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ABSTRACT

This report presents a summary of the work accom-
plished during the sixth quarter of a three year study con-
ducted for the U.S. Energy Research and Development Adminis-
tration under Contract No. E(49-18)-1770. The objective of
this research is to develop and apply computer codes, based
upon continuum theories of multiphase, reactive flows, to

the performance of fluidized bed and entrained flow reactors
for coal gasification.



I. OBJECTIVE AND SCOPE OF WORK

The purpose of this program is to develop and apply,
over three years, accurate and general computer models
that will expedite the development and aid in the optimiza-
tion and scale-up of reactors for coal gasification. Initial
applications will be to fluidized bed gasification processes;
subsequently both entrained flow reactors and fast fluidized
beds will be examined.

During the first year, work will be initiated on the
fluidized bed model in the areas of multiphase fluid flow
without chemical reactions, and chemical reactions without
fluid flow. The computer codes, developed to represent
these aspects of gasification processes, will be combined
in the second year of the program into a numerical model of
reactive flows in fluidized beds. This model will provide
a time-dependent field description of fluidized bed flows in
two space dimensions. Calculations will be performed with
the prototype code during the first and second years to
verify the accuracy of the formulations employed and, in the
second year, these calculations should provide preliminary
results relevant to coal gasifications. During the second
year a computer model for entrained flow gasifiers will be
formulated and the chemistry defined; this model will pro-
vide a field description of entrained flows in two space
dimensions. Nonreactive flow calculations will be performed
for entrained flow processes at the end of the second year.

In the third year the application of the fluidized
bed computer model to specific gasifier processes will be
extended and a computational model which includes three-
dimensional effects will be developed. Also, during this
third year the coal chemistry will be combined with the en-
trained flow computer model and some calculations of such
gasifier configurations will be performed.



II. SUMMARY OF PROGRESS TO DATE

This was the second quarter in the second year of
research to develop and apply computer codes, based upon
continuum theories of multiphase flows, to the performance
of fluidized bed and entrained flow coal gasification reac-
tors. Research was active in several areas.

The research on the fluidized bed computer code in-
cluded the development of the models for the heterogeneous
and homogeneous reactions appropriate to char combustion
and the incorporation of that chemistry into source and
transport terms for the conservation equations. These source
terms will be included in the numerical model in the next
guarter. The basic numerical code was modified to reduce
computer core requirements and to thereby permit the cal-
culation of problems with a large number of zones. Para-
metric calculations were performed with this code to repre-
sent the influences of bed geometry, mass flow rate and
distribution and hydrostatic pressure effects in fluidized
beds.

The work on the entrained flow computer model involved
both the formulation of the basic conservation equations and
the development of a computer code to test possible numerical
techniques appropriate for that system of conservation equa-
tions. These conservation equations represent turbulent
compressible flow of gas and solid particles, including the
influence of chemical reactions. Constitutive equations for
these turbulent flows are being formulated. The computer
code is a finite element-finite difference code which treats
a system of equations mathematically like that for entrained
flow and it is being used to investigate the application of
finite element techniques to the computer modeling of such
flows.



ITII. DETAILED DESCRIPTION OF TECHNICAL PROGRESS

3.1 TASK 00 - MANAGEMENT, DOCUMENTATION AND CONSULTING

A review of the fluidized bed computer model was pre-
sented at the ERDA-Fossil Energy Conference on Computerized
Mathematical Modeling of Coal Conversion Processes on
November 16, 1976.

The AIChE Annual Meeting in Chicago, November 30-
December 7, 1976, was attended. We presented a paper, "A
Numerical Model of Gas Fluidized Beds", wherein we summarized
some of the theoretical and numerical aspects of the model
and examined some parametric calculations. This paper has
subsequently been accepted for publication in the AIChE
Progress Symposium Series.

Professor C. Y. Wen of West Virginia University con-
sulted with S3 staff members on the subjects of fluidization
and coal chemistry. He has agreed to develop a quasi-
homogeneous reactor model which will serve as a numerical
representation of steam oxygen gasification chemistry in a
simple flow environment. This effort, through West Virginia
University, will be supported by a subcontract which has
been written and submitted to ERDA for approval.

Professor Paul A. Libby of the University of California,
San Diego, is consulting on the subjects of reactive turbulent
flows and the evolution of particle size distribution in such
flows. This research is related to our development of the
computer model for entrained flow gasification.

During this past quarter, close liaison between
Systems, Science and Software and other industrial and re-
search organizations in coal gasification was maintained
through visits and discussions on the subjects of both
fluidized bed and entrained flow gasification.

3.2 TASK 01 - FLUIDIZED BED COAL GASIFICATION MODEL

The research on the fluidized bed model was directed
to the development of the chemistry for steam—-oxygen gasifi-
cation processes and to the development and application of
the fluidized bed computer code.

The formulation of the chemistry for heterogeneous and
homogeneous reactions for char gasification and combustion was
continued. The representation of those reactions appropriate
to char combustion was essentially completed and is summarized



‘ in Appendix A. The nature of this formulation is analogous

to the development of the thermomechanical constitutive
equations and mechanical interaction terms in the continuum
model {c.f., Blake, et al., 1976]. We use theoretical and
and experimental representations of the heterogeneous and
homogeneous reaction kinetics together with relationships
for species transport to develop appropriate source and
flux terms for the equations of mass and energy balance.
In the case of the heterogeneous reactions, we consider the
balance of gas-solid mass transport, represented by film
diffusion, and the kinetic processes of adsorption and de-
sorption, represented by a Langmuir isotherm, for a single
particle. This determines an overall reaction rate (say:
gms of carbon removed/cm? of particle surface area/sec)
which, when summed over all local particles, provides a
mass source term for the differential equations describing
conservation of mass. In a similar manner, this exchange
of mass between the gas and solid particles contributes to
the energy balance for the two phases. The influence of
such exchange upon the individual particles is included in
Lagrangian differential equations for particle size and
particle temperature. The homogeneous reactions appropriate
to combustion, such as volatiles oxidation and water gas
shift, are represented by volumetric source terms in the
conservation of mass for the respective gas species. These
volumetric integrals reflect both the local gas properties
through the kinetics and the local volume fraction occupied
by the gas phase. The influence of these homogeneous reac-
tions upon the energy balance for the gas phase is accounted
for by incorporating the heat of formation in our definition
of specific internal energy for each constituent. These
reactions for char combustion will be incorporated into the
fluidized bed code in the following quarter and the formula-
tion of the additional chemistry for gasification and
devolatilization will be continued. In the latter case, we
expect to utilize aspects of the chemistry on gasification
and devolatilization which were developed in the first
vear of this effort [Blake, et al., 1976]. Further, the
homogeneous reactor model to be developed by West Virginia
University will provide a simple numerical environment in
which we shall test the sensitivity of the chemistry to
changes in chemical parameters for combustion, gasification
and devolatilization/prompt methanation.

Within the context of homogeneous reactor models, we
note that aspects of the chemistry model for the COp acceptor
process, developed at S3 in the first year, will be used in
the planned West Virginia effort. Both that previous model
and the future effort contain chemistry and numerical
methodology which will be used, in part, in the incorpora-

. tion of chemistry into our multidimensional fluidized bed



computer model. A draft topical report has been prepared
which documents the S3 homogeneous reactor model of the CO2
acceptor process. This report, which discusses the code
modifications since the publication of our annual report
[Blake, et al., 1976] will be submitted to ERDA for review.

Research was continued on the hydrodynamic and
transport aspects of the multidimensional fluidized bed
computer model; this research included code development,
formulation of representations of particle size effects
on transport and parametric numerical studies. A major
effort was initiated and completed to reduce the computer
core requirements for the numerical model. This activity,
which is part of a continuing effort to make the code more
efficient, will permit the calculation of problems with an
increased number of zones in the finite difference grid.
Further, such a reduction in core requirements means that
the added complexity associated with the chemistry and
multi-component species transport of reactive flows can
be more readily treated.

Parametric variations in fluidized bed flows were
studied with the two-dimensional fluidized bed computer
model. The influence of bed height/width ratio, mass flow
rate, mass flow distribution and bed hydrostatic pressure
were examined with a limited number of calculations. These
calculations, which are briefly summarized in Appendix B,
were presented and discussed in our review presentation at
ERDA on November 16, 1976.

A theoretical formulation describing the relative
transport of particles of different sizes in the fluidized
bed was initiated. In that representation, the properties
of the fluidized bed such as solid phase viscosity, solid
phase pressure, solid particle-gas drag relationship, etc.
are assumed to be determined by an average of the particle
size distribution. Then for each discrete particle size,
the motion of that particle size, with respect to this
average bed, is calculated by appropriate dynamic relation-
ships. Such a calculation can be performed for each dis-
crete size (likely the particle size distribution would be
divided into a finite number of "bins" of particles by size
range) to determine the relative motion of large and small
particles in the bed. A related approach would be to cal-
culate the evolution of a particle size distribution. Such
an effort has been initiated for entrained flows (c.f.,
Section 3.3) and it may be possible to apply similar techni-
ques to fluidized beds. However, in the case of fluidized
bed flows, there is strong particle-particle and particle-
gas interaction which requires the definition of collisional
terms in such a representation of particle size distribution;



those terms, which involve mechanisms of significant coupl-
ing between the particle size distribution and the flow
field are, in general, complicated.

3.3 TASK 02 - ENTRAINED FLOW COAL GASIFICATION MODEL

The research on the entrained flow model included a
continued formulation of the conservation equations for turbu-
lent gas-solid particle motion and the development of a
numerical model to test methodology of finite element-finite
difference solutions for a model system of equations.

In the previous quarter [Blake, 1976], we considered
the balance equations for gas-solid particle flows without
turbulence. For entrained flows, the solid particle load-
ing is relatively small compared with, say, the emulsion
phase of fluidized beds. This means that the conservation
equations for entrained flows, in contrast with those for
fluidized processes, must include the inertia of both the
gas andsolid phases and may exclude particle-particle inter-
action terms. Further, the regime of entrained flow, im-
portant to coal gasification reactors, is a turbulent regime
wherein the respective influences of gas and particle effects
must be accounted for. We have incoporated turbulence into
our balance equations for entrained flows and we discuss
this formulation in Appendix C. We introduce a modified
Favre average to account for compressibility in the flow and
develop conservation equations for the gas and solid phases
which include the influences of chemical reactions. Specific
approximations and closure requirements for this system of
equations have been examined. We expect to use a differential
representation of the turbulence based upon an extrapolation
of concepts from turbulence in fluids and gases without
particles.

The evolution of particle size distributions in either
inert or reactive entrained flows must be accounted for in
our numerical model. One possible approach is to formulate
a differential equation for the number of particles at loca-
tion xj, time t, radius r, velocity uj, and temperature, Tp.
The calculation of such a number density, or particle size
distribution, would be accomplished as part of the coupled
system of equations for entrained flows. Obviously, this
is not a trivial problem. We have initiated a study of the
evolution of particle size distribution for entrained flows.
A summary of this initial study is presented in Appendix D;
it is assumed that the total number of particles is suffi-
ciently small so that the characteristics of the gas flow
are unaffected and therefore are known. The influence of a
turbulent, chemically active carrier gas upon the particle



size distribution is included in the formulation and methods
of solution have been examined. The extension of this treat-
ment to the case of the coupled problem, wherein the particles
have a significant influence upon the carrier gas is being
examined and some aspects of this case are presented in
Appendix D.

There are many finite difference techniques which
might be used to treat the case of transient, turbulent
entrained flows. Some aspects of flow in gasifiers
particularly as related to the geometry of connecting spools,
injection nozzles, etc. indicate that finite element techni-
ques might be a useful method of solution. In order to pro-
vide a reasonable basis to examine this issue, we have de-
veloped a finite element-finite difference code for
transient flow of a compressible viscous gas. It is easy to
show that the mathematical character of the system of equa-
tions for such flows is identical to that for the more
complicated entrained flows under consideration. Hence, the
finite element formulation permits us to examine the applic-
ability and flexibility of such a method to the problem of
interest. Further, numerical methodology related to both
the boundary conditions and the differential equations for
viscous compressible flow can be directly applied to the
entrained flow model. Our present conclusions are that the
finite element technique does offer advantages as compared
to finite difference approaches, however, we will be examin-
ing this question further in the following quarter. A dis-
cussion of the finite element-finite difference technique
and some simple calculations are presented in Appendix E.



IV. CONCLUSIONS

In summary, we note the following aspects of our
modeling effort.

Existing data and theoretical models related to
heterogeneous char combustion and the associated
homogeneous reactions can be naturally incorporated
into our continuum model for fluidized beds.

Theoretical formulations for particle size
distribution and particle dynamics have been
initiated which potentially can lead to a general
description of particle size influences in both
fluidized beds and entrained flows.

A turbulence formulation is being developed for
entrained flows which is both related to existing
concepts of turbulence without particles and can
also provide a description of the coupled be-
havior of particles and gas in turbulent entrained
flows.

An examination of numerical methods for the solu-
tion of the differential equations of entrained
flow indicates that both finite element and

finite difference techniques have distinct ad-
vantages. The former method seems particularly
appropriate in the treatment of complex geometries.



APPENDIX A
OXIDATION REACTIONS

INTRODUCTION

The combustion of char and the associated oxidation
reactions in the gaseous phase provide the source of heat
for processes of steam oxygen gasification. In the follow-
ing paragraphs we examine these heterogeneous and homogeneous
reactions and discuss the incorporation of the chemistry into
the conservation equations for gas fluidized beds. The nature
of this formulation is analogous to that already developed
for the constitutive and mechanical interaction terms in the
fluidized bed equations [c.f., Blake, et al., 1976]; based
upon theoretical and experimental representation of the
heterogeneous and homogeneous reactions, appropriate source
and flux terms are derived for the mass and energy conser-

vation equations.

Heterogeneous reactions involve discrete physicochemical
processes which contribute to the overall reaction rate
[Rosner, 1972; Walker, et al., 1959; Wheeler, 1951; Weisz and
Prater, 1954]. These physicochemical influences are more
complicated in the case of char because of changes in the
time history of the char particle structure during the course
of the reaction [Mulcahy and Smith, 1969}. While the oxi-
dation reactions of carbon, coal and char are perhaps the
most extensively documented reactions in coal chemistry,
there is still significant controversy with respect to the
dominant reaction mechanisms {[c.f., Gray, et al., 1974;
Mulcahy and Smith, 1969; Essenhigh, et al., 1965]. For
example the definitions of reaction order and the associated
activation energy in the interpretation of experimental data
is still to be completely resolved. Essenhigh and his co-
workers have noted that there is a logical difficulty in the
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‘ assumption of a high activation energy with a near unity
reaction order. Such questions are directly related to the
respective influences of pore diffusion and the adsorption-
desorption processes. In the present development we will
use a Langmuir isotherm to represent the chemical reaction
rate, in terms of adsorption and desorption processes, and
assume that the rate of reactant diffusion from the ambient
gas to the particle surface is balanced by the rate of
chemical reaction. We will not explicitly account for pore
diffusion. However, we note that the influence of pore dif-
fusion can be described by modified velocity constants for
adsorption and desorption [Walker, et al., 1959; Thring and
Essenhigh, 1963]. Further, we note that, in addition to the
excellent representation of data on carbons [Essenhigh, et al.,
1965; Tu, et al., 1934] and chars [Gray, et al., 1974; Field,
1969] not exhibiting pore diffusion control, the Langmuir
isctherm also provides a good representation of the temperature
dependence of data for chars and coals of different ranks
[Dobner, 1976; Smith, 197la, 1971b; Field, 1970]. Within this
context we essentially view the application of the Langmuir
formulation as a semiempirical representation of the data.

The coefficients in the Langmuir isotherm are defined from
these combustion data on small particles of coal, carbon and
char, where the resistance is dominated by the adsorption and
desorption processes. For larger particles [c.f., Nettleton,
1967; Field, et ii;' 1967; Field, 1969; Mulcahy and Smith,
1969; Essenhigh, et al., 1965; Avedesian and Davidson, 1973]
mass transport to the particle can control, and is described
by a diffusional resistance which is dependent upon the
Reynolds and Prandtl numbers.

In the present study we use data and models for single
particle char combustion to describe mass and energy exchange

between the individual particles and the gas phase. Then, the
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influence of many particles upon the continuum model ([Blake, ’
et al., 1976] of fluidized bed flow is obtained by summing

over all the particles. This summation leads to the definition

cof source terms in the conservation equations describing the
continuum model. For simplicity in the present discussion we
consider that the char particles are carbon and that they are
spherical. The addition of other species is a simple matter

and the nonspherical nature of the particles can be included in

a manner similar to our use of shape factors in the mechanical

interaction terms of the model.

CHAR COMBUSTION

There are primarily four controlling steps in hetero-
geneous reactions [c.f., Walker, et al., 1959; Mulcahy and
Smith, 1969; Rosner, 1972] which reflect the respective influ-
ences of mass transport, chemisorption and desorption. These

steps are:

1. Mass transport of reactants and product gases
between the exterior surface of particle and

external gas flow.

2. Mass transport of reactants and products between
the exterior surface of particle and active site

within the particle.
3. Chemisorption of reactant at the active site.
4. Desorption of products at the active site.

The relative dominance of these steps is of prime importance

in the apparent order and activation energy of the reaction.

For carbon and coal char combustion it is expected that the

process of desorption controls at low temperatures; the reac-

tion is zero order in the partial pressure of oxygen and there

is an activation energy of approximately 40 kcal/mol ([Gray,

et al., 1974; Hamor, et al., 1973; Smith, 1971a; Smith 1971b; ‘
Mulcahy and Smith, 1969; Field, et al., 1967; Essenhigh, et al.,

12



1965]. At the higher temperatures the reaction tends to be
first order and has a low activation energy of approximately
10 kcal/mol. This has been interpreted [Dobner, 1976; Gray,
et al., 1974; Essenhigh, et al., 1965] as a regime in which
adsorption controls. Between these high and low temperature
regimes, influences of pore diffusion upon reaction order and
activation energy have been observed. The temperature region
for pore diffusion control appears to be a function of coal
rank [c.f., Gray, et al., 1974; Hamor, et al., 1973; Field,
1970, 1969; Smith 1971l1la,b] and is likely related to the
respective pore structure in the particles.

For small particles (<100 u) the influence of mass
transport to the particle is less than that of the other
three steps in the reaction process; however, it must be in-
cluded in the interpretation of the data because in many
cases it is not negligible [c.f., Smith 1971la,b]l]. For larger
particles (>100 u) the mass transport of reactants to the
particle can control so the combustion process becomes dif-
fusion controlled.

It is possible for carbon to react with oxygen to form
both carbon monoxide and carbon dioxide. Investigations on
carbons with rather different reactivities [Walker, et al.,
1959; Arthur, 1951] suggest that the ratio of CO to CO, formed
in combustion is a strong function of temperature and that for
the higher temperature range, appropriate to coal gasification,
carbon monoxide is the primary product. We will, therefore,
consider that the heterogeneous combustion reaction is

C + o, = CO (R1)

2
Further we will assume that the oxidation of the carbon
monoxide

1

CO + =0, 2 CO

5 93 (R2)

2
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occurs outside of the particle [Field, 1969; Batchelder,
1953]. This means that we neglect any heating of the particle
which could occur by oxidation of CO within the pore struc-
ture of the particle. Such oxidation has been observed in an
oxygen rich environment by Froberg [c.f., Gray, et al., 1974]
and Kurylko and Essenhigh, 1972. Further, the presence of Co2
in the gas can lead to gasification of the carbon and to a
subsequent production of carbon monoxide. This effect has
been discussed by Field, et al., 1967 for pulverized coal.
While the definition of the reaction rate for the carbon-
carbon dioxide reaction is still the subject of investigation,
present estimates indicate that it is slow compared to the
oxidation reactions. If one uses the reaction rates dis-
cussed by Dobner, 1976 [c.f., Gray and Kimber, 1967}, this
reaction is two to three orders of magnitude slower than the
oxidation of carbon and, most important, it is, for particles
less than 1 cm, much slower than the rate of diffusion of
reactants to the particle. We shall, therefore, neglect the
carbon-carbon dioxide reaction in the combustion of char. We
note that for some cases of diffusion controlled carbon com-
bustion, both Avedesian and Davidson, 1973 and Kurylko and
Essenhigh, 1972 invoke such a gasification reaction. The
relative importance of the carbon-carbon dioxide reaction to
combustion of larger particles (> 1 cm) is, in our view,
uncertain; however, for both species and energy balance, in
diffusion controlled combustion, the combination of Rl for the
heterogeneous reaction and R2 for the homogeneous reaction is
equivalent to the combination of the carbon-carbon dioxide
gasification reaction with R2 for the homogeneous reaction.

The presence of steam in the gas phase must be accounted

for and hence the reaction

1
H2 + > O2 z HZO (R3)

14



is important. This reaction is maintained close to equilibrium
[c.f., Batchelder, 1953] and so the presence of HZO tends to
augment the concentration of 0,- Further, equilibrium in R2
and R3 imposes water gas shift equilibrium on the gas phase.
However, in general we must include the water gas shift
reaction so we write

H + H

0O+ CO z CO (R4)

2 2 2

Finally, we note that the reaction of steam with solid carbon
is neglected because its rate is of the order of the carbon-
carbon dioxide gasification reaction. It is therefore much
slower than the combustion reaction R1l, and is also slower
than the reactant transport to the particle for r<l cm
[Batchelder, 1953; Field, et al., 1967; Gray and Kimber, 1967].

HETEROGENEQUS REACTION, LANGMUIR ISOTHERM

For a char particle the rate of combustion of char

(gms/cmz-sec) is represented by the Langmuir isotherm

(Al)

where Kl and K2 are the velocity coefficients, describing,
respectively, adsorption and desorption and Pdé is the partial
pressure of oxygen at the particle surface. These velocity

coefficients are functions of temperature

E

_ 1
Ky = 2, exp - g77

E, (a2)
Ky = By exp - g7~

where El and E2 are activation energies and the coefficient
Al and A2 can be functions of temperature. For reaction Rl,
the consumption of one mole of carbon requires one-half mole

15



of oxygen. The molar flux of oxygen to the surface (moles/cm2
sec) is

D n
J. = - 0(5—) Shps. - po

=2} ) (A3)
02 RT TO 2r 2 » 2

where Do is the binary diffusion coefficient for oxygen at
reference temperature To’ Sh is the Sherwood number, r is the
particle radius, T" is the particle temperature, T is the free

stream temperature and Po, is the free stream partial oxygen

2
pressure. The Sherwood number can be related to Reynolds

and Schmidt numbers by the semiempirical expression

Sh = 2 + A RePsc®

(A4)
where Re is defined in terms of the relative particle-gas
velocity. These equations are standard relationships;
Essenhigh, et al., 1965; Field, et al., 1967 and Mulcahy and
Smith, 1969 review the literature and define the constants

n, A, B and C within the context of char combustion.

For the reaction R1l, the Equations (Al) and (A3) can
be combined to give

(as5a)

where Mc is the molecular weight of carbon. We write

2ZM D n
_ c ofT Sh
Ko = RT (TO) 2r (ASb)
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. eliminating P62 from (Al) and (A5), we obtain for RC

2
K,K K, K
. l" 270 s | 270
R, = fl( R + K Po, + 1\2) [( R + K Po, + KZ)

1/2
- 4 K2KO Po2 (A6)

where the choice of sign, in this solution of a quadratic

equation, relates to the limit KO +~ o for very fast diffusion.

Experiments on carbon, coal and coal char combustion
can be used, with (A6), to define Ky and K, as functions of
temperature. Field, et al., 1967 present a summary of earlier
studies by Tu, et al., 1934 and Golovina and Khaustovich, 1962.
They conclude that all of the data for the rate of removal of
carbon (ﬁc in our notation) in the temperature range 1000-
1800°K can be represented adequately by a reaction rate which
is first order in the partial pressure of oxygen and contains
a single exponential with an activation energy of 35.7 kcal/mole.
They note that in the higher temperature regime there is some

evidence that the activation energy is less than this value.

Smith, 1971a, 1971b studied anthracites, semianthracites,
petroleum coke and char from swelling bituminous coal, where
the particles were less than 100 u. It was observed that the
anthracite, petroleum coke and char particles burned at con-
stant density and that the activation energy was of the order
of 20 kcal/mole. The semianthracite tended to burn at both
decreasing density and size with approximately the same
activation energy. It was assumed that the reactions were
first order in oxygen partial pressure. Smith (1971la) noted
that his data on anthracite and bituminous coal chars was
consistent with the data of Field, 1969 and that his measure-

ments for anthracite and semianthracite are consistent with

17



those of Field, 1970, and other investigators. Smith con-
cluded that his measurements were in the pore diffusion con-
trolled regime and that the apparent activation energy was
therefore representative of desorption [c.f., Wheeler, 1951;
Walker, et al., 1959].

The data of Field, 1969 were reexamined by Gray, et al.,
1974; the Langmuir isotherm was used to represent the behavior
of low rank char in a wide range of temperature. This repre-
sentation involved adsorption control at high temperatures

and desorption control at low temperatures.

We have noted the suggestion by Essenhigh and his co-
workers that there is a contradiction in the assumption of a
high activation energy (real or apparent) with a first order
reaction rate. However, except for the data of Hamor, et al.,
1973 on brown pulverized coal, most investigators have proposed
such a representation of the reaction rate data. It may be,
as suggested by Gray et al., 1974, that the range of oxygen
partial pressures used in the experiments is hot adequate to
define precisely the order of the reaction. For the present
we consider these relationships to be semiempirical and
summarize the numerical constants in the Table (I) using the
notation of (Al) and (A2); we also include Dobner's 1976

correlation for combustion of medium rank char.

For the temperatures appropriate to combustion in
steam oxygen gasification processes (“1300°K) all of these
co;relations give approximately the same temperature dependence.
The difference in activation energy is generally compensated
for by the influence of the pre-exponential factor. O0Of course
in a wide range of temperatures, the differences in activation
energies would cause large variations in the reaction rates.
For the present we expect to utilize the Langmuir isotherm
with only a single Arrhenius expression as given by Field,
1969.
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TABLE (I)

SUMMARY OF LANGMUIR ISOTHERM REPRESENTATION
OF CARBON, COAL AND CHAR COMBUSTION

. . . gms kcal gms kcal
Investigator Particle Type (Size) A 5 1 mole A2 ~>sec E2 mole
cm sec atm cm

Field, et al., 1967 Carbon (1-2.54cm) 8710 35.7 o0 0

Smith, 1971a Petroleum Coke (4-77um) 20 18.2 o 0
Anthracite (42,72 um) 10 l16.7 % 0
Bituminous Char (34,64um) 8 16.0 % 0

Smith, 1971b Semianthracite (6-78um) 20.4 19.0 o 0

Field, 1969 Low Rank Bituminous Char 8710%* 35.7 o 0
(28-105um)

Gray, et al., 1974 Low Rank Bituminous Char 1.6 6.0 1.27 x 103** 37.0
(Field, 1969)

Dobner, 1976 Low-Medium Rank Char 60.0 20.4 o 0

(Correlation)

*T < 1300°K

**We've assumed an O2 concentration of 10 percent.



With the choice of Kl and K2 in (A2) and the definition '
of transport velocity coefficient KO in (A5) and (A6), the

rate of carbon mass loss of a particle (A6) is defined. The

nature of this mass loss shall, for the present, be assumed to

be at constant particle density. While this is representative

of some of the data [c.f., Avedesian and Davidson, 1973;

Smith, 1971a; Field, et al., 1967, Nettleton, 1967], there is

also evidence of mass loss at constant particle radius or at

some combination of density and volume change [c.f., Field,

et al., 1967]. At constant density the time rate of change

of the particle radius is
- po === R (A7)

This equation will be used to describe the evolution of

particle size during combustion.

HETEROGENEOUS REACTION, PARTICLE-GAS HEAT TRANSFER

The Equations (Al) - (A7) define the mass flux and
chemical reaction for a particle at temperature T” in an
ambient gas flow of temperature T. It is necessary to intro-
duce an energy balance for the particle to define the particle
temperature. We assume that the temperature of the particle
is uniform and write

3R

s dT < lc (T°~T ) + C
o P

_ (T°-T)
pc dt rMc pc o2 ©

1 -
-3 Cpco(T -T°) + AH(O%
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where C is the specific heat at constant pressure for com-
ponent i% AH(Q) is the heat of formation of carbon monoxide
at To' o is the Stefan Boltzmann constant, T, is a "wall"
temperature and K3 is the heat transfer coefficient

Ky = Ag (Tl)m = (a9)

o
In this latter equation Ao is the thermal diffusivity of the
gas and the Nusselt number Nu is defined in terms of the
Reynolds and Prandtl numbers by
v B _ ¢
Nu = 2 + A Re~ Pr (A10)

where m, X, %, 8 are constants analogous to the coefficients in
(A3) and (A4). 1In both (A9) and in the earlier equation (A5b)
we have used only the gas temperature in the free stream, T,

to define the gas properties. These relationships can be fur-
ther modified by introducing some mean temperature which accounts
for the difference between that free stream temperature of the
gas temperature at the surface of the particle, T”“. Equations
(A7) and (A8) must, in general, be solved simultaneously to
define the particle radius r and the temperature of the
particle T (and the reaction rate Rc). For the case of
diffusion control (KO << Kl’ K2) the particle radius is
independent of the particle temperature and may be directly
obtained from (A7) with R~ I.

HOMOGENEOQUS REACTIONS

The reactions R2, R3 and R4 represent the chemistry
of the gas phase surrounding the solid particle, where we
write the reaction rates, in moles/cm3 as Fi’ i=2, 3, 4.
These reactions lead to differential changes in the gas

composition which, without flow, would be expressed as
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dCo,
at

dCco

<5 (All)

dc

dt 3

dc
H20

dt 3 4

dac
CO2

dt 2 4

where Ci represents the mole of species i in a unit volume of

gas.

The reaction rates Fi are, in general, functions of
gas composition and temperature. Further, there is the
possibility of catalytic influences because of the chemical
composition of the solid particles. The oxidation of carbon
monoxide through R, has been the subject of considerable
investigation. We follow Field, et al., 1967 and use the

semiempirical representation of Hottel, et al., 1965 to write
_ 10 0.3 0.5 _ 16000
Iy, =3 x 107" Co, Co, CH20 exXp = ~Ry (Al2)

The presence of CH20 in (Al2) is indicative that this reaction

is strongly influenced by the presence of water vapor. Field,

et al. note that the equation can represent experimental results

up to 1550°K and can likely be used at higher temperatures.
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The actual kinetics of R3 are quite complicated [c.f.,
Penner, 1957; Lewis and Von Elbe, 1951]; however, the oxidation
of hydrogen is a very fast reaction [c.f., Batchelder, et al.,
1953], and we expect that it is in equilibrium for time scales
of interest. That is, we can express the relationship between

the molar concentrations of Hy, O, and H,O as
C
H,0
2 _ 1/2
172 = KP,3(RT) (A13)
o, ‘m
2 2
where KP 3 is the equilibrium constant expressed in terms of
14

partial pressures.

The water gas shift relationship is strongly influenced
by iron catalysis. A relationship for this rate constant, based
upon data for commercial iron catalysts, is presented in Blake,
et al., 1976. This reaction rate is based upon a unit mass
of catalyst. Let us assume that 8 is the fraction of the mass
of char particles which is active within a volume of gas
(defined by the radius of the weighting function used to derive
our continuum balance equations, c.f., Blake, et al., 1976).
This means that B is some function of the molecular mean free
path, the surface and pore structure of the particles and the

fraction of iron in the particle. Then the rate expression is

8oST%6

M M
cCo H20

MCO Mﬂzo 1 }

C C - Cc C
{ Co H20 MH2 MC02 KP,4 H2 C02

9692
RT

F4 ={4.03 b4 lO7 exp -

(a14)
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The factor 6 reflects the volume fraction of solid particles

within the volume of space under consideration. For our pre-
sent study we will likely use B = .0035 [c.f., Blake, et al.,
1976], and we will ignore the presence of iron in our conser-

vation of mass for the solid particle.

CONSERVATION EQUATIONS WITH CHEMICAL REACTIONS

The mass and energy relationships for the heterogeneocus
and homogeneous reactions of single char particles contribute
to the conservation of mass and energy of a fluidized bed con-
taining many such particles. We now use those relationships
for single particles to derive the influence of chemical reac-
tions on fluidized bed flows. Our basic assumptions are,
first, the contribution of many particles is equal to a sum over
the individual particles; second, the local space averaged gas
phase properties represent the ambient gas conditions for the
heterogeneous reactions; third, the homogeneous reactions are
calculated with these space averaged gas properties and,
finally, the particle temperature, T”, is equal to the local

space averaged solid temperature, T,

The conservation equations for fluidized beds are dis-
cussed in Blake, et al., 1976. We summarize these equations
here, and present them in a slightly different form since we
now wish to follow the time history of chemical species and
the associated fluxes of mass and energy. The conservation of

mass for the gas is represented by

d

0 = -
Ty [pa(l-e)] + —33—(;- [pa(l—e)"i] = sa + (1 e)na (Al5)

where this represents six equations for the species

« = 0,, H,0, H,, CO, CO,, N,
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For the solid phase we have

S
3p°8 3 s 4. _ .
St e (1-8) uy Sq (A16)

1

where

The gquantities Sa represent interphase mass exchange while Q,
represents species production from homogeneous reactions. For

the present we regard N2 as a diluent which does not partici-
pate in the reactions:

We thus consider six species for the gas and one species for
the solid phase. Naturally, the influence of other species
in the solid, such as ash, can be readily incorporated.

The conservation of momentum equations for the gas and solid

phases are, respectively

_ 3P _ B(8) _ _
3%, ~ (1) (Vi "9 =0 (A7)
S 13 (gu,) + = (Bu,unb = 22 + AES T (a18)
P35t i En iY4 3X, | 3% P93
j

We neglect both interphase momentum exchange and species
diffusional influences on momentum conservation. The conser-
vation of energy, neglecting viscous dissipation, can be
written as
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g% [p(l-e)e + psees]+

P s s ‘l'
—_ (1~ + .
axu [pvj( 9)e 0 ujee ]

= - 5-% {(1-9) gy + quf (Al9)

where both e and q; can include diffusional contributions. For

the present we neglect such contributions. The specific inter-
nal energy of the gas is

o o
e =2 T"‘ea=}:?°° l:cva
a

o

(@)
+ Ha (0) - ANa RTO ] (A20)

where Ha(o) is the heat of formation of species o at Tq
and ANa is the change in moles when o is formed from the

elements in their respective standard states [c.f., Penner,

1957]. The constitutive equations for P, T, e’ es, ay

iy’ and

S
. are
ql

a

P=Z§I—QL-RT=Z P (A21a)
Q o

3
T.. = - 5., {PS(G) + 25 (0) —EK—}
ij ij 90X
K
Ju. ou. u
s i, _3_2 _K
+ U7 (0) {axj + X, 3 85 axK} (A21b)
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dea = C dar (A2lc)

de® = c2 ar (A21d)

<n

(1-9) 9 + eqi = ~ k(0) — (A2le)

Further, the variation of particle radius and particle temper-
ature requires that we adjoin to these equations the Lagrangian
equations (A7) and (A8) where again we assume that the pvarticle
temperature T" is equal to the space averaged solid particle
temperature T5. The heterogeneous and homogeneous chemistry
defines the source terms Sa' Qa for the species conservation

in the gas phase; for S we use (A6), multiply by the weighting
function g]xi—yi| [Anderson and Jackson, 1967; Blake et al.,

1976] and sum over all the particles to give for o = 02

M

R 2 03 _
So, = 2 Roame® = alx; -y
P [o]

We note that the dependence of ﬁc is upon the local
_ RT

P02 = 002 M‘(-)—z-) and the

particle radius. Hence, if the particle radii are uniform

within the radius of the weighting function, this integral is

average field variables (e.g., T, T°,

36 o, Fe
S = . e —— (A22)
02 r 2Mc
In a similar manner
M
_ 38 ‘co;
Sco = F MW, Fe (A23)
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and for the solid phase B = C

= - 38 ¢
Sc = - T Ry (A24)

Since we have assumed that HZO’ CO2 and H2 do not react with
the particle

S = S = 8 =0 (A25)

The homogeneous reactions determine the source terms

Qa. These homogeneous reactions are defined by (Ald) - (Al3).
We write
(l—e)Mo2 ‘

(1-9) Qoz = - lFZ + T3

(1-8) QCO = - (l--e)MCO F2 + F4;

(1-6) Qg = (l—e)MH - Ty + F4} (A26)

2 2
(1-9)9Hzo = (1-6) MHZO {r3 - r4§
(l—e)QC02 = (l--e)MCoz {Pz - F4§

Noting that Fi can be expressed in terms of p; we have

with (A7), (A8) and (A20) - (A26)a system of equations for
S
Po2’ Pco’ pH2, szo' pcoz’ pNz' vir Ve, T, T, 2, 0.
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APPENDIX B
PARAMETRIC CALCULATIONS FOR FLUIDIZED BEDS

The two dimensional computer model of fluidized beds
was applied in the first year of the contract to investigate
the influence of mass flow rate in a shallow bed with a
specific distributor plate having discrete injection points
[Blake, et al., 1976]. Bubble formation and bubble motion
in the bed was examined for a range of mass flow rates be-
tween the condition of a spouted bed and that wherein the
rising bubble became vanishingly small.

In order to evaluate the code, preparatory to some
calculations of specific reactor configurations we have
continued to exercise the numerical model in various para-
metric studies. These calculations are illustrative of the
ability of the code to treat different fluidized bed environ-
ments. Further, we have exercised the numerical procedures
such as the definition of zonal dimensions, e.g., we have
used zones with aspect ratios different from unity, to study

the influence of numerical artifacts upon the calculations.

We have mentioned the earlier parametric calculations
wherein a distributor plate with discrete injection points
was examined. To examine the flow field associated with a
more continuous injection of mass, we have studied configura-
tions such as the two-dimensional planar bed shown in
Figure Bl. There are two aspects to this calculation which
are of interest. First, there is the nature of the continuous
inlet flow distributions wherein the inlet velocity is a
maximum at the center line of the bed and linearly decreases
to zone at the outer wall. Second, we wished to illustrate
the ability of the code to treat an extreme flow condition
wherein the superficial velocities (if the mass flow was

uniformly distributed) was twice that for minimum fluidization.
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The bed expands rapidly and, because the boundary conditions
on particle velocity at the top of the bed, did not permit
the particles to leave the bed, these particles are sus-
pended at the top of the free board region for T < 0.9 sec.
The flow tends to be a maximum near the centerline of the
bed and hence while particles can fall at the outer edge of
the bed (T = 0.6 to T = 0.9 sec) they are elutriated and
carried upwards in the center. For the same mass flow rate,
but with the hydrostatic pressure in the bed doubled, the
corresponding particle motion is shown in Figure B2. The
bed does not expand as vigourously as in Figure Bl and
further, the expanded bed subsequently collapses and tends
to operate as a surging bed. Of course, by doubling the
hydrostatic pressure we approximately double the density
and for a constant mass flow rate we are essentially de-
creasing, by a factor of two, the superficial velocity.

This has a major influence upon the relative behavior of

the beds in Figures Bl and B2.

Again, the calculations in Figures Bl and B2 are il-
lustrative of parametric tests using the fluidized bed com-
puter model. Other calculations included the influences of
bed height to width ratio and mass flow rate with both

discrete and continuous injection of gas.
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. APPENDIX C

DERIVATION OF EQUATIONS FOR TURBULENT ENTRAINED FLOWS

In Blake [1976] a derivation of the conservation
equations for the solid particle—-gas flows appropriate to
entrained processes was presented. In this Appendix, we
recast the basic equations somewhat, formulate the time-
averaged turbulent version of these equations along with the
thermodynamic and caloric equations of state needed for
mathematical closure, indicate the assumptions involved in
the derivation of the turbulent version of these equations,
and, finally, give an order of magnitude estimate of the
errors inherent in some of these assumptions. A derivation
of the conservation equations for a number of turbulence
guantities (i.e., turbulence kinetic energy, turbulence
dissipation rate, etc.) needed to provide the turbulence
closure will be left to future reports as will the explicit
formulation of boundary conditions and the form of the
chemical reaction and radiation terms.

In our present study, we consider conservation equa-
tions which include several general order-of-magnitude
approximations. Specifically, we have:

1. Ignored terms with laminar transport coefficients.
We anticipate that they will be dwarfed in magni-
tude by identical terms with turbulent transport
coefficients arising in the course of our deriva-
tion of the gaseous turbulent mean conservation
equations. The particle-gas interaction terms
are unaffected by this rule however.

2. Ignored the momentum and kinetic energy exchange
accompanying interphase mass exchange because we
expect them to be quite small in comparison with the

‘ local momentum and kinetic energy of either phase.
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3. Ignored the thermalization of kinetic energy due
to interphase drag since it is expected to be a
negligible influence on temperature compared to
chemical reaction and/or interphase heat trans-

fer.

Let us now write the conservation equations for the
instantaneous (as contrasted with the time averaged) flow
field. We have:

3p d3(p.v.)
£ + £i - S where Pr = p¢, (C.1)

3t axi

S = rate of increase of o due to solid mass being
gasified by chemical reaction.

Total Solid Mass

dp a(ppui)

P = - = -
5T + axi S where pp ps(l ¢) (C.2)

Total Gas Momentum

3 (p.v.) 0 (p.v,.v.)
fi f i3y _ _ 3P _ _
ot * X . X, G(“z’r) pp(vi ui)
j i
+ P9y (C.3)
where G(uz,r) = Stokes' Flow coefficient for total particle-

gas drag as a function of M, = gas laminar dynamic viscosity

and r = particle radius.

Total Solid Momentum

j <l |
it X .
J

a(ppui) N d(p u.u.)

= G(ul.r) pp(vi—ui) + 0.9

P
(C.4)
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Gaseous Species Mass

a(pfFa) N 8(°fFaVi) Ss 4 g .5
ot axi 0. f,a :

where Fa = mass fraction of species in gas and Qf a(= ¢Qa)
14
and S = rate of increase in o = p.F_ due to creation
a —_— £f,0 f o
of species o via gas—-phase chemical reaction and solid mass
gasification, respectively. Note that I Sa = S and

)Y/ 0 *
o f,a T

Gas Internal Energy

8(pfef) . a(pfefvi) - b avi
ot 09X . 9X.
i i
qu
+ - - - .
E Saha(Tp) H(Kllr)(Tf Tp) % (C.6)
i
o
where
e = Specific internal energy of gas phase
including enerqgy of formation.
q. = Heat flux vector in gas phase which may
i . . 3 . .
include conduction, species diffusion,
and radiation effects.
Tf = Gas phase temperature.
ha(T ) = Specific enthalpy of species a at solid
P phase temperature, Tp, including heat of
formation.
H(Kz,r) = Stokes' Flow coefficient for particle-
gas heat transfer.
Kl = Laminar gas conductivity.
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Solid Internal Energy

d(p_e ) 3(ppe u,

p p P l E :
=t + S h (T )
°oq i
+ H(Kl,r)(Tf-Tp) - axi (C.7)
where

e = Specific internal energy for solid phase,
P including energy of formation (usually zero).
qpi = Heat flux vector in solid phase.

Gaseous Thermodynamic Equation of State

F
= E &
P ORT M (C.8)
a o
where
R = Universal molar gas constant .
Ma = Molecular weight of species a.

Gaseous Caloric Egquation of State

Te
peep = oy Z Fe (T) = o, z : F_{e (T,) + f Cy o (T ar
o o T
0
(C.9)
where ea(T) = specific internal energy of species o at
temperature, T, including energy .of formation:; T0 = 298.15°K

is the reference temperature at which energy of formation
data is available; and CV o is the (mass not molar) specific

14
heat at constant volume of species o at temperature, T.
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Solid Caloric Equation of State

T
P
e = e (T + 0 C (T) 4ar C.10
Pp®p = Ppp (T p./ v,p'T) (C.10)
Ty
where ep(To) = specific internal energy of solid particle
at reference temperature and CV p(T) = (mass) specific heat
’

at constant volume of particle at temperature, T.

In addition to the previous ten equations, we have
three definitions to which we have referred that are needed

to mathematically close the system, viz.,

Definitions
:E: pf,a = e or :E: Fa =1 (C.11)
o a
Pe = oo (C.12)
p
6 =1 - B (C.13)
ps

The above equationé constitute a set of 16+N (N =
number of gaseous phase chemical species considered) equa-
tions with only 15+N unknowns. As is standard, one of the
gaseous species equations must be discarded since summing
the N versions of Egs. (C.5) and using Eq. (C.1ll) yields
Eq. (C.1) (i.e., the sum of the gaseous species mass con-
servation equations is redundant with respect to the overall
gaseous mass conservation equation). This reduces our

equation set to 15+N so our system is mathematically closed.

We shall be interested, initially, at least, in examin-
ing the case of locally isothermal conditions (i.e., T_ = Tf
= T). For that case we can combine Eg. (C.6) and (C.7) into
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a total internal energy equation. Such action, which will
be exhibited below when we consider the turbulent form of
the equations, reduces our set to l4+N equations with 14+N
unknowns.

The above equations constitute a closed mathematical

set for the instantaneous quantities, but this is not too

useful for characterizing turbulent systems wherein the
time-averaged quantities are more easily observable and con-

siderably more significant.

Let us now turn to the time-averaged form of Egs.
{C.1)-(C.13) and how we currently intend to deal with them.
We shall take each equation separately and, thus, build up
a set of calculational variables.

Taking the time average of Eg. (C.l), we get:

3'5f 3 (pev;)
+

at X,
i

= S (C.1lla)

where () denotes the time-average of a quantity which,
theoretically at least, is taken over times large with
respect to the time scales of the turbulent fluctuations,
but short with respect to the time scales of interest in

the calculations. Note that we have only formally time-
averaged the chemistry term; we shall not go any further

at this time. Now, traditionally we have broken every
instantaneous quantity, B, into a time-averaged part, B, and

e -

the instantaneous fluctuation from 8, B~ = B - B, so that

B~

0. For constant density flows, this approach is
satisfactory [Launder and Spalding, 1972], but it leads to
major problems in flows with large density variations such
as those involved with combustion [Kent and Bilger, 1973].
Consequently, we have chosen to use a variation of Favre

averaging in which if p is a density, we have B8 = B+ 8”7
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and 0B = 0B so that pB”” = 0 but B”~ # 0. Thus, we define

Pl

V. =V, + Vv
1 1

yields:

and take p v, = Efei so pfvi‘ = 0. This

dpg 3 (pfvi)

T + axi = S (C.1b)

Taking time-averages of Eg. (C.2) yields:

3p 3 (p_u,)
) pl _ _. =&
ot + 9X . S .(C.2a)
i
Now, defining u, = ﬁi + u;” with
ppui = ppui so ppui = 0, we get:
39 3 (p_u,)
% plr _ _.c
se- * %, S (C.2b)

Averaging Eq. (C.3) over time and ignoring any
fluctuations in G(uz,r), we get:

d(p.v.) 3(p.vV.Vv.) =
£f i flJ __BP_ -ﬁ -
T Fa e T Glug,z) polvi=u;) + peg;
i

(C.3a)

The p_.v. and p u. terms were treated above, so let us turn
fi p i

to the others. We have

BT = 0. (9,49, (VAVLT) = B, + 9. (povr ) 4% (v
PeViVy = P VitV ) (Vydvy™) = ogvivy + vy (v )4V, (p v Y]

+ V." vl
PeVi Vj !
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but we saw that

PeVi = PgY5

0,

so we have

~
P -

pfvivj = PgVy 3 + Pevy vj .

The ppvi term is a troublesome one since it represents the

interaction of the weighted particle density (i.e., pp =
Pq (1-¢)) with gas velocity. Now

=5 v, + =5 v, + co- ‘=5 v, + - .
ppvl ppvl c>pvl ppvl opvl Pevs ppvl (pp pf)vl
since

Pevi T = 0

so the troublesome term can be thought of as either ppv{’

or (op-pf)vi .

While one may argue that turbulent variations in solid quanti-

p’ u, etc.) may be only weakly correlated with
those in gaseous quantities, we do not believe that such a

ties (e.g., p

principle is sufficiently well validated at this time, either
qualitatively or quantitatively, to justify ignoring E;;zj.
Nevertheless, while we have not been able to prove, or even
satisfactorily justify, the dropping of the 35327 term, we
shall do so for convenience sake, at least on an interim
basis. Work shall continue on trying to either justify its
omission or properly model it. Applying these rules, Eq.

(C.3a) becomes:
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9(pv,)  3(p.v.v.) =
fi £iy° _ _ 3P _ - -
ot * axj B 39X G(uyrr) pp(vi uy) Pe93

B(vai’vg’)

9%, (C.3b)

J
where the last term will be seen to be the divergence of
the turbulent stress.

Treating Eq. (C.4) analogously to (C.3), we get for

the time-averaged form:

8(ppui) . 8(ppuiuj)

2t IX.
]

[] - 3 ) L L J
G(ug,r) op(vl ul5 + ppgl (C.4a)

which becomes

3 (P u.) 3(p u.u.) .. 3(p ui ul’)
p 1 p.1J _ = - - p i 3
At * X. G(uz,r) pp(vi ui) 0X,
J J
+ ppgi (C.4Db)
Time-averaging Eg. (C.5) yields:
3 (p.F ) 3 (p.F v.)
f o fai _ = =
=T + Bxi = Sa + Qf,a (C.5a)
Now, define Fa = Fa + Fa such that pfFa = pfFa or pfFa = 0.
We get:
I (peF ) 3 (pF vs) E .3 ) d(pgF v ) (. 5b)
ot axi a f,a Bxi )

where the last term will be seen to be the divergence of the

turbulent species mass diffusion flux vector.
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As mentioned above, if we assume a local thermodynamic
equilibrium, there will only be one temperature for both gas
and solid. Thus, Egs. (C.6), (C.7), (C.9) and (C.1l0) are
related in that we have four equations for the three un-
knowns: e_, F and T. Thus, before continuing, let us
add Egs. (C.6) and (C.7) to yield:

3(p.e_+p e ) d(p.e_v.+p e u, v, 3 (q;+q .)
ffpp , pfflpppl)=_P 1 _ - Pi (C.14)

ot 90X, OX. IxX.
i i i

Taking time-averages of Eqg. (C.l14) results in:

d(q +q_ )
3(p.e.v,+p e u,) v, i .
ffippi __p i Pi (C.l4a)

ax., 9X,
i i

B(Ofef+ppep) N
ot axi

Let us now take time-averages of Egs. (C.9) and (C.1l0) to
get:

T
- X - 5
pfef pf]?me(1 T) pfFa ea(TO) + cv,a(T)dT
o T

& 0
T
=Z pF e, (Ty) + o F, Cv’a(T)dt (C.9a)
(o 4.0
and
T
e =p e (T + c T)dt (C.10a)
°pep = Ppep (T pp/ v,pT)
Ty

Now define T = T + T””; we will not yet specify the division

between T and T “except that T”® is affected by the time-
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averaging process while T is not. Let us now add Egs. (C.9a)
and (C.l0a) together and substitute for T, which yields:
T
e +p.e.=p T ) + c T)dT
Ppep * Pele = Py ep( o) / V'p( )

Ty

T
+ ZBfFa eo(Ty) +jf C, o(T)dT

’

a
To
+ 5 ppcv,p(T) + E pfFan’a(T) 4aT (C.15)
T o

Now, the first { }'d term is e (T) including the solid energy
of formation, ep (TO); the second { }'d term is e, ('f‘) includ-
ing the energy of formation of species «q, e, (TO); while the
last term in { } is the instantaneous mixture constant volume
specific heat per unit volume, CV m’ which is a function of

’

both temperature and time. Thus, we can write Eq. (C.1l5) as:

ppep + pfef = ppep(T) + e Z Faea (T)
o

+ f C (T,t)ar (C.15a)
v,m
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If we now define the split between T and T”~ such that ‘
the last term in Eq. (C.l15a) vanishes, we get:

opep + Peee = ppep(T) + z : pfFaea(T) (C.15b)
o

We might note at this point that the above definition of %,
T”” corresponds to a choice of T such that the instantaneous
variations in T about T (i.e., T°") result in exactly as
much (excess) mixture internal energy (per unit volume)
existing in the excursions above T as (deficit) mixture in-
ternal energy exists in the excursions below T when averaged
over the time scale used for averaging turbulent fluctuations.
As such, it differs from the conventional T which is based

on temperature itself instead of mixture internal energy or
another possible definition wherein pressure is used in-
stead of temperature or mixture internal energy. That latter
definition would be most convenient for use in simplifying
the turbulent form of the thermodynamic equation of state
(Eq. (C.8)), but because of the differences between such
temperature definitions, one is forced to choose one and
accept the inconveniences and/or errors that choice imposes.
We have made our choice and will demonstrate below its
consequences.

-,

Just as our definition of 5, T has a more compli-

-~

cated form than our previous definitions (e.qg., Vi vi’,
etc.), the implications of that definition are also less

obvious. Let us define the following quantities:
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SO
e =e +e’°
p P
and
"i‘-}-T"
s - Z - = z: C.16
€¢ Faeu(T), et Fa/: CV,a(T)dT ( )
a o T
SO
e = e; + ec

Then our definition of T, T”” implies that ppeé’+pfe£' = 0,

but it says nothing about ppeé‘ or pfeg’ separately. Con-

sequently, we have a rather unusual term appearing in the
resultant turbulent expression for advection of internal
energy. That is

e v. + e u. - - - ~- + ~ ~ + _p -~ -, o,
PeCeVy Pp®pUi (pf £i pepui> (pfef vi ¥ Pp®p U

+(pfef vy + ppep ui) (C.17)
A comparison with the terms appearing in Egs. (C.3)-(C.5)
shows that besides the mean advection and turbulent diffu-
sion terms whose analogues appear in Eg. (C.17), we have the
third ()'d term in Eq. (C.17) which has no analogue in Egs.

(C.3)-(C.5). This term can be written alternatively as

~

;;~ o~ , P -, (C.ls)
Ofef vi + ppep u

e; (vi-ui) = p e (ui—vi)

i - pf PP
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and represents the net convection of turbulent mixture internal ‘
energy by the mean velocities. At this point we have no way
to model such terms so we will arbitrarily drop them, at

least temporarily.

The last term in Eg. (C.l1l4) to be considered is the
P avi78xi term. This can be written as

avi _ avi 3v£‘
P %K. P 9X. + P I3x. (C.19)
i i i

The P Bvi/axi term represents the only kinetic-internal
energy conversion mechanism remaining in the energy equa-
tion. Since "one BTU is worth many ft-1bf", it is possible
that this pressure-work effect may also prove negligible in
comparison to chemical reaction effects, but the large gas
density changes induced by combustion and the possibly high
operating pressures envisioned for entrained gasifiers/
combustors makes the validity of such a simplification some-
what unsure. Thus, our approach is to discard the second
term in Eq. (C.19) while retaining and monitoring, at

least temporarily, the first term as an order-of-magnitude
indicator of the significance of the pressure-work term.

In this manner, we can let our calculational experience

dictate the ultimate retention or omission of this term.

Combining all of the above derivations and decisions,
the energy related equations (Egs. (C.6), (C.7), (C.9), and
(C.10)) reduce to the following three relationships:

d(pS.+p &) 3(p &8 _¥.+p & 1.) 3%,
f gt PR . £ gxl PP __F —axl (C.1l4b)
i i
» a -~ . - . - A B(EI-."'E )
a(pfef vy +ppep u, ) ) i “py
ox, 0X.
i i
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where the second term on the R.H.S. will be seen to be the

divergence of the turbulent internal energy diffusion flux

Vector;
Peee = PS¢ T Pg Fasq ()
o
T
= 5, Fy {e () +[ ¢,  (mar (C.9Db)
o TO
and ~
T
e =pe =pe (T =5 le (7)) + C. _(T)dT
PpSp = PpSp T PpSp(T) = e 18 (Tp) v,p )
To

(C.10b)

Now, let us turn our attention to Egs. (C.8), (C.ll)-
(C.13). Taking time-averages of Eg. (C.ll) after substituting
pf,a = pfFa, we get

Z pfFa = z PeF, = Pe or E F, = 1, (C.11la)
o o a
but
F = = + Ll - 4
Z o E (FaFa) 1 so E F.~ = 0.
o o

Time-averages of Eg. (C.13) yields

(C.13a)

47



A time-average of Eq. (C.1l2) yields:

P =P =p¢+p70" 209 (ie., p7¢" x0) (C.12a)

There are two arguments why the above approximation
is probably valid:

l. p” is primarily due to the "interchange" of
hot and cold (i.e., burned and unburned) par-
cels of gas due to turbulent motion while ¢~
is primarily due to turbulence induced changes
in the particle number density. These dis-
similar physical phenomena are unlikely to be
closely correlated and since both have zero
means, their joint mean is also likely to

approximate zero.

2. The density ratio of unburned to burned gas
is about 10 or less while ¢ is expected to
vary by only a few percent from 1.0 due to
the light solid loading anticipated in en-

trained gasifiers. Thus,

12 1

1271127) < o(1ox10
P b

)y = 0(10 )

as an upper bound, especially insofar as we have
assumed perfect time-correlation (see 1).

Thus, we feel that the approximation shown in
Eq. (C.1l2a) is justified and will use it. We
guess the true error to be of order 1 percent.

Equations (C.l2a) and (C.l3a) serve to define p and
®, given Ef and Eé. We now proceed to Eqg. (C.8), a time-

average of which yields:
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P o F
R § : f a f a
= - + (C.8a)
o)

where the indicated approximation is good to a couple per-
cent since that is the order of difference between p and Per

-~

and we have used T = T + T"~ and pfFa = EfFa‘

Again, we shall drop the troublesome term (i.e., the
second term in Eg. (C.8a)) without justification, but shall
continue working either to justify its omission or to model
it. Thus, our "final" form for the thermodynamic equation

of state is

(C.8Db)

yeli

[{]

o|

o]

2
'SI 2
QIR

Summarizing, Egs. (C.1lb)-(C.5b), (C.8b)-(C.1l0b), (C.1l4Db)
and (C.lla)-(C.13a) constitute (in 3D) a set of N+14 equations
for the N~va18es Sf Fa and Ef, Bé, the three &i's, the three
u;'s, P, s ey T, o, and ¢ plus the turbulent stress and
diffusion terms and the chemical reaction and radiation
terms. In the next report, we shall present our thinking
on the turbulence closure problem (i.e., the modeling of
the turbulent stress and diffusion terms), but we shall con-

tinue to ignore the chemical reaction and radiation terms.

We believe that the model developed in this section,
even with the several terms that have been arbitrarily omitted,
represents a significant improvement over other models that

have been suggested insofar as fewer terms of possible
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significance have been omitted than in any other second- .

order closure scheme.

50



APPENDIX D

THE EVOLUTION OF PARTICLE DISTRIBUTIONS
FOR TURBULENT ENTRAINED FLOWS

INTRODUCTION

The number of particles at a given point in space at a
given time can be subdivided into the numbers with particular
sizes, velocities and temperatures. This distribution of
particle numbers plays an important role in the behavior of
turbulent flows involving particles. Thus the complete deter-
mination of the interaction of gas and particles involves
simultaneous treatment of the conservation equations for the
gas and particle flows and of an equation yielding the distri-
bution of the number of particles with specific properties,
e.g., size, velocities and temperature. At the present time,

there exist no analyses involving such a complete treatment.

Our initial approach to the study of particle distribu-
tions is based on the assumption that the total number of
particles is sufficiently small so that the characteristics of
the gas flow are unaffected and therefore known. This corres-
ponds to considering the particles to be carried along by, and
consumed in, a turbulent, chemically-active, carrier gas. The
information required to characterize the carrier gas depends on
the analysis being employed for the determination of the distri-
bution of particles. This approach, based on negligible influence
of the particles on the gas, is considered a first step which
will lead, in due course, to an appropriate treatment of the

full, interacting case of practical interest.

Even with the crucial, simplifying assumption leading to
consideration of particles in a known carrier gas, there appears
to be no directly related literature applicable to turbulent

\]
flows of reacting solids. There are, however, several
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contributions in related areas which can be brought to bear ‘
on this problem. For example, there is an extensive literature
on the behavior of sprays and solid particles in inviscid flows,
€.g., in nozzles. The review articles by Williams, 1962 and
Marble, 1970 and the significant contribution of Shapiro and
Erickson, 1957 provide entries into this literature. Also of
interest to us is the literature concerned with the numerical
simulation of the trajectories of particles of fixed size in
turbulent flows since it suggests one approach to the study of
our more complicated case of reacting flows. Peskin, 1974
should be consulted in this regard. Finally, the study of

Lane, 1967 which is based on the theory of stochastic opera-
tors by Keller, 1964 and which is concerned with the behavior
of electrons in a turbulent background gas may provide a
convenient approach to the determination of the particle size

distribution for weak turbulence.

A rather complete discussion of the equation for the
particle size distribution and its solution are given below.
Suppose we wish to determine the number of particles in appro-
priate infinitesimal "boxes" around the space point X at time
t with radius r, velocity u, and with temperature Ts, i.e.,
we desire n(g,t,r,g,Ts). These quantities are considered to
characterize sufficiently the properties of the particles; thus
all particles are assumed to be essentially spherical and to
have a uniform internal temperature. If this number as a func-
tion of the indicated variables is known, we can determine a
variety of other properties of the particles by appropriate
integration. For example, the time averaged particle cloud

density at a point x would be

T
Ep = 1im 1 T 0% an f dt

T+

x
2
dr r /dgdesn(g,t,r,g,Ts)

Ok“\s
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where ps is the specific density of the solid. Other quanti-~
ties depending only on the particles and their properties can
be readily calculated.

The utilization of the number, n, of particles in the
determination of the full interaction of the gas and particles
involves additional considerations. To illustrate, consider
the time averaged drag in the xl-coordinate direction. Under
the assumption of a Stokes drag law, the full and exact calcu-
lation is given by

[ o] [e o]
= . -1 s
fl(g)—iﬂr fdtfdr r/duzfdu3[dT fdvzfdv3

./‘du:L fdvl Wy -vy) n(}g,t,r,g,‘l‘s,‘l‘,y)

- Q0 - OO

where v 1is the gas velocity and u 1is the coefficient of
viscosity of the gas. Now the function n(g,t,r,g,Ts,T,y)
implicitly involves integrations with respect to v and T
and thus an exact evaluation of ?l(g) and other interaction
terms requires additional approximations for solution in the

case of full interaction between gas and particles.

In the equation for n(g,t,r,g,TS), the state of the
carrier gas enters into the coefficients of that equation. The
exact solution can be carried out to any desired space and time
resolution by the method of characteristics coupled with time-
dependent solutions of the hydrodynamic equations. This ap-
proach represents an extension of the numerical simulation tech-
niques described by Peskin, 1974. However, for present pur-
poses, approximate solutions are examined and, in particular,
an approach based on correlations and leading to the determination
of the time averaged particle number H(g,r,g,Ts), is given.
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The incorporation of this approach into the hydrodynamic cal- ’
culations with an approximate treatment of the interaction

appears promising.

It is perhaps appropriate to note that these studies of
the behavior of particles in a turbulent carrier gas will prove
useful in the development of appropriate phenomenology for the
source terms describing the chemical interaction effect. In-
formation concerning the chemical reactions between a particle
of specified temperature, TS, and a surrounding quiescent gas
of specified temperature and composition must be incorporated
into the description of time-averaged source terms which account
for the fluctuations of gas properties and for the distribution
of particle sizes and temperatures. This problem is analogous
to, but probably more difficult than, the corresponding des-
cription of the mean creation terms in turbulent reacting
flows devoid of particles; the interaction of turbulence and
chemical reaction in gas flows free of particles is a largely
unsolved problem which is the subject of current active re-
search [Libby and Williams, 1976]. We anticipate that our study
of particle size distributions will, at the least, provide
information about the sensitivity of the source terms to the
various contributing components of the gas flow turbulence
and may suggest an effective phenomenology to be incorporated
into the hydrodynamic calculations so that the essential ef-

fects of turbulence are accounted for.

CONSERVATION EQUATION FOR n(x,t,r,u ,TS)

We consider the function n(x,t,r,u,TS) which gives the
number of particles in the nine-dimensional, infinitesimal
volume surrounding the point identified with the indicated

variables.*

* - - -
Note that the dimensions of n are, e.g., cm 3 sec 1 cm 1 .

3 1 =7 1

(cm/sec) ~ (°K) — = cm sec2(°K)- .
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Physical arguments suggest a ready extension of the conserva-
tion equation for the particle number provided by Shapiro and
Erickson [1957] and Williams [1962]. We have

an/at + uk(an/axk) + 3 (Rn) /3r + S(Fkn)/a uy

+ 3(Hn)/8 T = 0 (D.1)
where

R = dr/dt, the rate of change or particle size;

Fk = duk/dt, the rate of change of the kth velocity

component of a particle; and .

H = de/dt, the rate of change of particle temperature.

If appropriate functional forms for the coefficients,
R, Fk and H, are specified, Equation (D.l) is a linear, first-
order, hyperbolic equation whose exact solution to any desired
space and time resolution can, in principle, be obtained by
application of the method of characteristics. Although such
exact solutions are probably not appropriate for our studies,
their consideration is instructive and therefore worth discus-
sing.

To proceed, it is unnecessary to be explicit about the
coefficients in Equation (D.l); rather it is sufficient to indi-
cate that they are given, explicit functions of the independent
variables, U, I, and T° and depend implicitly on the other

independent variables, x, and t, through their explicit depen-

k
dence on the gas properties, p, Vk’ T, Yl""‘Y where p is

N
the gas density; Vi the kth component of the gas velocity;
T 1is the gas temperature; and the Yi's are the mass fractions
of the gas. All of these quantities are treated as known func-

tions of the space coordinates x, and time, t. If we were

k
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actually carrying through the calculations under discussion, .
these functions could be generated by a hydrodynamic program

for a turbulent gas flow without particles present so that at

each space-time point the R, Fk’ and H coefficients would

be explicit functions of only the independent variables U,

r, and 7%, Such an approach would represent an extension to

a more complex situation of the numerical simulations described

by Peskin, 1974.

. The exact solution of Equation (D.l) by the method of

characteristics is given by a solution of a system of ordinary

differential equations, namely

dn/dt = -n(3R/dr + 3F,/du, + 3H/5TS) (D.2)
dxk/dt = u (D. 3)
dr/dt = R (D.4)
duk/dt = Fk (D.5)
ars/dt = H (D.6)

These equations are to be solved subject to suitable initial
conditions; for purposes of exposition, we postpone detailed

discussion of such conditions for the present.

The physical implication of Equations (D.2,...6) is as
follows: The last four equations give the trajectory through
the eight-dimensional space identified with the coordinates
Xpr T, Uy, and T° of particles whose number and position in
that eight-dimensional space at time zero are given by the
initial conditions. The first equation describes the history
of the population along that trajectory; for the situations of
interest to us, wherein the particles are being consumed, the
history is of interest until the original population is entirely

obliterated, i.e., until n = 0.
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Exact solutions to Equations (D.2,...6) can be used to
develop, by numerical experimentation, the statistics of the
number distribution, n. The point of view in this regard is
as follows: Imagine that two turbulent gas flows with dif-
ferent velocities and state properties mix in some fashion and
that their space-time behavior is known. Along a streamwise
line indicative of the origin of mixing, introduce an initial
number of particles of known size and temperature, but with a
spectrum of particle velocities, in one stream and calculate
their trajectories and histories to extinction by solving
Equations (D.2,...6). If this calculation is repeated many
times with the same initial conditions except for a spectrum
of initial velocities, it is possible to develop a sufficiently
large number of realizations so that the statistics of that
population of particles with that size and temperature passing
that particular spatial point can be developed to calculate
n(g,t,r,g,TS). These calculations must be repeated at dif-
ferent initial spatial points and with different initial «r
and TS. Clearly, a considerable calculation is required.

Accordingly, approximate solutions are indicated.

THE COEFFICIENTS OF THE CONSERVATION EQUATION

Before discussing approximate solutions to Equation (D.1),
it is worthwhile to discuss possible forms for the coefficients
appearing therein. In developing these coefficients, Soo, 1967
and Williams, 1962 are useful references. The easiest of the
three coefficients is Fk. If we assume the main contribution
to the force on a particle is that associated with Stokes drag,
then the dynamics of a single particle result in

Fk = —9u(uk - vk)/ps rz (D.7)
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The treatment of the other two coefficients is conveni- ‘

ently considered in terms of two phases of particle behavior.
If we assume the particles are initially cold and therefore
chemically inert, there will be a heating up phase in their
history during which no change in size occurs so that R = 0.
During this phase, the heat conduction between the particle and
the gas can be represented as*

H = 3y cS(T - 75)/r? p% S (D.8)

where c; is the coefficient of specific heat of the solid.

During the second phase of particle behavior, a reason-
able, simplifying approximation might be that the particle
remains at a fixed temperature Tc while chemical reaction
leading to reduction in particle size occurs. The temperature,
Tc, effectively defines the end of the first phase and the
beginning of the second. According to this approximation,

H =0 and we need only represent R. The description of the
rate of loss of particle mass which can be directly employed
to determine R 1is complicated because the phenomenology of
both chemical and fluid mechanical effects are involved. Thus,
at the present time, we can only suggest the type of represen-

tation likely to be developed.

If we assume the particle to be carbon and to be subject
to direct hetereogeneous attack by oxygen molecules, the reac-

tion mechanism can be taken to be

O2 + surface - 0 + C >~ CO (D.9)

N =

Furthermore, if we make several simplifying assumptions

*
See Equation (2.126) of Soo [1967], neglect radiation and
assume the Prandtl number of the gas is roughly unity. .
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. concerning the aerothermochemistry and transport properties
of the gas mixture surrounding the particle, we find (c.f.

Appendix A)

R = — ﬁ (D.10)

APPROXIMATE ANALYSIS BASED ON CORRELATIONS

One method of obtaining approximate solutions to
Equation (D.1l), at least for the time-averaged number densi-
ties, is based on averaging and correlations. To discuss
this method we shall explicitly invoke the model of particle
behavior based on the two distinct phases and shall consider
only the initial phase during which the particle size does not
change, but rather the particle temperature increases to Tc'
The extension to include description of the second phase is

straightforward.

For the first phase of particle history, the time
average of Equation (D.1l) gives

= I LR
uk(Bn/axk) + B(Fk n + Fk n )/Buk

+ 3(Hn + B'n")/3TS = 0 (D.11)

where the bar denotes time—averaged and the prime the fluctuation.
The effect of turbulence in the carrier gas on the mean number
density of particles in the seven-dimensional space of x, u

~

and Tp is contained in the correlations Fk'n' and H'n"'.
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Explicit expressions for Fk' and H' in terms of the fluc- .
tuations of the gas properties can be readily obtained from
Equations (D.7,8). For present purposes, it is sufficient to

work directly in terms of Fk' and H', but we do reflect the
functional forms for Fk and H in the development below.

Equation (D.1ll) cannot be used to calculate n unless
expressions for F;TH7 and H'n' are provided in some fashion.
There are several alternative approaches to these expressions.
In analogy with the classical treatment of turbulence, we can
introduce a gradient approximation so that, e.g.,

F;THT « Fr2 aﬁyauk where the constant of proportionality is
chosen in some fashion. A second approach corresponds to
second-order closure; the starting point in this approach is

an equation for the fluctuations in number density. Subtraction

of Equations (D.l) and (D.1ll) yields

an'/3t + uk(an'/axk) + S(Fkn' + Fk'H + F,'n' - F'n )/au

+ 3(Hn' + H'n + H'n' - H'n')/aTS =0 (D.12)

If this equation is multiplied by Fk' and averaged and then
by H' and averaged, we find the two equations

"h' + F, '"H'n') =

u A (F ") /axy + 3 (F k

—_— 2 =
Ty 0 1
F] n' + % F]' n')/au] + 3 (H F]

- % 3(n Fk'z)/aukp - 3(n P 'H')/3T° + lim 3 (n'(x,t,r,u,T")-

T+0

F ' +ut,t + 1, r, u+ Ft) /37 (D.13)
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‘ uy Z)(H'n')/axk + a(ka'n' + E‘k'H'n')/auk + 3(H H'n'+’/zH'2n')/3TS

= - 3(F_"H'n) /3y, - %3 (H'2m)/3T° + lim 3(n' (x,t,r,q,T%) "
7+0

H'(x + ut,t + 7, r, u + F1, T + Hr)/o1 (D.14)

These equations can be interpreted as conservation equa-

tions for the desired correlations, Fk'n' and H'n'. However,

these new equations are not complete or "closed" either, in
this case because of the higher-order correlations, Fk'H'n',
H'Zn', Fk'zn', and because of the last terms on the right side

of each equation. These latter terms, which must be modeled

in some fashion, represent the correlation between the fluctu-
ations in number density and, e.g., in Fk' along the mean
trajectory of the particles in the nine-dimensional space.

Additional equations for the higher-order correlations
can be developed in the same fashion as used for Equations
(D.13) and .(DP.14), but as is typical of the closure problen,
new higher-order correlations and additional terms such as the
last terms on the right sides will arise and require special
treatment. All of these symptoms can be related to those
usually encountered in the phenomenology of turbulent flows.

Additional study of this approach is indicated before
numerical analysis is appropriate. It is worth noting that all
of the equations, e.g., those for n, f;TET and H'n', are
hyperbolic; the solutions are as indicated by Equations (D.2,...6)
but with the trajectories corresponding to the mean values of
F, and H, i.e., to Fk and H. It should also be noted that
the effects of the turbulence of the carrier gas are explicitly
taken into account; in particular, when this analysis is carried
out for the second phase of the history of the particles, i.e.,

‘ when chemical reaction and reduction of particle size occurs,

the influence of R and R' will enter.
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There are perhaps other means for extracting useful ‘
information concerning the evolution of particle distributions
from Equation (D.l). For example, the method of stochastic
operators [Lane, 1967 and Keller, 1964] may be applicable at
least for the case of weak turbulence. In assessing other
approaches, we recognize the desirability, if not the neces-
sity, of having a means of analysis which can be incorporated
with some further rational approximation into the computation
of the coupled equations for the conservation of gas and

particles.
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APPENDIX E
FINITE ELEMENT-FINITE DIFFERENCE SOLUTION OF THE EQUATIONS
OF COMPRESSIBLE VISCOUS FLOW
The equations to be treated here are the Navier-
Stokes equations for compressible viscous flow; for simpli-
city, thermal effects are not included, but it is very
straightforward to do so. The continuity equation is

N

3 3 _
T P + 3;; (pvj) =0 (E.1)

o

[
I
[

where p is fluid density, t is time, xj are the space co-

ordinates, v the fluid wvelocity components and Nd the number

of dimensions. The momentum equations are
Nd Nd

) 3 ) 3 o

St vy ¥ D e (evivy) -~ 2,(% EEIRE T 'a_}TVi)
9X.,

1

where p is the fluid viscosity and p the pressure.

The procedure to be used for the solution of Egs.
(E.1) and (E.2) is a finite element-finite difference
method [see, e.g., Zienkiewicz, 1971 for a discussion of the
finite element], where the finite theory difference character
is related to the application of the basic philosophy of the
so-called ICE technique [Harlow, et al., 1974] (Implicit
Continuous Eulerian). This finite difference technique
has proved successful in treating low-speed compressible flow

problems.
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The finite element approach to continuum field prob- .

lems assumes the continuum to be divided into elements, with
nodes located either on the boundaries or in the interior of
the elements (see Figure 1l). We will assume the nodes are
on element boundaries. Furthermore, to incorporate the ICE
philosophy, density and pressure will be assumed to be
centered at the elements, and velocity at the nodes. We
will use three types of interpolation functions for expanding
the dependent variables; these are shown in Figure 2.

In the following, right superscripts refer to elements
(capital letters) or nodes (lower case), right subscripts
to Cartesian components, and left superscripts to time
levels. The weighted residual technique [Zienkiewicz, 1971]
will be applied here.

The dependent variables are expanded in terms of the

interpolation functions:

Ne
p = }E: pL e (E.3)
L=1
Ne
=1
Nn
pv, = Z (v )™ M" (E.5)
=1
Nn
pvivj = Z (pvivj)m N (E.5)
=]
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—$ of Continuum
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L

Figure 1. Discretization of a continuum into elements with
nodes at element corners. The node and element
nomenclature is apropos to the description of
interpolation functions in Figure 2.
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Figure 2.

Showing regions in which interpolation functions
M, NY and ML are nonzero. The functions MM and
ML are equal to unity in the single-shaded regions,
zero elsewhere; NY is equal to unity at node ¢,

and is zero outside and on the boundary of the
double-shaded region, inside which it is continuous.
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oV, =Z (pv;) (E.7)

Nn
‘v_i=z v (E.8)

where pL, (pvi)m, etc. are the discrete values of those vari-
ables associated with element L or node m. Here, Ne is the
number of elements and Nn the number of nodes.

A finite difference equation is used for the continuity

equation:
Nd

1 n+l,. L n+l ,— _
= Y Sp +/ Z (pvj) dsj =0 (E.9)

n D
sL J=1

where SL is the boundary of element L, V. is the volume of

L
element L, and dSj is the differential outward normal area

on SL. Here

n+1apL - n+lpL _ an (E.10)

Equation (E.9) results from applying Gauss' law to Eg. (E.l), and
assuming the density is constant throughout element L at

each time step. Using the expansion of Eq. (E.7), Eg. (E.9)

leads to
Nn Nd
n+l L _ :E: § : Lm n+l pv.)m (E.11)
]
m“.—" J:
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where

R?m = —f N as, (E.12)
SL

The momentum equation, Eq. (E.2), is treated by a more

purely finite element approach:*

L 1 n+l n
J[ﬁ T [ (pv,) - (Ovi)] av
n
Nd
2 9
+fN T (pvlvj)dV
=1’
Nd
L 3 9 n— 3 n-—
"fN 1JZ’ax (axi j+8x. Vl)dv
5=1 3 3
+ fNSL = "lp av = 0 (E.13)
X.
i
where
n+l n n ] n+l n
p=p+ (‘3'%) ("o - Po) (E.14)

Using the appropriate expansions in Eg. (E.1l3), and integrating

by parts, we obtain

* - I3
In our recent version of the code we have introduced a
finite difference approach to this equation also.
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(E.15)

(E.16)
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where
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M -1 3 5 .
0" = vy -y N MMdSi+/(EN)MMdV (E.18)

Sf o

where Su is that part of the grid boundary on which the
pressure is fixed, Sf the part where the pressure is unknown

at time tn+l'

The solution of the equations at time t is ac-

n+l

complished by substituting Eq. (E.16) into Eg. (E.1ll) and simply

solving for the n+16pL. The linear system to be solved is

:E: n LM n+l pM At l E R%m n+l(pv)@
n J J
(m,j)eD

Lm n_m
R P, .
j j} (E.19)

(m,j)eDf

where Du is the set of degrees of freedom at which (pv)? are

fixed at time tn+l’ and D_ the set at which the pv are un-

£
known. In Egq. (E.19),

n M
n LM _ _ ax2 {3p LM 9
K = 6LM Atn (Bp) T (E.20)
where

oM z: Rg'm Q‘:‘;M (E.21)

(m,j)eD

.andGLM=lifL=M
=0 if L # M (E.22)
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An earlier version of the above procedure has been
developed; it is a finite element scheme, fully implicit in
pressure (or density) and velocity, which treats viscous,
unsteady compressible flow in two or three dimensions.
Several sample calculations have been performed with this
code.

Figure 3 shows the computational grid used for the
calculation of steady, incompressible viscous flow in a
two-dimensional meandering channel. Boundary conditions
and problem parameters are shown on the figure. Figure 4
shows the velocity vectors at the grid nodes in the steady
state.

Two calculations were performed of steady compressible
Poiseuille-like viscous flow in a plane two-dimensional
channel. The computational grids and boundary conditions
are shown in Figures 5 through 7. In each case the pressure
{(or, equivalently, the density) is specified at the inlet
and outlet of the channel. Only half the width of the
channel is included in the grid, because of the symmetry of
the problems. For the problem of Figure 5, the flow is al-
most compressible, i.e., the density difference between the
inlet and outlet is small; the numerical solution to the
problem (the velocity vectors are shown in Figure 6) is al-
most identical to the theoretical solution of incompressible

plane Poiseuille flow for density p = 1.
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Incompressible viscous steady channel flow.

Figure 3.
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The maximum

Y vectors in steady flow for problem of Figure 3,
velocity is 0.0818 in magnitude.

Velocit

Figure 4.
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Figure 5. Almost compressible steady Poiseuille-like flow: p = A (p/pp-1),

A =pg=u-=1.
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Figure 6.

Velocity vectors in steady flow for problem of Figure 5. The maximum
velocity is 2.00 x 10-4 in magnitude.
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Figure 7. Compressible steady Poiseuille-like flow: p = A {p/pg - 1), A = Po
= u = 1.



The problem of Figure 7 is similar to that of Figure
5 except that the flow is highly compressible, with a much
larger density difference between inlet and outlet. Velocity
vectors for this problem are shown in Figure 8. Here it is
seen that the flow is accelerating down the channel, as
expected.

A calculation of the evolution in time of Couette flow
between two plates has been performed using the unsteady
flow option of the code. The problem grid and initial and
boundary conditions are shown in Figure 9. Velocity vectors
at selected computational cycles are shown in Figures 10-
13. Due to the symmetry of the problem it was necessary to
use only one element length parallel to the plates. Figure
14 shows a comparison between the numerical and exact

[Schlichting, 1960] solutions to the problem.
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Figure 8. Velocity reactors in steady flow for problem of Figure 7. The maximum
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P = P, p/po

Initial conditions:

p = pol
v. =v,_=0
x Y
everywhere

Ay==].1i

v, =v, =0 (t < 0)

/‘//<§ =1, v, =0 (t>0)

Figure 9. Computational grid, initial and boundary condi-
tions for Couette flow development problem.
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Figure 10. Velocity vectors in Couette flow formation, cycle

‘ 29, t = 1.49.
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‘ Figure 12. Velocity vectors in Couette flow formation, cycle
60, t = 30.35.
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