
MATHEMATICAL SOFTWARE PROD UCTION

W. R . Cowell and L. D. Fosdick

Prepared for

Symposium on Mathema t ical So f t ware
The Mat h ematics Researc h Cen ter

University of Wisconsin
Madison, Wisconsin

March 28-30, 1977

Th~ report was prep'!r:J'cr-----.
sponsored by the Unit ed as a n accoun t o f work
the United States nor ~~ta t~ <?overnment. Neither
Re~arch and Development e . n~ted . States Energy
thetr employees no Adnurustrahon, nor any of
subcontractors, ~r t~e:"Yem o~ their contractors,
~r~nty , expreS$ or im lied p oyees, makes any
liabili ty or responsibili ty f~r th' or assu mes any legaJ
01 Utefulnea of any infor tioe accuracy, completeness
proces,s disclosed or re ,:a "·apparatus, product or
infri nge privately ~wned~i~~-ts that its use would not

~\S
DJSTRIBUT1'0N ~ TKTS o· ~1J l ~<:'1" - ~. ITEQ

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

operated under contract W-31 -109-Eng-38 for the

U. S. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

The facilities of Argonne National Laboratory are owned by the United States Govern­
ment. Under the terms of a. contract (W- 31 - 1 09-Eng- 38) betweP.n the U. S. Energy Research and
Development Administration, Argonne Universities Association and The University of Chicago,
the University employs the staff and operates the Laboratory in accordance with policies and
programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona
Carnegie - Mellon University

Kansas State University
The University of Kansas
Loyola University
Marquette University
~.1ichigo.n St:1t0 T.Tni,Pr~ity

The University of Michigan
University of Minnesota .
University of Missouri
Northwestern University
University of Notre Dame

The Ohio State University
Ohio University

Case Western Reserve University
The University of Chicago
Un1verslt)" oi CiHclaad.Li

The Pennsylvania State University
Purdue University
Se1int T.onis University

Illinois Institute of Technology
University of Illinois

Southern Illinois University
The University of Texas at Austin
Washington University Tnrliana University

iowa StatP. University Wayne St<tte University
The University of Iowa The University of Wisconsin

---------NOTICE--------

This report was prepared as an account of work sponsored
by the United States Government. Neither the United States
nor the United States Energy ReseCir<:h and Development Ad­
ministration, nor any of their employees, nor any ui their
contractors, sulx:nntractors . or their employees, makes any
Wd.rranty, express or implied, or assume" "ny lP.eal liabil­
ityor responsibility for the accuracy, completeness or use­
fnlnP.flfl of any information, a.pparatus. product or process
disclosed, or represents that its use would not infringe
privately-owned rights. Mention of <.:ununercial products,
thPir me1nufacturers, or their suppliP.rs in this publication
does not imply or connote approval or disapfH'uval of the
produt:l by Argonne National Laboratory or the U. S. F:nP.rey
Research and Development Administration.

. '

,; ..

'j . ,. ti . L' I L~:~:~.~~----·· --.. ~
--~-;-- ,------: ----~--+_:_, _____ ,f----- (__, ___ I '-----t------.. --L ---

:::·,--·---+-----:~------j ~ -~-----' _____ _l ____ j____ _ _ _l_
I I ' ! ' I I
I ! !

I
f---------
1
I
!

___ · .f---------------
1
'

~-=:."{-·-·-------·----· -Type l;Vithin Soiid .Blt.:e Lines . '

I
-,.,]·-:

L
I

ABSTRACT

[------·-·-·-·-·Locally constructed collections of mathematical rou-

tines are gradually being replaced by mathematical software

that has been produced for broad dissemination and use. The
I·
! process of producing such software begins with algorithmic
I

i·-·analysis, and proceeds through software ~6nstruction and

documentation, to extensive testing, and finally to distrib­

ution and support of the software products. These are

demanding and costly activities which require such a range

j-of skills that ... they are carried· out in collaborative pro­

! jects. The costs and effort are justified by the utility

j·of high quality software, the efficiency of producing it

i for general distribution, and the benefits of providing a
I i

'

L-eo. nduit from research. to applications _ .. ____ l
i

. In this paper we first review certain of the early ·

I developments in the field of ~athematical software. Then ,

~~ ex_amine the t=~~nical -~rob:-ems ~hat ~istinguish sof~~~~=--~
1 production as an intellectual activity, problems whose des-,

criptions also serve to characterize ideal mathematical

software. Next we sketch three mathematical software pro-

! jects with attention to their emphasis, accomplishments, ,
54 -f-.... . · -..... ---·- --.. -. -- --- - - -- ---·Lr:;a
55

; organization, and costs. Finally, we comment on possible -~15
5G+ future directi~ns for mathematical software production, as j-sG
;~]-extrapolations of the present: involvement of universities, ~r;~ .)u+- . . I ,,_,
~i9 ...:government laboratories , ... and private-industry .--------·-----l-

1
59

' I
_ _l_

-o-:-.;~-:it-, -~,-;~.;· .. :-"'- · - .. _,._.._ -· . .-: ·' -.-:-:_;:-·!:-:; .. ·:·~-:;:-:;i:f!·;-:-T·,,:--;jt: ·;·:·t:,:·- .~·,;~-~--------------- ··-------------~--
!"··I': . ; :'I Introduction
1

The term "mathematical software" refers to computer

programs which perform the basic mathematical computations

of science and engineering. As with most broad concepts,

an understanding of what mathematical software is may be

best inferred from reading the subject matter, _for instance

the proceedings of the Purdue Mathematical Software Symposia

; [1, 2] and the contents of the ACM Transactions on Mathe-r--

i matical Software (TOMS). It will be apparent that programs
!
I
I

to approximate functions, solve equations, analyze experi-

I mental data, etc., are included while compilers, assemblers,

I and operating systems are not, although many of the prac- .

rti-c~-~ problems of producing a.nd using mathematical softwa-~~-~
I .

I stem directly from such "systems" software .. - ·-·-·.-

i
Before about 1970, most mathematical software was

!---~~i_tten by users or individuals closely associated with

;·
i

users and was available to workers in a particular group or

at a particular installation. Early efforts to develop

mathematical software for a wider audience (e.g., [3, 4, 5])

led to increased interest in the production process and

stimulated several major projects which have matured during

the past half-dozen years. Consequently, mathematical

software intended for general distribution has begun to

~_replace "home-made" routines while libraries of mathematical·

! routi.nes ·are being accepted as softwa~e products in the
I

I
same sense as compilers and operating systems.

we shall comment on the stability of this trend.

In Section V

~_Mathematical software production is not a simple _______ _

I extension of do-it-yourself programming. Programs intended

I for_public distribution must perform as advertised across

I a broad range of input data, compilers, operating systems,

l_and.~ardware characteristics. The nature of their usage

I must be clearly specified in functional -terms and they must
I
l detect and recover from (or at least report) anomalous

I situations. Production of softwar~ o~ such quality requires

54-~_detailed analysis and planning, ext_ensive testing; and ..: .. 5,1

~sl-- comprehensive documenting. These, together with distrib- ;n
5G -t- _•)
57+ ·ution and maintenance of the software products, are demand- -:il

58 t ing and costly activities. 1 ·r:58
59 ·----·---,·---· ----t-59

I

l
l---·- -·- -~···---· ---•P o

I . 1 • .

-·~-.----~· ------+------1---------l-----·-----L--f--·-----~---·-·--:..-·-----···:_ _____ . _____ : __ ---
-~- -----------~---- ·----t------1-------- .----·-----1------------:-· ...:.---:- -- -----~---- -··-·-- ---------- -- __ ,_ ------- . --
-r~e(jiil t\lfJinf!!·i'·:::,-~\:'n·u- n~ ·)· ~'- ·~t ::-··,:·· .. ,, :--~-- · .. :--~: 1 ~----:-"·".: .. '~t.'i_:.:·.·v_·----· ·- -------- ··- · ·- ·· ---- ·-

: · From an accounting standpoint, the costs of mathemati-
!
i cal software production are justified in terms of wide

distribution which results in a saving of expensive effort.

However, there are more profound questions of science

· resource management that help provide meaningful justifica­

tion of the costs. As computer power has increased, so

have both the complexity of the computing environment and

1 the scope of problems ·undertaken by users. Now expert r--
: knowledge is required for effective utilization of present

computing power. We can no longer expect that chemists,

mechanical engineers, and physicists will have enough

~-special knowledge about computing to develop the best

! algorithms for their own use. Roughly fashioned software

L,will sometimes do the job but in many other cases (e.g., (1)

: the success of singular value decomposition for dealing

~with difficult problems in data analysis; (2) the develop-

ment of ordinary differential equations algorithms for stiff

systems), expertly crafted algorithms were the difference

between solving a problem nr not solving it. There is no

~._obvious end .to the growth. of computing power and hence to

the need for expert attention to the expanding problem set.

This demand for expertise has inspired advances in algorithm

construction and analysis whose embodiment in widely-

-distributed software is one of the fruits.of mathematical

software production.

We must also view the production of mathematical

1 software from the standpoint of the mathematicians and

~computer scientists who construct algorithms in.the course
;

I of their research. Software provides the means whereby
I .

!·algorithms are utilized and thus deserves the attention that
!

i a responsible scientist gives to the use of his creations
;
~and ·"discoveries. In the case of the proof of a mathematical

! theorem or the discovery of an elementary particle, the

' simple rep6rting of the information is generally a fulfill-

ment of this responsibility. But new ideas in algorithms

544-are -intimately associated with

~~-~~s so complex that software is

machines and the relationship -

:)l"J -l-

~~±. .
!59 I -·-

one of the means of communi- . ; : ~)

I
IT1

--i-5/
I

---l--58

---t-59
I

.. I .
*--·-""'-t-·-~-=:=---~r--=--= :j. .. ~ + --==J~- .·~==t-===:·-= .. ==~=-~=·~~ ~

I

-·r,!·ca.t:irig·-·id~-as ~· F·r~in·- 1:his·· st~n.cip;int; · ~~th·~;~ti·c;.i-~~f-t~~-;;·-.. -·--·

l production bridges the gap between algorithmic research and

effective machine implement~tions.

We hope that readers will recognize how many of these
"

problems of mathematical software production are intellec-

tually challenging and worthy of the best efforts of tal­

ented individuals. To cultivate such interest we shall

i first review selected early developments in mathematical
~--·-··- .. ---·-·. -------·-··-···
1 software, then examine current activities, and finally

offer a few predictions about the future.

II. The Evolution of Mathematical Software Production

c~~.ter~a ~'?1:._5J<:..?~ :sc:~~~~~~ _,ha_v~_~h~~-~~d __ ~i-~h __ e:x~erie~c_e
i and technology. Broadly speaking, we have always insisted

that good software be accurate and efficient, but over the
' '

years the meanings of these terms have changed and a more

: explicit standard for good software is still evolving.

Looking back several machine generations to the late 1940's

and early 1950's, the computers were much slower and had

very small memories. High level languages could not be

supported on such machines, so programming was done at a . -· ··-. . -

very low level, not far from machine language. The small

memories forced programmers to employ various tricks

permitting multiple use of memory cells ..

, Good programs generally employed such tricks since ... __ ... _
t-"- "" - -- -- ...

they allowed more powerful programs to fit in the limited

memory. Indeed it was amazing how much computing power

j could be packed into a small amount of memory. For example,
!
i the assembly program written for_ t_h_e _IL:LIAC _by __ David Wheeler

r-~c~upied just 25 wor~s of memory. It-was primitive by

!·current standards but it did permit such things as decimal

ll.address~s, decimal constan~s,'rela~ive and absolute

address1ng, and block load1ng of memory. _ -·---··-- -----··-·--·----·--·~

~- The tricks employed to cope with the. small memories

I ·resulted in code which was difficult to understand and

j which sometimes imposed stran~e constraints on the user.

54 _! _for example, in the description of a Runge-Kutta subroutine,··-:,:+

!55-FGl, for the EDSAC library [6], the following comment is ... :.;c;

~~I found: I -f~~
58-·l·- ... i...5H
59 ...L!)9

I

I 1 I , __ --··----

=t::.~::::="_-=-:=_-::-. i------t=--==-t==¥==·-~-=--=1--:...-t~-- ;·----~=
! I :

-i:~c~!ii"l i'/!;,:<l::!:·:cii'·'sliou'l'Ci ·b~ place~{i~·-·th;~ up·p~f-.. h~lf-·of -the ---·

! store to obtain maximum accuracy (the ideal posi­

tion is 386 onwards). This is because one of the

orders forms part of a constant which thus depends
: ·--··

.;,--·-··-··-

slightly on the location of the routine. In normal

use the effect is quite negligible ... "

·Another example from the same source is this comment:

"~ •. The conversion of decimal fractions is slightly

simpler if the least significant digit is read

first and subroutines RS and R7 are designed· in

this way. The number tape can, however, be

punched in the ordinary way with ___ :the ~~st sign~~

ficant digit first and reversed during the proce~s

of copying onto the final tape.·:.'~--

With our present notions of good programs we would ex­

clude programs with these properties. __ However, _at the ~ime,

these programs were among the best and they exerted a strong

influence on program library development because of the way

they were injected into the bloodstream of scientific compu­

ting. First, the principal contributors to the EDSAC li­

brary, Wilkes, Wheeler, and Gill, wrote·the unique book [6],

quoted above, the first in which a subroutine library was

published. It was widely read and the authors visited the

.... _:=;mall number of computing laboratories of that time and con­

tributed their ideas. In visiting the University of Illi­

nois for extended periods, David Wheeler and Stanley Gill

wrote a good portion of the ILLIAC library. The order code

l9._; __ the. ~LLIAC was copied on other machines: SILLIAC (Urli:-_~
I

! versity of Sidney), CYCLONE (Iowa State University), MISTIC
I
1 (~ichigan State University) , ORDVAC* (Aberdeen Proving

! Ground) , MUSASINO I (Nippon Telegraph and Telephone Public
I
~~orp.) .. Through this process, the ILLIAC _library was trans~.
I

! ported to these other machines and became the basis for
I
i their program libraries. Here we see the first instance of

J the distribution of software as a consequence of the exis­
t· I

---- --t- 5ll 54 j__tence. of several copies of a machine.
!)5 --i-
5(i -~ -------------------:--

57-~- *This machine was completed slightly earlier than the

~~:·t-· .ILLIAC.

:. 5r;

...Ls~
I

-j-57
I ,. "

-r:.~o

-----------~------- ------·-----------r' 59

; 1 . • · , : • I'.!· i. . ~.::._. ...

i_ w~ ~·---·~---- ,

___ J _____ !._ ______ j ___ ---

l-----·-····---·-·L-. . '

--;?:·~:~;il ·t·~tf)::;· :-.--~.1 . ,., .. ·:·.·-; .. -.-· ~ ·. :':,":t-- ::··'!'.' .-·---------·- --··•d- ·-·- ___ : __

The days of the one

peared but a residue of

finally becoming widely

thousand word memory soon disap~

tricky programming remained. It is

recognized [7] that clarity of

programming style is a criterion for good software.

Programming languages, made practical by larger memories

and faster machines,permitted programs to be written in a

fashion more clearly understood by humans. Also, these

: __ languages appeared for a time to .make machin~ independent

·programming possible, whetting· appetites for the wide dis..-

tribution of programs. In this atmosphere, style and por-

tability emerged as criteria for good software.

L_ ________ Anoth.er important factor influencing our notions about
I
' software was the enormous growth in the number of computers

... "_and the size of the user community. User groups were

formed in response to the need for exchange of software

and other forms of information, the first and largest being

SHARE for IBM computers. For some years·a group within

SHARE was responsible for a program "library" which was

essentially a repository and exchange point for programs

~--whose quality varied so widely that all the programs in the

library became suspect. Attempts were made to impose

standards and to critique the programs without much success.

One fact emerging from this experience is that a collection

·!--Of- high quality software cannot be produced through such a

i ·process.

As attitudes toward programming evolved,the publication

of algorithms in professional journals reflected the state
i .
~of -the. art. The early articles emphasized programming -----.

·techniques rather than algorithms as illustrated by a 1949

program for solving a Laplace boundary value problem on a

rectangle [8]. As indicated by the following excerpt the

-intent of this article was to. introduce UNIVAC programming, -

1 rather than to communicate a program to ·potential users:

"It is believed that there is wide

~nterest in the question of instructing

i
!

!
!:l4--t----·---·-·high-speed electronic computers now·-------·---·-:--- -·-+ 5 t1
55- _;_55

5G- _ under design to perform the sequences -L.5c,

57--1- of operations pertinent to selected -·t::.
5
593-·1-_________________ ---J-- -,:){)
~- I 59

I

~t . _ __; _____ . _j__ __ ~ ___ j _____ j__ ____ L ______ -~-----_J_--~--+--:=-==~~= -~----~- ··-- -------
·:-r---------:------------ --~----- ----;------r------1--· ----- : ' '

'
·-r~~~(;in t:!iiin<"~ lirm~~-'problems .. ''This article; . s'ubmi·t-ted·--------------.-~--

1
. J by members of the staff of a company

engaged in the development and con­

struction of electronic digital

computers, is considered to·be a

useful introduction to the use of

the instruction code for the computer

therein discussed."
l---------·--.. ··--·-- . --··----·
· Around this period there were a number of·articles

dealing with the solution of particular problems on compu­

! ters, especially problems in the area of linear algebra.
I

J (The inversion of a matrix of order 38 on the Aiken relay

r--c:;·l~ulator was rep~r·t~d in 1948. (9]"; .. th~- computin·g:·· t.i~e. -- ·--

: was 59~ hours.) In January 1953, Joe Wegstein initiated
.--< • - .

the publication of a bibliography of coding procedures

in MTAC [10]. Later, in February, 1960, through his

efforts, the regular publication of algorithms in the

Communications of the ACM began. As with the example cited

earlier, it seems that the main purpnRP. of this was to

illustrate and promulgate the use of a new tool: in this

case, the programming language Algol. However, by 1966,

it was recognized that the algorithms appearing in CACM

were a valuable resource and they were collected and

published separately in Collected Algorithms _of t_~e ACM._ -----·­
The Algorithms Department of CACM was transferred to the

new ACM Transactions on Mathematical Software in 1975.

Other journals, too, (BIT~ Co~puter Journal~ Numerische

r-l'!a_t:_h__~mc:-_t_F~/ ~_egan th_e publication of algo~i 1::h~s. . .. ···----
! The programs available from the published literature
i
1 have been of mixed quality. While the refereeing process

1
these journals have used represents more control on the

l_p!'~grams submitted for publication ~han _·i~_ the _case of _______ _
I

I SHARE, it has not been sufficient to assure a collection

I of high quality software. Refereeing is a voluntary

I activity and it is extremely difficult to find good people
I . .

_ I willing to devote the time and _energy _F_equired t~ ____ thoroughly _____ _.
1 ~4 -; --·- --. . . .

~~-t check the programs submitted. Also, authors have rights - ;~-.-~:~
~; -~- and opinions that must be respected; therefore, t_here are · . ~::7
58-+- limits to the rules on style that one can· impose in this :.:,;,
59 -f G~l

r-h

-,:::-·,.,{'·.::-·.·-. :-''77"' .·· -· ··.-· ----.-:-:_-.,-._·: .. ·-::-:;-··-· ;··---···, 1 ·-· --------- •

-""environment. Certainly, the publication of programs has

been an important mechanism for the exchange of algorithmic

ideas and programming techniques but, unfortunately, it

has been less successful as a mechanism for communicating
! - ..

i executable programs. To support this assertion, we remark

1 that from June, 1975 when the algorithm.distribution service
.I

started in the Transactions on Mathematical Software~ making

! published programs available in machine readable form (tape
t---·· ... ·-
i or cards), to December, 1976, only 44 orders have been

I received for the 18 algorithms published; i.e., less than

i three L·eyue::;L::; peL al~:~or i Lhm.

~---U~~rs ' ____ expectations have _significantly changed over a

I quarter-century, including attitudes toward the ease of use.

: A program which is the fastest and most accurate_will be
.-~ .;.•,

1 ignored even if there are a small number of impediments to
I

! ___ ~ ~s use. The commercial developers of software understand

this, but many researchers do not and they will expend great

effort to produce a program embodying the very best algor­

ithm only to see the fruit of their labor ignored. For

L~~ample, consider the matter of consistency among the

subroutines in a library. It is common for several sub­

routines from a library to be used within a program. If

the global variables for these subroutines are not defined

~-~~a consistent way, then passing information from one

! program to another becomes error prone and awkward, and
i
1 users are repelled.
I
I Reliabili·ty has always been a -criterion for good

L_software but now it is a far more significant issue~ ----·-·-

Programs are larger and much more complex than they were

in the early years, so the problem.of determining whether

or not they are error free is a problem of major proportions.

t_the __ same. time. computers are .being used in very sensitive

situations where an error is extremely costly. In the

early years, it was sufficient to employ a few debugging

tools and run some test cases. Under the present circum-

~~: -t-stances, the . production .of reliable software requires a --- ····-_--:::

~~~fdisciplined approach to the design and creation of the soft- : :·;_ 

57~~are itself, as well as very sophisticated tools to assure · ''' 
~s--the reliability of the product·. ·t·;)~ 
~)9 -----·-·--- .. ---·------· -- .... '"i·---- ··-----,-= .).,.~ 

I ' 
~·-



1- - . . . -- - I i ___ ·-~---·~--4 

_ J.-: _______ j ______ L_. ______ j __ -___ _;__-___ L ____ ; -_____ _l_ _____ -1--------·--- ~.. ________ ~- .. __ _ 
i --r' ----- ' I I -'---4------·; ________ -· -t-- . . . . ' ~ 

I 
-·-------------- ··-----· ·-· ·--2t-:tiit:l"!\;;:· .:··-···•:.··-\/: ~•'f ·~·';' ··~.:·: •. •,"'~-:--::f.•7·i ···~-: .. ,H, ,'••t;,; ·: •; 

.. · Efficiency too has always been a criterion for judging 

'54 

5'5 
56 

software, but the notion of what constitutes efficiency has 

. changed. In the early years, efficient use of memory was 

a matter of primary concern as we have already mentioned. 

Memory is now so large and cheap that its efficient use 

is of less concern. Naturally, speed of computation is 

important, but machines have become very fast and so this 

~~omponent of __ efficiency is less important, relatively 

speaking, than it once was. The-big change in our notion 

of efficiency is the importance we assign to the human 

Lifilt= .i11vulvecl in using a program. If large amounts of 

, __ h_q.man effo.r.t are required to use a program, even though 

~ it executes twice as fast, say, as any other program 
l ! 

-.!or the. same task, _then that program is inefficient in a 

· very real sense. Similar remarks apply to the maintenance 

: __ of a program. Thus the early preoccupation with raw speed 

and minimal use of memory has been replaced with a growing 

concern for the interrelationship between man and machine. 

III. Intellectual Challenges 

By about 1970 there was enough experience with software 

to enable those who had ac~uired a taste for quality to 

1_ articulate their requirements. The check list would look 

something like the following: 

~------U> --·-Algorithmic foundations. The algorithm employed 

should be the best available for the intended 

1 purpose, as demons~rated by careful analysis. 

~ I I i 

~-(-2}---Style. -- The -program must be written so as to ---------

1 clearly exhibit the logical organization of the 
I 
J computation. System dependencies should be 

minimal, localized~ and well-identified. 

(3) Documentation. The documentation ~ust be clear 

and thorough. It must be organized in a way 
l . 

that permits an occasional user to obtain 

----·-·necessary -information ea~ily. · ------------------·-_- ··---:-S·l 
i --:-:>~1 

I 
---Gci 

- ~-:i7 
I 

--! -·5B 

!)9 -+---- --------------1----------------,-- ----....;:·--S9 



I 
: !- t. 

I . .· ·--- - -· ---- ·----··. 

--~-·--·-·· -·· ... ____________ ]._-... .. _. ___ ._. _____ : --··-1 __ : ________ j_ ________ , ____ [_ ___ .J·-··---·····---!·-·---·---····~- ---
·"-·•--~----- .--!---·-----·----~---· _______ ___J __ . ___ !____ I ,_...!_------;-------· --'~-. 

: I I i I 

--· ~· 

i 

. ,,;1 ·.'>""(4); Reliability: The operation of the program must 

be consistent with its documentation; there must 

be no surprises in its use. Provision must be 

made to verify that all conditions on input 

data are met. Extensive testing must show 

evidence of satisfactory numerical performance. 

In addition, if the software is part of a distributed 

collection, the requirements include: 

(5) Consistency. Documentation and conventions 

for use of programs in the collection must 

be consistent. 

(6) Maintenance. Responsibility for maintenance 

must be assumed. This includes responding 

to users queries, making modifications, 

extensions, and correcting errors. 

Attitudes in the early 1950's tended to discriminate 

between the "intellectual" task of algorithm formulation 

and the "clerical" task of coding. The challenges implied 

by the above requirements for high quality software makes 

such a division of labor and difference of status an 

anachronism. The computer science community has come to 

realize that the brainpower needed to create such software 

is as great, if somewhat differently oriented, as that 

which provides the algorithmic foundations. Moreover, 

there are significant research questions associated with 

1 software creation. We suggest several in the remainder 
l 

~o_f_ this section ... --·-·-- ________________ ..J _ --· .. _____ ·-----·------··· . ·--------·---
Consider the issue of good documentation. How does 

I one guarantee the consistency of documentation with the 
I 

i software.it purports to describe, given the complexities 
I. 

L_of_ a _typical program and the fact that it will change.·-·----_ 

j from time to time? It seems reasbnable to consider some 

I 
automatic way of assuring this consistency. One avenue 

· of approach might be to use the ideas.of stepwise refine-

~: +ment [ 11] . In particular, let the initial descr i pti~n.-:- .. ·~· ,_, 
:;;;-~- of the program be the documentat1on or some part of 1 t; ·<,:j 

~~~~then, by a well-defined process, refine this initial _-t~~ 
58-1- . -!-~)P,
5~ -111------------------- ·---l-.5~)

... ··-··· .. ··-··--·-· -·-·····---·---··-~
~t":'ll!;i ;'. . ~'\f ·.·.~- • •''t! ·''.0: ~. ·: :; ;· • .. ;:·.··.: -; ·-·~ :· •,,i ~···.;•,!

~es~ription into the code itself. Another appro~ch might

be to use ideas from the work on proving programs correct.

In this approach one might let relevant parts of the

documentation play the role of assertions, or conversely,

and attempt to prove automatically from the code that these

assertions are correct. Another aspect-of the documentation

problem is the automatic preparation of documentation for

~_ftifferent versions of a program corresponding to different.

computing environments.
j

i Programming style is a matter of considerable interest
I
l ' to-programn1ers these days. As we have already observed,
i
L. 9Ur. notions of good style have changed. In the early
I years, that style was good which used the least amount of

. memory. (Now we seem to wish to use the smallest. number

of go to's!) The ultimate objective of the style formalized

as ''structured programming" is to produce programs which

are less likely to contain errors. The guidelines for

structured programming are heuristics which people beJi.eve

programmers should follow to meet this objective. One way

~_this approach could be put on a firmer foundation would be
' . ' .

to tie it to the relative ease of ~utomatic error detection.

For example, one technique for automatic detection of errors

in a program uses data flow analysis [12]. Certain program-

, __ _ming practices greatly complicate data flow analysis (e.g.,-­

the use of EQUIVALENCE) , reducing the error detection

capability. It would seem reasonable to recommend that

; programmers avoid the use of such constructs. Redundancy
i
f-is-another aid to error detection. ·Languages which permit --
' ! greater redundancy
;

would, in this sense, encourage a better

l ·programming style.

I The new machine architectures and microprogrammable
I .
~machines pose new and challenging problems for the algorithm:

1

designer. It is becoming possible to mould a machine to a

class of problems through micro-programming. Perhaps it

would be fruitful to think of designing algorithms with

~i,l--1--this additional degree· of freedom in mind. Here we see---- .. -+'-:4

. ~~~; ~t the need for an· important, but all too rare, combination of -~J,~~~~
5/~-- talents in numerical analysis, algorithm design, and com- ·-[·<i7
,.,, i • --GP.
~~~ --t=--p_~_ter __ archi te_cture_~ 5~ 

I 



·- n.tl{Jj 1:-.\--· : .• {. · ~-\/; ... l -~~-~-~ .. :.-, .. ·-:.~,,-~-;··;, ... :-:.:·.-.:;:-.::;,-- ....... . .-.\·-.:_-p-f:;.·:~:._;··· 
,--·-- ' '·: Articles· in the 'area· ·of 'software· 'r'eliabili ty have 

appeared with increasing frequency in recent years and 

there have been several conferences and a recent book 

devoted to this subject [13, 14, 15, 16]. We are still 

:a long way from being able to prove the correctness of a 

sizeable numerical routine in a formal sense. However·, 

it does seem that good progress can be made in the area 

of informal proofs and, if we are ever to ~chieve truly 

reliable software, more serious attention should be given 

to this subject (e.g., see [17]1. 
There is a very interesting connection between 

L __ .9P_timizatio~_ technique~ and error detection in programs 

that is worth mentioning· here. In data flow analysis-the 

flow graph of _a program is .. examined and certain patterns 

of data flow are recognized [12]. Some patterns are 

symptomatic of_errors; however~_if.~hese patterns arise 

on a path which is not executable then they ~re of no 

interest. Thus it becomes imp6rtant to distinguish the 

executable paths. One attack on this probl.Rm has been 

_described b~ C~arke [18] where. it_ is shown that the problem 

reduces to a non-linear programming problem, and frequently 

to a linear programming problem. 

The exploration of such problems may appropriately 

be labeled computer science research. It has become 

fashionable to call the application of:the knowledge thus 

acquired "software engineering." We shall see in the 

remainder of the paper how software engineering links to 

~numerical analysis and to a delivery system to form inte:-:- __ . __ _ 
' 
1 grated production projects that are carried out in the 

real world where economies and politics leave their mark. 
I 

\ IV. Projects to Produce Mathematical Software 

L_ ____ .Because the people who can contribu·te the required 
I . 

;. 

skills are dispersed geographically and have various 

primary sources of financial support, mathematical software 

projects are organized as collaborative endeavors involving 

1:;4 _Lj_ndividuals in universities, 
- i 

government laboratories, and -0~ 
,- ... I 
:)~- 1-·private enterprises. 
r~r; -· ~ 
.... I 

~>7 _.__ 

sa--L 

! 

l 
!)9~----------------------------------~-------------------

·---5G 

- j-:i 7 
I ,..,l -·T· :Jv 

---------{-.5~~ 



J '· '. 
I 

! ' 
·- .! ---- ----~~---------~------------:-.. ----;·------------t------~-----t--------:------!...------- j •. 

- ------------.--------- -~-- . ---:--------·--- ----------!------:-----·--;---- ------------ -:-·· ------·: 

. . - - ----·- - '-
- . . . . . -\1 . .• . : . .--·_,· .. (·;·"·· '!_-·._,.._.,·, .. ('.',.( ~.--t-.',1 \,'.···-·······---------------

~-~t-.:r!in tvp:::_;. ~~~~:-~-. - -_-·.·· :'·~·"- -~-' · .. -.~··" · 
.; ·· The accomplishments of a mathematical softwa~e ~reject 

can be listed under the following three headings: 

1. Utility: 

, Software provided by the project is readily 
'·· ---------· .. --··"":'''"'------ --

I 

available to and usable by the scientific and 

, engineering public. 

2. Research Exploitation: 

...... _____ .. _ ............ The project is a conduit for the flow of 

research results in numerical analysis and 

algorithmics into applications. 

3. Software Production Improvement: 

\ ..... ...:.. ....... _ ......................... _ .... Production tools and techniques have been 

developed and knowledge about the production 

• :! .. ----
process .has been acqui~ed by the project . 

Every successful mathematical software project we have 

observed could claim accomplishments under all three 

headings although each project is characterized by a 

particular distribution of emphasis. Opinion will vary 

among individuals on a particular project as to the 

_relative importance of these categories; We believe that 

all three orientations are necessary to mathematical 

software production and that the success of a project 

(assuming adequate funding and physical resources) is 

:_largely measured by the extent to which differentiy moti­

vated individuals have merged their efforts to everyone's 

satisfaction. These differing perspectives will emerge 

' as we describe three representative mathematical software 

~~rejects, namely NATS (National Activity to Test Software),· 

NAG (Numerical Algorithms Group), and IMSL (International 

Mathematical and Statistical Libraries), Inc. 

:-------------- -···· ----- . ----NATS --:-----·---....:.- -- ... ---- -·-·········-·- ---- -

l 

NATS [19] commenced in early 1971 when grants from the 

! ·National Science Foundation were awarded to Argonne National 
'· ! Laboratory, The University of Texas at Austin, and. Stanford 

~:;.-'-~-University. The objectives of the project were (1) to · o-·~·,, 
r;r. _ ~- · · 

·;~~--[_assemble, test, certify, disseminate, and· support packages 

~>7-~-of mathematical software for eigensystem computation and 
r;c· _..] _ 
· ". i function approximation; _ _{2). ... to. explore .the . .methodology, -----·-,-',J. 
~)s-t~-~---·--· ·· · ~ ; 



.. L-__ · __ , ----l-----------~------------L------j---~-----L-------'·-------- _______ J _____ _ _ __ , __ .. ---··- ... ---
-··j------r-----·-t-----. J------~-------·--j--------f--·-- ---··;-------· -·--- -·- --

-v-:o_,. .... ::i-,. ...... -:-·-_; .,-~ ....... ;,·-· \/::·: ,· ·.- -· . ·.-....... ·- ..... :. :: ... ~! .. - .,.-; ... , ', ..• -: :;, ; -··-··- -· --------- -- .. ·--- . ~-

. ~osts, and resources required to do (1). The second objec-

tive was primary and was approached by carrying out the 

first as a prototypical effort. Therefore, NATS was a 

study of the means of mathematical software production, 

more explicitly so than any other project we know. By 

focusing on two computational areas with such intensity 

that great care could be taken in code coristruction, test-

__ _ing, · and documentation, NATS attempted to establish bench­

marks and guidelines for mathematical software production. 

By organizing the project as a university-government lab­

oratory collaboration, NATS explored the intertaces and 

~-9ivision of responsibilities among several collaborating 

i institutions. 

_ -:------ The_ software products of NATS were called "systematized 

; collections" [20]. There were two, EISPACK [21, 22] and 

, ___ FUNPACK [23] in the areas of eigensystem computation and .. 

function approximation respectively. Two releases of each 

collection have been distributed, the second release, in 

each case, extending the capabilities of the first. EISPACK 

is available in six machine versions (IBM 360-370, CDC 6000-

7000, Univac 1108-1110, Honeywell 6070, DEC PDP-10, 

Burroughs 6700) and has been distributed to approximately 

450 installations. FUNPACK exists in three machine versions 

~-(IBM 360-370, CDC 6000-7000, Univac 1108-1110) and has been 

distributed to about 165 installations. Thus, a sigriifi­

cant computational resource has been produced. It is 

limited in the number of computational areas it covers but 

f-is ... of very high quality within its scope. . .. ---··--

i The algorithms realized by the NATS software were the 
i 
! culmination of years of work. The.eigensystem algorithms 

1 published in Algol [24], are generally acknowledged as 

~-representing state-of~the-art methods, supported by 
! 
i penetrating error analysis. Release 2 of· EISPACK also 

i contains the algorithm discussed in [25]. In the function 
l , approximation area, the algorithms were expressed as 
! 

54~running Fortran codes that had been developed for ·use at -· - - -:,.· 
5S-~-SG-f- Argonne National Laboratory. However, such codes are 

57~highly machine-dependent and a significant amount of work 

S!J -1-------------------t---------------------;-~J£; 



.. ~:· .. : 'was. requi~ed. t6" prepare 'd~ ~ i~ren·t. ma~·hiri~ -~;~~-ions :--~;;e~=- ·-·-

1 ble a modularized package for each machine, test and fine­

tune the software, and write the documentation required 

for widely distributed software. As the work progressed, 

NSF grants to the University of Kentucky and Jet Propulsion 

Laboratory brought collaboration with those institutions 

in the function approximation area. By producing EISPACK 

and FUNPACK the NATS project made analytic and algorithmic 

research results in these areas of computation readily 

accessible to scientific users for application in many 

fields. 

An important form of collaboration wa~ field~testing 

in which some two dozen computer installations at univer~ 

sities and research laboratories, representing the machines 

for which the package was being developed, cooperated by 

running tests supplied by the software developers and by 

making the software locally available for application to 

"real" problems. 

Satisfacto~y performance at the test sites leads to 

"certification" of the codes; i.e., issuance of a warranty 

that the codes have performed satisfactorily in extensive 

testing and assurance of the continued interest of the 

developers. Certified NATS software is distributed by the 

Argonne Code Center. 

The importance of coordination from some central point 

becomes very real when one considers the information flow 

among the various collaborators: numerical analysts 

supplying algo~ithms expressed as code.~eveloped on differ~ 

ent machines in different locations, field test represen­

tatives attempting to implement code on a different 

1 machine than used by the developers, numerical analysts and 

---~oftware specialists writing documentation, the enormous 

clerical task of accurately processing many hundreds of 

requests for a package, and finally a continuing responsive 

point of contact for question~ about the codes and their 

~J':I __ performance. ___ These are the operational issues after the ---:;.1 

~-,:; ....... project has been organized and commitments made. They are. 
f) I~ .. ~-. 

~;_J_ preceded by an exploratory effort to determine the feasi- ·.:7 

~:,~-;-,.- bili ty of a particular package development, involve those -.. ' ·: 
~-l~i-:----------w----------:-------, .1' ,·---.. --... --- .. _._ ·------ ---- .. -------------------;--=-,.:, 

. i 



':· I 
. : . • •.• ______ !,. --··· - ···-· ·---1 ... -!-- --·. --. . ! .. - --~ .... ···-···--1--·· .... 

, .. !~---- -···· ... 

.... r _, ." . ~.. . .· 

·who could contribute, and seek funds to support the activi­

ty. Indeed a significant investment is required before a 

major mathematical software project can b~gin. Argonne 

National Laboratory played the central coordinating role 

for these pre-NATS organizational and operational activi­

ties. 

The clerical burden on the project stimulated the 

development of computer based techniques for managing the 

large volume of source code and documentation for several 

computers._ From this beginning there evolved a system, 

now called T&MPR [26, 27), which analyzes Fortran source 

~_programs, constr?cts an abstract form of the code which 

can be manipulated to produce alternate versions (e.g., 

for different computers, with various subroutine options, 

in greater or less precision, using real or complex 

arithmetic) which are reconstituted as running Fortran. 

This innovative work on the production process was 

intimately associated with the mathematical software 

developtnent activities of NATS. It has long range research 

goals but is applicable in a very practical sense. It is 

an example of the delicate balance between short-term 

and long-term needs. If NATS had been under greater 

pressure to meet production deadlines, TAMPR necessarily 

. _would have focused on helping to meet those deadlines, 

probably to the detriment of the system's generality and 

its larger computer science implications. On the other 

hand, an attack on program transformation problems without 

~-Ielevance to real production needs could have led to more 

abstract formulations of less help in the production 

process. 

The NATS project, having lived out its prototypical 

;_life, is now deceased. Its products, EISPACK and FUNPACK, 

! have been well-received_and its descendents are alive and 
I. 

well. These include the LINPACK project [28, 29], a 

i collaborative effort among Argonne, the University of 

54+Maryland, the-University of .New Mexico, the University 
~(- . . 

~~l- of California at San Diego, and the test sites to produce 

~;I~~ a. systematized collection of .linear systems routines; the 

'J'J -- . . J ___________ _ 
.. I . ! 

~-L 

··-:i .. 

. ~. ~: i 



,_I ___ -·--------~ 1··-· .. - -·-' .. __ J __ -- ---·-.- .J. ·----
I 

·-·--- --·- -· ---
.. ··--!~---··-·---···:-··---··-: ·.· -· ·n ---·---·-·-·---·- ·--i ------r·---·--·-·1--------~-,---------·-·-------·------ :·-

·MINPACK project [30] aimed, in the long term, at producing 

a systematized collection of codes to solve non-linear 

optimization problems and systems of non-linear equations; 

and the research in program transformation exemplified by 

TAMPR. 

NATS was supported by funds from the National Science 

Foundation.and the Energy Research and Development Admin­

istration. We offer the following information (see [31]) 

to convey a sense of the resources required for such a 

project. 

EISPACK 1 Release 1 

Duration - 34 months. 

Total Personnel Effort -

Cost $528,000 

Senior Professional Staff 
(Ph.D. or equivalent): 

.·. 96 months; 
Professional Staff (M.S. or 

equivalent): 16 months; 
Clerical Staff: 14 months. 

Size - 34 routines totalling about 6000 source cards 
for each.machine version; 

The IBM version includes a control program 
of about 2500 cards. 

EISPACK, Release 2 

Duration - 41 months (About 16 months overlap with 
work on Release 1). 

Total Personnel Effort - Senior Professional Staff: 
60 months; 

Professional Staff: 
32 months; 

Clerical Staff: 17 months. 

Cost·- $371,000 -. ··- -·-----------

Size - 70 routines plus certified drivers totalling 
about 12,000 source cards for each machine 
version;. 

; The IBM version includes a control program 
: . of about 3500 cards; ····-----·---
r--·---------·-·--- Machine-readable documentation requires 
! about 12,000 cards. 

I 

I 
I 
I 
I 

!)IJ. ---1----.,------------- .... ·-·----··---- ·-· -,-r:+ . 
..)J -

sr;--+-
57--{--
5(;-i­
.- o I 
:J,:.? I 

I 

I . 

.! ------·--------···---------·----- . ·+51i 

-·i- ;~:, 
.... -~ )(:_, 

----------+---------- --:--S0 
. I 

,...---!---, 

I •• ,' 



... ! 
• 0. 

NAG 

In 1970 a group of British universities, all users 

of the ICL 1906A, initiated joint action to produce a 

numerical software library for that machine. Now run from 

a central office in Oxford, the NAG (Numerical Algorithms 

Group) project [32) has considerably enlarged its original 

scope. It aims at the creation of a comprehensive numerical 

software library that can readily be implemented in vir-

.tually any scientific computing environment. The current 

library is available in Fortran and Algol 60 (an Algol 68 

version is under construction) for a number of machines 

manufactured by Burroughs, CDC, DEC, Honeywell, IBM, ICL, 

Prime, Siemens, Telefunken, Univac, and Varian. There is 

widespread use of the library, especially in British 

universities. NAG· maintains more than 100 copies in 8 

countries [33). 
The NAG library project remains a collaborative 

endeavor among British universities and government research 

laboratories, notably the National Physical Laboratory 

and the Atomic Energy Research Establishment at Harwell. 

Its activities have been s~bsidized in part by the govern­

ment; however, it has become a non-profit corporation which 

will attempt to achieve financial self-sufficiency by 

. _renting its library products and services. 

The NAG project emphasizes utility. It was created 

in response to the need for a product and it retains 

that orientation. The current release (Mark 5) contains 

--over 300 routines (in each of Fortran and Algol 60). A 

new Mark of the library is issued approximately once a 

year. 

Software for the NAG library originates with contrib-

.~utors who decide upon the coverage of some area of computa­

tion, select the methods, and who write,· test~ and document 

the software. The contributors are experts in the compu­

tational area under development and are usually from one 

:5-+-·-of the cooperating universities or research laboratories·. 

:·:~ ·· Their software and documents are subject to validation by 
;;o) .. -

57-i- other experts who review the material for algorithmic merit 
i •({- -·-- ..... i 

-~ i and usability. It is thus largely the_judgment of the .. _. ___ ., .. 
!_1:) -~-- . . . -- . . . . - .. - - . . 

__ __,__ 



-·.:3c·c·ontributo~s and validators which det-ermines the way NAG 

functions as a conduit for algorithmic research. 

Validated routines are examined by the NAG central 

office, using various software aids, for adherence to 

language standards, formatting, and general software 

performance. The product of these contribution-validation­

examination activities is known as the "contributed 

library." It is not distributed as certified software in 

the NATS sense but passes through an implementati9n phase 

for each machine range, an activity overseen by a 

coordinator tor that machine. 

Accepted implementations are returned to the central 

office for inclusion in a master library file system 

which retains a complete history of each piece of software 

in its various incarnations. Information in these files 

·has proved very valuable in determining programming stan­

dards to promote ·portability [34]. This type of case study 

and the development of the master library file system [35] 

are among the specific contributions of NAG to software 

production tools and techniques. 

Perhaps the greatest methodological contribution of 

NAG has been its organization as a collaborative enterprise. 

It has become a national effort that brings a great deal 

of the best analytic and programming talent in Britain to 

focus. The project now has 22 full time staff in the 

central office and associated universities. Some 120 

people work in part-time and voluntary capacities. During 

~~he period June 1, 1970 to May 31, 1976; the total economic 

. . cost of the NAG project is estimated to have been 

i ~ 1,025,000 [36]. ~ 1 ~ $1. 70) The effort during the 

same period is estimated to have been 152 man-years which, 

L~n the United States, would have cost approximately 

$6,000,000, about three and a half times as much. 

Considering its success, is NAG a good model for 
' i· government-sponsored mathematical software production in 

s 4 ~i_North America? We think not, at least it was not in 1970, __ .. 11 

' 55 -~ because the emulation of NAG would have brou~ht North - 0G 
Si:>-1- --,_,,, 
GJ--1- Americans into conflict with the way government funds for -';7 

~:s-~ mathematical software development had been dispensed on this -:-:-.: 
:)!),-----·-------------------------------- ·--- ----- i -· ---------·--·--.. -----·- ·: ..... .. --------- -~:1!1 

j j-'.·P;c! i\!1.; ....... /~ .•. 
L_ _________ -------. 



side of the Atlantj:.c. Under the rubrj:.c o~ "mathematics 

research" or "computing support," such tunds were dispersed 

among many groups serving the interests of varj:.ous agencies 

and sub-agencies. By 1970 when "mathematical software'' 

assumed an identity, nearly every major computing establish­

ment in North America had a mathematical subroutine library. 

Effort was duplicated, quality variable, and attempts to 

transport codes were rarely completely successful; neverthe­

less, the local codes had the virtue of familiari~y and 

most users would not abandon their local software for 

anything less than codes of the quallty uf EISPACK. 

~---- .. . Meanwhile, in Europe, first class algorithmic research 

offered a superb foundation for software development but 

.less work had been done toward developing software libraries 

for a variety of computers. Both NAG and NATS entered this 

picture, NAG dedicated to satisfying immediate needs for 

mathematical software through .collaborative action and NATS 

determined to show the benefits of collaboration in pro­

ducing very high quality packages. NATS was limited in 

breadth of coverage; NAG software varied in quality though 

it was, in general, highly competitive with other software 

then available. (Later Marks of the NAG library show a 

steady improvement in quality while NATS-like projects, 

e.g., LINPACK and MINPACK, have entered other computational 

areas.) 

A government-sponsored NAG-like project in North 

America would, therefore, have been in conflict with .the 

__ decentralized way mathematical software-had been produced 

on this continent. To gain acceptability, its product 

library would have needed to be EISPACK-like in each 

computational area. Even if algorithmic research were 

~-sufficiently mature to permit this, the effort would have 

been very expensive because (1) it costs more to do this 

work in North America than it does in Britain, and (2) 

t.he cost curve rises very sharply as one approaches 

~~-EISPACK-like quality. The concentration of funds required 

:5 ... · to produce such a library would not have been politically 
~)· .. . 
·- -. j :,); '!• 

:JB !--'. 
~)~l:l------. ----- -·-·· 

...., ··~>} 

'' I .~ 



J ! f~,, .. i \''.1;, :;.!/ 
I__- • ·----· 

I 
I ' 

O•>y-p ·-~-- --····------~·- ~ -··· ----·-Roo-- =••OO- ~ 
---·----.-------· ---:--------- _,_ _______________ ---- !- __________ ;__ ---

. -t--·-· ·-·· ·--··-··- ... ________ _ 

)-.!~;... : . ' 

, acceptable. The same discussion shows, incidentally, why 

a NATS-like ·project would have been unacceptably extrava­

gant in Britain in 1970. 

IMSL 

IMSL (International Mathematical and Statistical 

Libraries), Inc. is a for-profit corporation in Houston, 

Texas which offers to lease a proprietary mathematical 

software library containing about 400 subroutines to users 

of Burroughs, CDC, DEC, Honeywell, IBM, Univac, and Xerox 

computers [37]. The corporate intent is to provide software 

that realizes the state-of-the science in methods and 

~-algorithms. The emphasis at IMSL is on utility: satisfy­

ing the needs of customers. 

- ---- The company was established in 1970 by scientist­

managers who had earlier helped develop program libraries 

·foi IBM. ~he founders were aware of the .local library 

syndrome discussed above. Since they were using private 

capital they were not bound by Llle decentralized approach 

of government agencies. However, they were faced with the 

· problem of marketing their product in the climate created 

by that approach. Moreover, they were not possessed of 

the capital to produce EISPACK-like codes across a broad 

spectrum. Their response in this tightly-constrained 

-- ·situation was to produce a library that was comprehensive 

in mathematics and statistics. (thereby covering a broader 

base than most local libraries), to keep its quality as 

high as possible by involving expert advisers, to under-

jscore their responsiveness to customer· problems, and to-----·-: 

encourage trial of the library by keeping the subscription 
I 

i price fairly low. 

We believe that IMSL assumed substantial risk and that 

~the success of the venture from a business standpoint is 
I 

! still not assured. At its lowest point, the company 

i showed a net loss of about $350,000 in 1972. It broke 

! .into the black in the third quarter of 1976. Techniques 

~~=ru~at are being developed to moderate problems of portability-;;:~ 
56+ will significantly enhance the ability of IMSL and other ; <i1i 

57 -f- producers of mathematical software to disseminate that ;-sl 
58 -t- ··t- f,~~J 
59j 59 



. -· ·-~--~ ~ ·--~-. --·~·-· . . 

software widely; indeed IMSL has, with support from NSF, 

carried out a portability study that resulted in a system 

called the Converter [38) used by the company and available 

to the public. This improvement of software production 

techniques is of central interest to the company in break­

ing down barriers to acceptance of its product.. We note 

that both NATS and NAG have also regarded portability as 

a crucial issue. 

IMSI. is far more centralized than NATS or NAG.· We 

undeiscored the collaborative nature of the- latter projects 

which are coordinated, rather than directed, from a central 

.. _place. IMSL certainly draws on the expertise of the 

numerical analysis community through its board of advisers 

but this partnership is limited to a flow of technical 

advice on request. The stiucture of the library, and the 

tactics and overall strategy of the company arei naturally, 

the responsibility of the corporate officers who answer 

to the investors. 

We believe that the company has demonstrated its 

ability to act as a .conduit for research results. IMSL's 

source for methods, algorithms, and software is primarily 

published material in leading journals as well as doctoral 

theses and contributions from advisers. The President 

.... of IMSL has declared that the company's role is "to 

quickly move research results on algorithms and software 

development into programs which operate ... in a 

scientific environment." [39] 

-.. _ _:_ ____ cost and income figures quoted by IMSL [39) add to 

our information about the expenses involved in mathematical 

software development. The company spends approximately 

$2000 for each code for the-first implementation while the 

·-· -cost of moving that software to a new environment is 

about one-sixth ·of the original cost. The gross revenue 

derived per code per year per customer is $3.75. It is 

expected that this figure will decrease· as the library 
; 
I 

!Jtl+-grows while the cost of -production _will decrease as more ---::!:; 

ss ·-r·~ r::~ 
56 _~ sophisticated portability techniques are employed. A gross __ 

0
H 

~i7-L comparison of these costs with the EISPACK development . '-;,7 
r• '' I :)u-r 
r.;q-+----­.... i 

t-58 
---! ~i9 



. I . 

.o: I ! • i ' I 
-~-: ________ , _____ ~-------·--!-------· --L-·---1---------!----- ·---:------L----- -"---...:.--·--·- ··-··· ---
-:-T·· .... · -~ ·---- ~-~-·-··-- -- ·· ·- · ---- -- ~1-------- ····- t-----·· -:------ --····--: ---·----- ----· ·-:----·--- -----~: -- ------·-··-- ~----·-··-- ··- ---

l 

-··(1t·-,:~~1·_;.-~--:~ ::··;· : ·- -y~ •• , ~\-· • '•-· • r:,.,~ · ;:-:-~·-·t-· ·.···.· · /, -;-;:•"-• : · .. · ------------ ·· -~-------· ·· · ·----·..,... · ·-

COStS quoted earlier indicates that the NATS costs were 

about three times as great as IMSL costs for a given 

volume of code, further evidence that exceptionally high 

quality software is exceptionally expensive. 

V. Trends .in Mathematical Software Production 

In this· section we shall confine our attention to the 

North American scene in an attempt to predict future 

.. Patterns of mathematical software production. The 

following trends are already apparent and will combine 

to exert a strong influence: 

(l) The demand for gdod general-purpose mathematical 

--- ---·· --- -- - -------. 
I 

(.2) 

-- --- . -- ·- - - ( 3 ) 

.software is increasing among the user public; 

Relationships between the quality and cost of 

. mathematical software are becoming better 

understood by producers and users; 

Computer-based production techniques, now 

under development, show promise of improving 

quality and decreasing cost. 

Users have become more. receptive 'to mathematical soft-

.... ware produced for dissemination. EISPACK and FUNPACK are 

acceptable because they are of very high quality while 

IMSL and other libraries offer good quality and broad 

coverage. The responsiveness of the developers of these 

--packa~es to user problems has helped overcome the 

resistence to .non-local software. This acceptance is 

still very fragile. Users are uncertain about the highest 

price they are willing to pay, either in terms of sub-

:--scription fees or the toleration of imperfections. These 

are closely related since, as we have already remarked, 

'·the cost of production rises sharply as one approaches 

NATS-like quality. If users do not become disillusioned 

:--.because of some particularly disappointing software that 

appears, then there is a good chance that mathematical 

software production for a mass audience will remain viable 

long enough for improved production techniques to strengthen 

!5<1 --:- the whole enterprise. we believe that users and producers 
!):) --:--

SGj- are becoming sharp enough in their evaiuation of cost-

57_;-- quality relationships to sustain the present momentum. 
!iH- ~·- · 

I 
!j~J --T-- ------'-----------·-

1 

---~-;~ 

. '-!:G 
--~--~17 

.. t- f)[) 

t-59 



I 
i . 

-~·h~==-~~~:-~-~-~:~~-~-=-~-===-~~=-:=-~-=~t~===l~~=--=~--:..~==-=---~t-=--===t=~-=--~=--==:~-=~:-= 
'i 

. ... . : ·:· :· . ~ ~~ ! "} ,. ( ; i ~ ; -~. . . • • . ~ \.~~;~;if I ·.'' 

Three areas of production technique research show par­
. i ticular promise of providing the tools needed to start an 

_escalation of good mathematical software, cost reduction, 

and user confidence. These are (a) computer-aided analysis 

and transformation of source programs, (b) testing methods, 

and (c) networks. 

Example of program analysis systems are DAVE [40), 
PFORT [41), FACES [42), PET [43). Examples of program 

transformation systems are TAMPR [26, 27) and the Program 

Generator [44). Analysis systems permit a probe of the 

structural details of complex programs with identification 

of anomalous and erroneous constructions. The transforma-. 
tiorr systems also analyze the structure of a program but for 

the purpose of transforming it in various ways. For example, 

programs from various sources may be brought into confor­

mance with a set of formatting standards. Such systems may 

use a master program or set of instructions to automatically 

generate software tailored to a particular machine or with 

variations in program structure. By storing and maintaining 

.only the master programs, developers and distributors have 

far fewer data to manage in error-prone -information pro­

cessing operations. 

Testing methods are being developed that take into 

.. account a fundamental distinction between two classes of 

software [45). The first class (called "precision-bound" 

software; for example, numerical eigenanalysis, linear sys­

tems, and function approximation) suffers primarily from 

r-round-off error due to the finiteness of machine number re­

presentations. This type of error is ra-ther well understood 

theoretically (see [46)) and the testing techniques used in 

the NATS project appear adequate in principle. The second 

~class ("heuristic-bound" software; for example, the numeri­

cal treatment of quadrature, ordinary differential equations, 

and non-linear optimization) is a victim of -errors derived 

from the manner of simulating analytic constructs, in parti-

54+cular convergence. These -errors dominate round-off so that )IJ 

~~-f- such software requires an approach to testing which permits ·-:-~. 
::.:·u-:··· J:) 

~~7--t- careful statements to be made about the cost of obtaining --:;7 
~( .. _ _!_ ! -:;(; 

;;~; ¥-~~~abi~A "!:Y .. at __ S()me __ ~_pecified. confidence level_. ___ A :testing ___ 7_:J~ 1 

r1-1 



., . 

.. .... ·····-~---··------·-· !.. ··- -···· ··-- -·~-----·· ----- L ------- ···-·-·--·---- -·· .... ········ ---

• J . '. . .. ~. 
·methodology along these lines has been developed for 

quadrature routines [47]. Further work will be essential 

to the production of high quality heuristic-bound software, 

accompanied by meaningful statements about performance. 

Computer networks will facilitate interaction among 

geographically dispersed collaborators [48]. Such 

networks will also enable users to obtain both information 

_about software applicable to their needs and the software 

itself. Experimentation along these lines is under way 

at several ERDA laboratories. 

We are-optimistic that tools based on this research 

will facilitate the passage of algorithmic ideas into 

useful software. However, we do not believe that future 

mathematical software projects will simply be streamlined 

versions of earlier efforts. Rather we foresee certain 

basic changes in institutional roles, the principal one 

being a shift of government support away -from NATS-like 

efforts in which a government laboratory acts as a mediator 

between university research and end-users. Th~ effective­

ness of su6h programs has been demonstrated and we have 

argued for their expansion [31]. However, the required 

conceri~~a~ion of resources remains politically unacceptable. 

Our hope now is that present trends will lead to commer-

- cially viable production activities which draw heavily 

on expertise in the research community. We predict that 

the government will encourage these trends by supporting 

state-of-the~science studies and algorithmic and systems 

~research, buyin~ the mathematical software products 
i 

i 

and developing the use of these products in government 

programs. In this view of the future, the actual produc­

tion will be carried out through commercial enterprises 

Lwhich .maintain a .. working partnership with universities 

j and research laboratories, often taking .the form of 
I interaction with individual scientists. i 
I We must, however, admit a second-possible future for, 
I 

54~S--we have already suggested, the commercialization of . ·-· "'~· 
~~ I . 
~~-~mathematical software production is in a somewhat precarious 
5G -1- .. 

57+ situation and its growth is riot assured. Afte:J::" all, the ---:~7 
ss--f- same improved techniques that make the production of ;· ~~~: 
59-~-----------·------------·-----·-·- ..... ---······ : ···- ··- ·---- ···-· ·-- ---·· ------·-- ----------~-~:.:) 

I 



... 
~-.1--=---------:....-·-----·--·-···· -·----.--.. .!.~~----~---·-~----·~----·-·--·--: --·-····--·-·---!---·····-·-- ---~------· -~------- -·--··· ·- -·-------·- ·- ---

' ' ' : • •· ''\ ' ', I : ' • . • ~ • ) ' 

·comn1ercial libraries more feasible also make it easier for 

small groups in universities and research laboratories to 

do what they have always done - produce mathematical 

software for their own use and for limited distribution 

within a· specialized community. We rate such a "cottage 

industry" approach as inferior to "mass production" that 

strive~ to be a conduit for the b~st research results. The 

. real future will probably be a mixture of commercialization 

and local developments in a proportion impossible to fore­

see. In any case, the mathematical software production 

events of the last half-dozen years have raised standards 

... and influenced .tastes so that the state of scientific 

computing is the better for it. 

REFERENCES 

·1. ·Rice, John R. (Ed.) Mathematical Software 3 Academic 
Press (197l), 515 pp. 

2. Mathematical Software II - Informal Proceedings of a 
Conference. Purdue University, May 29-31, 1974. 
324 pp. 

3. Battiste, E. L. The production of mathematical 
software for a mass audience. In Mathematical 
Software, John R. Rice; ed., Academic Press 
(1971), 121-130 .. 

··· 4·. · · Traub, J. F. High quality portable numerical 
mathematics software. In Mathematical Software, 
John R. Rice, ed., Academic Press (1971) 131-139. 

1· 5. Newbery, A. C. R. The Boeing library and handbook 
f_ . of mathematical routines. In mathema.tical software 3 I ---···--John R. Rice, ed., Academic Press (1971) 153-169. ··-

! 6. Wilkes, Maurice V.; Wheeler, David J.; and Gill, 
i Stanley. The Preparation of Programs for an ·Electric L _________ vi~.Z:tal Co~~uter 3 Addison-~esley. (1951), 167 pp. · 

! 7. Kernighan, Brian w. and Plauger, P. J. The Elements 
J of Programming Style~ McGraw-Hill (l974), 147 pp. 

I 8. 
I 
i 
i 54_! ______ --
1 . 

Snyder, Francis E. and Livingston, Hubert M. Coding 
of a Laplace boundary value problem for the UNIVAC. 
Math. Tables and Other Aids to Computation. (now 
Mathematics of Computation) 3,_ 25 (Jan. 1949), 
341-350. 5~:iT 

~i6+ 
I 

57-r 
~)8-

·-· ~:,~j 

,.,... 
- :. :,)(1 

59·+-------------
______ _j_ ______ _ 

I 
---------- --i-:;~) 

~ 



~-~:,. _________ : ____ ~ ____ ! __ ··- _____ : __ ; ______ ~-:-- .. : ... _______ ,. ___ y __ _ 

- .. ·---- ···--··- ··---·~ .. . - . ·-· ··-; - .. 
·' 
! 

! 

9. Mitchell, Herbert F., Jr. Inversion of a matrix 
of order 38. Math. Tables and Other Aids to 
Computation (now Mathematics of Computation) 
3, 23 (July 1948), 161-166. 

10. Todd, John. Bibliography of coding procedures. 
Math. Tables and Other Aids to Computation (now 
Mathematics of Computation) 7, 41 (Jan. 1953), 
47-48. 

11. Wirth, Niklaus. Program development by stepwise 
refinement. Comm. ACM 14, 4 (1971), 221-227. 

12. Fosdick, Lloyd D; and Osterweil, Leon J. Data 
flow analysis in software reliability. ACM Comv. 
Surv. 8, 3 (September 1976), 305-330. 

13 .. Proce8dings IEEE Symposium on Computer Software 
Reliability~ New York City, April 30-May 2, 1973. 

14. 

15. 

Proceedings International Conference on Reliable 
Software~ Los Angeles, Ca., April 21-23, 1975. 
567 pp. IEEE Cat. No. 75CH0940-7CSR. 

Hetzel, William C. {_Ed.) Program Test Methods~ 
Prentice-Hall (1973), 311 pp. 

16. Myers, Glenford J. Software Reliability: Principles 
& Practices~ Wiley (1976), 360 pp. 

17. Hull T. E.i Enright, W. H.~ Sedgwick, A. E. The 
correctness of numerical algorithms. Proc. ACM 
Conference on Proving Assertions About Programs~ 
New Mexico State University, Las Cruces, N. M., 
January 1972, pp. 66-73. 

18. Clarke, Lori; A system to generate test data and 
symbolically execute programs. IEEE Trans. on 
Software Engineering SE-2, 3 (Sept. 1976), 
215-222. 

, __ ...._ ______ - ·-- ---··- -· - - ·-

' 

19. Boyle, J. M.; Cody, W. J.; Cowell, W. R.i Garbow, 
B. S.; Ikebe, Y.; Moler, C. B.; and Smith, B. T. 
NATS, A collaborative effort to certify and 
disseminate mathematical software, Proceedings 1972 
National ACM Conference~ 630~635. 

!----·- ------- ····---·- ---·--· ---- ··---

I 
I 
I 
I 

20. 

) . 

Smith, B. T.; Boyle, J. M.; Cody, W. J. The NATS 
approach to quality software. In Software for 
Numerical Mathematics~ D. J. Evans, ed., Academic 
Press (1974), 393-405. 

54_L2-L 
I . 

---Garbow, B. S. EISPACK - A package of matrix ··-<i·; 

~5 -t-
SG+ 
57j_ 

' 

eigensystem ro.utines. Comvuter Physics Communications 
7, 4 (April 1974), 179-184. --·· 

:s-t 
~9~~~--~·-----·-----------------

1 

I ,.,., 
---------:)"J 



, .. 
' '••••w ;: •• ,•-•-•••-•• •••-.••- --•• .. -·--••••• 

: :· .. . .. · .. 

22. Smith, B. T.; Boyle, J. M.; Dongarra, J. J.; 
Garbow, B. S.; Ikebe, Y.; Klema, V. C.; Moler, 
C. B. Matrix Eigensystem Routines - EISPACK 
Guide~ Lecture Notes in Computer Science, 6, 
2nd Edition. Springer-Verlag (1976). 

23. Cody, W. J. The FUNPACK package of special function 
subroutines. ACM Trans. on Math .. Soft. l, 1 
(March, 1975), 13-25. 

24. Wilkinson, ~- H. and Reinsch, C. Handbook for 
Automatic Computation~ Volume II~ Linear Algebra~ 
Part 2. Springer-Verlag (1971). 

25. Moler, C. B., and Stewart, G. W. An algorithm 
for generalized matrix eigenvalue problems. 
SIAM Journ. of Numer. Anal. 10, 2 (April, 1973) 
241-2.56. 

26. Boyle, J. M. and Oritz, K. w. An automated pro­
gramming system to facilitate the development of 
quality software. In Information Processing ?4~ 
North Holland Pub. Co.· (1974), pp. 542-546. 

27. Oritz, Kenneth W. Multiple program realizations 
using the TAMPR system. In Proceedings of the 
Workshop on Portability of Numerical Software~ 
To appear. 

'28. The LINPACK Prospectus and Working Notes, 
Applied Mathematics Division, Argonne National 
Laboratory, Argonne, Ill. 60439. 

29. Stewart, G. W. Research, development, and 
LINPACK. These Proceedings. 

30. Brown, K.; Minkoff, M.; Hillstrom, K.; Nazareth, 
L.; Pool, J.; and Smith, B. Progress in the 
development of a modularized package of algorithms 
for optimization problems. In optimization in 

':._~ _____ Action~ L. C. W. Dixon, ed., Academic Press (1976), 
pp. 185-211. 

31. Cowell, Wayne R. and Fosdick, Lloyd D. A program 
for development of high quality mathematical software, 

! Report #CU-CS-079-75 (Sept. 1975), Department of 
~ ___ Computer Science, University.of Colorado, Boulder, 
1 Colorado, 80302. 
i 

I 32. Ford, B. and Sayers, D. K. Developing a single 
I numerical algorithms library for differen(t machine 
1 ranges. ACM Trans. on Math. Soft. 2, 2 June, 1976) 

54-+----~115-:-131. . -. ···-- ----------1------------------·------------.- .. -- -------- --
~~~) --J- I 

5G+-
' !.17-!-

r;g_L

-~- S4
I

. . . ~~ ~-

--1-::i'/
-~-58

v I

59~,----~------------------------------~,-- ------~·G9
i

r-h

-~ ~~-- ---~~=-:~==--: --=--==~_=;---____ : _· ____ ~--~-=-=--=t-·::=::t-.~---=~~1.= ---
'1

--:~t..,-t:,,·,, :.V ... ~; ... ,.-iipr· <..-- V ··,· · :,. . . ,·,-. ,,,;.J,;· {·;,:r.·r: ~ !·rorc;· ::.,· c·J·r--(IS-.. T'/''"' ·c·ILI-;;.:~. 1 \,--·------- _ .. · --------·-f-
...... :J.Il.t.~-•JJ··-- ,\,\11\l~i '-Ji~ ,/{~ •• ,_,~, ... >1 •••• ;.t~.) 1 Oll.o •.

'

33. Annual Report of the Numerical Algorithms Group:
1 June, 1975 to 31 May, 1976, NAG Central Office,
13 Banbury Rpad, Oxford OX2 6NN.

--34. Bentley, J. and Ford B. On the enhancement of
portability within the NAG project. In Proceedings
of the Workshop on Portability of Numerical Software,
To Appear.

35. DuCroz, J. J.; Hague, S. J.; Siemieniuch, J. L.
· ... ---Aids to portability within the NAG project.

In Proceedings df th~ Workshop on Portability
of Numerical Software, To Appear.

' .
36. Ford, B. Private Communication (1977).

IMSL Numerical Computation Newsletter, ·issue no. 1
(January, 1972), Intern&tional Mathematical and
Statistical Libraries, Inc., Sixth Floor, GNB Bldg.,

··~~-· ---·-·· 7500 ·Bellaire Blvd.,. Hous-to·n, Texas 77036. ·---~---·- --

38. Aird, T. J. The IMSL Fortran Converter:
approach to solving portability problems.
Proceedings of the Workshop on Portability
Numerical Software, To Appear.

An
In
of

39. Battiste, &. L. Mathematical software and the
private sector, Talk at ACM Annual Conference

-·---.-............. (1976).· -- --------

40. Osterweil, Leon J. and Fosdick, Lloyd D. DAVE -
a validation, error detection and documentation
system for FORTRAN programs. Software-Practice·
and Experience 6 (1976), 473-486.

41.

42.

Ryder, Barbra G. The PFORT verifier, Software­
Practice and Experience 4 (1974), 359-378.

Rarnarnoorthy, C. V. and Ho, Siu-Bun F. Testing
large software with automated ·software evaluation :

~~---systems. IEEE Trans. on· Software Enginee.ring · -·----:
1, 1 (March 1975), 46~58. · I

· 43. Stucki, Leon G. and Foshee, Gary L. New assertion
1 concepts for self-metric software validation. r----·_pp . .?_9-65 il'! __ r~ference ... l.:if ____ _
i 44. Voevodin, V.; Gaisaryan,~ S. ; Kabanov, M. Automated
1 program generation. In Numerical Analysis in Fortran,
j Vol. 1. Moscow State University Press (1973) (In :

I

i I Russian).. ·

54-;---------··---------- -----------1
~15 -I-

I
----·--·-i-54

I
5G -+-

1
57-j-
SR+

I .. --:-!)5

·+56
i

-r57
l-58

S9~------------------~------------·-----------~ 59

'· .,.,
. ! .

-I. . f I .' • . I
---~~-----~ ____ ..;.. ____ ! _____ ~----L ___ __:__ - .s---~-----j---·---... -1..----··-- ·--j·--·-~---------J- ... ------ ... ~ ·-----------~-- ---
'"':-~- --·----- ···-:-------------. ·- . --------·j··----- .. i··· ---- -·-·-t-------·· ·- ," -----····· j- . -- -·-- ... --.. -· ···--- --· j·- ···----· --- ·:-·

,.
·-_i:)'(l(;if11'i::--.: .. i;t'!f· .• ..,..~;_.. ... ~ ~-~ ·'·/ -·:·,~~ ... ·t·'· '": (1(."1 , ... (~1' ... ; r,, , t:r::;·.··:.t.

·45. Cowell, Wayne. The validation of mathematical
software. In ·Proceedings of INFOPOL-?6~ International
Conference on Data Processing~. To Appear.

46. Wilkinson, J. H. Modern error analysis. SIAM
Review 13, 4 (October, 1971) 548-568.

47. Lyness, J. N. and Kaganove, J. J. A technique for
comparing automatic quadrature routines. ·computer
Journal~ To Appear.

48. Greenberger, M.;. Aronofsky, J.; McKenney, J. L.;
Massy, W. F., eds. Networks for Research and
Education. M.I.T. Press (1974).

Work supported in part by the U.S. Energy Research
and Development Administration and the National
Science-Foundation.

Applied Mathematics Div.
Argonne National Lab.
Argonne, Illinois 60439

Dept. of Computer Science
Univ. of Colorado
Boulder, Colorado 80302

i
: I
~-· -·-------·-----·-----·-- ___________ !.. ----- -------·-·------ .---.... ---· -- ----------1

i . ! . .
J

I . ____ . --+---. --------···--------------·---- ------:
I ' I ,

i

54--t----- ____ · ---------------------. t· --·---------·-----------------.. · ----·r- ~it.!
55--

5Gfl
57
!58-

: -··;-!35
. !--!)G
_J--!i/

-~~---58 .
59-·+--~:__---------------+---------------------'-

i
t-[)~3
i

