphasizes utility. It was created
in response to the need for a product and it retains
that orientation. The current release (Mark 5) contains

—over 300 routines (in each of Fortran and Algol 60). A
new Mark of the library is issued approximately once a
year. '

Soffware for the NAG library originates with contrib-

}—utors who decide upon the coverage of some area of computa-
tion, select the methods, and who write, test, and document
the software. The contributors are experts in the compu-

; tational area under development and afe usuélly from one

s1—-—0f the cooperating universities or research laboratories.
jg:: Their software and documents are subject to validation by

57-i- other experts who review the material for algorithmic merit

:ﬁ:{;qnq_usability:H—Itmis_thus largely the judgment of the _ _

g U VO NV VAP

j”contrlbutors and valldators which determlnes the way NAG
functions as a conduit for algorithmic research.

Validated routines are examined by the NAG central
foffice, using various software aids, for adherence to
'language standards, formatting, and general software
performance. The product of these contribution-validation-
examination activities is known as the "contributed

library." It is not distributed as certified software in

the NATS sense but passes through an implementation phase
for each machine range, an activity overseen by a
coordinator tor that machine.
é_ } Accepted implementations are returned to the central
| office for inclusion in a master library file system
m.which”retains a complete history of each piece of software
in its various incarnations. Information in these files
'has proved very valuable in determining programming stan-
dards to promote portability [34]. This type of case study
and the development of the master library file system [35]
are among the specific contributions of NAG to software
_wproductlon tools and techniques.
Perhaps the greatest methodologlcal contrlbutlon of
NAG has been its organization as a collaborative enterprise.
It has become a national effort that brings a great deal
of the best analytic and programming talent in Britain to
focus. The project now has 22 full time staff in the
central office and associated universities. Some 120
' people work in part-time and voluntary capacities. During
L“;he period June 1, 1970 to May 31, 1976; the total economic
{ cost of the NAG project is estimated to have been
i & 1,025,000 [36]. (€1 X $1.70) The effort during the
i same period is estimated to have been 152 man-years which,
Lein the United States, would have cost approximately s
} $6,000,000, about three and a half timee as much.
5 Considering its success, is NAG a good model for
f government-sponsored mathematical software production in -
North America? We think not, at least it was not in 1970, _.,

14___

w'“‘because the emulation of NAG would have brought North
Jl‘l "r—

57-l- Americans into conflict with ‘the way government funds for

08 F“mathematlcal software development had been dlspensed on this ™

9 I o e = e . R, ——— fme e e e 23N

1

'éide-of the Atlantic. Under the rubric.of "mathematics
research" or "computing support;" such funds were dispersed
among many groups serving the interests of various agencies
and sub-agencies. By 1970 when "mathematical software"
‘assumed an identity, nearly every major computing establish-
ment in North America had a mathematical subroutine library.
Effort was duplicated, quality variable, and attempts to |
transport codes were rarely completely successful; neverthe-
less, the local codes had the virtue of familiarity and
most users would not abandon their local software for
anything lcss than codes of the guality of EISPACK.

L Meanwhile, in Europe, first class algorithmic research
offered a superb foundation for software development but
less work had been done toward developing software libraries
for a variety of computers. Both NAG and NATS entered this

. picture, NAG dedicated to satisfying immediate needs for
mathematical software through collaborative action and NATS
determined to show the benefits of cocllaboration in pro-
duciﬁg very high quality packages. NATS was limited in
breadth of coverage; NAG software varied in gquality though
it was, in general, highly competitive with other software
then available. (Later Marks of the NAG library show a -
steady improvement in quality while NATS-like projects,
e.g., LINPACK and MINPACK, have entered other computational.
areas.) ' o

A government-sponsored NAG-like project in Norfh
America would, therefore, have been in conflict with the

—decentralized way mathematical software.-had been produced
on this continent. To gain acceptability, its product

+ library would have needed to be EISPACK-like in each
cbmputational area. Even if algorithmic research were

Lmsufficiently mature to permit this, the effort would have
been very expensive because (1) it costs more to do this
work in North America than it does in Britain, and (2)

- the cost curve rises very sharply as one approaches

54-+-- EISPACK-1like quality. The concentration of funds required

" to produce such a library would not have been politically

5
3.

B
57 - Y

54,

i

“+
. H . <
DE - . vy

| !

!

1

i

2}

on

Gl 516 G

.ySECeéfabie.A The same dlscu551on shows, 1nc1dentally, why
a NATS-like project would have been unacceptably extrava-

gant in Britain in 1970.

e IMSL - -
IMSL (International Mathematical -and Statistical

Libraries), Inc. is a for-profit corporation in Houston,
Texas which offers to lease a proprietary mathematical

;- -software library containing about 400 subroutines to users
'of Burroughs, CDC, DEC, Honeywell, IBM, Univac, and Xerox
computers [37]. The corporate intent is to provide software

. that realizes the state-of-the science in methods and

}“algorithms. The emphasis at IMSL is on utility: satisfy-

' ing the needs of customers.

- ---- The company was established in 1970 by scientist-

" managers who had earlier helped develbp program libréries
for IBM. The founders were aware of the .local library
syndrome discussed above. Since they were using private
capital they were nolt bound by Lhe decentralized approach
of government agencies. However, they were faced with the

*"problém of marketing their product in the climate created
by that approach. Moreover, they were not possessed of
the capital to produce EISPACK-like codes across a broad
spectrum.. Their response in this tightly-constrained

- 'situation was to produce a library that was comprehensiye
in mathematics and statistics . (thereby covering a broader
base than most local libraries), to keep its quality as

high as possible by involving expert advisers, to under-

L‘score their responsiveness to customer problems, and to
encourage trial of the library by keeping. the subscription
price fairly low.

We believe that IMSL assumed substantial risk and that

the success of the venture from a business standpoint ‘is

still not assured. At its lowest point, the company
showed a net loss of about $350,000 in 1972. It broke
into the black in the third quarter of 1976. Techniques

!

if that are being developed to moderate problems of portability f'
6-+will significantly enhance the ability of IMSL and other =55
. ~G7
34 producers of mathematlcal software to disseminate that L5y
i | Lone
9 ; 59

‘software widely; iﬁdeed IMSL has, with support-from NSF,
carried out a portability study that resulted in a system
called the Converter [38] used by the company and available
to the public. This improvement of software production
techniques is of central interest to the company in break-
ing down barriers to acceptance of its product. We note
that both NATS and NAG have also regarded portability as
~a crucial issue.) -
IMSL is far more centralized than NATS or NAG. We
underscored the collaborative nature of the latter projects
which are coordinated, rather than directed, from a central
_place. IMSL certainly draws on the expertise of the o
numerical analysis community through its board of advisers
but this partnership is limited to a flow of technical
advice on request. The structure of the library, and the
tactics and overall strategy of the company are, naturally,
the responsibility of the corporate officers who answer:
to the investors. A
- We believe that the company has demonstrated its
~ability to act as a conduit for research results. IMSL's
source for methods, algorithms, and software is primarily
published material in leading journals as well as doctoral
4theses.and contributions from advisers. = The President
.0of IMSL has declared that the company's role is "to
quickly move reseérch results on algorithms and software
development into programs which operate ... in a
- scientific environment." [39]
};;“*;«Cost and income figures quoted by IMSL [39] add to .
{ our information about the expenées involved in mathematical
+ software development. The company.spénds approximately |
? $2000 fof each code for the first implementation while the
_cost .of moving that software to a new environment is e
f about one-sixth of the original cost. The gross revenie
| derived per code per year per customer is $3.75. It is
; expected that this figure will decreaée~as the library
54%“—grows while the cost of production will decrease as more = _.,

23y sophisticated portability techniques are employed. A‘gross

[
03 b
O l

bR}

57 - comparlson of these costs with the EISPACK development z@@;

H3- X ' i .
r . | 4 oo
0
i

AN

C ! -
¢ t d -5

N ;

t o e b n e e nt A e amnm e = e e chen i et e a1 e = i b o Siae s et « ot ettt ot e = st d e oo 2 m s e

1

. ..-'_!...J_.:. —
|
i
i

e o LI
ey v i

cosgé:&ﬁoEéng;filéfrihdz;gééé/thag“théwﬁATS costs were
about three times as great as IMSL costs for a given
volume of code, further evidence that exceptionally high
quality software is exceptionally expensive.

V. Trends .in Mathematical Software Production

In this section we shall confine our attention to the
North American scene in an attempt to predict future
. patterns of mathematical software production. The
following trends are‘already apparent and will combine
to exert a strong influence: }
(1) The demand for good general-purpose mathematical
‘e eere . .s0ftware is increasing among the user public;
(2) Relationships between the quality and cost of
. mathematical software are becoming better -
understood by producers and users;
e 2(3) Computer-based production techniques, now
under development, show promise of improving
quality and decreasing cost.
Users have become mofe.receptive’to mathematical soft-
...ware produced for dissemination. EISPACK and FUNPACK are
acceptable because they are of very high quality while
IMSL and other libraries offer good quality and broad
coverage. The responsiveness of the developers of these
--packages to user problems has helped overcome the
resistence to non-local software. This acceptance is _
still very fragile. Users are uncertain about the highest
price they are willing to pay, either in terms of sub-
~—scription fees or the toleration of imperfections. These
: are cloéely related since, as we have.already remarked,
%”the cost of production rises sharply as one approaches
i NATS-like quality. If users do not become disillusioned
‘—because of some particularly disappointing software that
ivappears, then there is a good chance that mathematical
i'software production for a mass audience will remain viable
§ long enough for improved production techniques to strengthen
“¢—=—the whole enterprise. We believe that users and producers "“ff

HH -

56-l. are becoming sharp enough in their evaluation of cost- .féé

2
57—~ quality relationships to sustain the present momentum. S
5 t- : ‘ ~=h8

. i

1

l

59 —
i

e —— e =

! . v
i -
e I , |- ! } 4 : remben
. : -t i . ;
i

T igy ten T ' Y R NS

Three areas of productlon technlque research show par-
'Ii ticular promise of providing the tools needed to start an

E.escalation of good mathematical software, cost reduction,
and user confidence. These are (a) computer-aided analysis
and transformation of source programs, (b) testing methods,
and (c) networks. ‘ ‘

" Example of program analy51s systems are DAVE [40],
PFORT [41], FACES [42], PET [43]. Examples of program .. .
transforﬁation systems afe TAMPR [26; 27] and the Program
Generator [44]. Analyeis systems permit a probe of the
structural detaile of complex programs with identification

- of anomalous and erroneous constructions. The transforma-
tieh systems also analyze the structure of a program but for

. the purpose of transforming it in-various ways. For example,
programs from variousisources may be brought'into confor-

. mance with a set of formatting standards. Such systems may
use a master program or set of instructions to automatically
generate software tailored to a particular machine or with
variations in program structure. By storing and maintaining

ﬁonly the master programs, developers and distributors have
far fewer data to manage in error-prone .information pro-

- cessing operations.

Testing methods are being developed that take into

..account a fundamental distinction between two classes of
software [45]. The first class (called "precision-bound"
software; for example, numerical eigenanalysis, linear sys-
tems, and function approximation) suffers primarily from

;_xound-off error due to the finiteness of machine number re-

| presentations. This type of error is rather well understood
f theoretically (see [46]) and the testing techniques used in

. the NATS project appear adequate in principle. The second
é-class ("heuristic-bound" software; for example, the numeri- -
; cal treatment of quadrature, ordinary differential equations,
i and non-linear optimization) is a victim ofxefrors derived

% from the manner of simulating analytic constructs, in parti-

s4-i—cular convergence. These -errors dominate round-off so that - 34

- :
u.)r

:_such software requires an approach to testing which permlts .;”

38 e
/ﬂ—careful statements to be made about the cost of obtaining Y

TS
5o tT20

"§ reliability at_some specified confidence level. _ A_testlng_“fﬂg

(()
)

(SIS
[BN I
l

|

Uy o
O o N
'

(2]

Tomal l

'methoéoibgy éibnthhése.iiﬁéé hasubeéh developed for
quadrature routines [47]. Further work will be essential
to the production of high quality heuristic-bound software,
accompanied by meaningful statements about performance.

Computer networks will facilitate interaction aﬁong
geographically dispersed collaborators [48]. Such
networks will also enable users to obtain both information

~about software applicable to their needs and the software
itself. Experimentation along these lines is under way
at several ERDA laboratories.

We are-optimistic that tools based on this research

..will facilitate the passage of algorithmic ideas into
useful software. However, we do not believe that future
mathematical software projects will simply be streamlined
versions of earlier efforts. Rather we foresee certain

_basic changes in institutional roles, the principal one

being a shift of government support away -from NATS-like

efforts in which a government laboratory acts as a mediator
between university research and end-users. The effective-
ness of such programs has been demonstrated and we have
argued for their expansion [31]. However, the required
concentration of resources remains politically unacceptable.

Our hope now is that present trends will lead to commer-

cially viable production activities which draw heavily

on expertise in the research community. We predict that

the government will encourage these trends by supporting

state-of-the-science studies and algorithmic and systems
research, buying the mathematical software products

L
!
| and developing the use of these products in government
|
t

programs. In this view of the future, the actual produc-

| tion will be carried out through commercial enterprises
i

I which maintain a.working partnership with universities

% and research laboratories, often taking the form of
| interaction with individual scientists.

We must, however, admit a second possible future for,
—as--we have already suggested, the commercialization of L ey

-

mathematical software production is in a somewhat precarious -

Jr_

L. situation and its growth is not assured. After all, the 57

_| same improved techniques that make the production of 50

—— b

. +

o

I
|

¢ oo
o ~N &
11

o G

e e o PO ORI —r——t e - i P P S U i

o mmia mes mn e e oy e memm s n ¢ ek mimem e mem | s e e e w e e -

fégﬁhéréiéi libtarieé‘ﬁéréh%éééiblewéiéé‘make it easier for
small groups in universities and research laboratories to
do what they have always done - produce mathematical |
software for their own use and for limited distribution
within a specialized community. We rate such a "cottagé
industry" approach as inferior to "mass production" that
strives to be a conduit for the best research results. The
. real future will probably be a mixture of commercialization

and local developments in a proportion impossible to fore-

see. In any case, the mathematical software production

events of the last half-dozen years have raised standards
..and influenced tastes so that the state of scientific

computing is the better for it.

REFERENCES

~1. ~Rice, John R. (Ed.) Mathematical Software, Academic
Press (1971), 515 pp. _

2. Mathematical Software II - Informal Proceedings of a
Conference. Purdue University, May 29-31, 1974.
324 pp.

3. Battiste, E. L. The production of mathematical
software for a mass audience. In Mathematical
Software, John R. Rice, ed., Academic Press
(1971), 121-130.: '

4. Traub, J. F. High quality portable numerical
mathematics software. In Mathematical Software,
John R. Rice, ed., Academic Press (1971) 131-139.
. 5. Newbery, A. C. R. The Boeing library and handbook
. of mathematical routines. 1In mathematical software,
" John R. Rice, ed., Academic Press (1971) 153-169..
6. Wilkes,vMaurice V.; Wheeler, David -J.; and Gill,
Stanley. The Preparation of Programs for an Electric
Digital Computer, Addison-Wesley (1951), 167 pp.

7. Kernighan, Brian W. and Plauger, P. J. The Elements
of Programming Style, McGraw-Hill (1974), 147 pp.

8. Snyder, Francis E. and Livingston, Hubert M. Coding
of a Laplace boundary value problem for the UNIVAC.

____ Math. Tables and Other Aids to Computation. (now
Mathematics of Computation) 3, 25 (Jan. 1949),
341-350. i '

o}

@

TN R TR T NN PPN RLE S

Mitchell Herbert F., Jr. Inversion of a matrix
of order 38. Math. TabZes and Other Aids to
Computation (now Mathematics of Computation)

3, 23 (July 1948), 161-166.

Todd, John. Bibliography of coding procedures.
Math. Tables and Other Aids to Computation (now
Mathematics of Computation) 7, 41 (Jan. 1953),
47-48.

Wirth, Niklaus. Program development by stepwise
refinement. Comm. ACM 14, 4 (1971), 221-227.

Fosdick, Lloyd D. and Osterweil, Leon J. Data
flow analysis in software reliability. ACM Comp.
Surv. 8, 3 (September 1976), 305-330.

. Proceczdings IEEE Symposium on Computer Software
Reliability, New York City, April 30-May 2, 1973.

Proceedings International Conference on Reliable
Software, Los Angeles, Ca., April 21-23, 1975.
567 pp. IEEE Cat. No. 75CHO0940-7CSR.

Hetzel, William C. (Ed.) Program Test Methods,
Prentice-Hall (1973), 311 pp.

Myers, Glenford J. Software Reliability: Principles
. & Practices, Wiley (1976), 360 pp.

Hull T. E.; Enright, W. H.; Sedgwick, A. E. The
correctness of numerical algorithms. Proec. ACM

Conference on Proving Assertions About Programs,
New Mexico State University, Las Cruces, N. M.,

.. January 1972, pp. 66-73.

Clarke, Lori. A system to generate test data and
symbolically execute programs. - IEEE Trans. on
Software Engtneertng SE-2, 3 (Sept. 1976),
215-222.

Boyle, J. M., Cody, W. J.; Cowell, W. R.; Garbow,
B. S.; Ikebe, Y.; Moler, C. B.; and Smith, B. T.
NATS, A collaborative effort to certify and
dlssemlnate mathematical software, Proceedings 1972
National ACM Conference, 630-635.

Smlth B T., Boyle, J. M.; Cody, W. J. The NATS
approach to quality software. 1In Software for
Numerical Mathematicecs, D. J. Evans, ed., Academic
Press (1974), 393-405.

. --Garbow, B. S. EISPACK - A package of matrix

RO
[IS L Y
1]

eigensystem routines. Computer Physics Communzcatzons
7, 4 (April 1974), 179-184.

l

(&1 BN &) TN &2 I & 2

Q@ »

22.

23.
24.

25.

O

Smith, B. T.; Boyle, J. M.; Dongarra, J. J.; -
Garbow, B. S.; Ikebe, Y.; Klema, V. C.; Moler,
C. B. Matrix Eigensystem Routines - EISPACK
Gutde, Lecture Notes in Computer Science, 6,

2nd Edition. Springer-Verlag (1976).

Cody, W. J. The FUNPACK package of special function
subroutines. ACM Trans. on Math. Soft. 1, 1
(Maxrch, 1975), 13-25. :

Wilkinson, J. H. and Reinsch, C. Handbook for
Automatic Computation, Volume II, Linear Algebra,
Part 2. Springer-Verlag (1971).

Moler, C. B., and Stewart, G. W. An algorithm
for generalized matrix eigenvalue problems.
SIAM Journ. of Numer. Anal. 10, 2 (April, 1973)
241-256. ' :

Boyle, J. M. and Dritz, K. W. An automated pro-
gramming system to facilitate the development of
quality software. 1In Information Processing 74,

~North Holland Pub. Co. (1974), pp. 542-546.

27.

28.

29.

30.

54 e
55 -

56—+
57—~
58~

&

-115-131.

Dritz, Kenneth W. Multiple program realizations
using the TAMPR system. 1In Proceedings of the
Workshop on Portability of Numerical Software,
To appear.

The LINPACK Prospectus and Working Notes,
Applied Mathematics Division, Argonne National
Laboratory, Argonne, Ill. 60439.

Stewart, G. W. Research, development, and

- LINPACK. These Proceedings.

Brown, K.; Minkoff, M.; Hillstrom, K.; Nazareth,

L.; Pool, J.; and Smith, B. Progress in the
development of a modularized package of algorithms

for optimization problems. 1In optimization in

Action, L. C. W. Dixon, ed., Academic Press (1976), __

 pp. 185-211.

Cowell, Wayne R. and Fosdick, Lloyd D. A program
for development of high quality mathematical software,
Report #CU-CS-079~75 (Sept. 1975), Department of

Computer Science, University.of Colorado, Boulder, _ ._._

Colorado, 80302.

Ford, B. and Sayers, D. K. Developing a single
numerical algorithms library for different machine
ranges. ACM Trans. on Math. Soft. 2, 2 (June, 1976)

!
!
i
!

59

|

—

!
-5
£

ot

>

1
i

~

. '
(3 IR SIS 1 BN BN O]

oo

[og}

- -

TEEgin wyiing herel Yaou inay tyné dverih

33.

35.

36.

37

38.

39.

40.

41.

43,

44.

a5 words,

Tyie squarcty,

Annual Report of the Numerical Algorithms Group:
76, NAG Central Office,
13 Banbury Road, Oxford 0X2 6NN.

1l June, 1975 to 31

Bentley, J. and Ford B.

May, 19

portability within the NAG project.

of the Workshop on Portabzlzty of Numerical Software,

To Appear.

DuCroz, J. J.; Hagque, S.MJ.,
--—Aids to portability within the NAG project.

On the enhancement of

In Proceedings

Siemieniuoh, J. L.

In Proceedings of the Workshop on Portability
of Numerical Software, To

Appear.

Ford, B. Private Communication.(l977).

IMSL Numerical Computation Newsletter, issue no. 1
(January, 1972), International Mathematical and

Statistical Libraries, Inc.
== =-7500 Bellaire Blvd., Houst

Slxth Floor, GNB Bldg
on, Texas 77036. 7~

Aird, T. J. The IMSL Fortran Converter: An

~ approach to solving portability problems. In

Proceedings of the Workshop on Portability of

Numerical Software,

To App

ear.

Battiste, E. L. Mathematical software and the

prlvate sector, Talk at ACM Annual Conference

~(1976) .

Osterweil, Leon J.

system for FORTRAN programs.

and Fosdick, Lloyd D. DAVE -
a validation, error detection and documentation

and Experience 6 (1976),

Ryder, Barbra G. The PFORT verifier,

Practice and Experience 4

" Ramamoorthy, C. V.

and Ho,

473-486. -

Software-Practice -

Software-

(1974), 359-378.

Siu-Bun F.

Testing

large software with automated software evaluation

systems. IEFEF Trans.

1, 1 (March 1975),

46- 58

on Software Engzneerzng

Stucki, Leon G. and Foshee, Gary L.
concepts for self-metric software validation.

_Pp. 59-65 in reference l4

Voevodin, V.; Gaisaryan/

program generation.

New assertion

S. ; Kabanov,
In Numerical Analysis in Fortran,

M. Automated

Vol. 1. Moscow State University Press (1973) (In

l
Russian).
54 _— PR - 54
55 -~ 55
56 ~+ +-56
57 —i— -1-57
58— ! -1-58
sgi 59

1]

(S B By N &)

N,

[&7]

TRbf 10

H

45,

- 46.

47.

48.

- Argonne National Lab.

et mm i i

ooby T

‘/'M..

iy

\1’

¢

R SN

BN

v

v

Uy ey

- .._.-.-;---—————__...

7

R i

2,

Cowell Wayne. The Valldatlon of mathematlcal
software. 1In Proceedings of INFOPOL-76, International
Conference on Data Processing, To Appear.

J. H.
4

Wilkinson,
Review 13,

Modern error analysis. SIAM

(October, 1971) 548-568.

Lyness, J. N. and Kaganove, J. J. A technique for
comparing automatic quadrature routines. ‘Computer
Journal, To Appear.

Greenberger, M.; Aronofsky, J.; McKenney, J. L.
Massy, W. F., eds. WNetworks for Research and
Education. M.I.T. Press (1974).

Work supported in part by the U.S. Energy Research

-and Development Administration and the National

Science Foundation.

Dept. of Computer Science
Univ. of Colorado .
Boulder, Colorado 80302

Appiied Mathematics Div.

Argonne, Illinois 60439

