

HTGR

STEAM VENTS AND DRAINS SUBSYSTEM DESIGN DESCRIPTION

~~Applied Technology~~

~~Any further distribution by any holder of this document or of other data therein to third parties representing foreign interests, foreign governments, foreign companies and foreign subsidiaries or foreign divisions of U.S. companies should be coordinated with the Director, HTGR Development Division, U.S. Department of Energy.~~

AUTHOR / CONTRACTOR
STONE & WEBSTER ENGINEERING CORP.

Distribution of this report is Unlimited David Hamrin OSTI 3/9/2021

**ISSUED BY STONE & WEBSTER ENGINEERING CORP.
UNDER SUBCONTRACT TO GAS-COOLED REACTOR ASSOCIATES
FOR THE DEPARTMENT OF ENERGY
CONTRACT DE-AC03-78SFO2034**

JUNE 1986

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

HFD-45008

STEAM VENTS AND DRAINS
SUBSYSTEM DESIGN DESCRIPTION

4 x 350 MW(t) MODULAR HTGR PLANT

APPLIED TECHNOLOGY

~~Any Further Distribution by any Holder of this Document or of
Other Data Therein to Third Parties Representing Foreign
Interest, Foreign Governments, Foreign Companies and Foreign
Subsidiaries or Foreign Divisions of U.S. Companies Shall Be
Approved by the Director, HTGR Development Division, U.S.
Department of Energy.~~

NOTICE

~~This report contains information of a preliminary nature and was
prepared primarily for internal use at the originating installation.
It is subject to revision or
correction and therefore does not
represent a final report. It is
passed to the recipient in confidence
and should not be distributed or further disclosed without the
written consent of the originating
installation or USDOE Office of
Scientific and Technical Information, Oak Ridge, TN 37830.~~

~~RELEASED FOR ANNOUNCEMENT IN HGE,
DISTRIBUTED TO PARTICIPANTS
IN THE HTR PROGRAM.
OTHERS REQUEST FROM HTR, DOE.~~

Author/Contractor

Stone & Webster Engineering Corporation

Issued By:
Stone & Webster Engineering Corporation
Under Subcontract to Gas-Cooled Reactor Associates
For The Department of Energy
Contract DE-AC03-78SF02034

June 1986

CONTENTS

	<u>PAGE</u>
LIST OF EFFECTIVE PAGES	iii
LIST OF ACRONYMS	iv
LIST OF DEFINITIONS (TBD)	-
LIST OF ILLUSTRATIONS (TBD)	-
LIST OF TABLES	v
LIST OF APPENDICES	vi
PREFACE	vii
SUMMARY	viii
1 SUBSYSTEM FUNCTIONS AND DESIGN REQUIREMENTS	1-1
1.1 Subsystem Functions	1-1
1.2 Subsystem Design Requirements (TBD)	1-1
2 DESIGN DESCRIPTION (TBD)	-
2.1 Summary Description (TBD)	-
2.2 Subsystem Configuration (TBD)	-
2.3 Subsystem Performance Characteristics (TBD)	-
2.4 Subsystem Arrangement (TBD)	-
2.5 Instrumentation and Control (TBD)	-
3 COMPONENT FUNCTIONS AND DESIGN REQUIREMENTS (TBD)	-
3.1 Component Functions (TBD)	-
3.2 Component Design Requirements (TBD)	-
4 SUBSYSTEM AND COMPONENT INTERFACES	4-1
4.1 Subsystem Interface Requirements	4-1
4.1.1 Interface Requirements imposed on Other Systems . .	4-1
4.1.2 Interface Requirements imposed on Subsystems . . .	4-1
Within the System	
4.2 Component Boundary Definition (TBD)	
5 SUBSYSTEM CONSTRUCTION (TBD)	-
5.1 Packaging and Shipping (TBD)	-
5.2 Handling at Delivery (TBD)	-
5.3 Receiving Inspection (TBD)	-
5.4 Storage (TBD)	-
5.5 Access to Containment (or Other) Buildings (TBD)	-
5.6 Installation and/or Field Fabrication (TBD)	-
5.7 Construction Testing (TBD)	-
5.8 As-Built Drawings (TBD)	-

CONTENTS (cont)

	<u>PAGE</u>
6 SUBSYSTEM OPERATION (TBD)	-
6.1 Subsystem Limitations, Setpoint, and Precautions (TBD)	-
6.2 Preoperational Checkout (TBD)	-
6.3 Startup/Shutdown (TBD)	-
6.4 Normal Operation (TBD)	-
6.5 Refueling (TBD)	-
6.6 Shutdown (TBD)	-
6.7 Abnormal Operation (TBD)	-
6.8 Casualty Events and Recovery Procedures (TBD)	-
7 SUBSYSTEM MAINTENANCE (TBD)	-
7.1 Maintenance Approach (TBD)	-
7.2 Corrective Maintenance (TBD)	-
7.3 Preventive Maintenance (TBD)	-
7.4 In-Service Inspection (TBD)	-
7.5 Surveillance (TBD)	-
8 SUBSYSTEM DECOMMISSIONING (TBD)	-
9 REFERENCES	9-1

LIST OF EFFECTIVE PAGES

Page(s)	Rev.	Date
Title Page	0	6/86
i through vi	0	6/86
Preface (vii)	0	6/86
Summary (viii)	0	6/86
1-1	0	6/86
4-1 through 4-6	0	6/86
9-1	0	6/86
B-1	0	6/86

LIST OF ACRONYMS

OPDS	Overall Plant Design Specification
PCG	Power Conversion Group
SDD	System Design Description
SSDD	Subsystem Design Description
TB	Turbine Building
TBD	To be Determined

LIST OF TABLES

<u>TITLE</u>	<u>PAGE</u>
4.1-1 Interface Requirements Imposed on Other Systems	4-2
4.1-2 Interface Requirements Imposed on Subsystems Within the System	4-5

LIST OF APPENDICES

	<u>TITLE</u>	<u>PAGE</u>
A	Traceability of Requirements (TBD)	-
B	Drawings	B-1
C	Transients (TBD)	-
D	Design Basis Seismic Inputs (TBD)	-
E	Equipment List (TBD)	-
F	Parameter Lists (TBD)	-
G	Proprietary Claims (TBD)	-

PREFACE

The objectives of the HTGR plant project are to produce safe, economical power. Supporting these objectives are four major goals and their associated plant states identified as follows:

1. Maintain Safe Plant Operation
 - 1.1 Maintain Safe Energy Production
 - 1.2 Maintain Safe Plant Shutdown
 - 1.3 Maintain Safe Plant Refueling
 - 1.4 Maintain Safe Plant Startup/Shutdown
2. Maintain Plant Protection (in the event that plant operation cannot be maintained in the normal operating envelope)
 - 2.1 Protect the Capability to Maintain Safe Energy Production
 - 2.2 Protect the Capability to Maintain Safe Plant Shutdown
 - 2.3 Protect the Capability to Maintain Safe Plant Refueling
 - 2.4 Protect the Capability to Maintain Safe Plant Startup/Shutdown
3. Maintain Control of Radionuclide Release (in the low probability event of failure to maintain plant protection)
 - 3.1 Control Radiation
 - 3.2 Control Personnel Access
4. Maintain Emergency Preparedness (in the extremely low probability event of failure to maintain control of release of radionuclides)

The Overall Plant Design Specification (OPDS) is the top-level technical document for the HTGR plant. The OPDS (based on owner requirements and regulatory requirements) establishes the overall performance, functional, institutional, interface, operational, safety, maintenance, inspection and decommissioning requirements for design of the plant.

In response to the OPDS, a series of lower tier documents, System Design Descriptions (SDDs), Subsystem Design Descriptions (SSDDs), Component Design Specifications (CDSs) and Interface Control Documents (ICDs) describe and control the individual designs. Traceability from plant-level requirements to equipment-level requirements is maintained throughout this hierarchy of design documents.

SUMMARY

The Steam Vent and Drain system is a subsystem within the Power Conversion Group (PCG).

The Steam Vent system conveys steam and noncondensable gases to the atmosphere or appropriate terminal point at determined by the thermal cycle.

Typical steam vent systems are:

- Low pressure heater shell relief valve piping to the atmosphere.
- Low pressure heater shell vent piping which conducts noncondensable gases to the condenser.

The Drain system conveys high temperature water to the condenser to maintain the inventory of secondary fluid during startup.

SECTION 1

SUBSYSTEM FUNCTIONS AND DESIGN REQUIREMENTS

1.1 SUBSYSTEM FUNCTIONS

The functions of the Steam Vent and Drain subsystem are listed below:

- Convey steam and noncondensable gases to the atmosphere or appropriate terminal point as determined by the thermal cycle.
- Convey high temperature water to the condenser during plant startup.

SECTION 4
SUBSYSTEM AND COMPONENT INTERFACES

4.1 SUBSYSTEM INTERFACE REQUIREMENTS

4.1.1 Interface Requirements Imposed on Other Systems

Interface requirements, at the system level, are presented in Table 4.1-1 showing the system on which the requirements are imposed, and a brief description of the interface.

4.1.2 Interface Requirements Imposed on Subsystems Within the System

Interface requirements, at the subsystem level, are presented in Table 4.1-2 showing the subsystem within the system on which the requirements are imposed, and a brief description of the interface.

TABLE 4.1-1
 (STEAM VENTS AND DRAINS)
 INTERFACE REQUIREMENTS IMPOSED ON OTHER SYSTEMS

<u>Interfacing Systems (with Subsystem/Identification)</u>	<u>Nature of Interface</u>	<u>Interfacing Component</u>	<u>Interface Requirements</u>
1. <u>Reactor System</u> (10)	No Interface		
2. <u>Vessel System</u> (11)	No Interface		
3. <u>Reactor Services Group</u> (20)	No Interface		
4. <u>Heat Transport System</u> (21)	No Interface		
5. <u>Miscellaneous Control and Instrumentation Group</u> (30) (Radiation Monitoring)	TBD		
6. <u>Plant Protection and Instrumentation System</u> (32) (Investment Protection)	TBD		
7. <u>Fuel Handling, Storage and Shipping System</u> (34)	No Interface		

TABLE 4.1-1 (cont)
(STEAM VENTS AND DRAINS)

Interfacing Systems (with Subsystem/Identification)	Nature of Interface	Interfacing Component	Interface Requirements
8. <u>Plant Control, Data and Instrumentation System</u> (37)			
(Plant Supervisory Control)	TBD		
(BOP Control)	TBD		
9. <u>Power Conversion Group</u> (50)	See Table 4.1-2 for interface requirements imposed on subsystems within the Power Conversion Group		
10. <u>Heat Rejection Group</u> (52)	No Interface		
11. <u>Reactor Cavity Cooling System</u> (56)	No Interface		
12. <u>Shutdown Cooling System</u> (57)	No Interface		
13. <u>Buildings Structures, and Building Service Group</u> (70)			
(Turbine Building)	Provide Space	Inside the TB	Provide [1 ft peripheral] space for maintenance, separation, support, and placement of piping and equipment. (08.0401.130)

TABLE 4.1-1 (cont)

(STEAM VENTS AND DRAINS)

Interfacing Systems (with Subsystem/Identification)	Nature of Interface	Interfacing Component	Interface Requirements
14. <u>Mechanical Service Group</u> (90) (Auxiliary Boiler)	TBD		
15. <u>Electrical Group</u> (92)	No Interface		

TABLE 4.1-2
 (STEAM VENTS AND DRAINS))
 INTERFACE REQUIREMENTS IMPOSED ON SUBSYSTEMS
 WITHIN THE SYSTEM

<u>Interfacing Systems (with Subsystem/Identification)</u>	<u>Nature of Interface</u>	<u>Interfacing Component</u>	<u>Interface Requirements</u>
<u>Power Conversion Systems (50)</u>			
(Feedwater and Condensate)	TBD		
(Demineralized Water Makeup)	No Interface		
(Condensate Polishing)	No Interface		
(Chemical Feed)	No Interface		
(Turbine Plant Sampling)	No Interface		
(Turbine Building Closed Cooling Water)	No Interface		
(Turbine Generator and Auxiliaries)	TBD		
(Main and Bypass Steam)	TBD		
(Extraction and Auxiliary Steam)	No Interface		

TABLE 4.1-2 (cont)
(STEAM VENTS AND DRAINS)

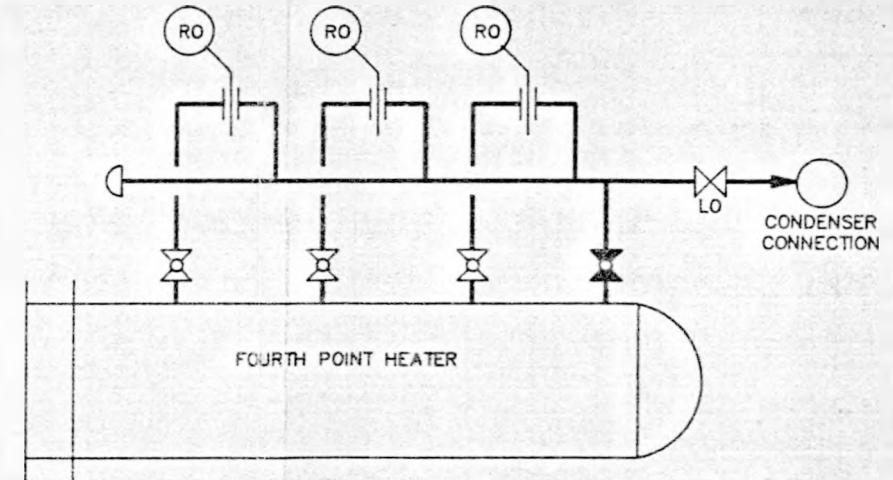
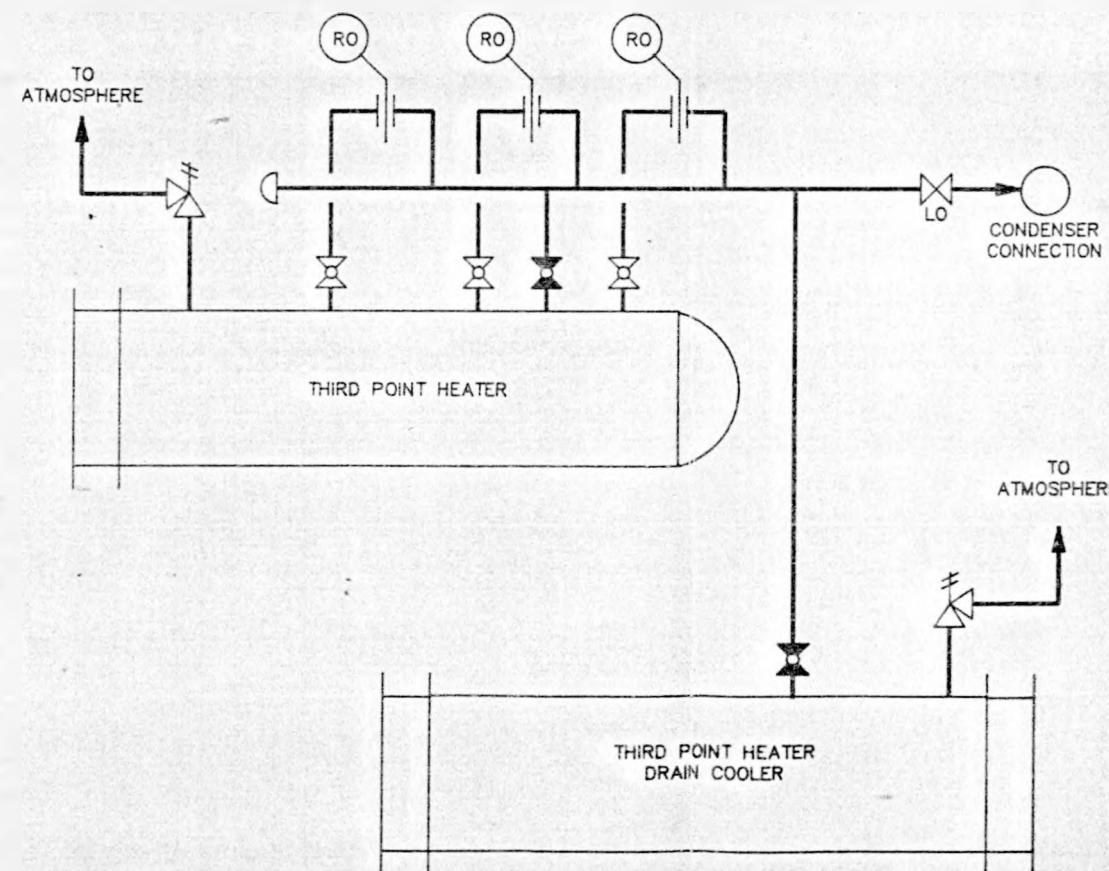
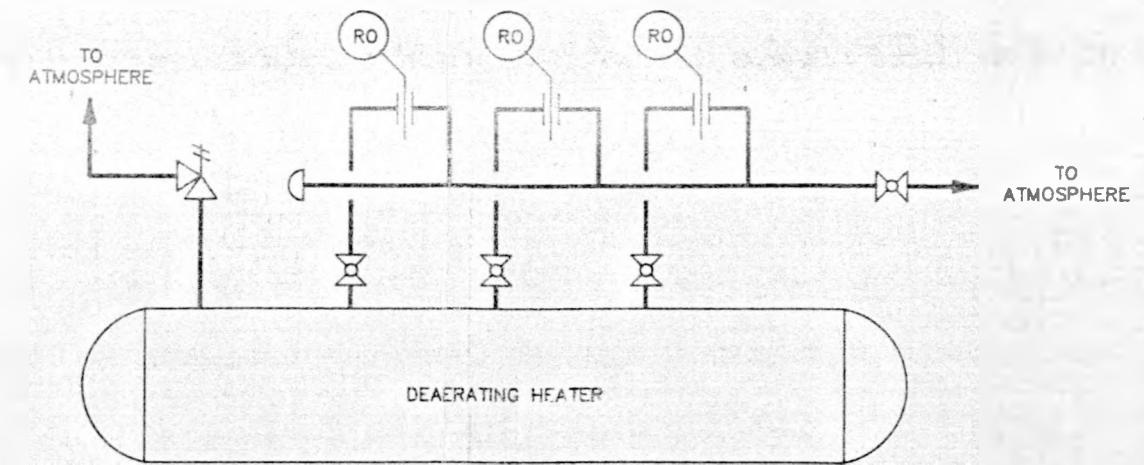
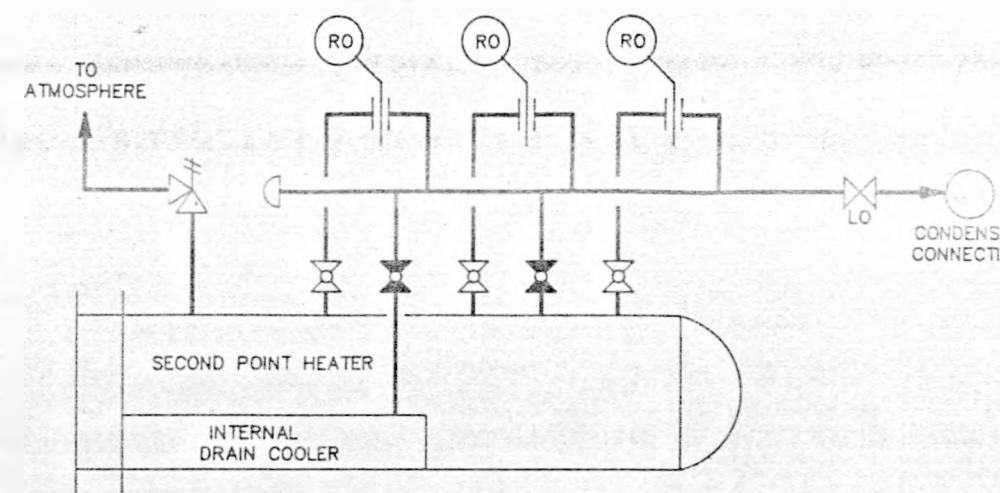
Interfacing Systems (with Subsystem/Identification)	Nature of Interface	Interfacing Component	Interface Requirements
(Heater Drains and Condensate Returns)	Provide Overpressure Protection	Feedwater heater shell to Atmosphere	Provide [one] relief valves at [TBD] psig (08.0401.550)
	Remove Noncondensable Gases	Feedwater heater shell to Condenser Shell Deaerating heater shell to Atmosphere	Provide vent piping with [$\frac{1}{4}$ in] orifice plates (08.0401.560)
(Start-up and Shutdown)	TBD		
(Steam and Water Dump)	No Interface		

SECTION 9

REFERENCES

1. GA Technologies, Inc. (GA), et al Overall Plant Design Specification 4 x 350 MW(t) Modular HTGR Plant, HTGR - 86-004, Rev. 1. GA, San Diego, CA, February 1986.
2. Bechtel Group, Inc. (BGI) et al Preliminary Concept Description Report 4 x 350 MW(t) HTGR Plant Side-By-Side Steel Vessel Prismatic Core Concept, HTGR-85-142. BGI, San Francisco, CA, October 1985.

APPENDIX B





DRAWINGS

Drawing No.

14884-PSK-5054A

Title

Steam Vents and Drains

NOTES
1. THE HEATER VENT SYSTEM IS SHOWN FOR UNIT 1, THE HEATER VENT SYSTEM FOR UNIT 2 IS SIMILAR.

4	3	2	1	ISSUE	P & I SKETCH 2 X 300 MW(e)
			<i>TOW</i>	PREP	STEAM VENTS AND DRAINS
			<i>me-AP</i>	REVIEW	SHEET 1 OF 1
			<i>ACC</i>	APP	4 X 350 MW(t) HTGR PLANT
			<i>6/23/86</i>	DATE	GAS COOLED REACTOR ASSOCIATES
					STONE & WEBSTER ENGINEERING CORP.
					DWG. 14884 -PSK - 5054A

A | B | C | D | E | F | G | H | I | J | K | L | M | N | P | Q | R | S | T | U | V |