

HTGR

CONDENSATE POLISHING SUBSYSTEM DESIGN DESCRIPTION

~~Applied Technology~~

~~Any further distribution by any holder of this document or of other data therein to third parties representing foreign interests, foreign governments, foreign companies and foreign subsidiaries or foreign divisions of U.S. companies should be coordinated with the Director, HTGR Development Division, U.S. Department of Energy.~~

AUTHOR / CONTRACTOR

STONE & WEBSTER ENGINEERING CORP.

Distribution of this report is Unlimited David Hamrin OSTI 3/13/21

**ISSUED BY STONE & WEBSTER ENGINEERING CORP.
UNDER SUBCONTRACT TO GAS-COOLED REACTOR ASSOCIATES
FOR THE DEPARTMENT OF ENERGY
CONTRACT DE-AC03-78SFO2034**

JUNE 1986

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

HFD-45007

CONDENSATE POLISHING
SUBSYSTEM DESIGN DESCRIPTION

4 x 350 MW(t) MODULAR HTGR PLANT

APPLIED TECHNOLOGY

~~Any Further Distribution by any Holder of this Document or of
Other Data Therein to Third Parties Representing Foreign
Interest, Foreign Governments, Foreign Companies and Foreign
Subsidiaries or Foreign Divisions of U.S. Companies Shall Be
Approved by the Director, HTGR Development Division, U.S.
Department of Energy.~~

NOTICE

~~This report contains information of a preliminary nature and was
prepared primarily for internal use at the originating installation.
It is subject to revision or correction and therefore does not
represent a final report. It is passed to the recipient in confidence
and should not be distributed or further disclosed without the
approval of the originating installation or USDOE Office of
Scientific and Technical Information, Oak Ridge, TN 37830.~~

~~RELEASED FOR ANNOUNCEMENT IN HGF,
DISTRIBUTION LIMITED TO PARTICIPANTS
IN THE HTGR PROGRAM~~

Author/Contractor

Stone & Webster Engineering Corporation

~~OTHERS REQUEST FROM HTR, DOE~~

jsw
Issued By:
Stone & Webster Engineering Corporation
Under Subcontract To Gas-Cooled Reactor Associates
For The Department Of Energy
Contract DE-AC03-78SF02034

June 1986

2375-1488400-B6

HFD-45007

CONTENTS

	<u>PAGE</u>
LIST OF EFFECTIVE PAGES	iii
LIST OF ACRONYMS	iv
LIST OF DEFINITIONS (TBD)	-
LIST OF ILLUSTRATIONS (TBD)	-
LIST OF TABLES	v
LIST OF APPENDICES	vi
PREFACE	vii
SUMMARY	viii
1 SUBSYSTEM FUNCTIONS AND DESIGN REQUIREMENTS	1-1
1.1 Subsystem Functions.	1-1
1.2 Subsystem Design Requirements (TBD)	-
2 DESIGN DESCRIPTION (TBD)	-
2.1 Summary Description (TBD)	-
2.2 Subsystem Configuration (TBD)	-
2.3 Subsystem Performance Characteristics (TBD)	-
2.4 Subsystem Arrangement (TBD)	-
2.5 Instrumentation and Control (TBD)	-
3 COMPONENT FUNCTIONS AND DESIGN REQUIREMENTS (TBD)	-
3.1 Component Functions (TBD)	-
3.2 Component Design Requirements (TBD)	-
4 SUBSYSTEM AND COMPONENT INTERFACES	4-1
4.1 Subsystem Interface Requirements.	4-1
4.1.1 Interface Requirements Imposed on Other Systems . .	4-1
4.1.2 Interface Requirements Imposed on Subsystem	4-1
Within the System	
4.2 Component Boundary Definition (TBD)	-
5 SUBSYSTEM CONSTRUCTION (TBD)	-
5.1 Packaging and Shipping (TBD)	-
5.2 Handling at Delivery (TBD)	-
5.3 Receiving Inspection (TBD)	-
5.4 Storage (TBD)	-
5.5 Access to Containment (or Other) Building (TBD)	-
5.6 Installation and/or Field Fabrication (TBD)	-
5.7 Construction Testing (TBD)	-
5.8 As-Built Drawings (TBD)	-

CONTENTS (cont)

	<u>PAGE</u>
6 SUBSYSTEM OPERATION (TBD)	-
6.1 Subsystem Limitations, Setpoint, and Precautions (TBD)	-
6.2 Preoperational Checkout (TBD)	-
6.3 Startup/Shutdown (TBD)	-
6.4 Normal Operation (TBD)	-
6.5 Refueling (TBD)	-
6.6 Shutdown (TBD)	-
6.7 Abnormal Operation (TBD)	-
6.8 Casualty Events and Recovery Procedures (TBD)	-
7 SUBSYSTEM MAINTENANCE (TBD)	-
7.1 Maintenance Approach (TBD)	-
7.2 Corrective Maintenance (TBD)	-
7.3 Preventive Maintenance (TBD)	-
7.4 In-Service Inspection (TBD)	-
7.5 Surveillance (TBD)	-
8 SUBSYSTEM DECOMMISSIONING (TBD)	-
9 REFERENCES.	9-1

LIST OF EFFECTIVE PAGES

Page(s)	Rev.	Date
Title Page	0	6/86
i through vi	0	6/86
Preface (vii)	0	6/86
Summary (viii)	0	6/86
1-1	0	6/86
4-1 through 4-6	0	6/86
9-1	0	6/86
B-1	0	6/86

LIST OF ACRONYMS

OPDS	Overall Plant Design Specification
PCG	Power Conversion Group
SDD	System Design Description
SSDD	Subsystem Design Description
TB	Turbine Building
TBD	To be Determined

LIST OF TABLES

	<u>TITLE</u>	<u>PAGE</u>
4.1-1	Interface Requirements Imposed on Other Systems	4-2
4.1-2	Interface Requirements Imposed on Subsystems Within the System	4-5

LIST OF APPENDICES

	<u>TITLE</u>	<u>PAGE</u>
A	Traceability of Requirements (TBD)	-
B	Drawings	B-1
C	Transients (TBD)	-
D	Design Basis Seismic Inputs (TBD)	-
E	Equipment List (TBD)	-
F	Parameter Lists (TBD)	-
G	Proprietary Claims (TBD)	-

PREFACE

The objectives of the HTGR plant project are to produce safe, economical power. Supporting these objectives are four major goals and their associated plant states identified as follows:

1. Maintain Safe Plant Operation
 - 1.1 Maintain Safe Energy Production
 - 1.2 Maintain Safe Plant Shutdown
 - 1.3 Maintain Safe Plant Refueling
 - 1.4 Maintain Safe Plant Startup/Shutdown
2. Maintain Plant Protection (in the event that plant operation cannot be maintained in the normal operating envelope)
 - 2.1 Protect the Capability to Maintain Safe Energy Production
 - 2.2 Protect the Capability to Maintain Safe Plant Shutdown
 - 2.3 Protect the Capability to Maintain Safe Plant Refueling
 - 2.4 Protect the Capability to Maintain Safe Plant Startup/Shutdown
3. Maintain Control of Radionuclide Release (in the low probability event of failure to maintain plant protection)
 - 3.1 Control Radiation
 - 3.2 Control Personnel Access
4. Maintain Emergency Preparedness (in the extremely low probability event of failure to maintain control of release of radionuclides)

The Overall Plant Design Specification (OPDS) is the top-level technical document for the HTGR plant. The OPDS (based on owner requirements and regulatory requirements) establishes the overall performance, functional, institutional, interface, operational, safety, maintenance, inspection and decommissioning requirements for design of the plant.

In response to the OPDS, a series of lower tier documents, System Design Descriptions (SDDs), Subsystem Design Descriptions (SSDDs), Component Design Specifications (CDSs) and Interface Control Documents (ICDs) describe and control the individual designs. Traceability from plant-level requirements to equipment-level requirements is maintained throughout this hierarchy of design documents.

SUMMARY

The Condensate Polishing System is a subsystem within the Power Conversion Group (PCG).

The system removes suspended and dissolved impurities from the condensate resulting from condenser inleakage and condensate and feedwater system corrosion.

Two systems are included, one for each of the two turbine generator arrangements. Each system consists of three 50 percent polisher vessels and regeneration equipment and is designed to treat 100 percent of the condensate flow.

SECTION 1

SUBSYSTEM FUNCTIONS AND DESIGN REQUIREMENTS

1.1 SUBSYSTEM FUNCTIONS

The functions of the Condensate Polishing Subsystem are as follows:

- Remove suspended impurities from the condensate system.
- Remove dissolved impurities from the condensate system.
- Maintain the highest quality feedwater and steam purity conditions.

SECTION 4
SUBSYSTEM AND COMPONENT INTERFACES

4.1 SUBSYSTEM INTERFACE REQUIREMENTS

4.1.1 Interface Requirements Imposed on Other Systems

Interface requirements, at the system level, are presented in Table 4.1-1 showing the system on which the requirements are imposed, and a brief description of the interface.

4.1.2 Interface Requirements Imposed on Subsystems Within the System

Interface requirements, at the subsystem level, are presented in Table 4.1-2 showing the subsystem within the system on which the requirements are imposed, and a brief description of the interface.

TABLE 4.1-1
 (CONDENSATE POLISHING)
 INTERFACE REQUIREMENTS IMPOSED ON OTHER SYSTEMS

Interfacing Systems (with Subsystem/Identification)	Nature of Interface	Interfacing Component	Interface Requirements
1. <u>Reactor System</u> (10)	No Interface		
2. <u>Vessel System</u> (11)	No Interface		
3. <u>Reactor Services Group</u> (20)	No Interface		
4. <u>Heat Transport System</u> (21) (Steam Generator)	Maintains Feedwater Chemistry Within Specified Limits	Feedwater & Condensate Subsystem Piping	-Maintain feedwater chemistry per limits stated in Ref.3 Table 26-1. (07.0401.040)
5. <u>Miscellaneous Control and Instrumentation Group</u> (30)	No Interface		
6. <u>Plant Protection and Instrumentation System</u> (32)	No Interface		
7. <u>Fuel Handling, Storage and Shipping System</u> (34)	No Interface		

TABLE 4.1-1 (cont)
(CONDENSATE POLISHING)

Interfacing Systems (with Subsystem/Identification)	Nature of Interface	Interfacing Component	Interface Requirements
8. <u>Plant Control, Data and Instrumentation System</u> (37) (Plant Supervisory Control)	Measures System Parameters for System Control	At Various Sensors in the Condensate Polishing Subsystem	4 to 20 ma at 24 V dc required. (07.0401.080)
9. <u>Power Conversion Group</u> (50)	See Table 4.1-2 for interface requirements imposed on subsystems within the Power Conversion Group		
10. <u>Heat Rejection Group</u> (52)	No Interface		
11. <u>Reactor Cavity Cooling System</u> (56)	No Interface		
12. <u>Shutdown Cooling System</u> (57)	No Interface		
13. <u>Buildings Structures, and Building Services Group</u> (70) (Turbine Building)	Provide Space	Inside the TB	Provide [2 ft peripheral] space for maintenance, separation, support, and placement of piping and equipment. (07.0401.130)

TABLE 4.1-1 (cont)
(CONDENSATE POLISHING)

Interfacing Systems (with Subsystem/Identification)	Nature of Interface	Interfacing Component	Interface Requirements
14. Mechanical Service Group (90)			
(Waste Water Treatment)	Treatment of Regeneration Wastes	TBD	TBD
(Instrument and Service Air)	Provide Air to Service and Operate Equipment	Misc. Components	Provide [TBD] SCFM at [100] psig air for maintenance and operation of components. (07.0401.145)
(Plant Drains)	Provide Capability to Drain Piping and Components	TBD	TBD
15. Electrical Group (92)			
(Non-Class 1E AC Distribution)	Power Supply	Valves and pumps	-Provide [15] kW of 480 V AC power for pumps. -[5] kW of 120 VAC power for valves (07.0401.150)
(Non-Class 1E Uninterruptable Power Supply)	Power Supply	Misc Controls and Instrumentation	-Provide [5] kW of ac power. (07.0401.155)

TABLE 4.1-2
 (CONDENSATE POLISHING)
 INTERFACE REQUIREMENTS IMPOSED ON SUBSYSTEMS
 WITHIN THE SYSTEM

Interfacing Systems (with Subsystem/Identification)	Nature of Interface	Interfacing Component	Interface Requirements
<u>Power Conversion Systems (50)</u>			
(Feedwater and Condensate)	Maintain Process Chemistry of Feedwater	Subsystem piping connection	Meet design feedwater chemistry requirements stated in Ref. 3 Table 26-1. (07.0401.500)
(Demineralized Water Makeup)	Provide Water During Regeneration	Subsystem piping connection	Provide [50] gpm at a [10 mins/24 hrs] intermittent basis. (07.0401.510)
(Chemical Feed)	No Interface		
(Turbine Plant Sampling)	Provide Local Sample Points	Subsystem piping connection	-Provide [3] local sample points throughout the system. (07.0401.520)
(Turbine Building Closed Cooling Water)	No Interface		
(Turbine Generator and Auxiliaries)	No Interface		

TABLE 4.1-2 (cont)
(CONDENSATE POLISHING)

Interfacing Systems (with Subsystem/Identification)	Nature of Interface	Interfacing Component	Interface Requirements
(Main and Bypass Steam)	No Interface		
(Extraction and Auxiliary Steam)	No Interface		
(Heater Drains and Condensate Returns)	No Interface		
(Steam Vents and Drain)	No Interface		
(Start-up and Shutdown)	No Interface		
(Steam and Water Dump)	No Interface		

SECTION 9

REFERENCES

1. GA Technologies, Inc. (GA), et al Overall Plant Design Specification 4 x 350 MW(t) Modular HTGR Plant, HTGR - 86-004, Rev. 1. GA, San Diego, CA, February 1986.
2. Bechtel Group, Inc. (BGI) et al Preliminary Concept Description Report 4 x 350 MW(t) HTGR Plant Side-By-Side Steel Vessel Prismatic Core Concept, HTGR-85-142. BGI, San Francisco, CA, October 1985.
3. GA Technologies, Inc. (GA). NSSS/BOP Interface Requirements; for the Modular HTGR Plant, HTGR-86-007. GA, San Diego, CA, April 1986.

APPENDIX B

DRAWINGS

Drawing No.

14884-PSK-5033

Title

Condensate Polishing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

FROM UNIT 1
CONDENSATE
SYSTEM
PSK-5031B

DEMINERALIZED WATER

AIR SUPPLY (TYP)

VENT (TYP)

REACTOR VESSELS

CONDENSER CONNECTION

TO UNIT 1
CONDENSATE
SYSTEM
PSK-5031B

TO
WASTE
SYSTEM

AIR SUPPLY (TYP)

VENT (TYP)

CATION
REGENERATION
TANK

ANION
REGENERATION
TANK

RESIN MIX AND
STORAGE TANK

AIR
SUPPLY

AIR
SUPPLY

DEMINERALIZED
WATER

TO
WASTE
SYSTEM

DEMINERALIZED
WATER

DEMINERALIZED
WATER

ACID
FEED
TANK

CAUSTIC
FEED
TANK

NOTE
1. THE CONDENSATE POLISHING SYSTEM IS SHOWN FOR TG UNIT "1",
THE CONDENSATE POLISHING SYSTEM FOR UNIT "2" IS SIMILAR.

4	3	2	1	ISSUE	P & I SKETCH 2X300 MW(e)
				PREP	CONDENSATE POLISHING
				REVIEW	4X350 MW(t) HTGR PLANT
				TWW/CK mmE/AM HFR	GAS COOLED REACTOR ASSOCIATES
				WCC 6-20-86	STONE & WEBSTER ENGINEERING CORPORATION
				APP	
				DATE	

14884-PSK-5033

SULFURIC ACID
STORAGE TANK
(98% H_2SO_4)

CAUSTIC SODA
STORAGE TANK
(50% NaOH)

A

B

C

D

E

F

G

H

J

K

L

M

N

P

Q

R

S

T

U

V