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ABSTRACT

This report presents a summary of the work accom­
plished during the sixth quarter of a three year study con­
ducted for the U.S. Energy Research and Development Adminis­
tration under Contract No. E (49-18)-1770. The objective of 
this research is to develop and apply computer codes, based 
upon continuum theories of multiphase, reactive flows, to 
the performance of fluidized bed and entrained flow reactors 
for coal gasification.
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I. OBJECTIVE AND SCOPE OF WORK

The purpose of this program is to develop and apply, 
over three years, accurate and general computer models 
that will expedite the development and aid in the optimiza­
tion and scale-up of reactors for coal gasification. Initial 
applications will be to fluidized bed gasification processes; 
subsequently both entrained flow reactors and fast fluidized 
beds will be examined.

During the first year, work will be initiated on the 
fluidized bed model in the areas of multiphase fluid flow 
without chemical reactions, and chemical reactions without 
fluid flow. The computer codes, developed to represent 
these aspects of gasification processes, will be combined 
in the second year of the program into a numerical model of 
reactive flows in fluidized beds. This model will provide 
a time-dependent field description of fluidized bed flows in 
two space dimensions. Calculations will be performed with 
the prototype code during the first and second years to 
verify the accuracy of the formulations employed and, in the 
second year, these calculations should provide preliminary 
results relevant to coal gasifications. During the second 
year a computer model for entrained flow gasifiers will be 
formulated and the chemistry defined; this model will pro­
vide a field description of entrained flows in two space 
dimensions. Nonreactive flow calculations will be performed 
for entrained flow processes at the end of the second year.

In the third year the application of the fluidized 
bed computer model to specific gasifier processes will be 
extended and a computational model which includes three- 
dimensional effects will be developed. Also, during this 
third year the coal chemistry will be combined with the en­
trained flow computer model and some calculations of such 
gasifier configurations will be performed.
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II. SUMMARY OF PROGRESS TO DATE

This was the second quarter in the second year of 
research to develop and apply computer codes, based upon 
continuum theories of multiphase flows, to the performance 
of fluidized bed and entrained flow coal gasification reac­
tors. Research was active in several areas.

The research on the fluidized bed computer code in­
cluded the development of the models for the heterogeneous 
and homogeneous reactions appropriate to char combustion 
and the incorporation of that chemistry into source and 
transport terms for the conservation equations. These source 
terms will be included in the numerical model in the next 
quarter. The basic numerical code was modified to reduce 
computer core requirements and to thereby permit the cal­
culation of problems with a large number of zones. Para­
metric calculations were performed with this code to repre­
sent the influences of bed geometry, mass flow rate and 
distribution and hydrostatic pressure effects in fluidized 
beds.

The work on the entrained flow computer model involved 
both the formulation of the basic conservation equations and 
the development of a computer code to test possible numerical 
techniques appropriate for that system of conservation equa­
tions. These conservation equations represent turbulent 
compressible flow of gas and solid particles, including the 
influence of chemical reactions. Constitutive equations for 
these turbulent flows are being formulated. The computer 
code is a finite element-finite difference code which treats 
a system of equations mathematically like that for entrained 
flow and it is being used to investigate the application of 
finite element techniques to the computer modeling of such 
flows.
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III. DETAILED DESCRIPTION OF TECHNICAL PROGRESS

3.1 TASK 00 - MANAGEMENT, DOCUMENTATION AND CONSULTING
A review of the fluidized bed computer model was pre­

sented at the ERDA-Fossil Energy Conference on Computerized 
Mathematical Modeling of Coal Conversion Processes on 
November 16, 1976.

The AIChE Annual Meeting in Chicago, November 30- 
December 7, 1976, was attended. We presented a paper, "A 
Numerical Model of Gas Fluidized Beds", wherein we summarized 
some of the theoretical and numerical aspects of the model 
and examined some parametric calculations. This paper has 
subsequently been accepted for publication in the AIChE 
Progress Symposium Series.

Professor C. Y. Wen of West Virginia University con­sulted with S3 staff members on the subjects of fluidization 
and coal chemistry. He has agreed to develop a quasi- 
homogeneous reactor model which will serve as a numerical 
representation of steam oxygen gasification chemistry in a 
simple flow environment. This effort, through West Virginia 
University, will be supported by a subcontract which has 
been written and submitted to ERDA for approval.

Professor Paul A. Libby of the University of California, 
San Diego, is consulting on the subjects of reactive turbulent 
flows and the evolution of particle size distribution in such 
flows. This research is related to our development of the 
computer model for entrained flow gasification.

During this past quarter, close liaison between 
Systems, Science and Software and other industrial and re­
search organizations in coal gasification was maintained 
through visits and discussions on the subjects of both 
fluidized bed and entrained flow gasification.

3.2 TASK 01 - FLUIDIZED BED COAL GASIFICATION MODEL
The research on the fluidized bed model was directed 

to the development of the chemistry for steam-oxygen gasifi­
cation processes and to the development and application of 
the fluidized bed computer code.

The formulation of the chemistry for heterogeneous and 
homogeneous reactions for char gasification and combustion was 
continued. The representation of those reactions appropriate 
to char combustion was essentially completed and is summarized
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in Appendix A. The nature of this formulation is analogous 
to the development of the thermomechanical constitutive 
equations and mechanical interaction terms in the continuum 
model [c.f., Blake, et al., 1976]. We use theoretical and 
and experimental representations of the heterogeneous and 
homogeneous reaction kinetics together with relationships 
for species transport to develop appropriate source and 
flux terms for the equations of mass and energy balance.
In the case of the heterogeneous reactions, we consider the 
balance of gas-solid mass transport, represented by film 
diffusion, and the kinetic processes of adsorption and de­
sorption, represented by a Langmuir isotherm, for a single 
particle. This determines an overall reaction rate (say: gms of carbon removed/cm^ of particle surface area/sec) 
which, when summed over all local particles, provides a 
mass source term for the differential equations describing 
conservation of mass. In a similar manner, this exchange 
of mass between the gas and solid particles contributes to 
the energy balance for the two phases. The influence of 
such exchange upon the individual particles is included in 
Lagrangian differential equations for particle size and 
particle temperature. The homogeneous reactions appropriate 
to combustion, such as volatiles oxidation and water gas 
shift, are represented by volumetric source terms in the 
conservation of mass for the respective gas species. These 
volumetric integrals reflect both the local gas properties 
through the kinetics and the local volume fraction occupied 
by the gas phase. The influence of these homogeneous reac­
tions upon the energy balance for the gas phase is accounted 
for by incorporating the heat of formation in our definition 
of specific internal energy for each constituent. These 
reactions for char combustion will be incorporated into the 
fluidized bed code in the following quarter and the formula­
tion of the additional chemistry for gasification and 
devolatilization will be continued. In the latter case, we 
expect to utilize aspects of the chemistry on gasification 
and devolatilization which were developed in the first 
year of this effort [Blake, et al., 1976]. Further, the 
homogeneous reactor model to be developed by West Virginia 
University will provide a simple numerical environment in 
which we shall test the sensitivity of the chemistry to 
changes in chemical parameters for combustion, gasification 
and devolatilization/prompt methanation.

Within the context of homogeneous reactor models, we 
note that aspects of the chemistry model for the CO2 acceptor 
process, developed at in the first year, will be used in 
the planned West Virginia effort. Both that previous model 
and the future effort contain chemistry and numerical 
methodology which will be used, in part, in the incorpora­
tion of chemistry into our multidimensional fluidized bed
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computer model. A draft topical report has been prepared 
which documents the homogeneous reactor model of the CO2 
acceptor process. This report, which discusses the code 
modifications since the publication of our annual report 
[Blake, et al., 1976] will be submitted to ERDA for review.

Research was continued on the hydrodynamic and 
transport aspects of the multidimensional fluidized bed 
computer model; this research included code development, 
formulation of representations of particle size effects 
on transport and parametric numerical studies. A major 
effort was initiated and completed to reduce the computer 
core requirements for the numerical model. This activity, 
which is part of a continuing effort to make the code more 
efficient, will permit the calculation of problems with an 
increased number of zones in the finite difference grid. 
Further, such a reduction in core requirements means that 
the added complexity associated with the chemistry and 
multi-component species transport of reactive flows can 
be more readily treated.

Parametric variations in fluidized bed flows were 
studied with the two-dimensional fluidized bed computer 
model. The influence of bed height/width ratio, mass flow 
rate, mass flow distribution and bed hydrostatic pressure 
were examined with a limited number of calculations. These 
calculations, which are briefly summarized in Appendix B, 
were presented and discussed in our review presentation at 
ERDA on November 16, 1976.

A theoretical formulation describing the relative 
transport of particles of different sizes in the fluidized 
bed was initiated. In that representation, the properties 
of the fluidized bed such as solid phase viscosity, solid 
phase pressure, solid particle-gas drag relationship, etc. 
are assumed to be determined by an average of the particle 
size distribution. Then for each discrete particle size, 
the motion of that particle size, with respect to this 
average bed, is calculated by appropriate dynamic relation­
ships. Such a calculation can be performed for each dis­
crete size (likely the particle size distribution would be 
divided into a finite number of "bins" of particles by size 
range) to determine the relative motion of large and small 
particles in the bed. A related approach would be to cal­
culate the evolution of a particle size distribution. Such 
an effort has been initiated for entrained flows (c.f.. 
Section 3.3) and it may be possible to apply similar techni­
ques to fluidized beds. However, in the case of fluidized 
bed flows, there is strong particle-particle and particle- 
gas interaction which requires the definition of collisional 
terms in such a representation of particle size distribution;
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those terms/ which involve mechanisms of significant coupl­
ing between the particle size distribution and the flow 
field are, in general, complicated.

3.3 TASK 02 - ENTRAINED FLOW COAL GASIFICATION MODEL
The research on the entrained flow model included a 

continued formulation of the conservation equations for turbu­
lent gas-solid particle motion and the development of a 
numerical model to test methodology of finite element-finite 
difference solutions for a model system of equations.

In the previous quarter [Blake, 1976], we considered 
the balance equations for gas-solid particle flows without 
turbulence. For entrained flows, the solid particle load­
ing is relatively small compared with, say, the emulsion 
phase of fluidized beds. This means that the conservation 
equations for entrained flows, in contrast with those for 
fluidized processes, must include the inertia of both the 
gas andsolid phases and may exclude particle-particle inter­
action terms. Further, the regime of entrained flow, im­
portant to coal gasification reactors, is a turbulent regime 
wherein the respective influences of gas and particle effects 
must be accounted for. We have incoporated turbulence into 
our balance equations for entrained flows and we discuss 
this formulation in Appendix C. We introduce a modified 
Favre average to account for compressibility in the flow and 
develop conservation equations for the gas and solid phases 
which include the influences of chemical reactions. Specific 
approximations and closure requirements for this system of 
equations have been examined. We expect to use a differential 
representation of the turbulence based upon an extrapolation 
of concepts from turbulence in fluids and gases without 
particles.

The evolution of particle size distributions in either 
inert or reactive entrained flows must be accounted for in 
our numerical model. One possible approach is to formulate 
a differential equation for the number of particles at loca­
tion xi, time t, radius r, velocity u^, and temperature, Tp. 
The calculation of such a number density, or particle size 
distribution, would be accomplished as part of the coupled 
system of equations for entrained flows. Obviously, this 
is not a trivial problem. We have initiated a study of the 
evolution of particle size distribution for entrained flows.
A summary of this initial study is presented in Appendix D; 
it is assumed that the total number of particles is suffi­
ciently small so that the characteristics of the gas flow 
are unaffected and therefore are known. The influence of a 
turbulent, chemically active carrier gas upon the particle
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size distribution is included in the formulation and methods 
of solution have been examined. The extension of this treat­
ment to the case of the coupled problem, wherein the particles 
have a significant influence upon the carrier gas is being 
examined and some aspects of this case are presented in 
Appendix D.

There are many finite difference techniques which 
might be used to treat the case of transient, turbulent 
entrained flows. Some aspects of flow in gasifiers 
particularly as related to the geometry of connecting spools, 
injection nozzles, etc. indicate that finite element techni­
ques might be a useful method of solution. In order to pro­
vide a reasonable basis to examine this issue, we have de­
veloped a finite element-finite difference code for 
transient flow of a compressible viscous gas. It is easy to 
show that the mathematical character of the system of equa­
tions for such flows is identical to that for the more 
complicated entrained flows under consideration. Hence, the 
finite element formulation permits us to examine the applic­
ability and flexibility of such a method to the problem of 
interest. Further, numerical methodology related to both 
the boundary conditions and the differential equations for 
viscous compressible flow can be directly applied to the 
entrained flow model. Our present conclusions are that the 
finite element technique does offer advantages as compared 
to finite difference approaches, however, we will be examin­
ing this question further in the following quarter. A dis­
cussion of the finite element-finite difference technique 
and some simple calculations are presented in Appendix E.



IV. CONCLUSIONS

In summary, we note the following aspects of our 
modeling effort.

• Existing data and theoretical models related to 
heterogeneous char combustion and the associated 
homogeneous reactions can be naturally incorporated 
into our continuum model for fluidized beds.

• Theoretical formulations for particle size 
distribution and particle dynamics have been 
initiated which potentially can lead to a general 
description of particle size influences in both 
fluidized beds and entrained flows.

• A turbulence formulation is being developed for 
entrained flows which is both related to existing 
concepts of turbulence without particles and can 
also provide a description of the coupled be­
havior of particles and gas in turbulent entrained 
flows.

• An examination of numerical methods for the solu­
tion of the differential equations of entrained 
flow indicates that both finite element and 
finite difference techniques have distinct ad­
vantages. The former method seems particularly 
appropriate in the treatment of complex geometries.

9



APPENDIX A 
OXIDATION REACTIONS

INTRODUCTION
The combustion of char and the associated oxidation 

reactions in the gaseous phase provide the source of heat 
for processes of steam oxygen gasification. In the follow­
ing paragraphs we examine these heterogeneous and homogeneous 
reactions and discuss the incorporation of the chemistry into 
the conservation equations for gas fluidized beds. The nature 
of this formulation is analogous to that already developed 
for the constitutive and mechanical interaction terms in the 
fluidized bed equations [c.f., Blake, et al., 1976]; based 
upon theoretical and experimental representation of the 
heterogeneous and homogeneous reactions, appropriate source 
and flux terms are derived for the mass and energy conser­
vation equations.

Heterogeneous reactions involve discrete physicochemical 
processes which contribute to the overall reaction rate 
[Rosner, 1972; Walker, el; al_. , 1959; Wheeler, 1951; Weisz and 
Prater, 1954]. These physicochemical influences are more 
complicated in the case of char because of changes in the 
time history of the char particle structure during the course 
of the reaction [Mulcahy and Smith, 1969]. While the oxi­
dation reactions of carbon, coal and char are perhaps the 
most extensively documented reactions in coal chemistry, 
there is still significant controversy with respect to the 
dominant reaction mechanisms [c.f.. Gray, et al., 1974;
Mulcahy and Smith, 1969; Essenhigh, et: al., 1965]. For 
example the definitions of reaction order and the associated 
activation energy in the interpretation of experimental data 
is still to be completely resolved. Essenhigh and his co­
workers have noted that there is a logical difficulty in the
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assumption of a high activation energy with a near unity 
reaction order. Such questions are directly related to the 
respective influences of pore diffusion and the adsorption- 
desorption processes. In the present development we will 
use a Langmuir isotherm to represent the chemical reaction 
rate, in terms of adsorption and desorption processes, and 
assume that the rate of reactant diffusion from the ambient 
gas to the particle surface is balanced by the rate of 
chemical reaction. We will not explicitly account for pore 
diffusion. However, we note that the influence of pore dif­
fusion can be described by modified velocity constants for 
adsorption and desorption [Walker, et al., 1959; Thring and 
Essenhigh, 1963]. Further, we note that, in addition to the 
excellent representation of data on carbons [Essenhigh, et_ al., 
1965; Tu, et al., 1934] and chars [Gray, et al., 1974; Field, 
1969] not exhibiting pore diffusion control, the Langmuir 
isotherm also provides a good representation of the temperature 
dependence of data for chars and coals of different ranks 
[Dobner, 1976; Smith, 1971a, 1971b; Field, 1970]. Within this 
context we essentially view the application of the Langmuir 
formulation as a semiempirical representation of the data.
The coefficients in the Langmuir isotherm are defined from 
these combustion data on small particles of coal, carbon and 
char, where the resistance is dominated by the adsorption and 
desorption processes. For larger particles [c.f., Nettleton, 
1967; Field, et al., 1967; Field, 1969; Mulcahy and Smith,
1969; Essenhigh, et al., 1965; Avedesian and Davidson, 1973] 
mass transport to the particle can control, and is described 
by a diffusional resistance which is dependent upon the 
Reynolds and Prandtl numbers.

In the present study we use data and models for single 
particle char combustion to describe mass and energy exchange 
between the individual particles and the gas phase. Then, the
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influence of many particles upon the continuum model [Blake, 
et al. , 1976] of fluidized bed flow is obtained by summing 
over all the particles. This summation leads to the definition 
of source terns in the conservation equations describing the 
continuum model. For simplicity in the present discussion we 
consider that the char particles are carbon and that they are 
spherical. The addition of other species is a simple matter 
and the nonspherical nature of the particles can be included in 
a manner similar to our use of shape factors in the mechanical 
interaction terms of the model.

CHAR COMBUSTION
There are primarily four controlling steps in hetero­

geneous reactions [c.f.. Walker, et al., 1959; Mulcahy and 
Smith, 1969; Rosner, 1972] which reflect the respective influ­
ences of mass transport, chemisorption and desorption. These 
steps are:

1. Mass transport of reactants and product gases 
between the exterior surface of particle and 
external gas flow.

2. Mass transport of reactants and products between 
the exterior surface of particle and active site 
within the particle.

3. Chemisorption of reactant at the active site.
4. Desorption of products at the active site.

The relative dominance of these steps is of prime importance 
in the apparent order and activation energy of the reaction.
For carbon and coal char combustion it is expected that the 
process of desorption controls at low temperatures; the reac­
tion is zero order in the partial pressure of oxygen and there 
is an activation energy of approximately 40 kcal/mol [Gray, 
et al. , 1974; Hamor, et al., 1973; Smith, 1971a; Smith 1971b; 
Mulcahy and Smith, 1969; Field, et al., 1967; Essenhigh, et al.,
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1965]. At the higher temperatures the reaction tends to be 
first order and has a low activation energy of approximately 
10 kcal/mol. This has been interpreted [Dobner, 1976; Gray, 
et al., 1974; Essenhigh, et al., 1965] as a regime in which 
adsorption controls. Between these high and low temperature 
regimes, influences of pore diffusion upon reaction order and 
activation energy have been observed. The temperature region 
for pore diffusion control appears to be a function of coal 
rank [c.f., Gray, et al., 1974; Hamor, et al., 1973; Field, 
1970, 1969; Smith 1971a,b] and is likely related to the 
respective pore structure in the particles.

For small particles (<100 y) the influence of mass
transport to the particle is less than that of the other 
three steps in the reaction process; however, it must be in­
cluded in the interpretation of the data because in many 
cases it is not negligible [c.f.. Smith 1971a,b]. For larger 
particles (>100 y) the mass transport of reactants to the 
particle can control so the combustion process becomes dif­
fusion controlled.

It is possible for carbon to react with oxygen to form
both carbon monoxide and carbon dioxide. Investigations on 
carbons with rather different reactivities [Walker, et al., 
1959; Arthur, 1951] suggest that the ratio of CO to CO2 formed 
in combustion is a strong function of temperature and that for 
the higher temperature range, appropriate to coal gasification, 
carbon monoxide is the primary product. We will, therefore, 
consider that the heterogeneous combustion reaction is

c + i 02 - CO (Rl)

Further we will assume that the oxidation of the carbon 
monoxide

CO2 (R2)
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occurs outside of the particle [Field, 1969; Batchelder,
1953]. This means that we neglect any heating of the particle 
which could occur by oxidation of CO within the pore struc­
ture of the particle. Such oxidation has been observed in an 
oxygen rich environment by Froberg [c.f.. Gray, et al., 1974] 
and Kurylko and Essenhigh, 1972. Further, the presence of C02 
in the gas can lead to gasification of the carbon and to a 
subsequent production of carbon monoxide. This effect has 
been discussed by Field, et al., 1967 for pulverized coal.
While the definition of the reaction rate for the carbon- 
carbon dioxide reaction is still the subject of investigation, 
present estimates indicate that it is slow compared to the 
oxidation reactions. If one uses the reaction rates dis­
cussed by Dobner, 1976 [c.f.. Gray and Kimber, 1967], this 
reaction is two to three orders of magnitude slower than the 
oxidation of carbon and, most important, it is, for particles 
less than 1 cm, much slower than the rate of diffusion of 
reactants to the particle. We shall, therefore, neglect the 
carbon-carbon dioxide reaction in the combustion of char. We 
note that for some cases of diffusion controlled carbon com­
bustion, both Avedesian and Davidson, 1973 and Kurylko and 
Essenhigh, 1972 invoke such a gasification reaction. The 
relative importance of the carbon-carbon dioxide reaction to 
combustion of larger particles (21 1 cm) is, in our view, 
uncertain; however, for both species and energy balance, in 
diffusion controlled combustion, the combination of Rl for the 
heterogeneous reaction and R2 for the homogeneous reaction is 
equivalent to the combination of the carbon-carbon dioxide 
gasification reaction with R2 for the homogeneous reaction.

The presence of steam in the gas phase must be accounted 
for and hence the reaction

H2 + J °2 * H2° (R3)
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is important. This reaction is maintained close to equilibrium 
[c.f., Batchelder, 1953] and so the presence of I^O tends to 
augment the concentration of C>2. Further, equilibrium in R2 
and R3 imposes water gas shift equilibrium on the gas phase. 
However, in general we must include the water gas shift 
reaction so we write

H20 + CO ^ C02 + H2 (R4)

Finally, we note that the reaction of steam with solid carbon 
is neglected because its rate is of the order of the carbon- 
carbon dioxide gasification reaction. It is therefore much 
slower than the combustion reaction Rl, and is also slower 
than the reactant transport to the particle for r<l cm 
[Batchelder, 1953; Field, et al., 1967; Gray and Kimber, 1967].

HETEROGENEOUS REACTION, LANGMUIR ISOTHERM
For a char particle the rate of combustion of char 
2(gms/cm -sec) is represented by the Langmuir isotherm

ftc -
K1 P62
K1

1 + iq p62
(Al)

where and K2 are the velocity coefficients, describing, 
respectively, adsorption and desorption and Po^ is the partial 
pressure of oxygen at the particle surface. These velocity 
coefficients are functions of temperature

E1
K1 A1 eXp RT^

E2 (A2)
K2 = A2 exp - ^

where E-^ and E2 are activation energies and the coefficient 
and A2 can be functions of temperature. For reaction Rl, 

the consumption of one mole of carbon requires one-half mole
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of oxygen. The molar flux of oxygen to the surface (moles/cm' 
sec) is

2

D
J o (A3)

RT
where Dq is the binary diffusion coefficient for oxygen at
reference temperature T , Sh is the Sherwood number, r is the 
particle radius, T" is the particle temperature, T is the free 
stream temperature and Po2 is the free stream partial oxygen 
pressure. The Sherwood number can be related to Reynolds 
and Schmidt numbers by the semiempirical expression

Sh = 2 + A ReBScC (A4)

where Re is defined in terms of the relative particle-gas 
velocity. These equations are standard relationships; 
Essenhigh, et al., 1965; Field, et al., 1967 and Mulcahy and 
Smith, 1969 review the literature and define the constants 
n, A, B and C within the context of char combustion.

For the reaction Rl, the Equations (Al) and (A3) can 
be combined to give

(P62 - Po2)

(A5a)

where Mc is the molecular weight of carbon. We write

(A5b)
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eliminating P6^ from (Al) and (A5), we obtain for R.

+ K Pon + Kn o 2 2

- 4 K~K Po0 2 O 2

1/2
(A6)

where the choice of sign, in this solution of a quadratic 
equation, relates to the limit Kq -> 00 for very fast diffusion.

Experiments on carbon, coal and coal char combustion 
can be used, with (A6) , to define K-^ and K2 as functions of 
temperature. Field, et al., 1967 present a summary of earlier 
studies by Tu, et al., 1934 and Golovina and Khaustovich, 1962. 
They conclude that all of the data for the rate of removal of 
carbon (Rc in our notation) in the temperature range 1000- 
1800°K can be represented adequately by a reaction rate which 
is first order in the partial pressure of oxygen and contains 
a single exponential with an activation energy of 35.7 kcal/mole. 
They note that in the higher temperature regime there is some 
evidence that the activation energy is less than this value.

Smith, 1971a, 1971b studied anthracites, semianthracites, 
petroleum coke and char from swelling bituminous coal, where 
the particles were less than 100 y. It was observed that the 
anthracite, petroleum coke and char particles burned at con­
stant density and that the activation energy was of the order 
of 20 kcal/mole. The semianthracite tended to burn at both 
decreasing density and size with approximately the same 
activation energy. It was assumed that the reactions were 
first order in oxygen partial pressure. Smith (1971a) noted 
that his data on anthracite and bituminous coal chars was 
consistent with the data of Field, 1969 and that his measure­
ments for anthracite and semianthracite are consistent with
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those of Field, 1970, and other investigators. Smith con­
cluded that his measurements were in the pore diffusion con­
trolled regime and that the apparent activation energy was 
therefore representative of desorption [c.f., Wheeler, 1951; 
Walker, et al., 1959].

The data of Field, 1969 were reexamined by Gray, et al., 
1974; the Langmuir isotherm was used to represent the behavior 
of low rank char in a wide range of temperature. This repre­
sentation involved adsorption control at high temperatures 
and desorption control at low temperatures.

We have noted the suggestion by Essenhigh and his co­
workers that there is a contradiction in the assumption of a 
high activation energy (real or apparent) with a first order 
reaction rate. However, except for the data of Hamor, et al., 
1973 on brown pulverized coal, most investigators have proposed 
such a representation of the reaction rate data. It may be, 
as suggested by Gray et al., 1974, that the range Of oxygen 
partial pressures used in the experiments is hot adequate to 
define precisely the order of the reaction. For the present 
we consider these relationships to be semiempirical and 
summarize the numerical constants in the Table (I) using the 
notation of (Al) and (A2); we also include Dobner's 1976 
correlation for combustion of medium rank char.

For the temperatures appropriate to combustion in 
steam oxygen gasification processes (^1300°K) all of these 
correlations give approximately the same temperature dependence. 
The difference in activation energy is generally compensated 
for by the influence of the pre-exponential factor. Of course 
in a wide range of temperatures, the differences in activation 
energies would cause large variations in the reaction rates.
For the present we expect to utilize the Langmuir isotherm 
with only a single Arrhenius expression as given by Field,
1969.
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TABLE (I)
SUMMARY OF LANGMUIR ISOTHERM REPRESENTATION 

OF CARBON, COAL AND CHAR COMBUSTION

Investigator Particle Type (Size) A 9ms kcal A gms E kcalA1 2
cm sec atm ^1 mole z 2 seccm l2 mole

Field, et al., 1967 Carbon (1-2.54cm) 8710 35.7 OO 0
Smith, 1971a Petroleum Coke (4-77ym) 20 18.2 OO 0

Anthracite (42,72 ym) 10 16.7 OO 0
Bituminous Char (34,64ym) 8 16.0 OO 0

Smith, 1971b Semianthracite (6-78ym) 20.4 19.0 OO 0
Field, 1969 Low Rank Bituminous Char 8710* 35.7 OO 0

(28-105ym)
Gray, et al., 1974 Low Rank Bituminous Char 1.6 6.0 1.27 x 103** 37.0

(Field, 1969)
Dobner, 1976 Low-Medium Rank Char 60.0 20.4 OO 0

(Correlation)
*T < 1300°K
**We've assumed an O2 concentration of 10 percent.



With the choice of and in (A2) and the definition 
of transport velocity coefficient Kq in (A5) and (A6), the 
rate of carbon mass loss of a particle (A6) is defined. The 
nature of this mass loss shall, for the present, be assumed to 
be at constant particle density. While this is representative 
of some of the data [c.f., Avedesian and Davidson, 1973;
Smith, 1971a; Field, et al., 1967, Nettleton, 1967], there is 
also evidence of mass loss at constant particle radius or at 
some combination of density and volume change [c.f.. Field, 
et al., 1967]. At constant density the time rate of change 
of the particle radius is

P s dr dt (A7)

This equation will be used to describe the evolution of 
particle size during combustion.

HETEROGENEOUS REACTION, PARTICLE-GAS HEAT TRANSFER
The Equations (Al) - (A7) define the mass flux and 

chemical reaction for a particle at temperature T' in an 
ambient gas flow of temperature T. It is necessary to intro­
duce an energy balance for the particle to define the particle 
temperature. We assume that the temperature of the particle 
is uniform and write

sP C dTJ 
dt

3Rc
rM_ C (T'-T ) + C (T'-T ) PC ° Po2 °

2 ,C (T'-T ) + AH (0)(
1 pco °

3Kr- (T'-T) - J(T')4 - (TJ4 (A8)
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where is the specific heat at constant pressure for com­
ponent it AH(0) is the heat of formation of carbon monoxide
at T , ct is the Stefan Boltzmann constant, T is a "wall" o 00
temperature and is the heat transfer coefficient

m
K3 = (^-)

o
Nu
2r (A9)

In this latter equation Aq is the thermal diffusivity of the 
gas and the Nusselt number Nu is defined in terms of the 
Reynolds and Prandtl numbers by

% ^ %Nu = 2 + A ReB PrC (A10)

• ^ Oj %where m. A, B, C are constants analogous to the coefficients in 
(A3) and (A4). In both (A9) and in the earlier equation (A5b) 
we have used only the gas temperature in the free stream, T, 
to define the gas properties. These relationships can be fur­
ther modified by introducing some mean temperature which accounts 
for the difference between that free stream temperature of the 
gas temperature at the surface of the particle, T'. Equations 
(A7) and (A8) must, in general, be solved simultaneously to 
define the particle radius r and the temperature of the 
particle (and the reaction rate Rc). For the case of 
diffusion control (Kq << K^, I^) the particle radius is 
independent of the particle temperature and may be directly
obtained from (A7) with R ^ .c r

HOMOGENEOUS REACTIONS * 3

The reactions R2, an<^ R4 represent the chemistry
of the gas phase surrounding the solid particle, where we

3write the reaction rates, in moles/cm as I\ , i= 2, 3, 4. 
These reactions lead to differential changes in the gas 
composition which, without flow, would be expressed as
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(All)

dC°2
dt - f (r2 + r3)

dC.co
dt

dC
dt

(r2 + r4>

r + r 1 3 1 4

dCH °df-= r3 - r4

dCC09
—— = r - rdt 12 14

where represents the mole of species i in a unit volume of 
gas.

The reaction rates are, in general, functions of 
gas composition and temperature. Further, there is the 
possibility of catalytic influences because of the chemical 
composition of the solid particles. The oxidation of carbon 
monoxide through R2 has been the subject of considerable 
investigation. We follow Field, et al., 1967 and use the 
semiempirical representation of Hottel, et al., 1965 to write

r2 = 3 x 1010 cCo c02°*3 c 0.5HoO exp 16000
RT (A12)

The presence of Ch^q in (A12) is indicative that this reaction 
is strongly influenced by the presence of water vapor. Field, 
et al. note that the equation can represent experimental results 
up to 1550°K and can likely be used at higher temperatures.
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The actual kinetics of R3 are quite complicated [c.f..
Penner, 1957; Lewis and Von Elbe, 1951]; however, the oxidation 
of hydrogen is a very fast reaction [c.f., Batchelder, et al., 
1953], and we expect that it is in equilibrium for time scales 
of interest. That is, we can express the relationship between 
the molar concentrations of and 1^0 as

C°2 S
H2^ 1/2 
--- 172 = KP,3(RT) (A13)

where Kp ^ t*le equilibrium constant expressed in terms of 
partial pressures.

The water gas shift relationship is strongly influenced 
by iron catalysis. A relationship for this rate constant, based 
upon data for commercial iron catalysts, is presented in Blake, 
et al., 1976. This reaction rate is based upon a unit mass 
of catalyst. Let us assume that 3 is the fraction of the mass 
of char particles which is active within a volume of gas 
(defined by the radius of the weighting function used to derive 
our continuum balance equations, c.f., Blake, et al., 1976).
This means that 3 is some function of the molecular mean free 
path, the surface and pore structure of the particles and the 
fraction of iron in the particle. Then the rate expression is

r, = „ i.’
h2o

M
lCCo CH20

Co
“h. MCo2 KP,4 Co, (A14)
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The factor 0 reflects the volume fraction of solid particles 
within the volume of space under consideration. For our pre­
sent study we will likely use 3 = .0035 [c.f., Blake, et_ al., 
1976], and we will ignore the presence of iron in our conser­
vation of mass for the solid particle.

CONSERVATION EQUATIONS WITH CHEMICAL REACTIONS
The mass and energy relationships for the heterogeneous 

and homogeneous reactions of single char particles contribute 
to the conservation of mass and energy of a fluidized bed con­
taining many such particles. We now use those relationships 
for single particles to derive the influence of chemical reac­
tions on fluidized bed flows. Our basic assumptions are, 
first, the contribution of many particles is equal to a sum over 
the individual particles; second, the local space averaged gas 
phase properties.represent the ambient gas conditions for the 
heterogeneous reactions; third, the homogeneous reactions are 
calculated with these space averaged gas properties and, 
finally, the particle temperature, T", is equal to the local 
space averaged solid temperature, T .

The conservation equations for fluidized beds are dis­
cussed in Blake, et al., 1976. We summarize these equations 
here, and present them in a slightly different form since we 
now wish to follow the time history of chemical species and 
the associated fluxes of mass and energy. The conservation of 
mass for the gas is represented by

(A15)

where this represents six equations for the species

a = o2, h2o, h2, co, ca2, n2
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For the solid phase we have

3pS9
dt (1-0) ui (A16)

where
6 = C

The quantities represent interphase mass exchange while 
represents species production from homogeneous reactions. For 
the present we regard ^ as a diluent which does not partici­
pate in the reactions:

SN 2
0 .

We thus consider six species for the gas and one species for 
the solid phase. Naturally, the influence of other species 
in the solid, such as ash, can be readily incorporated.
The conservation of momentum equations for the gas and solid 
phases are, respectively

3P
3X,

B (9) 
(1-9) u ) = 0 (A17)

sP 3
at (0ui) (9u.u .) i 3

0psgi (A18)

We neglect both interphase mom,entum exchange and species 
diffusional influences on momentum conservation. The conser­
vation of energy, neglecting viscous dissipation, can be 
written as
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8
at p(1-0)e + ps0es

3Xu
pVj(l-9)e + pS Uj6eS

3 (1-8) qi + Sq? (A19)

where both e and can include diffusional contributions. For 
the present we neglect such contributions. The specific inter­
nal energy of the gas is

+ H (0) - AN RT a a o (A20)

where H (o) is the heat of formation of species a at T_
and AN^ is the change in moles when a is formed from the
elements in their respective standard states [c.f., Penner,
1957], The constitutive equations for P, x.e , eS, q. and^ ij a i
q; arei

P Z Pa

x ij
Ps(0) + Xs(0)

+ us(e 3 u^ 3 u •
3x7 +

2 . 5uk)
3 ij 3Xk j

(A21a)

(A2lb)
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(A21c)

deS = dTS (A21d)

(1-9) qi + 0q? K(0) 9T
3Xi (A21e)

Further, the variation of particle radius and particle temper­
ature requires that we adjoin to these equations the Lagrangian 
equations (A7) and (A8) where again we assume that the particle 
temperature T' is equal to the space averaged solid particle5temperature T . The heterogeneous and homogeneous chemistry
defines the source terms S , ft for the species conservationa a
in the gas phase; for S we use (A6), multiply by the weighting 
function g|x^-y^| [Anderson and Jackson, 1967; Blake et al., 
1976] and sum over all the particles to give for a = (^

Mo
s0, = -E K ^ 2tr 9(lxi - i'll1 •2 p

We note that the dependence of R is upon the locals C RTaverage field variables (e.g. , T, T , = Pq2 anc^ t*ie
particle radius. Hence, if the particle radii are uniform 
within the radius of the weighting function, this integral is

S 30.
r

M, R
2M. (A22)

In a similar manner

(A23)
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and for the solid phase 6 = C

SC (A24)

Since we have assumed that H20, C02 and H2 do not react with 
the particle

SC02 sh20 SH2 0 (A25)

The homogeneous reactions determine the source terms 
Q . These homogeneous reactions are defined by (A10) - (A13). 
We write

(1-0)

(1-0)

(1-0)

(l-e)fi

(i-e)n

QCO

H,

h20

CO,

(1-0)MO (---- 2 ” jr2 + r3

- (1~e)Mco r2 + r4

(1_0)MH2 j" r3 + r4]

^-e) V jr3 ' r4

(1"9)MC02 |r2 ' r4

(A26)

Noting that can be expressed in terms of we have 
with (A7), (A8) and (A20) - (A26)a system of equations for

~S, T, r, 9.02 ‘ CO' H2/ h2o' co2' N 'iN2 Vi'

28



APPENDIX B
PARAMETRIC CALCULATIONS FOR FLUIDIZED BEDS

The two dimensional computer model of fluidized beds 
was applied in the first year of the contract to investigate 
the influence of mass flow rate in a shallow bed with a 
specific distributor plate having discrete injection points 
[Blake, et al., 1976]. Bubble formation and bubble motion 
in the bed was examined for a range of mass flow rates be­
tween the condition of a spouted bed and that wherein the 
rising bubble became vanishingly small.

In order to evaluate the code, preparatory to some 
calculations of specific reactor configurations we have 
continued to exercise the numerical model in various para­
metric studies. These calculations are illustrative of the 
ability of the code to treat different fluidized bed environ­
ments. Further, we have exercised the numerical procedures 
such as the definition of zonal dimensions, e.g., we have 
used zones with aspect ratios different from unity, to study 
the influence of numerical artifacts upon the calculations.

We have mentioned the earlier parametric calculations 
wherein a distributor plate with discrete injection points 
was examined. To examine the flow field associated with a 
more continuous injection of mass, we have studied configura­
tions such as the two-dimensional planar bed shown in 
Figure Bl. There are two aspects to this calculation which 
are of interest. First, there is the nature of the continuous 
inlet flow distributions wherein the inlet velocity is a 
maximum at the center line of the bed and linearly decreases 
to zone at the outer wall. Second, we wished to illustrate 
the ability of the code to treat an extreme flow condition 
wherein the superficial velocities (if the mass flow was 
uniformly distributed) was twice that for minimum fluidization.
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The bed expands rapidly and, because the boundary conditions 
on particle velocity at the top of the bed, did not permit 
the particles to leave the bed, these particles are sus­
pended at the top of the free board region for T <_ 0.9 sec. 
The flow tends to be a maximum near the centerline of the 
bed and hence while particles can fall at the outer edge of 
the bed (T = 0.6 to T = 0.9 sec) they are elutriated and 
carried upwards in the center. For the same mass flow rate, 
but with the hydrostatic pressure in the bed doubled, the 
corresponding particle motion is shown in Figure B2. The 
bed does not expand as vigourously as in Figure Bl and 
further, the expanded bed subsequently collapses and tends 
to operate as a surging bed. Of course, by doubling the 
hydrostatic pressure we approximately double the density 
and for a constant mass flow rate we are essentially de­
creasing, by a factor of two, the superficial velocity.
This has a major influence upon the relative behavior of 
the beds in Figures Bl and B2.

Again, the calculations in Figures Bl and B2 are il­
lustrative of parametric tests using the fluidized bed com­
puter model. Other calculations included the influences of 
bed height to width ratio and mass flow rate with both 
discrete and continuous injection of gas.
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APPENDIX C
DERIVATION OF EQUATIONS FOR TURBULENT ENTRAINED FLOWS

In Blake [1976] a derivation of the conservation 
equations for the solid particle-gas flows appropriate to 
entrained processes was presented. In this Appendix, we 
recast the basic equations somewhat, formulate the time- 
averaged turbulent version of these equations along with the 
thermodynamic and caloric equations of state needed for 
mathematical closure, indicate the assumptions involved in 
the derivation of the turbulent version of these equations, 
and, finally, give an order of magnitude estimate of the 
errors inherent in some of these assumptions. A derivation 
of the conservation equations for a number of turbulence 
quantities (i.e., turbulence kinetic energy, turbulence 
dissipation rate, etc.) needed to provide the turbulence 
closure will be left to future reports as will the explicit 
formulation of boundary conditions and the form of the 
chemical reaction and radiation terms.

In our present study, we consider conservation equa­
tions which include several general order-of-magnitude 
approximations. Specifically, we have:

1. Ignored terms with laminar transport coefficients.
We anticipate that they will be dwarfed in magni­
tude by identical terms with turbulent transport 
coefficients arising in the course of our deriva­
tion of the gaseous turbulent mean conservation 
equations. The particle-gas interaction terms 
are unaffected by this rule however.

2. Ignored the momentum and kinetic energy exchange 
accompanying interphase mass exchange because we 
expect them to be quite small in comparison with the 
local momentum and kinetic energy of either phase.
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3. Ignored the thermalization of kinetic energy due 
to interphase drag since it is expected to be a 
negligible influence on temperature compared to 
chemical reaction and/or interphase heat trans­
fer.

Let us now write the conservation equations for the 
instantaneous (as contrasted with the time averaged) flow 
field. We have:

9pf 3(pfv.)
---  = S where pf = p<|>, (C.l)

S = rate of increase of due to solid mass being 
gasified by chemical reaction.

Total Solid Mass

3p 3 (p u. )P , i =
31 3xi - S where p = p (1-6) Kp Ks Y (C.2)

Total Gas Momentum

3t
3(p v.v.)___ r_i_J_ =3x .

J

3P
3x. 1

G(vr) pP(vi-ui)

+ p^i (C. 3)

where G(u ,r) = Stokes’ Flow coefficient for total particle- 
gas drag as a function of = gas laminar dynamic viscosity 
and r = particle radius.

Total Solid Momentum

3(p u.) 3(p u.u .)P i
3t P 1 J, =3x G(vr) pP(vi-ui) + pP5i

(C. 4)
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Gaseous Species Mass

3t
+ = 3

3x. a + f, a (C. 5)

where F = mass fraction of species in gas and (= <j>ft )
CL T f0L a

and S = rate of increase in p_ = p_F due to creation a --------- f,a f a
of species a via gas-phase chemical reaction and solid mass
gasification, respectively. Note that Z S = S anda aE ft_ =0.a f
Gas Internal Energy

3 (Pfef) 3(pfefvi)
91 9x. x

= - P
9 v. x
9x. x

+ Z wy - H(^,r)(Tf-y - & (c-6>

a
9x. x

where

h (T ) a p

Specific internal energy of gas phase 
including energy of formation.
Heat flux vector in gas phase which may 
include conduction, species diffusion, 
and radiation effects.
Gas phase temperature.
Specific enthalpy of species a at solid 
phase temperature, Tp, including heat of 
formation.

H(K^,r) = Stokes' Flow coefficient for particle- 
gas heat transfer.

K l Laminar gas conductivity.
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Solid Internal Energy

3 (pe) P P3t
3 (p e u.) P P i

3x.i ES h (T ) 
a a p

+ (Tf-Tp> (C.l)

where
e = Specific internal energy for solid phase, p including energy of formation (usually zero).

= Heat flux vector in solid phase.

Gaseous Thermodynamic Equation of State

(C. 8)

where
R = Universal molar gas constant . 

= Molecular weight of species a.

Gaseous Caloric Equation of State

where ea (T) = specific internal energy of species a at
temperature, T, including energy .of formation; Tg = 298.15°K
is the reference temperature at which energy of formation
data is available; and C is the (mass not molar) specificv,a
heat at constant volume of species a at temperature, T.
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Solid Caloric Equation of State

P eP P P e (T.) p p 0 + P. C (T) dT v,p (C.10)

where 6^(1^) = specific internal energy of solid particle 
at reference temperature and Cv p= (mass) specific heat 
at constant volume of particle at temperature, T.

In addition to the previous ten equations, we have 
three definitions to which we have referred that are needed 
to mathematically close the system, viz.,
Definitions

\ ^ p_ = p_ or/ ; f,a Kf 1 (C.ll)

Pf = P<P (C.12)

The above equations constitute a set of 16+N (N = 
number of gaseous phase chemical species considered) equa­
tions with only 15+N unknowns. As is standard, one of the 
gaseous species equations must be discarded since summing 
the N versions of Eqs. (C.5) and using Eq. (C.ll) yields
Eq. (C.l) (i.e., the sum of the gaseous species mass con­
servation equations is redundant with respect to the overall 
gaseous mass conservation equation). This reduces our 
equation set to 15+N so our system is mathematically closed.

We shall be interested, initially, at least, in examin­
ing the case of locally isothermal conditions (i.e., T = Tf 
- T). For that case we can combine Eq. (C.6) and (C.7) into
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a total internal energy equation. Such action, which will 
be exhibited below when we consider the turbulent form of 
the equations, reduces our set to 14+N equations with 14+N 
unknowns.

The above equations constitute a closed mathematical 
set for the instantaneous quantities, but this is not too 
useful for characterizing turbulent systems wherein the 
time-averaged quantities are more easily observable and con­
siderably more significant.

Let us now turn to the time-averaged form of Eqs. 
(C.l)-(C.13) and how we currently intend to deal with them.
We shall take each equation separately and, thus, build up 
a set of calculational variables.

Taking the time average of Eq. (C.l), we get:

3 (p-v. ) _
sir + -xtr- - s (c-lla)

i

where (—) denotes the time-average of a quantity which, 
theoretically at least, is taken over times large with 
respect to the time scales of the turbulent fluctuations, 
but short with respect to the time scales of interest in 
the calculations. Note that we have only formally time- 
averaged the chemistry term; we shall not go any further 
at this time. Now, traditionally we have broken every 
instantaneous quantity, g, into a time-averaged part, F, and 
the instantaneous fluctuation from F> = g - F, so that 
HT = 0. For constant density flows, this approach is 
satisfactory [Launder and Spalding, 1972], but it leads to 
major problems in flows with large density variations such 
as those involved with combustion [Kent and Bilger, 1973]. 
Consequently, we have chosen to use a variation of Favre 
averaging in which if p is a density, we have g h g + g"
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and pB = pB so that pB^' = 0 but $" ^ 0. Thus, we define
v. = v. + v" and take p _v. = p\.v. so ' = 0. Thisii f i Kf i f i
yields:

3pf 3(p-v.) _
+ —^ -- - ■ = S3t 3x.i

(C.lb)

Taking time-averages of Eq. (C.2) yields

3pP , - s
31 3x.i

(C.2a)

Now, defining u^ = u^ + u^ with

pu. =pu. so p u'' = 0, we get: p i p i pi

3p 3 (p u. )—£ +   P—J-.... = - s31 3x.i
(C.2b)

Averaging Eq. (C.3) over time and ignoring any 
fluctuations in G(u0,r), we get:

3(p v ) 3(p v.v.) -s- _________ _ _
—at— + —aST-^ = - a^T ' G(,Jrr> + 9fgi

3 i
(C.3a)

The P-.v. and p u. terms were treated above, so let us turn f i p i
to the others. We have

pfvivj = Pf (vi+vi (Vj+vf") = Pfvivj + [vi(pfvj")+vj (p^^)]

+ Pfv/V",i X J
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but we saw that

P -V
* * 
i pfvj 0,

so we have

P fv.v1 j p v.v. X + p .V
* *
. V 1 D

The p v. term is a troublesome one since it represents the I?interaction of the weighted particle density (i.e., p =Pp (l-cj>) ) with gas velocity. Now s

p V. =p 1 p V. +p 1
Av. =

3 1
p V. +P 1

*
p V.p 1 Pfvr - p V. +p 1 (pp'Pf)Vi

since

Pfvi 0

so the troublesome term can be thought of as either p vT 

or (Pp-Pflvr'.

While one may argue that turbulent variations in solid quanti­
ties (e.g./ Pn» u., etc.) may be only weakly correlated with 
those in gaseous quantities, we do not believe that such a 
principle is sufficiently well validated at this time, either 
qualitatively or quantitatively, to justify ignoring p

hr
Nevertheless, while we have not been able to prove, or even 
satisfactorily justify, the dropping of the P vT^ term, we 
shall do so for convenience sake, at least on an interim 
basis. Work shall continue on trying to either justify its 
omission or properly model it. Applying these rules, Eq.
(C.3a) becomes:
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3t
w = 

3x .
3

Hr - G<vr)
l

p (v.-u.) +p 1 1 Pfgi

9(pfvrvp
3x. 

3
(C.3b)

where the last term will be seen to be the divergence of 
the turbulent stress.

Treating Eq. (C.4) analogously to (C.3), we get for 
the time-averaged form:

3 (p u.) 3(p u.u.)-Z..A .. + P i 33t 3x. 
3

G(urr) Pptv.-u.) + ppgi (C.4a)

which becomes

3(p u. ) 3(p u.u ) _ ~ ~ 3(p ur'uT')—— + ---£_—1_ = g (y ,r) p (v.-u.) - ---—
3t 3x. Z P i i3 * 3

+ p g.p3x (C.4b)

Time-averaging Eq. (C.5) yields:

S(pF) SfPjVi1 - -
—tt ■ ■ ■ + -- . g ' = s + n.3t 3x. a f, a (C.5a)

Now, define F = F + F" such that p-F = p_F or p^F^^ = 0 a a a f a f a Kf a
We get:

3(PfFg) , 5(pfFaVi) ^ +,
3t 3x. a f,a

3(pfprvr)
3xi (C.5b)

where the last term will be seen to be the divergence of the 
turbulent species mass diffusion flux vector.
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As mentioned above, if we assume a local thermodynamic 
equilibrium, there will only be one temperature for both gas 
and solid. Thus, Eqs. (C.6), (C.7), (C.9) and (C.10) are
related in that we have four equations for the three un­
knowns: 6^, and T. Thus, before continuing, let us
add Eqs. (C.6) and (C.7) to yield:

^pfWp1 . 3 (pfefvi+pPePui) =. „ !ii
8t 3x. 9x.x x

3(q.+qp^) 
3x. (C.14)

Taking time-averages of Eq. (C.14) results in:

3(pfef+ppep) . 3(pfefVPpepui) =. p !ii.3 (qi+qp1)
3t 3x. 3x. 3x.x 3x. x 3x. x

(C.14a)

Let us now take time-averages of Eqs. (C.9) and (C.10) to 
get:

p^e. = / P-.F e (T)Kf f Z—/ f a a
a

p _F e (T.) Kf a a 0
a

+ (C.9a)

and

P e P P PpVV + P.■/ C (T) dt v,p (C.10a)

Now define T = T + T"; we will not yet specify the division 
between T and T'*''except that T" is affected by the time­

42



averaging process while T is not. Let us now add Eqs. (C.9a) 
and (C.lOa) together and substitute for T, which yields:

p e + P P Pfef C (T)dT v,pv

+ P c P vrp (T) + pfFaCv,a dT (C.15)

Now, the first { }'d term is e (T) including the solid energyP —of formation, e (T.); the second { }fd term is e (T) includ-u cx
ing the energy of formation of species a, ; while the
last term in { } is the instantaneous mixture constant volume 
specific heat per unit volume, C , which is a function of 
both temperature and time. Thus, we can write Eq. (C.15) as:

e + P Pfef ppep(T) EF e (T) 
a a

T
Cv,m (T,t)dT (C.15a)
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If we now define the split between T and T" such that 
the last term in Eq. (C.15a) vanishes, we get:

(C.15b)
a

We might note at this point that the above definition of T,
T" corresponds to a choice of T such that the instantaneous 
variations in T about T (i.e., T") result in exactly as 
much (excess) mixture internal energy (per unit volume) 
existing in the excursions above T as (deficit) mixture in­
ternal energy exists in the excursions below T when averaged 
over the time scale used for averaging turbulent fluctuations. 
As such, it differs from the conventional T which is based 
on temperature itself instead of mixture internal energy or 
another possible definition wherein pressure is used in­
stead of temperature or mixture internal energy. That latter 
definition would be most convenient for use in simplifying 
the turbulent form of the thermodynamic equation of state 
(Eq. (C.8)), but because of the differences between such 
temperature definitions, one is forced to choose one and 
accept the inconveniences and/or errors that choice imposes.
We have made our choice and will demonstrate below its 
consequences.

Just as our definition of T, T" has a more compli­
cated form than our previous definitions (e.g., v^, 
etc.), the implications of that definition are also less 
obvious. Let us define the following quantities:

T+T"'
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so

eP e + P eP

and

£ Va(T)' ef
a

T+T
' E £ Pa/

a ■'t
C (T)dT (C.16) v,a

so

ef ef + ef

Then our definition of T, T 
but it says nothing about P e P P

implies that
separately.

P e^+Pfefr t' ^ i-
or Pfef

' = 0,
Con­

sequently, we have a rather unusual term appearing in the 
resultant turbulent expression for advection of internal 
energy. That is

pfefvi + pneDui = pfefVl + P e u. +(p-e^v." + p e"u:' PP PP ^ \ ^ t i P P

(p e^"v. + p e""u. 
\ f f i p p i (C.17)

A comparison with the terms appearing in Eqs. (C.3)-(C.5) 
shows that besides the mean advection and turbulent diffu­
sion terms whose analogues appear in Eq. (C.17), we have the 
third ()'d term in Eq. (C.17) which has no analogue in Eqs. 
(C.3)-(C.5). This term can be written alternatively as

pfef'vi+ e u^ = PfefP P (v^u.) = P e P P
(u.-Vi) (C.18)
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and represents the net convection of turbulent mixture internal 
energy by the mean velocities. At this point we have no way 
to model such terms so we will arbitrarily drop them, at 
least temporarily.

The last term in Eq. (C.14) to be considered is the 
P 3v./3x. term. This can be written asi i

P + P (C.19)

The P 3v^/3x^ term represents the only kinetic-internal 
energy conversion mechanism remaining in the energy equa­
tion. Since "one BTU is worth many ft-lbf", it is possible 
that this pressure-work effect may also prove negligible in 
comparison to chemical reaction effects, but the large gas 
density changes induced by combustion and the possibly high 
operating pressures envisioned for entrained gasifiers/ 
combustors makes the validity of such a simplification some­
what unsure. Thus, our approach is to discard the second 
term in Eq. (C.19) while retaining and monitoring, at 
least temporarily, the first term as an order-of-magnitude 
indicator of the significance of the pressure-work term.
In this manner, we can let our calculational experience 
dictate the ultimate retention or omission of this term.

Combining all of the above derivations and decisions, 
the energy related equations (Eqs. (C.6), (C.7), (C.9), and
(C.10)) reduce to the following three relationships:

3(p.r€L+p £ ) 9 (p _e v. +p e u )
9t

f f i P P i = _ p 
9x.

9v.i
9x.i

(C.14b)

3 (Pxrer: V. +p 6 U. ) ^ f f j. p p i
9x.i

a(qi+qp.)
3x.
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where the second term on the R.H.S. will be seen to be the 
divergence of the turbulent internal energy diffusion flux 
vector;

Now, let us turn our attention to Eqs. (C.8), (C.ll)-
(C.13). Taking time-averages of Eq. (C.ll) after substituting
pf,a = pfV we gst

£ pfFa
pf or 1,

but

(C.11a)

ZF = V' (F +F"
a / j a a 

a a
0.

Time-averages of Eq. (C.13) yields

4> (C. 13a)
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A time-average of Eq. (C.12) yields:

Pf = P4> = P 4> + p'<P' ~ P (i.e. , p'<t>' z 0) (C. 12a)

There are two arguments why the above approximation 
is probably valid:

1. p' is primarily due to the "interchange" of 
hot and cold (i.e., burned and unburned) par­
cels of gas due to turbulent motion while <j>' 
is primarily due to turbulence induced changes 
in the particle number density. These dis­
similar physical phenomena are unlikely to be 
closely correlated and since both have zero 
means, their joint mean is also likely to 
approximate zero.

2. The density ratio of unburned to burned gas 
is about 10 or less while <j> is expected to 
vary by only a few percent from 1.0 due to 
the light solid loading anticipated in en­
trained gasifiers. Thus,

|£l| ill] < O(10xl012) = OdO-1)
P <t>

as an upper bound, especially insofar as we have 
assumed perfect time-correlation (see 1) .
Thus, we feel that the approximation shown in 
Eq. (C.12a) is justified and will use it. We 
guess the true error to be of order 1 percent.

Equations (C.12a) and (C.13a) serve to define p” and 
<p, given p^f and p" . We now proceed to Eq. (C.8) , a time- 
average of which yields:
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p R'-Zk = E tj

a a a
PfTFa -f-E

pfFaT
Ma

P-F T f a
M a

p.F T" a
Ma

(C.8a)

where the indicated approximation is good to a couple per­
cent since that is the order of difference between p and p^,
and we have used T = T + and p-.F = p\_F .Kf a fa

Again, we shall drop the troublesome term (i.e.,, the 
second term in Eg. (C.8a)) without justification, but shall 
continue working either to justify its omission or to model 
it. Thus, our "final" form for the thermodynamic equation 
of state is

P P RiE
a

Fa
Ma

(C.8b)

Summarizing, Eqs. (C.lb)-(C.5b), (C.8b)-(C.10b), (C.14b)
and (C.11a)-(C.13a) constitute (in 3D) a set of N+14 equations
for the N values of F and pL, "p , the three v.'s, the three _ ~ ~ _a _f P i
u^‘s, P, e^, 6^, T, p, and plus the turbulent stress and 
diffusion terms and the chemical reaction and radiation 
terms. In the next report, we shall present our thinking 
on the turbulence closure problem (i.e., the modeling of 
the turbulent stress and diffusion terms), but we shall con­
tinue to ignore the chemical reaction and radiation terms.

We believe that the model developed in this section, 
even with the several terms that have been arbitrarily omitted, 
represents a significant improvement over other models that 
have been suggested insofar as fewer terms of possible
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significance have been omitted than in any other second- 
order closure scheme.
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APPENDIX D
THE EVOLUTION OF PARTICLE DISTRIBUTIONS 

FOR TURBULENT ENTRAINED FLOWS

INTRODUCTION
The number of particles at a given point in space at a 

given time can be subdivided into the numbers with particular 
sizes, velocities and temperatures. This distribution of 
particle numbers plays an important role in the behavior of 
turbulent flows involving particles. Thus the complete deter­
mination of the interaction of gas and particles involves 
simultaneous treatment of the conservation equations for the 
gas and particle flows and of an equation yielding the distri­
bution of the number of particles with specific properties, 
e.g., size, velocities and temperature. At the present time, 
there exist no analyses involving such a complete treatment.

Our initial approach to the study of particle distribu­
tions is based on the assumption that the total number of 
particles is sufficiently small so that the characteristics of 
the gas flow are unaffected and therefore known. This corres­
ponds to considering the particles to be carried along by, and 
consumed in, a turbulent, chemically-active, carrier gas. The 
information required to characterize the carrier gas depends on 
the analysis being employed for the determination of the distri­
bution of particles. This approach, based on negligible influence 
of the particles on the gas, is considered a first step which 
will lead, in due course, to an appropriate treatment of the 
full, interacting case of practical interest.

Even with the crucial, simplifying assumption leading to 
consideration of particles in a known carrier gas, there appears 
to be no directly related literature applicable to turbulent 
flows of reacting solids. There are, however, several
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contributions in related areas which can be brought to bear 
on this problem. For example, there is an extensive literature 
on the behavior of sprays and solid particles in inviscid flows 
e.g., in nozzles. The review articles by Williams, 1962 and 
Marble, 1970 and the significant contribution of Shapiro and 
Erickson, 1957 provide entries into this literature. Also of 
interest to us is the literature concerned with the numerical 
simulation of the trajectories of particles of fixed size in 
turbulent flows since it suggests one approach to the study of 
our more complicated case of reacting flows. Peskin, 1974 
should be consulted in this regard. Finally, the study of 
Lane, 1967 which is based on the theory of stochastic opera­
tors by Keller, 1964 and which is concerned with the behavior 
of electrons in a turbulent background gas may provide a 
convenient approach to the determination of the particle size 
distribution for weak turbulence.

A rather complete discussion of the equation for the 
particle size distribution and its solution are given below. 
Suppose we wish to determine the number of particles in appro­
priate infinitesimal "boxes" around the space point x at time 
t with radius r, velocity u, and with temperature Ts, i.e., 
we desire n(x,t,r,u,T ). These quantities are considered to 
characterize sufficiently the properties of the particles; thus 
all particles are assumed to be essentially spherical and to 
have a uniform internal temperature. If this number as a func­
tion of the indicated variables is known, we can determine a 
variety of other properties of the particles by appropriate 
integration. For example, the time averaged particle cloud 
density at a point x would be

T oo oo oo
= lim t-1 ps ^ j* at y dr r2 ^ d~ y dTsn (x,t ,r ,u,Ts)
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where p is the specific density of the solid. Other quanti­
ties depending only on the particles and their properties can 
be readily calculated.

The utilization of the number, n, of particles in the 
determination of the full interaction of the gas and particles 
involves additional considerations. To illustrate, consider 
the time averaged drag in the x^-coordinate direction. Under 
the assumption of a Stokes drag law, the full and exact calcu­
lation is given by

T oo CO 00 CO 00

(x) = lim x dtj"dr r f du2 f dus fdTS f dv2 f dv:
O O

00 oo

— 00 —00

/dul J'dv^ y(u1-v1) n(x,t,r,u,Ts,T,y)

where y is the gas velocity and y is the coefficient of 
viscosity of the gas. Now the function n(x,t,r,u,T ,T,y) 
implicitly involves integrations with respect to v and T 
and thus an exact evaluation of f^ (x) and other interaction 
terms requires additional approximations for solution in the 
case of full interaction between gas and particles.

In the equation for n (x,t,r,u,Ts), the state of the 
carrier gas enters into the coefficients of that equation. The 
exact solution can be carried out to any desired space and time 
resolution by the method of characteristics coupled with time- 
dependent solutions of the hydrodynamic equations. This ap­
proach represents an extension of the numerical simulation tech­
niques described by Peskin, 1974. However, for present pur­
poses, approximate solutions are examined and, in particular, 
an approach based on correlations and leading to the determination 
of the time averaged particle number n(x,r,u,T ), is given.
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The incorporation of this approach into the hydrodynamic cal­
culations with an approximate treatment of the interaction 
appears promising.

It is perhaps appropriate to note that these studies of 
the behavior of particles in a turbulent carrier gas will prove 
useful in the development of appropriate phenomenology for the 
source terms describing the chemical interaction effect. In­
formation concerning the chemical reactions between a particle 
of specified temperature, Ts, and a surrounding quiescent gas 
of specified temperature and composition must be incorporated 
into the description of time-averaged source terms which account 
for the fluctuations of gas properties and for the distribution 
of particle sizes and temperatures. This problem is analogous 
to, but probably more difficult than, the corresponding des­
cription of the mean creation terms in turbulent reacting 
flows devoid of particles; the interaction of turbulence and 
chemical reaction in gas flows free of particles is a largely 
unsolved problem which is the subject of current active re­
search [Libby and Williams, 1976]. We anticipate that our study 
of particle size distributions will, at the least, provide 
information about the sensitivity of the source terms to the 
various contributing components of the gas flow turbulence 
and may suggest an effective phenomenology to be incorporated 
into the hydrodynamic calculations so that the essential ef­
fects of turbulence are accounted for.

CONSERVATION EQUATION FOR n(x,t,r,u,TS)

We consider the function n (x,t,r,u,Ts) which gives the 
number of particles in the nine-dimensional, infinitesimal 
volume surrounding the point identified with the indicated 
variables.*

-3 -1Note that the dimensions of n are, e.g., cm sec cm 
(cm/sec) 3 (°K) 1 = cm 7 sec2(°K) 1.
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Physical arguments suggest a ready extension of the conserva­
tion equation for the particle number provided by Shapiro and 
Erickson [1957] and Williams [1962]. We have

8n/9t + u^On/Sx^) + 3(Rn)/9r + 3(F^.n)/3 u^

+ 3(Hn)/9 TS = 0 (D.1)

where

R = dr/dt, the rate of change or particle size;
= du^/dt, the rate of change of the kth velocity 

component of a particle; and
gH = dT /dt, the rate of change of particle temperature.

If appropriate functional forms for the coefficients,
R, F^ and H, are specified. Equation (D.l) is a linear, first- 
order, hyperbolic equation whose exact solution to any desired 
space and time resolution can, in principle, be obtained by 
application of the method of characteristics. Although such 
exact solutions are probably not appropriate for our studies, 
their consideration is instructive and therefore worth discus­
sing.

To proceed, it is unnecessary to be explicit about the 
coefficients in Equation (D.l); rather it is sufficient to indi­
cate that they are given, explicit functions of the independent 
variables, u^, r, and T and depend implicitly on the other 
independent variables, x^ and t, through their explicit depen­
dence on the gas properties, p, v^, T, Y^,....Y where p is 
the gas density; v^ the kth component of the gas velocity;
T is the gas temperature; and the Y^'s are the mass fractions 
of the gas. All of these quantities are treated as known func­
tions of the space coordinates x, and time, t. If we were
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actually carrying through the calculations under discussion, 
these functions could be generated by a hydrodynamic program 
for a turbulent gas flow without particles present so that at 
each space-time point the R, F^, and H coefficients would 
be explicit functions of only the independent variables u^., 
r, and T . Such an approach would represent an extension to 
a more complex situation of the numerical simulations described 
by Peskin, 1974.

, The exact solution of Equation (D.l) by the method of 
characteristics is given by a solution of a system of ordinary 
differential equations, namely

dn/dt = -n(3R/3r + 3Fk/3uk + 3H/3TS) (D.2)
dx^./dt = Uk (D. 3)
dr/dt = R (D.4)
duk/dt = Fk (D. 5)
dTS/dt = H (D. 6)

These equations are to be solved subject to suitable initial 
conditions; for purposes of exposition, we postpone detailed 
discussion of such conditions for the present.

The physical implication of Equations (D.2,...6) is as
follows: The last four equations give the trajectory through
the eight-dimensional space identified with the coordinates

sx^., r, u^, and T of particles whose number and position m 
that eight-dimensional space at time zero are given by the 
initial conditions. The first equation describes the history 
of the population along that trajectory; for the situations of 
interest to us, wherein the particles are being consumed, the 
history is of interest until the original population is entirely 
obliterated, i.e., until n = 0.
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Exact solutions to Equations (D.2,...6) can be used to 
develop, by numerical experimentation, the statistics of the 
number distribution, n. The point of view in this regard is 
as follows: Imagine that two turbulent gas flows with dif­
ferent velocities and state properties mix in some fashion and 
that their space-time behavior is known. Along a streamwise 
line indicative of the origin of mixing, introduce an initial 
number of particles of known size and temperature, but with a 
spectrum of particle velocities, in one stream and calculate 
their trajectories and histories to extinction by solving 
Equations (D.2,...6). If this calculation is repeated many 
times with the same initial conditions except for a spectrum 
of initial velocities, it is possible to develop a sufficiently 
large number of realizations so that the statistics of that 
population of particles with that size and temperature passing 
that particular spatial point can be developed to calculate 
n (x,t,r,u,TS). These calculations must be repeated at dif­
ferent initial spatial points and with different initial r 
and T . Clearly, a considerable calculation is required. 
Accordingly, approximate solutions are indicated.

THE COEFFICIENTS OF THE CONSERVATION EQUATION

Before discussing approximate solutions to Equation (D.l), 
it is worthwhile to discuss possible forms for the coefficients 
appearing therein. In developing these coefficients, Soo, 1967 
and Williams, 1962 are useful references. The easiest of the 
three coefficients is F^. If we assume the main contribution 
to the force on a particle is that associated with Stokes drag, 
then the dynamics of a single particle result in

Fk = -9y(uk - vk)/ps r2 (D.7)
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The treatment of the other two coefficients is conveni­
ently considered in terms of two phases of particle behavior.
If we assume the particles are initially cold and therefore 
chemically inert, there will be a heating up phase in their 
history during which no change in size occurs so that R = 0. 
During this phase, the heat conduction between the particle and 
the gas can be represented as*

H = 3y cs(T - Ts)/r2 ps cs (D.8)

where is the coefficient of specific heat of the solid.
During the second phase of particle behavior, a reason­

able, simplifying approximation might be that the particle
remains at a fixed temperature T while chemical reactiono
leading to reduction in particle size occurs. The temperature, 
T , effectively defines the end of the first phase and the 
beginning of the second. According to this approximation,
H = 0 and we need only represent R. The description of the 
rate of loss of particle mass which can be directly employed 
to determine R is complicated because the phenomenology of 
both chemical and fluid mechanical effects are involved. Thus, 
at the present time, we can only suggest the type of represen­
tation likely to be developed.

If we assume the particle to be carbon and to be subject 
to direct hetereogeneous attack by oxygen molecules, the reac­
tion mechanism can be taken to be

1
2 O, + surface O + C CO (D. 9)

Furthermore, if we make several simplifying assumptions

*See Equation (2.126) of Soo [1967], neglect radiation and 
assume the Prandtl number of the gas is roughly unity.
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concerning the aerothermochemistry and transport properties 
of the gas mixture surrounding the particle, we find (c.f. 
Appendix A)

R
P
1
s

I

(D.10)

APPROXIMATE ANALYSIS BASED ON CORRELATIONS
One method of obtaining approximate solutions to 

Equation (D.l), at least for the time-averaged number densi­
ties, is based on averaging and correlations. To discuss 
this method we shall explicitly invoke the model of particle 
behavior based on the two distinct phases and shall consider 
only the initial phase during which the particle size does not 
change, but rather the particle temperature increases to T . 
The extension to include description of the second phase is 
straightforward.

For the first phase of particle history, the time 
average of Equation (D.l) gives

uk(3n/3xk) + 9 (Fk n + F^n1) /3uk

+ 9(H n + H*n*)/9TS = 0 (D.ll)

where the bar denotes time-averaged and the prime the fluctuation. 
The effect of turbulence in the carrier gas on the mean number 
density of particles in the seven-dimensional space of x, u 
and T is contained in the correlations F 'n' and H'n1.P k
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Explicit expressions for F^' and H* in terms of the fluc­
tuations of the gas properties can be readily obtained from 
Equations (D.7,8). For present purposes, it is sufficient to 
work directly in terms of F^' and H', but we do reflect the 
functional forms for F^ and H in the development below.

Equation (D.ll) cannot be used to calculate n unless
expressions for F 'n' and H'n' are provided in some fashion.
There are several alternative approaches to these expressions.
In analogy with the classical treatment of turbulence, we can
introduce a gradient' approximation so that, e.g.,
_______________ 2 —F^'n' « F* 3n/9u^ where the constant of proportionality is 
chosen in some fashion. A second approach corresponds to 
second-order closure; the starting point in this approach is 
an equation for the fluctuations in number density. Subtraction 
of Equations (D.l) and (D.ll) yields

Sn'/at + ukOn,/3x]c) + aCE^n' + Fk'n + F^n' - F^n' )/3uk

+ 3(H n' + H'n + H'n' - iTn^/ST3 = 0 (D.12)

If this equation is multiplied by Fk' and averaged and then 
by H' and averaged, we find the two equations

uk3 (Fk'n')/3xk + 3 (Fk Fk'n' + h Fk'2n')/3uk + 3 (H F^n' + F^H'n

- % 3 (n Fk'2)/3uk - 3 (n Fj^'H'J/St3 + lim 3 (n' (x,t,r,u,T3) •
p T+0

Fk'(x + ut,t + t, r, u + Ft)/3t (D.13)
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4

uk 3(H,n')/8xk + afFj^H'n' + Fj^'H'n' )/9uk + 9 (H H'n'+^H' * 2 * *n')/3TS

= - 3 (Fj^H'iO/ai^ - %9(H,2n)/9TS + lim 9 (n' (x, t rr ,u/TS) •

H'(x + uT,t + x, r, u + Ft, T + Ht)/9t (D.14)

These equations can be interpreted as conservation equa­
tions for the desired correlations, F 'n' and H'n'. However,k
these new equations are not complete or "closed" either, in
this case because of the higher-order correlations, F^'H'n',2 2 ^H' n', Fk' n', and because of the last terms on the right side
of each equation. These latter terms, which must be modeled 
in some fashion, represent the correlation between the fluctu­
ations in number density and, e.g., in Fk1 along the mean 
trajectory of the particles in the nine-dimensional space.

Additional equations for the higher-order correlations 
can be developed in the same fashion as used for Equations 
(D.13) and.(D.14), but as is typical of the closure problem, 
new higher-order correlations and additional terms such as the 
last terms on the right sides will arise and require special 
treatment. All of these symptoms can be related to those 
usually encountered in the phenomenology of turbulent flows.

Additional study of this approach is indicated before 
numerical analysis is appropriate. It is worth noting that all 
of the equations, e.g., those for n, and H'n', are
hyperbolic; the solutions are as indicated by Equations (D.2,...6) 
but with the trajectories corresponding to the mean values of 
Fk and H, i.e., to Fk and H. It should also be noted that 
the effects of the turbulence of the carrier gas are explicitly 
taken into account; in particular, when this analysis is carried 
out for the second phase of the history of the particles, i.e., 
when chemical reaction and reduction of particle size occurs, 
the influence of R and R' will enter.
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There are perhaps other means for extracting useful 
information concerning the evolution of particle distributions 
from Equation (D.l). For example, the method of stochastic 
operators [Lane, 1967 and Keller, 1964] may be applicable at 
least for the case of weak turbulence. In assessing other 
approaches, we recognize the desirability, if not the neces­
sity, of having a means of analysis which can be incorporated 
with some further rational approximation into the computation 
of the coupled equations for the conservation of gas and 
particles.



APPENDIX E
FINITE ELEMENT-FINITE DIFFERENCE SOLUTION OF THE EQUATIONS

OF COMPRESSIBLE VISCOUS FLOW

The equations to be treated here are the Navier- 
Stokes equations for compressible viscous flow; for simpli­
city, thermal effects are not included, but it is very 
straightforward to do so. The continuity equation is 

Nd
P + ^ (pvj = 0 (E.l)3_

31
j=l

= 0
:

where p is fluid density, t is time, are the space co­
ordinates, v^ the fluid velocity components and Nd the number 
of dimensions. The momentum equations are

Nd
3_
3t (pvi> w: (pvivj)

j-i 3

Nd

j=l

3 3 33xj 3x^ Vj 3Xj Vi

3x.i
p = 0 (E.2)

where y is the fluid viscosity and p the pressure.
The procedure to be used for the solution of Eqs.

(E.l) and (E.2) is a finite element-finite difference 
method [see, e.g., Zienkiewicz, 1971 for a discussion of the 
finite element], where the finite theory difference character 
is related to the application of the basic philosophy of the 
so-called ICE technique [Harlow, et al., 1974] (Implicit 
Continuous Eulerian). This finite difference technique 
has proved successful in treating low-speed compressible flow 
problems.
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The finite element approach to continuum field prob­
lems assumes the continuum to be divided into elements, with 
nodes located either on the boundaries or in the interior of 
the elements (see Figure 1). We will assume the nodes are 
on element boundaries. Furthermore, to incorporate the ICE 
philosophy, density and pressure will be assumed to be 
centered at the elements, and velocity at the nodes. We 
will use three types of interpolation functions for expanding 
the dependent variables; these are shown in Figure 2.

In the following, right superscripts refer to elements 
(capital letters) or nodes (lower case), right subscripts 
to Cartesian components, and left superscripts to time 
levels. The weighted residual technique [Zienkiewicz, 1971] 
will be applied here.

The dependent variables are expanded in terms of the 
interpolation functions:

Ne
p = pL ML (E. 3)

L=1

Ne
p = ^ pL ML (E.4)

L=1

Nn
pv^ = ^ ^ (pv^)m (E.5)

m=l

Nn
pv7\T = ^ ^ (pv^v.)m N111 (E.5)

m=l
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Boundary 
of Continuum

Figure 1. Discretization of a continuum into elements with 
nodes at element corners. The node and element 
nomenclature is apropos to the description of 
interpolation functions in Figure 2.
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Figure 2. Showing regions in which interpolation functions 
Mm, and are nonzero. The functions Mm and 
M1, are equal to unity in the single-shaded regions, 
zero elsewhere; N5, is equal to unity at node l, 
and is zero outside and on the boundary of the 
double-shaded region, inside which it is continuous
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(E.7)
Nn
Z

l \ 01 XT111(pvi) N
m=l

v.i
s

m= 1
(E. 8)

L xtiwhere p , (pv^) , etc. are the discrete values of those vari­
ables associated with element L or node m. Here, Ne is the 
number of elements and Nn the number of nodes.

A finite difference equation is used for the continuity 
equation:

1
Atn

V. n+1. L Sp (E . 9)

where S is the boundary of element L, VT is the volume of
ij Li

element L, and dS^ is the differential outward normal area
on S, Here

n+16pL E n+1pL - npL (E.10)

Equation (E.9) results from applying Gauss' law to Eq. (E.l), and 
assuming the density is constant throughout element L at 
each time step. Using the expansion of Eq. (E.7), Eq. (E.9) 
leads to

n+16pL
Nn Nd

“.EE
m=l j=l

Lm n+1R.D (pVj) m (E.ll)
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where

RLm
: CE.12)

The momentum equation, Eq. (E.2) , is treated by a more 
purely finite element approach:*

/ 1 rn+l . . n, \ i jttM [ (pvi) - (pvi)] dV

Nd/■‘E
j=l

3 n ,------\ JTT<pviVdv
D

-/ Nd
N y Z-/ 3ir 

j-i j
3 n— 3 n— \ ,v. dV3x. j 3x. i> i J 3

fr'k n+1p dV = 0

where

n+1 n ■ n/3p\ ,n+l n .= p + (a?) ( p " p)

(E. 13)

(E. 14)

Using the appropriate expansions in Eq. (E.13), and integrating 
by parts, we obtain

In our recent version of the code we have introduced a 
finite difference approach to this equation also.
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r Nd
ji-V)l[n+1(pvi)'1 - n(pvi)'1] = - j n(5TF7^T) as.

n j=l

so that

^ Nd/ 2 (% N4)n<^
) dV

- Nd+/n<i 112 

j=i

„ Nd7£

j=l

nv. + ^-nv. ) ds. 3X. 3 8x. ij 3

ft "I “ (ft * ftftav

/ n* np dsi +/ (sir n£) "p av

Ne7 (ft •*) sV 1 7 M=1

m n, M(1^) n+16pM dV (E-15)

n+1 . v Z(pv^

Ne
= M-tnE n(!?rQ£JIM n+l^pM (E.16)

M=1

69



where

n_ £ _ n . * £ , A. T7-lpi " (pvi) + Atn V2.

Nn Nd

.T£,Tm \ n. .mN N dS. I (pv.v.)J ) ID

S E /(jsj "
m=l 3=1 J

n> . m(pviVj)

Nn Nd r

eeU-m=l j=lL
p w: n “3 n m Vi

Nn Nd
+ EEf/»
m=l j=ll

n m v . D

Nn Nd
9 „£\ / 9I / l9x, N J y l 9x,

m=l j =1
dV n m 

vi

Nn Nd-E.Em=l j=l
^ u ^ av n m

Vj

-/ „£ n+1 N p dS m£ nN p dS.^ i
u

•/ ’tp dV (E.17)
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and

(E. 18)

where is that part of the grid boundary on which the
pressure is fixed, the part where the pressure is unknown
at time t L, .n+1

The solution of the equations at time t ^ is ac­
complished by substituting Eq. (e.16) into Eq. (E.ll) and simply 
solving for the n+^5pL. The linear system to be solved is

Ne
Z n

M=1
n+lx M ., K (Sp = At.n

E

(m,j)eD
pLm n+l(
1 3

* E

(m,j)eDf
_Lm n mK . Jr . (E. 19)

where D is the set of degrees of freedom at which Cpv)11!1 are 
^ 3fixed at time ' anc^ Df the set at which the pv are un­

known. In Eq. (E.19),

"■>“ - *„ - < "&)" *“ (E. 20)

where

.LM E
(m,j)eDf

RLm Q1^ 
3 3

(E. 21)

and 6 M = 1 if L = M LM
= 0 if L ^ M (E. 22)
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An earlier version of the above procedure has been 
developed; it is a finite element scheme, fully implicit in 
pressure (or density) and velocity, which treats viscous, 
unsteady compressible flow in two or three dimensions.
Several sample calculations have been performed with this 
code.

Figure 3 shows the computational grid used for the 
calculation of steady, incompressible viscous flow in a 
two-dimensional meandering channel. Boundary conditions 
and problem parameters are shown on the figure. Figure 4 
shows the velocity vectors at the grid nodes in the steady 
state.

Two calculations were performed of steady compressible 
Poiseuille-like viscous flow in a plane two-dimensional 
channel. The computational grids and boundary conditions 
are shown in Figures 5 through 7. In each case the pressure 
(or, equivalently, the density) is specified at the inlet 
and outlet of the channel. Only half the width of the 
channel is included in the grid, because of the symmetry of 
the problems. For the problem of Figure 5, the flow is al­
most compressible, i.e., the density difference between the 
inlet and outlet is small; the numerical solution to the 
problem (the velocity vectors are shown in Figure 6) is al­
most identical to the theoretical solution of incompressible 
plane Poiseuille flow for density p = 1.
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CO

Ay=l

Outlet:

/ x

Inlet: pAx=l
Figure 3. Incompressible viscous steady channel flow, p = u = 1



Figure 4. Velocity vectors in steady flow for problem of Figure 3. The maximum 
velocity is 0.0818 m magnitude.



v =v =0

p=1.001
p=0.001

Plane of symmetry:

Ln

Figure 5. Almost compressible steady Poiseuille-like flow: p = A (p/pg-l), 
A = p0 = y = 1.



Figure 6. Velocity vectors in steady flow for problem of Figure 5. 
velocity is 2.00 x 10"4 in magnitude. The maximum



p=l.
p=0.

5 /
5i.t

^10."

v =v =0 x v yX X

=■1 p=l- f
:l----- 1===rp=o

Plane of symmetry: Vy=0

Figure 7. Compressible steady Poiseuille-like flow: p = A (p/pQ - 1) , A = pn 
= y = 1. 0



The problem of Figure 7 is similar to that of Figure 
5 except that the flow is highly compressible, with a much 
larger density difference between inlet and outlet. Velocity 
vectors for this problem are shown in Figure 8. Here it is 
seen that the flow is accelerating down the channel, as 
expected.

A calculation of the evolution in time of Couette flow 
between two plates has been performed using the unsteady 
flow option of the code. The problem grid and initial and 
boundary conditions are shown in Figure 9. Velocity vectors 
at selected computational cycles are shown in Figures 10- 
13. Due to the symmetry of the problem it was necessary to 
use only one element length parallel to the plates. Figure 
14 shows a comparison between the numerical and exact 
[Schlichting, 1960] solutions to the problem.



Figure 8. Velocity reactors in steady flow for problem of Figure 7. 
velocity is 0.124 in magnitude. The maximum



p = p0 P/P0 

P0 = po = w = 1
Initial conditions: 

P = P0,

v = v =0 x y
everywhere

vx = vy = ° (t < 0)

Figure 9. Computational grid, initial and boundary condi­
tions for Couette flow development problem.
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Figure 10. Velocity vectors in Couette flow formation, cycle 
29, t = 1.49.
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Figure 11. Velocity vectors 
44, t » 6.53.

in Couette flow formation, cycle
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Figure 12 Velocity vectors in Couette flow formation, cycle 
60, t = 30.35.
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Figure 13. Velocity vectors in Couette flow formation, cycle 
90, t = 531.20.
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Figure 14. Comparison of exact and numerical solutions in Couette flow development 
problem.
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