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Introductory Remarks

L.C. Teng

ANL/APS

Argonne National Laboratoiy
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Impedance and Bunch Instability Workshop
October 31 - November 1, 1989



IMPEDANCE AND BUNCH INSTABILITY WORKSHOP

Introductory Remarks

The accepted interpretation of the physical process limiting single beam-bunch

current in an electron storage ring is simple and straightforward. As the maximum

local current along the bunch exceeds the longitudinal microwave (turbulence)

instability threshold, the bunch will lengthen and widen until the current falls below

the rising instability threshold. One can continue to pump electrons into the bunch

and the bunch continues to lengthen following the threshold value until the transverse

fast head-tall (mode coupling) instability threshold is reached and acts to limit further

increase in the bunch current. Thus, one would like the transverse threshold to be

higher than the longitudinal threshold, at least for the un-lengthened bunch. In this

short introductory talk, I will give only a tabulated list of the various facets of the

problem to serve as orientation to the Workshop.

Types of Instability Problems

• Single Bunch -- Instability is controlled mainly by the high frequency end

of the broad-band impedance of the beam enclosure. This is difficult to calculate and

hard to control, and is, hence, more troublesome.

• Coupled Bunch — Instability is caused mainly by high-impedance narrow-

band resonances in localized beam enclosure structures. The source of the resonance



can, in principle, be located and corrected. The narrow-band nature of this instability

also makes feedback damping devices simple and effective.

Computations

• Electromagnetics — With given beam bunch and enclosure configurations,

calculate the Induced field or impedance. This can be done in either the time or the

frequency domain. (In more than one degree-of-freedom instead of time and frequency

domains, we really have the coordinates-domain and the modes-domain, but I will

continue to use the words time and frequency for this qualitative discussion.) These

cases of calculation can be tabulated as:

Time
Domain

Frequency
Domain

Bunch expansion
basis functions

6 -function
«(t)

Harmonic component

EM quantity
computed

Wake potential
W(t)

Coupling impedance

The computation is usually performed separately for each beam enclosure element

and the results are summed.

For enclosure elements with simple geometries, analytical solutions are

possible; but for most elements one has to resort to computer codes such as TBCI,

MAFIA, etc.

The computer codes can handle only physically realistic beam bunches. But

for instability computations, we need the electromagnetics of the basis functions In



which to expand the arbitrary beam bunch. Thus, in the t-domain one has to fake the

results for a 6-function bunch; and in the f-domain, one has to engage some model to

extend to high harmonic frequencies. (The high frequency behavior of the traditional

broad-band resonator impedance model is not correct!)

• Dynamics — One can either solve the Vlasov equation in the modes-domain

using computer codes BBI, ZAP, etc., or do straightforward particle tracking In the

coordinates-domain using SINTTRAC. Aside from the usual concerns of precision,

convergence, etc., there does not seem to be any problem with these codes.

Measurements

• On operating machines, one can measure the single bunch lengthening

threshold; hence, the longitudinal coupling impedance. The measured impedance is

sometimes at variance with the computed value. The measured transverse

impedances are, however, generally in fair agreement with computation.

For coupled bunches, since the instability is caused by specific high

impedance resonances, the measurements are used more for the "detect Instability -»

seek responsible resonance - eliminate resonance" procedure rather than for the

verification of some computational results.

• For off-line measurement on individual beam enclosure element, one can

use either a linac beam or a microwave carrying wire. Either measurement has

questionable accuracy and, hence, questionable utility. The difficulty is evident when

one remembers that the stored beam senses the wakefleld or coupling impedance

effect in some 105 passages through the impedance elements (assuming an average



element spacing of ~ 30 m and an instability growth time of -10 ms) and we are trying

to measure the effect after a single passage.

Thus, while the general understanding of the beam instability problem is

undoubtedly correct, we are far from being able to predict or even to describe the

phenomena quantitatively. If the Workshop can make some progress or generate

some new approaches for these problems, it will have made a great contribution. At

the minimum, the Workshop will provide an opportunity for the very useful and

essential communication and Interchange.

Thank you all for coming.
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1 Introduction

• Goal: Single bunch current limit 5 mA.

• Methods:

1. Establishing impedance budget;

2. Studying single bunch instabilities:

— Longitudinal bunch lengthening;
— Transverse threshold current.

• Controversial results from two different approaches:

— Broad-band resonator model with Q — 1:
—> Large bunch lengthening;

- Pseudo-Green function:
—* Little bunch lengthening.

Question: Which one should we believe?

2 Impedance budget

2.1 Code calculations

2-D — TBCI, ABCI, URMEL.
3-D — MAFIA (T3).

Components Number Code

RF cavities
Transitions from chamber

to insertion device (ID) section
Transitions from chamber to RF section
Shielded bellows
Shielded transitions
Flange full-penetration weldments
Elliptical tube weldments
Shielded end conflats
Valves
Crotch absorbers
Transitions from chamber without antechamber

to that with antechamber
Scrapers

Some examples of these components are show in Fig. 1.

15

34
3

160
80

4S0
80
SO
80
SO

120
2

2D

2D, 3D
2D,3D
2D, 3D
2D,3D
2D
2D
2D
2D, 3D

3D

3D
3D
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2.2 Analytic formulae

Analytical formulae are available for the following cases: [1]

• Space charge;

• Resistive wall;

• Synchrotron radiation; *

• Button-type beam position monitors. (A total of 360)

2.3 Data scaled from existing machines

The impedances of the following components are scaled from the PEP.

Number
_ r _____

Ion/NEG pump ports (screened)
Injectica bumpers
Abort kickers
Diagonostic instruments:

current transformers
horizontal hf pickup electrodes
vertical hf pickup electrodes
horizontal pingers
vertical pingers

200
4
2

2
2
2
2
2

2.4 Budget

Based on the results obtained from the above, the budget is established.

Longitudinal | Z/n \\\ 1 ~ 2 ft

Transverse ZL 0.7 A/Q/m

In this budget, the r allowing components are not included.

Components Number

Injection thin pulse septum 1
Abort Lambertson septum 1
Injection thin dc septum 1
Injection thick dc septum 1
Photon beam ports many
Injection Y beam port 1
Extraction Y beam port 1
Bent chamber in dipole sections 80

:I t is controversial whether or not this part of impedance has any effects on beam instabilities.



13

3 Code calculations

3.1 Time-domain approach

The computer codes TBCI (2-D), ABCI (2-D) and MAFIA (3-D) are employed
to calculate the following quantities for various components listed in the previous
section.2

• Wake potential W(T);

• Loss factor k{a) (integration of W(r));

• Impedance Z(LJ) (Fourier transform of W{r)).

3.2 Testing of codes

A series of tests have been performed in order to know the validity of the results
obtained from the code calculations.

3.2.1 Comparison with field-matching method

Two types of simple geometries are chosen for this comparison.

1. Small pillbox with beam tubes (H. Htnke). (Fig. 2(a))

2. Single steps (5. A. Kheifeis).

The impedance spectra obtained from the field-matching method are compared with
that from TBCI + FFT. The agreement are fairly good, except that the latter gives
double or triple peaks, which are not completely understood and are under further
investigation. As an example, Figs. 2(b)-(c) illustrate the results for geometry 1. The
results for geometry 2 can be found in [1].

3.2.2 Comparison with boundary perturbation method

When the perturbation is small and the geometry is suitable for TBCI computing,
the agreement is excellent. This work is underway and will be reported in [3].

3.2.3 Accuracy and convergence tests

1. Single precision (Z2-bit) vs. double precision (64-fa't):
The former is performed on a VAX, while the latter on a CRAY X-MP. The
agreement is surprisingly good for TBCI as well as for MAFIA(T3). Fig. 3
shows some results of this comparison. The difference between the VAX and
the CRAY output is negligible.

2An alternative is the frequency-domain approach, [2] which we have not adopted.
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2. Convergence tests - k(cr) vs. mesh size:

(a) The geometry of transitions from chamber to ID section:

• This geometry is important. Because it is the major contributor to
the transverse impedances, and because it is difficult to calculate.

• The convergence of TBCI output is slow, see Fig. 3.
A possible explanation: When the tapered angle 9 is small (~ 5°) and
the tapered part is long (20cm), the matching between the real and
the TBCI-approximated boundary is poor, and it varies as the mesh
size changes.

• Another code, ABCI, allows Sz different from ST. But numerical insta-
bilities arise due to the violation of the Courant criterion when we try
to let Sz > Sr in order to match the real boundary. [4] This problem
remains to be resolved.

• Incorrect output of TBCI (and ABCI) is observed in certain cases,
namely, near the bunch head, WtTansv becomes negative and W^,- and
Wazimu become positive, see Fig. 4(a). These results are unphysical. 3

These incorrect results can be corrected by either increasing the ratio
of afSz or taking certain error-correction procedures. (Fig. 4(b))

(b) Other geometries: No convergence problem. Fig. 5 shows the transverse
loss curves of an RF cavity calculated using two different mesh sizes.

3.2.4 3-D MAFIA(T3) vs. 2-D TBCI

1. For geometries with rotational symmetry:
2-D and 3-D outputs are in general agreement. An example is given in Fig. 8.

2. For geometries with elliptic cross-sections:
The situation is more complicated. One example is the transition from chamber
to ID section. MAFIA is used to calculate for the real 3-D geometrv, while TBCI
for the 2-D approximation with the radius equal to the dimension of the minor
semi-axis of the ellipse.

(a) Restrictions in choosing the mesh sizes in MAFIA (T3). 4

• Maximum ratio of mesh sizes < 3;
• The longitudinal mesh size Sz should be uniform and the smallest one

compared with the others.

Violation may lead to strange results. (Fig. 6)

3According to T. Weiland, these incorrect output reflects the limitation of the first order approx-
imation on which TBCI is based.

4R. Klatt, private communication.
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(b) The 3-D result of the dipole component of the vertical loss, ky, is much
larger than its 2-D counterpart. The cause is not clear. For a = 1.75cm,

TBCI MAFIA
(circular approx.)

ky{m = 1) {V/.pC • m) 34 190

3.3 Some Results of general interest

3.3.1 Negative transverse impedance

In 3-D calculations, many structures, in which the horizontal dimension is sub-
stantially larger than the vertical one, exhibit negative transverse impedances. Two
examples are given below.

o 1

1. SPS adaptors: (Fig. 7) [5]
The first peak of the horizontal wake potential, Wj?ea , and the horizontal
loss, kh, are shown in Fig. 8. When the horizontal dimension of the structure
increases while keeping all the other parameters fixed, a smooth transition from
positive to negative values is observed for W^ea as well as for kh.
Fig. 9 gives more information about how the negative horizontal wake force,
Fh., is generated. Fig. 9(a) shows that the dipole component of PA is positive,
whereas the higher order multipole components give a negative Fh as shown in
Fig. 9(b). And the sum is negative as seen in Fig. 9(c).

2. Transitions from chamber to ID section:
Similar phenomenon is observed. For a bunch length of 1.75cm,

Dipole Higher order multipoles Total
kx (V/pC • m) 38 -40.3 -2.3

3.3.2 Composition rule

When the separation between two successive discontinuities is large enough, one
may decompose a complicated structure into simple components and compose these
components to form new structures and obatain the same value of the impedance.
The new structures should be easier to compute. Figs. 10 and 11, and Tables 1-3,
illustrate two examples as the applications of this rule. [6]

4 Broad-band resonator (BBR) model

4.1 Loss factors of various components
Figs. 12 and 13 exhibit, respectively, the longitudinal loss, k\\, and the transverse

one, &j_, °f various components and the sums.
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• Longitudinal: Main contributors are the RF cavities.

• Transverse: The transitions from chamber ID section are dominant.

— We have compared the k± of three different transition shapes. No signifi-
cant improvement is seen, as shown in Fig. 14.

— When the radius of the tube in the ID section is increased from 0.4cm
(current design) to 0.6cm, k± will be reduced by about half, as expected.

4.2 Loss factors of a BBR
These are given in Fig. 15.

4.3 Fitting techniques and results

The following two techniques are employed to get the parameters (R, Q and fT)
of a BBR.

1. Least-squares fit: for both logintudinal and transverse.

2. Zotter's technique: for transverse only. [7]

The results are as follows:

• Transverse: Both techniques work well. Fig. 16 is an example.

• Longitudinal: The fitted value of Q is extremely small. (Fig. 17) BBR is not
an adequate model in this case.

5 Pseudo-Green function

5.1 TBCI calculations

TBCI is used to compute the logitudinal wake potentials Wj|(r) of various types
of components for a very short bunch [a = 1.5 mm). 5 The total wake of the APS
storage ring is obtained using the formula

in which N® is the number of each component. (Fig. lS(a))

5.2 Manipulation of TBCI results

In order to get the pseudo-Green function from the TBCI results, the following
procedure is adopted.

1. At time 0, the pseudo-Green function should take its maximum value. Assume
time 0 occurs when Wj{'ota/' takes its peak value.

5The natural r.m.s. bunch length of the APS storage ring is 5.3mm.
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2. Reflect Wjjtote/* about the time 0 axis from the left to the right in order to
preserve the area, and multiply it by a factor of 2 as a conservative measure.
The new curve is taken as the pseudo-Green function, see Fig. 18(b).

3. Other possible choices of time 0 have also been tried.

• At (peak of Wj{totei)) ± 1 mesh; (Fig. 18(c) and (d))

. At (peak of W^otal)) ± 2 meshes.

6 Bunch lengthening in the APS

6.1 BBR model approach

Because the small Q value of a BBR model does not make any physical sense,
we keep Q = 1 and use BBR as the input of the following three codes to perform the
bunch instability calculations. The results are comparable to each other.

1. BBI; (Fig. 19)

2. ZAP;

3. SIMTRAC.

6.2 Pseudo-Green function approach

We also employ the pseudo-Green function obtained in Sec. 5 as the input of
SIMTRAC to do the same kind of calculations. In this approach, we have tried

• Five different choices of time 0 of W^°ta , (Sec. 5.2)

• Different number of superparticles (up to 4,000);

• Different number of turns (up to 5,000, which is about 4 times the synchrotron
damping time).

The results are self-consistent, see Fig. 20.

6.3 Contraversial results

The bunch lengths obtained from the two different approches are very different.

BBR model (Q = 1)
Pseudo-Green function

Zero current
0.53cm
0.53cm

7 = 5 mA
~ 2.7cm
~ 0.7cm

The reason for this discrepancy is simple - The Green function calculated from a
BBR with Q = 1 is very different from the pseudo-Green function. (Fig. 21)
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As another comparison, we also calculate the bunch lengthening of a hyperthetic
machine. It consists of thousands of small pill-boxes, of which the Green function is
known analytically. [8] The results are close to that obtained from the pseudo-Green
function approach. (Fig. 20(a))

On the other hand, if we allow the BBR have a very small Q value as obtained
from the fitting procedure (Sec. 4.3), then the resulting bunch length is also very
small (~ 0.7cm).

7 Conclusions

1. It is inappropriate for the APS to use the broad-band resonator as a model to
study the longitudinal bunch instabilities. Because it may result in very small
Q values which are apparently unphysical. Furthermore, the bunch lengths
calculated from a BBR with Q = 1 may be misleading.

2. More work is needed in order to convince ourselves that the bunch lengths
obtained from the pseudo-Green function approach are believable.
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Table 1

MAFIA Oucpuc for Che

Loss Factors of a Periodic Structure

Longitudinal, k.

Conponeat/Scructure (V/pC)

Zxpanaioa 486.6 x 10"3

Pinch -484.6 x 10"3

Cavity 1.956 x 10"3

Scraper 2.064 x 10~3

2-period 3.913 x io~ 3

Table 2

T3CI Output for the Loss Factors of a Periodic Structure

Coapoaeat/Structure Loagitudiaal, kj Tranaverae, k I
(V/pC) (V/pC/a)

Expaaaion 46299.0 x 10"5 551.1

Pinch -46294.4 x 10"5 -501.94

Cavity 3.561 x 10~5 54.41

Scraper 3.715 x 10"5 43.95

2-period 7.117 x 10~5 108.8

Table 3

TBCI Output for the Loss Factors of a

Combined R? Cavity - Transition Structure

Compoaeat/Structure Longitudinal, It Transverse, k,

(V/pC) (V/pC/a)

R? Cavity 0.3199 2.235

Transition 0.0123 5.561

Whole structure 0.3424 7.995

*E>13 bunch length a - 1.75 ca.
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Fig. 1. Examples of the components used in the code calculations, (a) A transi-
tion between the chamber with and without an antechamber, (b) A chamber with an
antechamber and a crotch absorber, (c) A transition between the chamber and ID
section, both with an elliptic cross section, (d) An RF cavity.
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Fig. 2. (a) A small pillbox with beam tubes, (b) Henke's results of the impedance
spectra of the geometry shown in (a), using field-matching method, (c) Our results
for the same geometry, obtained from TBCI + FFT. Note that some peaks in (b)
split into two or three.
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Fig. 3. Accuracy and convergence test of TBCI output for a transition from cham-
ber to ID section.
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Fig. 4. (a) The wake potentials obtained from TBCI for a transition from chamber
to ID section. Note the humps near the bunch head, which are incorrect, (b) The
corrected wake potentials.
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Fig. 5. Convergence test of TBCI output for an RF cavity.
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Fig. 6. The wake potentials calculated by MAFIA(T3) for a transition from cham-
ber to ID section, using different mesh sizes. Note that the shapes of the wakes differ
drastically from each other. This is due to the improper choices of mesh sizes (see
text).
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Fig. 8- The first peak of the horizontal wake potential vs. x, the half-width of the
horizontal side of the rectangular cross section of beam tubes, (see Fig. 7) (b) The
horizontal loss factor vs. x. The 2-D TBCI results for a circular cross section are also
plotted, which are close to the 3-D MAFIA results.
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i

Fig. 9. (a) The dipole component of the horizontal forces. The dot is the location
of the beam. The left side line is the vertical axis, (b) The higher order multipoles
of the horizontal forces, (c) The total horizontal forces, which tend to kick the hori-
zontally displaced beam back to the center.



29

ib)

L;M 2o

id)

L,*i

Fig. 10. (a) A periodic structure consists of a series transitions from chmaber to
ID section. It is decomposed to (b) expansion components and, (c) pinch components.
These components are then recomposed to form different types of new structures: (d)
cavities, (e) scrapers and, (f) 2-period. According to the composition rule, (d) and
(e) have the same loss, which is the sum of (b) and (c) and is also equal to half of
that of (f). See Table 1 and 2.
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then recomposed to form two new structures. Both (a) and (c) give the same loss,
(see Table 3) while (c) is easier to compute.
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Fig. 12. The logitudinal loss factors of various components of the APS storage
ring, and their sum.

2C-«

« 0 0

i«m

0
0. 1.0 :.o 3.0

a (cm)
5.0

Fig. 13. The transverse loss factors of the APS storage ring. The transitions from
chamber to ID section is a dominant contributor.
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Fig. 14. Three different transition shapes and the corresponding transverse losses.
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Fig. 15. The normalized loss factors of a broad-band resonator: (a) longitudinal
and, (b) transverse.
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Fig. 16. The transverse losses of a transition from chamber to ID section, and the
least-squares fit to a broad-band resonator.
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Fig. 17. The longitudinal losses of an RF cavity, and the least-squares fit to a
broad-band resonator, using two different weights. The fitted parameters are unphys-
ical.
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Fig: IS. (a) The longitudinal wake potential, WJf°tal), of the APS storage ring,
calculated by TBCI for a bunch of a = 1.5mm. (b) The longitudinal pseudo-Green
function obtained from reflection about the axis at the peak of W^°tal\ (c) The
longitudinal pseudo-Green function obtained from reflection about the axis at (peak
of Wj[""o/)) + 1 mesh, (b) The longitudinal pseudo-Green function obtained from
reflection about the axis at (peak of R'jj'0'8^) - 1 mesh.
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Fig. 19. Bunch lengthening in the APS, calculated by BBI using a broad-band
resonator model with Q = 1 (turbulence and potential well effects).
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Fig. 20. SIMTRAC calculations using a pseudo-Green function, (a) Bunch length-
ening in the APS. The results for a hyperthetic machine consists of thousands of small
pill-boxes are also shown, (b) Energy spread in the APS-
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200

Fig. 21. The longitudinal Green funtion of a broad-band resonator with Q = 1.
which is very different from the pseudo-Green function (Fig. lS(b)).



Single Bunch Stability

in the ESRF

L. Farvacque

ESRF

Argonne National Laboratory
Advanced Photon Source

Impedance and Bunch Instability Workshop
October 31 - November 1, 1989
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L. Farvacque

1. Longitudinal wake potential / impedance

numerical study of elementary
contributions

measurements

summation of wake potentials

broadband model

2. Bunch lengthening / stability

potential well distortion (G. Besnier)

tracking (M.P. Level)
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NUMERICAL SIMULATIONS

time domain analysis performed with TBCI

A cylindrical approximation of individual
components of the vacuum chamber has been
studied :

flanges

transitions between standard cross-
section and undulator chamber or RF
cavity
RF cavity

Results are :

wake potential W(T)
loss parameters k(ai)

Limitations of the method are :

cylindrical symmetry
size of the problem (mesh limitation)
minimum bunch length
computation time

Several bunch lengths have been studied between
5 mm and 20 mm .
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EXAMPLE OF RESULTS

capacitive" impedance : RF cavity

'inductive" impedance : tapered transition
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MEASUREMENTS

Measurements are necessary when the cylindrical
approximation is not realistic. The coaxial wire
method which is used gives a wake potential that
can be substitued to the computed wake in the
analysis ( or added to other components).

1st measurement campaign (September 1988) :

measurements have been performed at CERN, in the
time domain ( pulse generator + sampling scope).

tested devices consisted in :
simple geometries to be checked / 2D
computations ( unshielded bellow ...)
very crude approximations of 3D elements
(slot, crotches...)

Future in-house measurements:

A measurement bench is presently being tested at
ESRF, working in the frequency domain
(synthesized pulse). First results using the devices
already measured at CERN are in excellent
agreement.

In both cases, the influence of the axial conducting
wire can give significant differences with the real
wake potential created in an empty pipe.



COMPARISON WITH TBCI
bellow, 1= 102 mm, 0=102 mm

pulse wake potential
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FWHM : 107.704 Cps)

Sigma: 45.738 Cps)

K <V/pC,2sigma>: 0.44S9I

K (V/-pC, whole): 0.SSS5?

Shifted by 2

0 120 240

Difference xl

360 480 .600 Cps)

17 Oct 1389, 18:05;48
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SUMMATION OF WAKE POTENTIALS

Wake potentials (computed or measured) are added

before any modelling or approximation is made.

Until now, only the main computed wake potentials

have been used. This includes :

tapered transitions to undulator chambers
transitions to RF cavities
flanges
RF cavities

The result for the ESRF vacuum chamber is mainly

resistive :

jig- 0.00700

-30.0

-3.000
K-02

-2.000
E-02

-1.000
E-02

0.000 1 .000
e-02

2.000
E-02

3.000
e-02
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LOSS PARAMETERS

K longitudinal

Kloss
(V/pC)

• a -

•a-

•©•

- • -

• A -

stapundul

flanges

slap cavity

R.F.

total

0.004 0.006 0.008 0.012 0.014 0.016 0.018
sigma ( m)

0.02

K transvarM

1300 -

1600 " ' A v

1400 -

1200 -•

Kperp 1 0 0 ° * • • *
(V/pC/m) soo -• a *

*

•a-

•*•

-O-

• * -

stvpuockri

flangas

stap cavity

R.F.

total

0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
sigma ( -m)
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IMPEDANCE MODEL

Broadband resonator model :

1+j'Q
(0r CO

CO CO,

CO r CO

CO CO,

different methods can be used to fit the 3
parameters Rs, cor, Q :

1. adjustment of loss parameters:

Rs, cor, Q are adjusted so that the loss parameters

for bunch lengths between 5 and 20 mm match the

estimated values.

Q determination is very approximate

For a given bunch length, the wake potential of the

adjusted broad-band resonator is rather different

from the desired one.
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BROAD-BAND MODEL

30

20

10

• 10

•20

• 30

bunch'

(Vj computad w»ka potantial

(T\ waka potential ol a B.B

• 30 • 20 • 10 10 20 t(wn)
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2. Wake potential method:

Parameters of the resonator are adjusted so that
the wake potential a bunch (with a gaussian line
density X(x)) is the best approximation of the
computed curve:

W (T) = J - f
2JC/«

. Z(©). exp( j ©T). d©

Advantage : very good agreement for the wake
potential within the bunch: all short range effects
should be correctly represented by the model.

Drawback : the approximation is valid in the
vicinity of the choosen bunch length ( 5 mm to
10 mm in our case ) . For a different bunch length
(20 mm ) we must use a different model.

5 mm < ai < 10 mm

20 mm < O|

fr (GHz)
4.68

4.11

Rs <kQ)
2.16

2.91

Q

0.055

0.254

Any other impedance model could be fitted with

this method ( no attempt until now).
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BROAD-BAND MODEL

' ( , « I q - 0 . 0 0 7 0 0 m^

1 0 . 0

2 0 . 0

1 0 . 0

0 . 0 0 0

1 0 . 0

• 2 0 . 0

3 0 . 0

F r . 4 . • 7 7 0 OH X
R • . 2 . 1 * 1 0 k O k
Q . O . O f f l O

kuitcfc

\

\

\

1 ewnpitw »•»• prnmltl
ffl

1 . 0 0 0

I - 02
• 2 . «0 •
E- 0 2

t . 0 0 1
C- 0 2

0 . • • • 1 . 0 * 0
C- 02

1 . • • • 3 . • • • « (<•)
%• 12
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LONGITUDINAL POTENTIAL WELL

Basic equations:

e=

^o (P <°o)

h(o0Vrf|cos<ps0|

time delay

line density of the bunch

intensity parameter

synchrotron motion :

\
or in frequency domain

i
Hamiltonian :

where the potential Ueff includes contribution from
rf potential and wake potential of the bunch :

Sx is the "step function response", such that
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Vlasov equation for 10(x,x) iongit. distribution

function :

a gaussian distribution of momentum expressed as:

cp(-T2/2o-)

V2it(^ OX=CO$0OT0=constant

leads to :

10[x,x)=X0(x)

and after integration

A.0(-t)=Cexp' xo)

(Haissinski equation)

Sx depends on the unknown function Xo :

analytical solutions have been derived for
pure inductance (B. Zotter)
pure resistance (A.G. Ruggiero)

a numerical solution is used in the ESRF case with
the broad-band resonator model
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BUNCH LENGTHENING

(ml

i r 1 1

pure resistive impedance Rs = 2.16 kQ
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NUMERICAL SOLUTION

X

~2 ©n

Xo is initialized with a gaussian (E ( 0 ) = 0 ).

iterative e(n) increase + relaxation

/T\

K

-5
-'"• . 1

\ \
4 -,

\ ' " • • • - .

/

/ /

/ /

/ /

/ /
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BUNCH LENGTHENING

(a) Resonator 1 ( 5 mm < cr, < 10 mm )
(b) Resonator 2 { 20 mm < o ( }
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MOMENTS OF THE LINE DENSITY

the bunch shape can be estimated knowing the first

moments of the line density function :

barycentre

rms length

skewness

approximation :

= m1 = I T.\0(x).dx

2 f, -,2
x=m2= I l^-xj .\0(

3

dx a*Q

ôp is approximated by the spectrum of a gaussian

with rms cx . Coefficients are developped to 1 s t

order in e :

s =
(00ax 0 P

l0p
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LONGITUDINAL STABILITY

Mode coupling cannot explain the turbulent
instability threshold :

2 2

m = ± 1 : coc = cos0 : the coherent shift is exactly

balanced by the incoherent shift

m = 1,2 : the two modes are decoupled

The threshold has then to be estimated by crude
assumptions on potential well or bunch shape
distortions. It is related to the appearance of a
null rf slope.

In the ESRF case, this threshold corresponds to a
value of the asymatry sth = 0.6 . Above the
threshold, the bunch lengthens with this constant
asymetry value.
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TRACKING

Simulation has been performed with SIMTRAC (D.

Brandt). Longitudinal and transverse motion of N

super particles is studied with damping and

wakefields.

Wakefieids are concentrated in RF-stations. They

are calculated from a broad-band resonator model.

Parameters :

Energy
revolution time

Circumference

rms energy spread

Damping time TE

Vertical tune

Vertical emittance

Averaged pz

Harmonic number

RF Voltage

Radiation losses

Momentum compaction

Bunch length

Synchrotron frequency

6GeV
2.833 us

849.39 m

6.18 MeV

3.7 ms

7.4 ms

11.2

6.2 Kr1om.rad
12 m

992

9.9 MV

7.48 Mev

2.82 10 4

5.3 mm

6.68 10"3
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TRACKINC. ! 'ARAMI-:H:RS :

5<K) Panicles. 5(XX) Turns ~ 3 . 8 r E

Turbulent Threshold

Turbulent Threshold

Bunch lengthening 1st Resonator

Besnier results

S1MTRAC results

« a = 2.64 10-4

A a = 10.4 I(H
>c a = 4.5 W4

V=9.9Mv
V = 9.9Mv
V = 8.4 Mv

Ys= 6 7 10-3

YS = 1.33 I0-2

ys = 6.7 10-3
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A Longitudinal Mode-Coupling Instability

Model for Bunch Lengthening*

Y.H. Chin

Lawrence Berkeley Laboratory

Argonne National Laboratory
Advanced Photon Source

Impedance and Bunch Instability Workshop
October 31 - November 1, 1989

"The full-length paper is published in Particle Accelerators, Vol. 13,
pp 179-198 (1983).
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INTRODUCTION

There are not many theories to explain a normal
bunch lengthening from first principles.

Widely used is the analogy from Laslett-Neil-
Sess ler criterion for coast ing beams, e.g., A.
Hofmann, LEP-70174.

He derives the scaling law for SPEAR II from
LNS criterion:

o (cm) = 4 . 4 . x 10-2 l o (mA) a _
1.32(G#V)J

which is in good agreement with the
experimental result

a (cm) = 5 . 6 x 10
-2

z

a )
2

vs E (G«V) J
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8. Z(uri for SPEAR

From data on bunch lengthening (next lecture)-, the SPEAR impedance

function at high frequencies was determined to have the form:

2. At low frequencies, the impedance nust fall to zero as u •* 0.

In this region, ZR(u) was arbitrarily chosen as linear: ZR{U) <\. M

3. The parameters Z Q and U>Q were determined by using

Mo) - I f ZR(M) e
* Jo *

2 2
-u o

to fit the measured loss data:

The measurements are reported in SLAC-

PUB-1894 (copies will be distributed

next lecture). The fitting procedure

is descirbed in PEP-233.
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We need a source of mechanism for bunch
lengthening:

1) Single bunch instability

2) Fast growth rate

3) Broad band impendance

Sacharer proposed a mode-coupling instability
model (CERN/PS/ER/77-5).

Since then,

Chao and Gareyte: Water bag model

Chin, Satoh and Suzuki: Gauss ian
distribution



73

IUNCH LEKCTKE.tI.NC JLtD MICROWAVE INSTABILITY

F.J . Sacharer
CEJW. Ceneva, Sviczarland

Incroduccioa and Sussarv

A iizi'.t-'z-^-.zh ia iCAbil icy Cha: leads co b l o w u p of
buncn arta tr.i microwave s i g n a l s (ICO ML CO 3 C'Az) has
ba^n observe.! i a cha ?5.'' aad Cha IS*.1) . A s i n i l a r i a -
s c a o i l i c y s i r causa bunch l«o(Chanins i» e l eccron s t o r -
age r in f - «::a=?cs co explain chis as a high-frequency
coas;ing-bcia ir.j labi l i ty require e-Ioldinj races (iscar
chaa a *yr.:r.7o:;sa period, acd vavelengshs shoreer than
a bunch l«r.j;h. la chis case, cha usual Kcil-SchnelL
coascir.j-aa^z criterion1 ' is used, buc vich local values
of bunch, cjrrtsc aad soaescua spread, as suggescad by
toujsard'). This yields |Z/n| = 13 fl lor cha IS*, and
values abauc Jive to cca cices larjar for Zit* fS . The
rascricicoss =ar.cionad above, hovaver, ara noc ful f i l led
near chreshclc, or for frequencies ** lov »s 100 Mil.

k direc^.ajpsoach, vickouc coascir.f-beaia approxiaui-
cions, is prese=:ad in chis paper. The basic idea is
chac cha usual buached-beaa eadas1*), dijole.. ^uadrupoic,
iricupoLe. tzz... seco=e taucabla ac incensicies s u f i i -
c ieady high, foccheir cohereac fTae.ucaci.es Co cross, as
indiracad is. Fig.. 1. If Z(u) i s known, che frequency
shifts can be cocpuccd, and surprisingly, on. finds
Chresholds near Che coasciaf keaaj values, but vich fever
assisapcions.

L
nmetrr

Fit . I Coherent frequencies u , versus inceasicy

Modes of Oicillacion

For lov inceiuicies, a bunch can oscillaCe ia cha
usuai dipole, quadrupole and higher «oJ«« (Fig. 2) with
frequencies near harsonics of che synchrocron frequency,

)"9 ' " i i . The oici l lacing pare of che line densicy
An(t> is jppro.tinacely sinusoidal, and a l i t t l e choughc

• xmm

Lou-incaasicy eodes of escillacisn

>J ricesholds.occ'"; {g
CJty...in_abouc a bunca.ieai;tli.~ Jo general, levering Q-
values does ooc help, since Che chrashold depends oa Che
area under Che resoaaaca curve. For very rapidly decay*
ing vakas, Che bunch is scable, ia agrce«wnc vich a COB—
jeccure of Herevard1'. 0»ty_on« .vaveleatth alon^^ha

" bur.ch is sufficienc for mcabiliCT-

The aain resulcs are prcsenced here (Fare 1) , while
Che derivecions ara givea elsewhere*} {fire 2 ) . For
ocher approaches, see references.7 Co 10-

-Cflt;P_

shous ic co be 'a scaadiaa>'vav*.vich:?iaeeV-«bdaiia so_chcte
i s no-iojcabilicyi.f.clla.uake^ield_d<czys.before cha nezc
kuach arrives*'. Rovavar. ac (ufficieacly high iacensi-
tie* for cvo cohcrcnc frequencies co sarge *s iadicaced
in Fig. 1, ^m _"•"' "•—•"«f y»v»« *tt± tt i

jravaa_ao*_saviaz -forward, aad on* ^aciana
.bunch,_on«_9t_vhich_i*_SCibla.,.»Bd_cla «rt.f ••-• " ' • ' •
This is cha conneccioa vich che coasciag-keasj craveUing-
vava sndes.

Fig. 3 Envelope of frequency speccra for che seacionary
discribucioa asd for sodas • and a*I

\^ .The spacers for_cba low inCensicy aade* ar«_i ^
in Fig. 3. Mode • i s peakaA.aaaccbc ^aquaocy [(S«-1)/2TQ[
•f cha sine wave l a ( c ) , aad excends i i / r O f r correspond-'
iog Co che bunch-leagcS'frJ' see. For yn—ale, aode o - 5
for a 1 nsec bunch is centred jc 3 C3x, and l ies coscly
abova Che pipe cuc-off. * J<i_

The accual speccrua is a line speccrua vichin che
envelopes «C Fig. 3 . For ooe bunch, che frequencies

I » pf | • B<4 , — < f * • (U

occur, where fs is tha syachroeron frequency and'ft i s
cha ravolucion frequency in Hi. For X equally spaced
buaches, only every Mtb liaa occurs,

ptOf, • mf , — < , < - (2)

A longitudinal chroaacicicy ana co the dependence of
che synchrocroo frequency oa aoawacua deviacion would
lead co a haad-cail inacabilicy analojous co che
Cransverse case.^uc this effece has been csci=aced
Co be very saall ) .
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OUTLINE OF THEORY

Vlasov equation for particle distribution

97

plug in

2 R (r)

)
Gaussian distribution

and solve the first-order equation for
The result converges to the eigenvalue eq.

0
fos: X * —

v

2 - m2d«t ( (X2 - m2) I - M)

The stability condition is X2*0. and X = real.
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CALCULATION RESULTS FOR SPEAR II

Two scaling parameters:

«

v . E

Using SPEAR II impedance of Wilson et
al., the calculated threshold values of G
are 4 - 5 t i m e s l a r g e r t h a n t h e
experimental data.

The best fit of the experimental data with
the resonator model

<or

is obtained when Rg = 4 x 1 0 4 ohm, Q = 0.6 and
o>r/zir = 1.3 GHZ.
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T. SUZUKI. Y. CHIN AND K. SATOH

10

0.1

* * A A

I 2 4 6 6 10
BUNCH LENGTH cr (cm)

FIGUREl(a) i p p
aonwilui and ive ndial modes arc iadndad. Tfca daaM a m ihoM a cast what « • aaawihal aa4 f «c
radial noda arc mdadad. T i t dM-daah ewvc aWm a am wkm lw» uiwMhal aaaai aad «aly ww fadial
•ode fercac* iniMiliat node art inriadid. The criaadhi aW« dw upariiaMal data. Th* eovpNag
wpadaaei of Witaoa ct aL" it w d .

We have also calculated the polential-wsl bunch lesftheaing w i n | the couplinf
impedance of Wilson et s i The buach lenftbenini Aa/a due to potential-well
distortion is fives by"

(3.3)
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BUNCH-LENGTHEMMG IN S K A I I I

100

50

o
a.

(0

fcl 2 3 4 5 6
BUNCH LENGTH <r (cm)

FICUKE Mb) VomfanBmiaktitltmaiomol butt* tt»0ko. The (olid curve ibow* ike alcuU's*
• tul ln niiirniipli«|i«frtin ni iarif IfilMii—ii TTirrinhwi<nninjiniianitir ii[ii—«lit n

where % is given by Eq. (149). The numerical results are Ao/o » -3.2 x l G V
at a - 1.76 cm, v, - 0.033 and £ - 1.55 GeV, Ao/o - -6 .9 x 10~'/mA at
c - 151 cm, v, - 0.033 and £ - 121 GeV and Ao/o « - 1 4 x 10' J/mA at
c » 168 cm, v, - 0.042 and £ - 3.0 GeV. The results are consistert with the
experimental data.'4

Resonator Modtt

Other p*rametrizatk>ns have been tried and fitted to the experimental data. The
simplest parametrization is a broadband resonator model given by

I -iQ[—--^
(3.4)

With this parametrization, the threshold current is fitted. The result is shown in
Fig. 2(aX The parameters are R,» 4 x 10* ohm, Q - 0.6 and mjlx - 1.3 GHz. The
calculated curve fits qualitatively well with the experimental data. The wiggle observed
at about a — 1.5 cm is also reproduced. To see the details of the mode coupling, the
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T. SUZUKI. Y. CHIN AND K. SATOH

1.6

1.6

1.4

~ I.Ol-
o

0.8

Q6

0.4

02

QL 1 1 1 1 1 1 I 1—

Ho ! 2 3 4
BUNCH LENGTH cr (cm)

FIGURE2I»I ScaUag^raimurCa(afHKaoiitfbuncklc«(ili«.ThcioWatnicilMn>«ihcaloilMio«
whan * moiuior iaipaiuice of Jt, - 4 x 10*oha.<? • 0.«iad'av2i - 1.3 CHx a wad. The triMfki
show ihc cxptrimcaul dtu.

real and imaginary parts of the coherent oscillation frequency A. in units of synchrotron
frequency are shown in Fip. 3(a) and 3(b) for o * 0.9 cm (30 ps) and in Figs. 4<a) and
4{bj for o — 1.8 cm (60 ps). For simplicity, two radial modes are shown in the figures.
We see that at o * 0.9 cm. mode coupling between M - tandm - — 1 modes occurs
while at o » 1.8 cm. mode coupling between m - landm - 2 modes occurs. We thus
see that the wiggle at about a - 1.5 cm is explained by the change of the combinations
ofazimuthai modes in this range of bunch length. The loss parameter k is calculated by
using the same impedance as described above and plotted by a solid curve in Fig. 2(b(.
The fit to the experimental data of Eq. (3.2) is also shown by a dotted curve. The
calculaled values are larger than the experimental values by factor of about three. Thus
the absolute value prediction of theory is not so good, although it explains the
qualitative behavior of threshold currents fairly welL

A Further Paramarization of Coupling Imptdanct

A low-Q resonator model is frequently used to parametrize a broadband impedance.
However, in this model. Re Z(«) behaves as I.W and Im Z[<a) behaves as 1/u as u
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BUNCH-LENGTHENING IN S K A * H

I 2 4 6 8 10
BUNCH LENGTH <r (cm)

becomes large. On the other hand, the scaling taw of Chao and Careyte requires an
asymptotic form that Re Zl«) and Im ZM behave as m "••*•. A simple extension of the
resonator model, which has a cauaal property is given by formula 23.2 of Xef. 19.

7TM y > 0
y < 0

( R e « > 0 . I U v > 0 ) .

With the formula (3.5) we parametrize the coupliag impedance as

«» " '

(3.5)
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Note that the wiggle around oz = 1.5 cm is
reproduced

t
change of mode - coupling pair



CONCLUSIONS

1. If the estimate of SPEAR II impedance
is ok, the mode-coupling model gives
too large threshold current.

We need a n o t h e r m e c h a n i s m of
instability

2. If the reproduction of the wiggle by the
mode-coupling model is not
coincidence, we should reconsider the
estimate of impedance or the
impedance model.
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This contribution to the impedance/bunch lengthening workshop is a

summary of recent results regarding the longitudinal coupling impedance and

its behavior at frequencies above the cutoff of the beam pipe. Numerical

computations are based on a program written by F. Neri which uses a modifi-

cation of SUPERFISH to compute the longitudinal coupling impedance tor an

azimuthally symmetric obstacle of arbitrary r,z cross section and on a pro-

2

gram developed by R. Li and F. Neri for N pillboxes based on an expansion in

TM modes in each cavity and beam pipe section.

A general analysis has been developed , leading to an integral equation

for the axial electric field at the beam pipe radius within the obstacle.

The solution of this equation for a small obstacle (small kg) for the
admittance

Z

. 4
is

oY(k, 2irka

•

kg tank(b-a)

00

-jbgg/a
e

b H

s

j

n n 4 (1)

where

(.2 2 .2U/2 . .„ a (.2 .2 2\.
= k a - •) I , b * -jp , 8 = M - k a I[ Jsj s J s s (Js J

Here j are the zeroes of J (x). The result in Eq. (1) is in close agreement
s o

with numerical results, as discussed in Reference 4, for g/a = .05,

b/a =1.1.

The kernel of the integral equation was approximated for high

frequency , leading to the prediction for the (local) average (over fre-

quency) impedance for a single cavity
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Z(k> <1 - j) /g 1
= —^Z ./— , ka » 1 , (3)Z 2» Vita

o

independent of the shape of the cavity. This result is in agreement with the

predictions of others (J. Lawson, G. Dome, S.A. Heifets and S.A. Kheifets;

citations included in Reference 3) . Numerical results for a pillbox cavity

with g/a = ir/4, b/a = 1.5 are shown in Figs. 1(a) and 1(b). The average is

in approximate (10%) agreement with Eq. (3) for ka > 25/ but there appear to

be oscillations with ka of magnitude comparable with the average. An

analytic description of these oscillations has not yet been developed.

An analytic approximation has been obtained for the coupling impedance

per pillbox of N pillboxes at high frequency. The form for the admittance

per pillbox (valid for N * 1 and for N > 1) is

/wa , t
NZ Y(k) s (1 + j) x / /ica + a VN - 1 tan (4)

where

a - (1 + j) (5)

VTJl

and where L is the center to center separation of the pillboxes.

For N -» eo (NL/a > ka) this reduces to

wa ka
NZ Y(k) as (l + j) n / v̂ ca + jn — — (6)

o v g Li
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for a periodic structure. It is easy to show, for large ka, that the

-1 -3/2

imaginary part of the impedance decreases as k and the real part as k

Moreover the real and imaginary parts are connected by causality, leading to

the sum rule

.co L
dk R(k) = — - NZ , (7)

o 2a °

where Z (k) = R(k) + j X{k).

For large but finite N, the k -* eo limit <ka » NL/a) is

V k ) (1 - j) /g 1

Z 2n v na. *—
o vka

N
(8)

1 + 2

1 /2 6

When Ng » L, the impedance varies as N as suggested by R.B. Palmer.

Figures 2(a) and 2(b) show a preliminary comparison of the predictions

of Eq. (4) with numerical results for the impedance averaged over intervals

Ak = ir/g for N = 10 and 20, with g/a » n/B, L/a « it/6. The correction factor

in the brackets in Eq. (8) is approximately confirmed. A final point, raised

in the workshop, is that this "shadowing" effect will be reduced if the pro-

pagating modes are significantly attenuated between pillboxes.

The analysis can be extended to the case of a pulse (TEM mode) on a

wire of radius r along the axis of the beam pipe and obstacle, a simulation
g

technique used to measure the impedance. The kernel in the integral
equation is modified primarily by the shift of j to j , the zeroes of

s s
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V x > •

It is easy to show that the shift is of order itn (a/r j ) J . The numerical

program was modified to apply to the pulse on the wire and the quantity

zoo * n ( a /V
z
o

[1 - T<k)] (10)

was computed for r /a « .1 and .01. Here T(k) is the transmission co-

efficient for the coaxial (TEM) mode on the wire. Results for a small pill-

box showed the shift in structure corresponding to the new values j , but the
s

average behavior was essentially unchanged. The results for high frequency,

which depend on the sura of contributions for many values of s, were almost

identical to those calculated for the impedance without the wire.
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Longitudinal Coupling Impedance o£ a Small Obstacle1 Appendix A

R.L. Gluckstern and F. Neri
Physics Department, University of Maryland, College Park, MD 20742

I. Introduction

In a recent paper , the longitudinal impedance for a narrow pill-box

with bean pipes was investigated analytically and numerically, in order to

understand the structure of the impedance as a function of frequency in the

region above the cutoff of the beam pipe. The field matching procedure

described by HenJce was used in the limit of a narrow pill-box and the

impedance was expressed as sun which required a cutoff for convergence. In

the present paper we start with the integral equation for the field at the

pipe radius ' and solve this equation rigorously in the case of a small

obstacle of general shape. In this way we obtain a more accurate

representation of the important broad resonance which dominates the

behavior in the frequency range above the cutoff of the beam pipe.

II. Analysis

The starting point for the analysis is the integral equation obtained

for the electric field in the obstacle at the pipe radius. Specifically,

we have

J dz' F(z') [K (|Z# - *|) + Kc<z',z)j - J e"
i k 2 (2.1)

and

'" dz P(z) eJ~" . (2.2)
2o
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Hera kc/2x ia the frequency, a is the pipe radius, Z - 120« ohms is the

impedance of free space, and the azimuthally symnetric cavity, of general

shape in the r, z plane, extends axially from z » 0, to z •» g at the pipe

radius * • a. Apart fro* a constant* F(z) is the axial electric field for

r - a and 0 < z < 9. The component of the kernel from the pipe field is

2«j » * *

where

(2.4,

Here j i s the sth zero of the fiessel function J (x) and b i s to be
ft ^mm O ef

replaced by -j3 when j > Jca. the eoaponent of the kernel from the

"cavity fields" is

K {z,z'> - 4*2 J — 5 ; , (2.5)
c k - fc

where the orthonormal (azinuthally syjanetric) nodes of the c*vity (with an

imaginary metal wall at r - a) are defined by

V x •l- kfit , V x tt - k£ it , (2.6)

and where h.(z) • |h.(a,z)| is the azimuthal component of the normalized

magnetic field at r - a.
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III. Small Obstacle Solutions

The "cavity kernel" in Eq. (2.5) requires a sum over the modes in the

cavity. For a small cavity, this sum is dominated by the lowest mode for

which the solution for the magnetic field is the constant field

C3.1)

normalised so that j h (z) dv - 1 over the annular cavity of length 2xa and

cross sectional area t. The frequency of this mode corresponds to k - 0,

so that

2*
K <x',z) « - r — . (3.2)
c kZaA

The "pipe kernel" in Eq. (2.3) is more difficult to evaluate for a

small obstacle, since the sun in Cq. (2.3) does not converge if

|uj - |z' - z| is set equal to zero. To proceed we add and subtract X <g),

which is independent of z' and z, to obtain

-jb |u|/a -jbg/a
2*j • e - e

yl«l> - y*> +T z b • (3-3)

Since |u|/a and g/a are very small, the major contributions to the sum in

Eq. (3.3) occur for large s, in which case we obtain

-jb |u|/a -jbg/a ^|u|/a -pg/a)
« e - e j r » ( e - e

J



100

The integral equation for Fix') in Eq. (2.1) therefore becomes

j dx' f <x') [K - — fa |x' - x|] - 1 , <3.5>

•there

x' - x'/g , x - x/g , «gf(x') - af<x'> C3.6)

and

2j • •
r + 2 r — 5 — • (3*7)

The solution of Eq. (3.5) can be expressed in terms of the solution of

J d x ' L ( x ' ) t n \ x ' - « | • 1 , 0 < x < l . (3.8)

Specifically we find

L(X')

K/J - 2 J ,

where

• | f d x t<x)j . (3.10JJ
'o
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We then obtain the admittance from Eq. (2.2) as

Z Y<Jc) • 2« ka
o

-jbg/a
m e 2<n2

(3.11)

where we have used the solution of Eq. (3.8) in the farm

L(x) 5iT7n2 ' J " "2tn2 '

XV. Numerical Results and Discussion

We have used Eq. (3.11) to calculate the real and imaginary parts of

the admittance, shown as the solid lines in Figs. l(a) and Kb) for a small

pillbox with b/a • 1.1 and g/a • .05. The dots correspond to the results

of the computer program developed to calculate the longitudinal impedance

of an azimuthally symmetric cavity of general shape in a bean pipe. The

agreement between the two confirms the validity of Eq. (3.11).

Furthermore, the "sawtooth" structure of that part of the admittance

involving the zeroes of J (x) depends primarily on the parameter ka (and

only logarithmically on kg) while the primary dependence on the pillbox

size (b,g) is contained only in the smooth part of the susceptance, which

is most important for small values of k A.

If one smooths the "sawtooth" structure, equivalent to averaging over

k for values of ka above the cutoff" of the beam pipe, one finds the

features of the broad resonance discussed in depth in an earlier paper.
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Appendix A

Zn order to demonstrate that

x'1'2 (1 - x ) " l / 2

is a solution of Eq. (3.8), we aake the substitutions

from which we obtain

j . dx' 1 j* fcos o

I -zzzzzzz *» |»' - *l - 2 *•! **•' & I
Jo ^x* <1 - x ' ) J - « *

- cos

Use of the exponential forms for cos e> cos O* leads to

(A.I)

1 + cos e' l + cos e
5 , x = , (A.2)

Q - \ Re £ de' [/n e i e
 + fed - .**""»* * In (1 - « i ( e - ' ) - £n

fn(l - cos #) , (A.4)

where ̂  - ©' ± e, and where the last form of Q is clearly independent of e,

as required by Eq. (3.6).

A power series expansion of the integrand in Eq. (A.3) leads to

Q--*!n2«'-£ j . {A.5)

•-1 m Hj) •!



The sum over n in Eq. (A.5) can be shown to be equivalent to the sum

obtained from the power series expansion of the integrand in

xfl du

Q - -x to 2 + rj ZZZZ Cl - VI - u) ,
Jo u VI - u

(A. 6}

which is readily evaluated as

Q-~xto2 {1 • Vl - u ) I - - 2K In 2
•o

(A.*?)

Thus

' ) to |x' - 2TTTT - 1 (A.S)

as required in Eq. (3.8), and

- IJ dx L(x) - -2 fa 2 , (A. 9)

as stated in Eq. (3.12).
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High Frequency Dependence of the Coupli.no Impedance
for a Large Number of Obstacles

Appendix B
R.L. Gluckstern

Physics Department, University of Maryland, College Park, HD 20742

I. Introduction

we have recently derived ' an integral equation for the axial

electric field at the pipe radius in the presence of an azimuthally

symmetric cavity of arbitrary shape in a beam pipe of circular cross

section. He have further shown that the local average of the coupling

impedance over frequency decreases as k' for high frequency, essentially

independent of the cavity shape. Zn another paper , we extend the

derivation to several cavities and obtain the high frequency behavior for a

periodic cavity. Zn this case the real part of the impedance per cell is

shown to vary as Jc~3/ , in agreement with Keifets and Kheifets5, and the

imaginary part varies as k~ , as required by causality.

In the present paper we analyze the case of N cavities and explore the

high frequency behavior for large N, in an effort to understand the

transition to a periodic structure. Not unexpectedly, the result depends

critically on which of the limits (Jc -» a or N -> t») is taken first.

II. Analysis

The starting point for the analysis is the integral equation obtained

for the axial electric field in a single obstacle at the beam pipe

radius.2'3 Specifically we have

J dz' G(z') p (z - z'} + Kc(z',z)l - j {2.1)

and
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ka2Jc
dz G(z) (2.2)

Here kc/2* is the frequency, a ia the pipe radius, Z - 120ff ohms is the

impedance of free space, and the azimuthally symmetric obstacle, of general

shape in the r,z plane, extends axially from z - 0 to z » g »t the pipe

radius r - a. Apart front a constant and the factor exp(jkz), G(z) is the

axial electric field for r - a and 0 < z < g.

* 2
The modified "pipe" kernel, X_(«)# has the form

jku - j b 8 |u|/a

K (u) -
P s-1

2xj

ka

,u<0

(2.3)

2 2 2 2where u - z - z', b - k a - j , and where the last form in Eq. (2.3) is
S 3

obtained by averaging over frequency, with the dominant contributuion

coming from 1 « j « ka. for |u| « ka , the sum over a can be converted

to an integral, leading to

Kp(u) a

,u<0

(j - 1) v*
-,u>0

(2.4)

A similar analysis for the "smoothed" high frequency limit of K (z',z>

also leads to the same result, namely

Ke(z',z) a

0 ,z'>z

(j - 1» VI

la Vk{z - z')

(2.5)
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The solution of Eq. (2.1) with the kernels in Eqs. (2.4) and (2.S) then

yields the "smoothed" high frequency limit for the impedance for a single

obstacle:

- V 0 0 -
(1 + j) «a Vnk

(2.6)

For several obstacles, it is easy to see that Eq.- (2.1) can be generalized

to

m
J d*m G(2;» [[yv v] - (2.7)

where z' and z denote the variables r' and z within cavities n and n, and
IB n

I dz' is over cavity m. The coupling between different cavities occurs
J ra

Jm

through the pipe kernels, whereas the cavity kernels are diagonal. If we

now use the high frequency kernels in Eqs. (2.4} and (2.5) for the diagonal

terms and Eq. (2.3) for the pip* kernel in the coupling terms, it is clear

that the only surviving contributions to the sun over m will be those for

z' < z , that is m s n. Specifically we obtain
m n dt' G (f)

a VH "'o Vt - t
*l m-1

2ka'
f « - «„«'-> - *.

(2.8)

where z' - mL + t', z - nL + t, and where we assume that we hav Nm n

identical cavities whose centers are spaced a distance L apart. He have

also approximated z - 2' by (n - ra)L in the non-diagonal terms,
n m
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corresponding to the assumption NL » g. The impedance is then

Z(k) I N fg

Equation (2.8) can be simplified by writing

(2.9)

(l - j) a Vfc

4S
y (2.10)

leading to

(1 - j) m n-1
r Ei
S"l m-1

2ka'
- 1 (2.11)

and

2(k) (1 - j) Vg N

E2 « Viic
n-1

(2.12)

Our task is to solve Eq. (2.11) for y and then use Eq. (2.12) to obtain

the impedance. This can be facilitated by constructing the transform

w(h) - J
n-

solution

hny , in which case use of the convolution theorem leads to the
n

Wh) -
1 - h

U - j) Vg

2*a Viik

1-1

p(h) (2.13)
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where

P(h) -
e» . 2ka m
Z h'e u Z

s-1 l-l s-1
1 - h - j

21ca

( 2 . 1 4 )

The last form of Eq. (2.14) holds in the rang* ka2 » Lj*.

A simple approximation to Z(k) in Eq. (2.12) for large N can be

obtained by evaluating

w[exp(-l/M)} - (2.15)

n-1

where the exponential cut-off simulates the sum from n - 1 to N in

Eq. (2.12). For h « 1 - 1/N, we find

w 1 - -
(1 - j) Vg •

1 + z
S-1 1

1

j

L

2k

.2

a

-1

(2.16)

Let us first consider the limit N -» «. in this case we can use

j" - 1/4 to evaluate the sum over a, to obtain
s

s=l

N Z YU) =
o

(1 + j) na Vnk j«ka
•~-̂ ~~~~~̂ ~~~~̂ ~̂ + f large N « 12.17)

the result obtained earlier for a periodic structure. If instead, we
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assume that 1 « N « ka /L, the sum over s can be converted to an integral

over j from 0 to « to give
3

(1 + j) ira
H 2 ¥(k)

o

vgN
1 +

This limit corresponds to converting the sum over s to an integral in

Sq. (2.11), leading to

1 Vg n-1 ym
(2.19)

- m

For large n, it is easy to show from Eq. (2.19) that the asyraptotic form of

VgrT
(2.20)

leading to

N Z Y(fc) a
(1 + j) »ra

2 VZ
(2.21)

This result, which is more accurate than Eq. (2.18) for large N because it

- /M
uses J) y rather than JI v n

 e • suggests that Eq. (2.18) can be made

n»l n-1

more accurate by replacing the factor gN/nL by gN/4L to obtain

U + j) na }/nk
N Z Y{k) s l + J, large ka. (2.22)
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This surprising result predicts that the impedance will vary as N once

N > L/g, and that the transition to the periodic result in Eq. (2.17) takes

place when N > ka /L.

Finally, we can obtain a reuslt which properly contains both limits by

converting the sum over a in Eq. (2.16) to an integral over j with a lower

limit on j chosen to retain the relation J] j" • 1/4. In this way we
s s-1 s

obtain the relation

N Z Y{Je) a F (JO + a Vtt - 1 tan , (2.23)
0 0

with

(1 + j) a v'ik
o - , (2.24)

vT

which can easily be seen to give the limit in Eq. (2.17) as N » ka2/L and

the limit in Eq. (2.22) Cor 1 « H « ka2/!.. The change to N-l in

Eq. (2.23) is made to give the correct limit when N-l.

We have repeated the analysis for a small obstacle, that is where

kg - 1 even though kL » 1. The entire analysis and final result in

Eq. (2.23) are unchanged, except that F (k) is now the actual single

obstacle admittance. In the case kg « 1, Gluckstern and Heri have shown

that

F (k) s 2nka
o

-jbag/a
j w e 2tn2

* i
s-1

(2.25)



114

t:here A is the cross sectional area of the (small) pillbox.

III. Discussion

Equation (2.23) gives a result for the average impedance (admittance)

for N equally spaced identical cavities at high frequency. The transition

to the periodic result shows clearly when NL » ka . In addition,

Eq. (2.23) predicts that, for ka » NL the impedance will return to a

k"1/2 dependence at high frequency, but with a coefficient which varies as

N1/2 for large N, as given in Eq. (2.22). This has important implications

where there are a large number of obstacles, and where conventional wisdom

has up to now been to add impedances. He have checked this result by

evaluating y numerically from Eq. (2.19). Zn addition, we have allowed

g/L and L to be different for each cavity and confirm numerically that the

N result does not depend on delicate phase cancellations. Moreover, we

expect that the analysis for the transverse coupling impedance will be

parallel, and therefore believe that our conclusions are correct at high

frequency for multiple obstacles of any shape in a beam pipe of any cross

section.
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Appendix C

ANALYSIS OF COAXIAL WIRE MEASUREMENT OF LONGITUDINAL COUPLING
IMPEDANCE1

R.L. GLUCKSTERN AND R. LI
Physics Department, University of Maryland, College Park, MD, USA

I. INTRODUCTION

In recent work , a method has been developed to calculate the longitudinal

impedance for an azimuthally symmetric obstacle in a beam pipe of circular

cross section. The method has been applied to a small obstacle , to an

obstacle of general shape at high frequency , and to several obstacles, in-

cluding a periodic structure4' at high frequency.

Coupling impedances are difficult to measure directly. Instead, the

reflection and transmission coefficients for a pulse carried through the

obstacle on a thin coaxial wire are measured and the results approximate the

longitudinal coupling impedance.

In the present paper, an analysis is carried out including the coaxial

wire and new boundary conditions for the fields at the surface of the wire.

We then estimate the validity of the coaxial wire measurement for a variety

of frequencies and geometries. Finally, several numerical calculations are

carried out for both the beam and the wire pulse. The results confirm the

predictions of the analysis.

II. ANALYSIS FOR A BEAM

Let us consider a beam pipe of radius a which enters and leaves an azi-

muthally symmetric cavity of general shape. The longitudinal impedance can

be obtained by field matching at r = a. The source fields in the ultrarela-

tivistic limit are

Z I

E ( S ) = 0 . Z H ( S ) = - -^ e'JkZ = -E ( S ) . (2.1)
z o <p 2irr r

Adding the pipe fields, we find

J (Kr)
.00 . O

dq A(q) e"jqZ
 J ,^, , (2.2)

—oo
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f
J
o
( K r )

-3)

Here k = w/c, the suppressed time dependence is exp(jwt), Z = 120K ohms, and

/2 2
1 is the driving current. We have defined K = vk - q and take the contour

in the q plane below the poles on the negative real axis and above the poles

on the positive real axis so that we have only outgoing waves for the pipe

fields as z -» ±oo. Defining E (a,z) s f(z), we have

f(z) = I"" dq A(q) e"JqZ , A(q) = — |dz f(z) e j q Z , (2.4)
J-» 2ir Jo

where f(z) vanishes for z < 0, z > g.

The fields in the annular cavity region for r ̂  a are expanded into an

orthonormal set of cavity modes which satisfy metallic boundary conditions

on the outer wall of the cavity as well as at r = a. Matching the magnetic

field in the pipe and cavity regions leads to

T dz' F(z') IK Cz' - z) + KcCz,z')l = j e
 jkz , (2.5)

where the pipe and cavity kernels are

^ ( z ) h ^ z )

K (u) = f dq e' j q U J(q) . K (z, z') = 4ir2 £ ; ; . (2.6)
p J - i k 2 - 4

Here h.(z) is the normalized magnetic field in mode I at r = a
?

f(z) = F(z) ZoIQ/ka , and J(q) is defined in Eq. (2.7). The

is over all azimuthally symmetric modes in the annular cavity.

We

identity

f(z) = F(z) ZoIQ/ka , and J(q) is defined in Eq. (2.7). The sum in Eq. (2.6)

izimi

We can obtain a more explicit form for K (u) in Eq. (2.6) by using the

Jo(Ka)

= " 2
o s=l q a - b

? 2 ? 2 ?

where j g are the zeroes of JQ(x). and where b' = k a" - j = -fi . For posi-
tive u, the contour in Eq. (2.6) can be closed in the lower half plane, en-
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closing the poles at qa = b and qa = -j/3 . For negative u, the contour
S 5

encloses the poles at qa = -b and qa = j/3 . The result for K (u) is then

-jbsju|/a
2nj a e

s=l

where b -> -j|3 when j > ka.
s s s

The longitudinal impedance of the cavity can be written as

Z(k)

~Z

1 r ikz 2 n A ( k ) l f* ikz
= — dz eJKZ E (0,z) = — - Tdz F(z) eJ!cz . (2.9)

'o'o J-co " "o'o

The solution of Eq. (2.5} for F(z') can then be used to obtain the impedance

by means of Eq. (2.9).

III. ANALYSIS FOR A COAXIAL WIRE

We now start with a TEM mode in the beam pipe including a coaxial wire of

radius r , described by

where ~ stands for the coaxial wire case and where we have normalized to make

Eq. (3.1) identical to Eq. (2.1). Adding the pipe fields, we find

Fo«D
(3-2)

.v f»
 F l C K r )

J *i

where the linear combinations

F (x) = Y (x) - ii J (x) . F.(x) = Y.(x) - n J Ax) , (3.4)
o o o i l 1

wilh n - Y (Kr )/J (Kr ), are chosen to satisfy the boundary condition on the
o o o o

surface of the wire. The contour in the q plane is as before in order that

we only have outgoing waves for the pipe fields.
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The analysis continues as in Section II. The only difference is that

J(q) in Eq. (2.7) is now

Yj(Ka) - |iJ

Yo(Ka) -
(3.5)

The function J(q) is analytic in q or K, except for a second order pole at

K=0 (first order poles at q=±k), and first order poles at the zeros of the

denominator of Eq. (3.5). We can then write J(q) as a sum over these poles

by finding the appropriate residues, obtaining finally

J(q) = - 2
s=0 q a - b

»s/y *
(3.6)

where b 2 = k2a2 - i2 = - 02, and where
s s s

Jo(is>

ao = 2 ln(a/r
(3.7)

Here i is the value of Ka at the zeroes of F (Ka), with i * 0. The pipe
s o o

kernel is therefore

2Kj

T
s -Jb |u|/a

S (3.8)
s=0 b

The expression for the magnetic field in the cavity region is identical

to that for the case of a beam on axis, since the boundary conditions are not

affected by the presence of the wire. The integral equation for the axial

electric field at the beam pipe is therefore

J dz' F(z')fKp(|z'-z|) + Kc(z,z')| = j e"
J k z , (3.9)

with K being given by Eq. (3.8) and K by Eq. (2.6).

In order to obtain the transmission and reflection coefficients, it is

simplest ô examine Eq. (3.3) for large positive and negative z. The TEM
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(coaxial) modes correspond to the poles at q = ±k. Specifically one obtains

Z I 2* a A(±k) e + j k z

° ° °

where the ± is for the pipe region with z < 0. Using Eq. (2.4), we obtain

for the reflection and transmission coefficients

2ir°o & 2nao -g
1 - T(k) = r | d z F(z) e J k Z . R(k) = r | d z F(z) e~ J k z , (3.11)

ka^ Jo ka^ Jo

where we have again used f (z) » F(z) Z I /ka .
o o

Comparison of Eq. (3.11) with Eq. (2.9) shows why the impedance corres-

ponds more closely to the transmission coefficient rather than the reflection

coefficient, particularly at frequencies for which kg 2 1. In fact the cor-

respondence is

Z(k)
< 3 1 2 )

o o

IV. COMPARISON OF !-T(k) AND 2na Z(k)/Z

o o

The difference between the coupling impedance and 1 - T(k) for the pulse on

the wire is totally contained in the modified pipe kernel in Eq. (3.8).

Specifically we have an additional term proportional to [to(a/r )] , a shift

of the zeroes from j to i , and the modified coefficients a . For
s s s

r /a « 1, i t i s easy to show that
l- ~ J= + n/2K . s * 1 , L » «n(2a/r i ) - y , (4.1)

S S S 5 O S
- 1 2w h e r e y = . 5 7 7 i s E u l e r ' s c o n s t a n t . A l s o a s i - 7 r / 2 j L f o r s 2 1 . T h u s
s s s

all changes are proportional to [£n(a/r )] or smaller, suggesting that

there may be differences of order 207., even for r /a as small as .01.
o

The result for a small obstacle of cross sectional area A may be taken

directly from earlier work. Specifically we can write

-jbsg/a
2nao r j a s e

= 2 n k a

r j

L k A s=0 b
s
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We therefore expect that the primary difference for a small obstacle will be

a shift in the frequency at which the singular behavior occurs from ka = j

to i . This is confirmed in Figs, la and lb where we plot the real and
s -1

imaginary parts of Y(k) and 2ira [1 - T(k)] /Z for a pill box of length
g = .05a and width b-a = .la for r /a - .01. The corresponding results for
r /a = .1 are shown in Figs. 2a and 2b. The numerical results are obtained
o

with programs which expand the fields in the pipe region and the cavity plus

pipe region into traveling axial waves. The figures clearly show that the

details of the two results differ, but that the average over the sawtooth

behavior is essentially unmodified.

The result at high frequency is similarly easy to predict. In earlier

work, we showed that the average behavior of the impedance at high frequency

is obtained by converting the sum over s in the pipe kernel to an integral
2 1/2

over s, and that the main contributions come from s of order (ka /g)

Since the spacing of the zeroes is essentially unmodified, we expect no sig-

nificant difference in the average behavior at high frequency. This is con-

firmed in Figs. 3a and 3b for the real and imaginary parts of Z(k) and

Z [1 - T(k)]/2na for g/a = n/4, b/a =1.5. r /a = .1. What is remarkable
O O 0

is that the complicated oscillatory behavior is duplicated as well.

V. SUMMARY

We have derived the integral equation for the transmission coefficient of the

coaxial mode for a pulse along a wire on the axis of a beam pipe and cavity.

The only difference between this equation and the one for the longitudinal

coupling impedance is in the pipe kernel and is of order [tn{a/r )]~ or

less. Specific predictions are made for the comparison between Z(k)/Z and

[1 - T(k)]/2na for both a small obstacle, and for a larger obstacle at high

frequency, and these are confirmed by numerical calculations. Our conclusion

is that measurement of Z [1 - T(k)]/2iroc
o i

actual longitudinal coupling impedance.

is that measurement of Z [1 - T(k)]/2iroc corresponds remarkably well to the
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BEAM-INDUCED ENERGY SPREADS AT BEAM-PIPE TRANSITIONS*

K. C. D. Chan
Los Alamos National Laboratory, Los Alamos, NM 87545

Introduction

Wakefields are induced when a beam bunch traverses a transition along the beam
pipo. A transition can be a change of beam-pipe cross section either in shape or in size.
These wakefields will, in turn, modify the kinetic energy of the beam bunch resulting in
an energy spread in the beam. This paper will describe a simple picture for understanding
these wakefields and the applications of this understanding to the design of beam-pipe
transitions with minimized energy spread. Only longitudinal wakefields are considered in
this paper.

A Simple Physical Picture

A simple picture based on energy conservation can be used to describe the physics at
a beam-pipe transition. Figure 1 shows a bunch of electrons passing through a transition.
This is a step-down transition where a circular beam pipe reduces its radius. The figure
shows a time sequence of pictures of the electric field lines. The first and the last of these
pictures represent two states when the electric field lines are stxaight. At these states,
the static electromagnetic field energy (referred to as static energy hereafter) of the beam
bunch is in equilibrium. The difference of the static energies between these two equilibrium
states depends only on the two beam-pipe radii and is given by the following formula:

where
b is the radius of the larger beam pipe
a is the radius of the smaller beam pipe

crrms is the rms half-width of the beam bunch
q is the charge of the beam bunch.

Static energy is lost during the transition. By conservation of energ}', this amount
of lost static energy is shared between the energy of a backward-going scattered wave
and the kinetic energy gain of the bunch. One can put more of the static energy into
the kinetic energy gain by using a tapered transition to decrease the amount of backward

Work supported by Los Alamos National Laboratory Institutional Supporting Research, under the
auspices of the United States Department of Energy.
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Fig. 1. A picture sequence showing the electric field lines when a bunch passes
a step-down transition. The density of the field lines represents the electric field
strength.

wave generated. Figure 2 shows the wake functions of a beam bunch traversing a tapered
transition. The wake function is proportional to the kinetic energy gain of the beam bunch.

The curves show, as expected, an increase of the kinetic energy for the decreasing taper
angle.

Figure 3 shows a similar picture sequence for a step-up transition. Both the increase
of the static energy and the energy of the forward-going scattered wave have to come from
a loss in the kinetic energy of the beam bunch. Figure 4 shows the wake functions for
a tapered step-up transition with the wake functions becoming more negative with the
increasing taper angle because more intense scattered waves are generated.

The simple picture described in this section shows that the static energy and the
kinetic energy of the beam bunch are re- distributed at a beam-pipe transition. Changes
in kinetic energy of a beam bunch resulting from wakefields can only happen by an energy
exchange with the static energy and by an energy transfer to the scattered waves. A more
quantitative account can be found in Ref. 1.
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Fig. 2. Wake function of step-down transitions of different taper angles. Negative
bunch coordinates correspond to the front of the bunch.

Fig. 3. A picture sequence showing the electric
field lines when a bunch passes a step-up tran-
sition. The density of the field lines represents
the electric field strength.
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Fig. 4. Wake function of step-up transitions of different taper angles. Negative
bunch coordinates correspond to the front of the bunch.

Applications

At various times it is necessary to design a beam pipe transition. The knowledge
learned from the previous section can be applied in designing such a transition with reduced
wakefields. One 2D and one 3D example are described here.

The 2D example is a design of a step-down transition as shown in Fig. 5. The larger
beam pipe is extended over the smaller beam pipe. The extra static energy in the larger
beam pipe, which is the source of beam energy change, is diverted into the coaxial portion
of the transition. Without the extra static energy, there is no wakefield-induced energy
spread. The wake function for this design is shown in Fig. 2 (wake function assigned taper
angle of 1SO°).

The 3D example is a design of a transition from a circular to an elliptic beam pipe.
In this case, the two causes of kinetic energy changes of a beam bunch are respectively
minimized. First, scattered waves are minimized by tapering the transition. A slow (adi-
abatic) transition eliminates practically all scattered waves. Second, an exchange between
the kinetic energy and static energy is minimized by choosing the proper cross section at
the tapered section such that the static energy remains constant along the tapered tran-
sition. To 'match' the static energy, one transverse dimension is increased while the other
is decreased, giving an ellipse with semiaxes of a and 6. The pairs of a and b used along
the taper are pairs that give the same static energy as the circular pipe.

A transition matching a circular beam pipe (radius 1.2 cm) to an elliptical beam pipe
hcis been so designed. A 30-cm taper section of elliptical cross section is used. The major
scmiaxis a of the ellipse is increased gradually from 1.2 to 2.4 cm while the semi minor axis
b is decreased from 1.2 to 1.0 cm. Figure 6 shows a comparison of wakefield effects with
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and without this 'matched tapered section' as calculated using T3 (Ref. 2). By minimizing
the two causes of kinetic energy changes, the wake function is reduced by over a factor of
10.

Fig. 5. A picture sequence showing the elec-
tric field lines when a bunch passes a step-
down transition designed with minimized en-
ergy spread. The density of the field lines rep-
resents the electric field strength.
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Fig. G. Wake functions for a beam bunch traversing a transition between a beam
pipe of circular and elliptical cross section, showing the reduction of the wake func-
tion by using a matched tapered transition.

Conclusion

Energy spread induced by wakefield effects at a beam-pipe transition can be under-
stood and reduced by a simple physical picture based on energy considerations.
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1 Wake Functions
A test charge at (r,8,z) trailing a point source at (at00,zo) experiences a
wake force. This wake force can have both a longitudinal component and a
transverse one. From Refs. [1] and [2] , the general form of the wake force
components are given as:

F.(s) = - £ eImW^(s)rmcosm(0 - 0o) , (1)
m-0

£) -Bo) - hinm{0-6o)} +F°{s) , (2)

where e is the charge of the test particle, s = zo — z is the longitudinal
distance the test particle is lagging behind. The multipole coefficients of
the point source are Im = qam, where q is the charge of the source. Here,
the wake force components have been integrated across the structure of the
vacuum chamber; i.e., Fz(s) and F±(s) have dimension [force*length]. The
function Wm(s) is called the transverse wake function or wake potential in the
m-multipole and W'm is the corresponding longitudinal wake function. The
axis of the cylindrical coordinate is chosen as the path of be particle beam,
along which coupling impedances are to be evaluated. With respect to this
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axis the structure being studied may not have cylindrical symmetry. Under
this situation, strictly speaking Eqs. (1) and (2) are not valid. However, we
expect Eqs. (1) and (2) to hold when the oifsets r and a of the test particle
and source particle are sufficiently small, and this is actually what we need
in the computation of impedances. For structures with no axial symmetry,
the m = 0 component represented by F±(s) in Eq. (2) is in general nonzero.

In the case of cylindrical symmetry, TBCI computes each multipole m
of the wake functions separately by setting r = a = pipe radius to elimi-
nate numerical noise. The transverse wake potential W^s) is obtained by
integrating W^[s).

The 3-D MAFIA-T3 code [3], without any assumption of cylindrical sym-
metry, computes the total wake force separately for both the transverse and
longitudinal components. It is dear from Eq. (1) that the lowest harmonic
of the longitudinal wake function, W0(s), can be computed without offsetting
the beam. For the transverse wake function, however, one must offset the
beam by a. In accordance with TBCI, the transverse forces are computed at
r = a and 9 = 90. The form of Eqs (1) and (2) become:

F.(s) = ~ £ eqWMa*" , (3)

F±(*) = £ egM'm^W2"-1 + F°(s) . (4)

The dipole transverse wake is therefore given by:

provided that the higher multipoles do not contribute appreciably when a
small a is chosen.

Since TBCI is so much different from MAFIA-T3, a comparison has to be
made. For this purpose we select a cylindrically symmetrical smooth pillbox
cavity. Results from the two codes for both the monopole and dipole of the
longitudinal wake potentials and the dipole component of the transverse wake
potential are compared. Similar calculations are made for an asymmetrical
cavity using MAFIA-T3 only.
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Figure 1: Problem geometry used in TBCI and MAFIA

2 The Symmetric Pillbox Cavity
The problem geometry is shown in Fig. 1. It consists of a cylindrical cavity
of radius 5 cm and a length equal to 5 cm. The beam pipe is of radius 2 cm
extruding 5 cm at each side. This geometry is modeled using both MAFIA
and TBCI. In both cases, the source bunch is a gaussian truncated at ±5a,
where c — 5 cm is the standard deviation.

2.1 Longitudinal Wakes
The longitudinal wake as obtained by MAFIA T3, for three different mesh
sizes and offsets, are given in Fig. 2. This graph shows little dependence of the
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Figure 2: T3 longitudinal wake potentials for different mesh sizes and offset

potential on the offset implying that the dominant term in the longitudinal
wake is the monopole term, not sensitive to the beam displacement. Also
a decrease in the mesh size has little effect on both the peak values and
frequency of oscillations. Fig. 3 is a pure longitudinal monopole obtained
from MAFIA with a - 0 for two different mesh sizes. This plot should
be compared with the longitudinal monopole wake potential as obtained by
TBCI and shown in Fig. 4. Here the peaks for T3 vary from -0.644 to 0.980
(xlO11) v/c, and the peaks for TBCI vary from -0.619 to 0.922 (xlOu)
v/c. The two results are in good agreement. The solid curve in Fig. 3 is the
closest to the TBCI result both in peaks and frequency of oscillations. This
curve corresponds to a smaller mesh size. A further decrease in mesh size in
T3 had no effect on these results.

The dipole components for T3 and TBCI are shown in Figs. 5 and 6
respectively. The T3 dipole component is obtained by subtracting the longi-
tudinal wake at no offset from the longitudinal wake with a beam offset. Such
a subtraction can lead to some noise error as observed in the tail of Fig. 5.
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From Eq. (3) the longitudinal dipole wake potential is obtained from:

W'(s) * F*(s'a)-F*(s>°)
1 eqa2 (6)

The subtraction noise error is of the order a2. For this reason the result of the
subtraction error is worse for o = 1/3 cm. Again the amplitudes obtained
using TBCI, from -9.535 to 9.790 (xlO13«/(cm2)), compare very closely to
the solid curve results obtained from MAFIA. In calculating the dipole com-
ponent of the longitudinal wake we have assumed that the contribution from
higher order terms is negligible, something that was verified in Fig. 2.

The dipole component of the longitudinal wake can be calculated in a
more straightforward manner. This is possible by considering the solution of
the longitudinal wake at the beam location with half the cavity.
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Figure 6: TBCI longitudinal dipole wake potential

2.2 Transverse Wakes
Since T3 does not compute each term separately, we need to first verify
whether the dominant term in the summation of Eq. (2) is the dipole term.
Figure 7 shows the transverse wake for different mesh sizes and offsets as
obtained by MAFIA. The transverse wake potential is computed from the
transverse wake force by dividing by a. The W\(z) peak decreases signifi-
cantly as the mesh size and the offset decrease. However, a further decrease
in mesh size has little effect on the result implying the presence of a dom-
inant dipole term. The TBCI result is shown in Fig. 8. Both TBCI and
MAFIA predicts almost the same result, 0.744 and 0.786 respectively. The
oscillations in the tail of the wake disappear at one point in T3 raising some
doubts on their validity.

3 The Asymmetric Cavity
This is a reproduction of the example given in the MAFIA manual [4]. The
problem geometry is shown in Fig. 9. Because of the lack of cylindrical
symmetry, this model can only be run with T3.
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3.1 Longitudinal Wakes
Figure 10 shows the longitudinal potential with and without beam displace-
ment. One sees negligible difference in two cases. This is expected because
the contribution is mainly the monopole contribution. The peak in amplitude
corresponds to what is given in the MAFIA manual [4j.

The longitudinal dipole wake is given in Fig. 11 for two mesh sizes and
offsets. To see why the solid curve is not smooth we refer to the plot shown in
Fig. 7. Again the result of subtraction with a = 1/3 cm leads to more noise
error than the one with c = 1 cm, for the reason mentioned in section 2.1.

3.2 Transverse Wakes
The transverse wake, mainly dipole, is illustrated in Fig. 12 for two mesh
sizes and offsets. Similar to previous results, the transverse wake decreases
and converges to some value as the mesh size and offset decrease.

The wakes for this asymmetric cavity are in fact not much different from
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those of the symmetric pillbox. For this reason, in many cases it is quite good
to approximate the asymmetric discontinuity by a symmetric continuity and
use TBCI instead.

4 Summary and Conclusion

This is our first comparison of MAFIA T3 results against TBCI. Our results
show a very good agreement both in peak amplitudes of the wake potential
and the general shape of the wake functions. The oscillations in the tail of
the functions obtained from T3 are not reliable. The spectrum of the wake,
necessary for impedance calculations, depends very much on how sufficiently
long the wake is to avoid truncation errors. This type of impedance calcula-
tions may not be very accurate in time domain and a better solution would
be a 3-D eigen-modes solver like MAFIA-E31. We also conclude from these
results that, although a small offset will reduce the contribution of higher
multipoles, this will increase the computation error in subtractions and divi-
sions. One should therefore be aware of the trade offs in selecting the amount
of offset.

The calculations in this paper were done using the TBCI and MAFIA
codes available at Fermi.
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Abstract

Measurements of the bunch length as function of current with a pick-up button yield
data which seem to violate Robinson's sum rule for the damping partition numbers,
even when the corrections for cable length and risetime of the sampling scope are
applied. Measuring the bunch length as function of RF voltage gives an estimate of
the total correction, including the response of the pick-up* and the feedthroughs.

Simultaneous measurements of the bunch length and the horizontal tmittance as
functions of the RF frequency yield the variations of the damping partition numbers
and hence the damping aperture. This can be used to estimate the RF frequency for
which the orbit passes through the centers of the quadrupoles, and hence permits an
absolute energy calibration of LEP.

The threshold current for turbulent bunch lengthening yields an effective impedance
of only 20 mOhms for the short bunches below threshold. Assuming a broad-band
resonator with a resonant frequency of 2 GHz, this corresponds to a lew frequency
inductance Z/n of about 1/4 Ohm. First measurements of the shift of the longitudinal
quadrupole mode with current agree quite well with these values.

The transverse impedance has been obtained from the tune shift with current.
Comparing horizontal and vertical shifts, the contributions of RF cavities and bellows
can be separated. Although the threshold for transverse mode-coupling could not been
measured yet, it is still expected to be near 3 mA in 4 (lengthened) bunches.

1 Introduction
Preliminary measurements of the impedance of LEP have been reported in Commissioning
Notes 6 [1] and 21 [2]. The conversion of the measured quantities to both longitudinal or
transverse impedances relies on the knowledge of the bunch length, which therefore has
to be measured first. Unfortunately, at the start-up of LEP the instrumentation was not
complete: Bunch length measurements are foreseen to be done with a variety of diagnostic
tools, such as fast diodes, auto-correlation techniques, and & streak camera. In the absence
of these, a sampling oscilloscope had been connected to the pick-up buttons by a short
cable, and we had to discover how to interpret the signals from this temporary set-up.
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2 Bunch Length Measurement
2.1 Bunch Length Versus Current
The "raw data" for the bunch length at the injection energy of 20 GeV are shown in Fig.l.
They were obtained with the signal from a pick-up button connected by a short cable to
a sampling scope in the tunnel. The actual signal is shown in Fig.2, and can be seen
to have an oscillation of about 6 GHz behind the bunch. Additional slower oscillations
can be observed on a longer time scale. Since the exact transfer function of the pickups
in the region of many GHz is not known we had to approximate its response. Using an
equivalent Gaussian (with standard deviation acorr) has the advantage that the correction
can be applied simply by quadratic addition

2 2 5
ffmtat = °ti>ue + ^eorr (1)

Below the turbulent threshold, the measured bunch length for an RF voltage of VRF =
84 MV was found to be approximately constant with a standard deviation of <rr = 32 ps,
much larger than the expected zero current value of <rra = 18 ps for this roltage. Without
correction to the bunch length, this would correspond to a very small energy damping
partition number JE = 2 (<rro/<rr)

2 of only 0.6 instead of the natural value of two.
Previously, the horizontal emittance of LEP at injection energy had been measured with

a wire scanner, and found to be almost twice the expected value[3]. The corresponding
damping partition number Jx was also only about 0.6, again smaller than the natural value
of one. In a flat machine like LEP (for which Jv = 1), Robinson's sum rule [4] for the
damping partition numbers requires J& + Js = 3, while this sum would be only 1.2 with
the value* found above. And we consider this rule inviolable!

Corrections of the raw data due to the cable length and the finite rise-time of the
oscilloscope were estimated to be only o ^ « 14pj[5], which would still lead to a strong
violation of the sum rule. If we assume that the measurements of the horizontal emittance
can be trusted, the corrections to the bunch length must be much larger. A value of <TCOTT

— 27 ps would be required to bring the low-current bunch length to the slightly shortened
value of 16 ps, where the energy damping partition number becomes 2.4 and thus the
correct sum of partition numbers is obtained.

The increased correction could be explained by the large physical size of the pick-up
buttons (32 mm diameter) compared to the bunch lengths measured. However, rather
than relying on this indirect reasoning, we attempted to measure the correction in LEP
itself as described below.

2.2 Bunch Length versus RF Voltage
In LEP the bunches are short compared to the RF period, and the machine is operated at
a synchronous phase angle near TC at injection energy. Thus the usual linear approximation
to the RF voltage is excellent. In this approximation, the product of bunch length and
synchrotron tune is proportional to the energy spread <r,Q, = aRS^. For bunch currents
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below the "turbulent threshold" (/& < Ithr) the energy spread does not change with current.
Assuming quadratic correction of the bunch length, we get

We can make the RHS zero by extrapolating the measured values to / , —> oo. In Fig.3 we
see that the values of the squared bunch length (full width at half maximum) fall nicely
on a straight line, which intercepts the vertical axis near 5000 ps2, i.e. (FWHM)corr =
70.7pj. Assuming a Gaussian distribution, this value must be divided by 2.35 to obtain
the standard deviation <rCOTT — 30ps.

This 'measured' correction is somewhat larger than the 27 ps estimated earlier. The
difference may be due to the Gaussian approximation used for the correction. Then <reorr

may not be independent of the true bunch length: e.g. for very short bunches, resonant
oscillations appear to shorten the signal. The exact determination of the bunch length thus
has to be postponed until instruments with a better resolution (e.g. the streak camera)
become available.

2.3 Variation of Bunch Length with RF frequency
A change of the RF frequency shifts the particle orbit, which alters the magnetic field
seen by the particles in the quadrupoles (and higher multipoles), and hence the amount of
synchrotron radiation emitted. This fact is usually expressed as a change of the "damping
partition numbers" JE and Jx. In particular, J* will become zero at some frequency below
the nominal one • where the beam passes through the center of the lenses - and JE vanishes
at a frequency above it. The machine is stable over the (frequency) range where both Jx

and JE are positive, which is usually called the "damping aperture".
Fig. 4 shows the damping partition numbers at injection energy as function of the

last 3 digits of the RF frequency (add 352 254 000 Hz). They were computed from the
measured (and corrected) values of the bunch length and emittance with the expressions

The theoretical values are <rro — 18pj for VRP = 84ATV, and Exe — 6.7nm. The damping
aperture is thus found to be about 560 Hz, in good agreement with computations. However,
a number of inconsistencies appear in this plot:

i) for the previously determined bunch length correction of 30 ps, the points for JE lie
on a straight line, but this line exceeds the expected maximum of 3 (and even 4): This is
in contradiction to Robinson's sum rule.

ii) the correction can be adjusted so that JE remains below 3 by choosing <reoTT = 21 ps.
While this is quite acceptable in itself, it makes the line strongly curved - in contradiction
to analytical estimates that its slope should not change by more than about 1 %.

iii) at injection energy, the horizontal damping partition number appear to be too small
by a factor of about 2, and Jx reaches only about 1.6 at the upper limit of the damping
aperture[3].
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The "central frequency", i.e. where the orbits pass through the centers of the quadrupoles
(as well as sextupoles and higher multipoles), can be determined by intersecting the curve
for the damping partition number JE with the nominal value. This should be 2 in a sepa-
rate function machine, but only about 1.95 in LEP due to a small contribution of combined
function quadrupoles caused by a thin layer of magnetic nickel on the vacuum chamber in
the dipoles, which was needed for bonding the lead shielding to the aluminum chambers.
We see from Fig.4 that this value is reached at about 140 Hz if we use the straight line
connecting JE = 3 on the lower edge of the damping aperture with JE = 0 at the upper
one, in quite good agreement with other measurements of this value (about 160 Hz) [6].

A possible explanation of the difficulties with the damping partition number Jt could
be a blow-up of the horizontal beam size by synchro-betatron resonances. However, one
cannot exclude measurement errors with the wire scanner as well as with the synchrotron
light monitor. Recent measurement with a beam scraper at 45 GeV gave a much smaller
emittance than the one obtained with synchrotron light, which had agreed reasonably well
with the wire scanner in the past [7].

The difficulties with the energy damping partition number could be resolved if the
natural bunch length was shorter than calculated, e.g. due to bunch shortening at low
currents. In some models of bunch lengthening this is expected to occur for short bunches
seeing a capacitive impedance[8], but no clear observation of shortening has been made
in LEP. A more likely explanation is the inaccuracy of the measurement with a button
pickup which is much larger than the bunch length. This problem should .be solved when
the streak camera will become operational in the near future.

3 Longitudinal Impedance

3.1 Turbulent Threshold
Calculation of the longitudinal impedance from the measured threshold current and bunch
length can be obtained using the stability criterion for bunched beams[l]

Z_ FhVfg cos <}>.

where the form factor F = 1 for a capacitive impedance (expected for short bunches),
and about 1.4 for resistive impedances. Substituting the parameters of LEP yields the
extremely low impedance of about 22m.il (for F= l ) . However, one has to specify that this
is the "effective impedance" acting on a very short bunch, and not the usually quoted low
frequency limit Z/n. Assuming a resonator impedance with resonant frequency uv, the
effective impedance of short bunches a < 1/w, is strongly reduced due to the overlap of
the bunch spectrum with both the positive low-frequency inductance, and the negative
high-frequency capacitance. The result is given approximately by

= 2
tif

z
n

(5)
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for short bunches (a;P<Tt < 1), whereas for longer ones (w,<rt > 1)

Z
(6)

applies.
In LEP, the major part of the longitudinal impedance is expected to come from the RF

cavities, for which a broad-band resonator frequency of about 2 GHz has been estimated
[9]. For a bunch length <xr = IQpa we find ur<rt ~ 0.21, and we have to use the short
bunch expression to get the correction factor for the effective impedance of 2(w,<r,)2 ~ .09.
Therefore, the low-frequency limit of the impedance then becomes

= 0.25fi (7)

Since this result depends both on the form factor and on the assumed resonator frequency
it could be larger if F > 1 or u>, smaller than the resonant frequency assumed.

3.2 Longitudinal Quadrupole Mode
A few measurements of the shift of the longitudinal quadrupole mode could be made so
far. For currents above about 80 pA, the second (and even higher) modes were visible
without external excitation on a spectrum analyzer. The shift of the difference frequency
A/,2 = f,2 — 2/«o was found to be about 450 Hz/mA; see Fig. 5. Assuming that the
quadrupole shift is half that of incoherent synchrotron frequency one gets an approximate
expression for the longitudinal impedance

With 820 Hz for the synchrotron frequency at the RF voltage of 55 MV, the effective
longitudinal impedance is found to be 40mO, in quite good agreement with the value
found from bunch lengthening. Since these measurements consist so far only of 3 points,
they clearly have to be repeated before they can be trusted.

For azimuthally uniform impedances, such as a circular cylindric vacuum chamber wall,
there exists a relation between the lowest longitudinal (m = 0) and the lowest transverse
(m = 1) mode

ZT = Vn (9)

where b is the chamber radius, and n = u>/u>0 the mode-number. For localized impedances,
such as RF cavities, this relation is only approximate. This is usually taken account of by
replacing the actual radius by an "effective" one b^g. The chamber half-height is used in
place of the radius for the vertical impedance of elliptical vacuum chambers.

In LEP, the chamber radius in the RF cavities is 50 mm, while the chamber half-height
in the bellows is only about 35 mm. Using a transverse impedance of 2.3 Mil/m found
below, we would need an effective radius of about 35 mm to get a longitudinal impedance
in agreement with other measurements.
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3.3 Higher Order Mode Loss
Measurements of the phase shift of a strong bunch relative to RF or to a small witness
bunch allow determination of the higher order mode loss and hence of the longitudinal
impedance. Unfortunately, these measurements need a rather high accuracy in the phase
measurement, and have not yielded consistent results so far.

3.4 BBI Results
We have computed the bunch length as function of current with the program BBI, using
the Hofmann-Maidment model[8] which is one of its options. The results for an impedance
of 0.25 Ohm and an energy spread of 3.6 10~4 corresponding to the damping partition
number JE — 2.4 are shown in Fig.l, together with the measured values. The dependence
of the bunch length on current for various values of the energy spread or the RF voltage
is shown in Figs. 6 and 7. The real and imaginary part of the frequency shift of the
lowest synchrotron sidebands have been computed with BBI for a transverse impedance
of 2 MSl/m with Q = 1 and a resonant frequency of 2.05 GHz. They are plotted in Fig.8,
showing a threshold for the transverse mode-coupling instability near 0.75 fiA per bunch,
or 3 mA per beam of 4 bunches.

4 Transverse Impedance
The transverse impedance can be obtained from measurements of the betatron tune shifts
with current. With a single bunch at injection energy a vertical tune shift of -0.13/mA
and about -.07/mA in the horizontal plane{l] were found (see Figs.9 and 10).

The tune shift caused by N impedances can be written

FTR ,fJ

where {/?)< is the average beta function at the i-th transverse impedance Zr<- The effective
transverse impedance for a Gaussian in a resonator can be expressed as

Z'T
ff = ZrFiur't) (11)

where the form factor can be approximated by F(x) as 2x3 for x < 1 (bunches short
compared to the resonant wavelength), and by F[x) = 1 for x > 1 (long bunches or high
resonant frequency).

Since the RF cavities have circular beam holes, their contributions to the horizontal
and the vertical shift must be equal, i.e. somewhat less than the smaller of the two shifts.
Since the resonant frequency of the RF cavities is estimated at about 2 GHz, the "short
bunch" expression applies when the bunches have only <rr = ISps. Thus a strong reduction
of the effective impedance by a factor of almost 10 will occur. The average beta function
in the RF cavity region has been reduced to less than 40 m in the design of LEP [10] in
order to maximize the threshold of the transverse mode-coupling instability.
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Much effort has been spent on shielding the vacuum chamber bellows, of which there
are almost 3000 in LEP. They have a chamber height slightly above half their width. Since
the transverse impedance varies with the second to third power of the radius, we expect
their effect on the vertical tune shift to be about 5 times larger than on the horizontal
one. The broad band resonant frequency of the bellows has been estimated to be larger
than 8 GHz[9], and hence their effective impedance will be equal to the actual one even
for the rather short 18 ps bunches. Furthermore, the average beta function at the bellows
is about 75 m in both planes, almost twice the value at the RF cavities.

Substituting these conditions into the above expressions, we find two equations with
two unknowns for the (vertical) transverse impedances of the RF cavities and the bellows,
which we expect to be the two main contributors in LEP:

AI

The measured frequency shifts per mA at LEP wereflj

= -0-070, ^f = -0.125, (13)

The factor in front of the brackets (Eqs.12) for LEP is approximately 5.684 10"* for a
bunch length of 18 ps at injection energy. Thus the solution of these equations yields

Z|?v « 2.23Mfl/m

(14)

In spite of the seemingly much smaller value for the bellows, their contribution to the
vertical tune shift for the short natural bunch length is just as large as that of the RF
cavities due to the different form factors. The total transverse loss factor is only slightly
higher than the original estimate of about 2 Mil/m, hence we expect that the threshold
for transverse mode-coupling instability will be near the originally estimated values of 3/4
mA/bunch, or 3 mA per beam, if the bunches are lengthened to a = 4 cm, e.g. with the
wigglers which are already installed in LEP (see Fig.8 for BBI results).

5 Conclusions
The bunch length in LEP can be measured only with limited accuracy since it is usually
well below the diameter of the button pickups used presently. The corrections which have
to be applied to the "raw data" are often larger than the measurements themselves. This
situation should improve when the streak camera will become operational.

The longitudinal impedance depends on the third power of the bunch length, and is
thus particularly sensitive to measurement errors. Nevertheless, we can obtain a reasonable
estimate of the broad band impedance by using the machine itself for calibration. We thus
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find the value of approximately 1/4 Ohm for the low frequency limit of Z/n, while the
effective impedance seen by a short bunch at injection energy is only about 20 mOhm.

In the transverse plane, the total impedance is found by separating the contributions of
the RF cavities and of the bellows. For the assumptions made, the transverse impedance
of the cavities appears to be slightly higher than computed, while the bellows impedance
comes out slightly lower. Nevertheless, the contribution of the bellows to the vertical tune-
shift is actually larger than that of the RF cavities for the short bunches at injection. The
total transverse impedance thus is only slightly larger than has been estimated during the
design. Thus the threshold for the transverse mode-coupling instability is still expected
near 3 mA per beam (4 bunches, lengthened to <r « 4cm).
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Figure 3: Variation of (squared FWHM) bunchlength with (in-
verse squared) synchrotron frequency: the upper curve shows "raw
data", the lower one corrected values.
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Figure 4: Variation of damping partition number Jg with RF frequency
at 20 GeV for two different corrections of raw data: upper line - 30 ps,
lower - 27 ps, solid - theoretical. For comparison we also show the
measured damping partition number Jx (dotted line).
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Measurements and Simulations of Collective Effects
in the CERN SPS

D. Brandt

Abstract

Starting from experimental observations of both longitudinal and
transverse instabilities of lepton bunches in the SPS, one uses a
simulation program to fit an impedance model such as to best
reproduce the measured data. In a first step this model is compared
with measurements previously performed with protons and then it
is used in the code to simulate the dynamical behaviour of the
beam along the whole SPS cycle. As far as the behaviour of the
beam parameters and the predicted instability thresholds are
concerned, the simulations are in fair agreement with the
subsequent experimental observations and clearly demonstrate
that a broad band resonator is an adequate model for the
description of the SPS coupling impedance.

1. Introduction

The aim of this paper is to present an interesting comparison
between experimental and simulation results obtained for the CERN
SPS machine, when the latter is operated with leptons. Starting
from the experimental observation of instabilities, one uses a
simulation program in order to fit an impedance model such as to
best reproduce the measured data. This fitted broad band resonator
model is then compared with measurements of the SPS transverse
impedance previously obtained with protons. After having made
sure of the good agreement between these two sets of results, it is
possible to simulate the behaviour of the beam along the whole
cycle and check to what extent it should be possible to increase the
observed thresholds by modifying the injection conditions. The final
step evidently consists in comparing the predicted thresholds with
those measured in the machine under the same conditions.

2. Experimental observation of instabilities

When used as an injector for leptons, the SPS is an ideal tool
for the study of collective effects. As a matter of fact, it then allows
for injection both below and well above the thresholds for
instabilities.
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With these parameters, the best fit is obtained for:

(R /Q)T = 23 Mfi/m

Q = 1.0 (1)

fr = 1.35 GHz

As can be seen from Fig. 2, there is a fair agreement between the
simulation results and the measured data. In addition to this, it has
been recently suggested [2] that a better fit to the actual SPS
impedance could be a broad band resonator model with a quality
factor Q = 6.0. In this particular case, the measured data would then
be best reproduced with:

(R/Q>r = 17 MQ/m

Q = 6.0 (2)

fr = 1.35 GHz

For both cases, the simulations predict a threshold for transverse
instability lying around 10 1 0 part./bunch, which is therefore in
good agreement with the observed threshold.

3. Simulated tune shifts of the fundamental fm = 01 mode

Although the two impedance models defined by Eqs. (1) and
(2) yield the same instability threshold, they exhibit quite a
different behaviour when considering the detuning as a function of
the current. Indeed depending on the model considered, the
simulated coherent tune shift of the m = 0 mode (tune) at threshold
is

AQc = 1.5 Qs for
23 MQ/m and Q = 1.0

(3)
AQc = 0.7 Qs for 17 MQ/m and Q = 6.0

Actually, these results deserve some comments, especially
when considering that the measured tune shifts are very often used
for the determination of parameters related to collective effects
(e.g. the impedance).
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As a matter of fact, the tune shift simulated with the Q = 6.0
resonator could be misleading since it would correspond to the
behaviour expected for short bunches, and certainly net for the
long bunches we have in the machine.

Indeed, in the short bunch regime, the spectrum of the m = 0
mode extends in the GHz range, where the resistive component of
the coupling impedance is large, and it is therefore likely that the
modes m = 0 and m = -1 couple first and determine the threshold.
In such a case one would therefore expect:

(AQc)th^Qs (4)

On the contrary, for the long bunches in the SPS, the spectrum of
the m = 0 mode extends only up to 500 MHz, where the coupling
impedance is mainly inductive (produce a tune shift but a
negligible coupling). In this case, it is the modes m = -2 and m = -3
which mainly overlap with the resistive component of the coupling
impedance and therefore determine the threshold. In this case, at
threshold, one would expect:

(AQc)th>Qs (5)

Actually, this behaviour has been experimentally verified
both in the CERN EPA machine and in the DCI machine at Orsay.

Consequently, the apparent discrepancy between the
simulated tune shifts quoted in Eq (3) can be completely explained
by the inherent difference of the two impedance models. As can be
seen from Fig. 3, the inductive part of the Q = 6.0 model is only one
sixth of the shunt value so that one has to expect a reduced
detuning. Although this example might appear trivial, it is
essentially meant to be a warning against the ambiguities hidden in
the Q = 1.0 broad band resonator model usually considered, namely:

a) To describe correctly the longitudinal behaviour of the bunch
the relevant parameter is not Z/n, but much more the
resistive peak value.

b ) The threshold for transverse stability is not uniquely related
to the measured tune shift (inductive part) but is influenced
by the value of the resistive peak.
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4. Longitudinal vs. transverse instability signals

The energy spread of the bunches delivered from the CERN
CPS varied between 0.06 and 0.1%. This relatively small variation
has significant implications for the observation of the instabilities.
Remembering that the threshold for the longitudinal microwave
instability scales with the square of the energy spread, one
observes that for;

Ap/p = 6.10*4=* Nth = 0.4 1010 part./bunch
(6)

Ap/p = 1.10"3=> Nth = 1.2 1010 part./bunch

These analytical results are fully consistent with our observations
since they explain why, depending on the injection conditions, we
observe either a longitudinal or a transverse instability first.
Actually, it should be mentioned that this behaviour is also fairly
well reproduced by the simulation.

5, Measurement of the SPS impedance with protons

In the SPS, both the longitudinal and the transverse
impedances have been measured on several occasions in the past.
Unfortunately, due to the very different conditions for the
measurements (energy, bunch lengths, intensities,..) the results do
exhibit a rather large spread among each other, namely:

7.5 < Z/n (Q) < 20.0

and 13.0 < ZT (MQ/m) < 48.0 (7)

with a resonant frequency lying around 1.3 GHz. Because it was felt
that these results might have been influenced by very different
effects like space charge and nonlinearities, it was decided to repeat
these measurements with protons for two distinct energies. We
measured the tune shifts as a function of the intensity at both 26
GeV (Fig. 4) and 315 GeV (Fig. 5). With these two sets of results it is
possible to estimate the effective transverse impedance according
to:

The corresponding results for the two transverse planes are listed
in Table 2.
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E(GeV)

315

26

zjf (MQ/m)

26.8

33.2

z j (MQ/m)

- 16.9

- 9.9

Table 2
Transverse impedances from measured tune shifts with protons.

These results mainly call for two remarks:

a) They confirm that the horizontal and vertical impedances of
the SPS have opposite signs.

b) The results in the horizontal plane seem to indicate that at
26 GeV, there does indeed exist an additional detuning acting
on top of that from the impedance, e.g. detuning due to space
charge.

This last statement is not straightforward since it is usually
accepted that the direct space charge is a purely incoherent effect,
and should therefore not contribute to our measurement. Strictly
speaking, this argument only holds when the beam is kicked as a
rigid ensemble (e.g. for a purely rectangular distribution). In the
present situation, due to its distribution, the beam is not kicked
rigidly so that it is conceivable that the direct space charge effect
contributes to the tune shifts. Fortunately, space charge and
impedance effects do behave quite differently as a function of the
energy: the space charge varies with 1/y3, whereas the impedance
detuning is inversely proportional to the energy. Consequently, at
315 GeV, our measurements are free from any space charge
contribution and should therefore reflect the detuning due to the
impedance only. We shall therefore try to estimate this space
charge component and check whether it agrees with our
measurements at 26 GeV.

5.1 Direct space charge detuning

The evaluation of this contribution follows from a relation
derived in Ref. [2], namely:
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<A0V > „ _ 72 R s * x ( 9 )

sc E0/e Y Z ev

*™ . - j jf - •: - ^ j ^

accordingly < AQ**c> = < AQ^c> . ̂  (10)

The corresponding results are presented in Fig. 6. One
immediately observes that the space charge component alone is
larger than the total detuning measured. This illustrates clearly that
the space charge, if considered at all, should not be accounted
completely. However, to estimate its contribution, it is possible to
consider a superposition of the two effects and write:

= 1 AQV<impedance) | + A

|AQ.JOTI = I AQ
H(impedance)| - A

(11)

where the constant A has been introduced as scaling factor. It is
now possible to evaluate A and check the validity of the model with
the following procedure:

a) Assume the 315 GeV vertical impedance is correct and scale it
to 26 GeV.

b) Evaluate A from (11) in the vertical plane.

c) Insert A in the equation for the horizontal plane.

d) Calculate the corresponding horizontal impedance.

This yields:
Z^ = -14.2 MQ/m with A = 0.17 ( 1 2 )

which is about 15% lower than the value measured at 315 GeV.

Remembering that the impedance at 315 GeV should still be
slightly lowered for nonlinear effects (octupoles) which are known
to be non-negligible in the SPS, one therefore experimentally
obtains:

v
7 e 77 MO/m
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which has to be compared with the fit obtained from the
simulation, namely,

Z^ = 23 MS/m

These two results are felt to be in fair agreement.

6. Dynamical simulation along the cycle vs. experiments

Because of the good agreement obtained so far between
simulation and experiment, it was decided to simulate the
dynamical behaviour of the bunch along the SPS cycle, and estimate
what improvements could be expected, as far as the thresholds for
instabilities are concerned.

Although the nominal intensity of the LEP injection complex
corresponds in the SPS to 8 bunches of 1010 particles each, the CPS
is capable of producing single bunches of up to 5.1010 particles. This
allows one to measure instability thresholds over a wide range of
parameters at injection . By modifying the partition numbers and
the Rf voltage in the CPS, it is possible to inject into the SPS bunches
with different length and energy spread. The cases which have
been most often used are shown below:

Case 1 Case 2 Case 3

°E/E o.6 10-3 1.0 10-3 1.0 10-3 (13)

a s 16 cm 16 cm 22.5 cm

With <JE/E = 10"3 it is even possible, by making use of the low
frequency RF system of the CPS, to increase ©s up to 40 cm. The
transverse emittances at injection are a2/p = 7.10'8 rad.m in the
horizontal plane and 10~7 rad.m in the vertical plane. For the
purpose of our comparison, we concentrated our efforts on the
study of Case 3.

The important parameters of the SPS acceleration cycle are
displayed in Table 3, including the theoretical bunch length
equilibrium value (<Js)o.



174

t
(ms)

200

216

250

283

316

350

383

416

450

483

E
(GeV)

3.57

3.59

3.83

4.49

5.80

7.60

10.0

12.8

15.9

18.0

XE
(s)

4.24

4.17

3.44

2.13

0.99

0.44

0.19

0.092

0.048

0.033

(<Js)o
(cm)

1.48

1,44

1.46

1.55

1.74

2.04

2.59

3.22

3.73

4.30

SIMULATION
o"s
(cm)

22.5

19.5

18.6

17.1

15.0

12.3

9.9

8.1

6.9

5.0

transverse
threshold

(1010)

1.6

1.6

1.6

1.5

1.73

1.73

1.73

1.73

1.73

1.90

calculated
longitudinal
threshold

(10">)

1.73

1.85

1.70

1.53

1.79

2.00

2.18

2.14

1.95

1.8

Table 3 Main parameters during the SPS cycle.

As can be seen from Table 3, the damping times at injection
are so long, that leptons do in fact behave like protons at low
energy. The beam dimensions are essentially governed by the
acceleration process and it is only at higher energies that the
synchrotron radiation becomes dominant so that the beam size is
finally determined by the equilibrium between damping and
excitation by synchrotron radiation. As far as the thresholds are
concerned, one benefits from the increased dimensions along almost
the whole cycle, but this advantage disappears around 18 GeV. This
behaviour is well borne out by the simulation, where one observes
that the steady decrease of the bunch length tends to counteract
the natural tendency of the thresholds for collective instabilities to
increase with energy (see Table 3).
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For this set of simulations, the coupling impedance assumed
was:

( R / Q ) T = 12.5 Mfl/m

Z/n = 6.4 Q (14)

Q = 6.0 and fr = 1.35 GHz

One should note, that in this case the selected value of (R/Q) is
smaller than that quoted in (2).

The reason can be explained as follows:

When simulating above the threshold, the losses are faster
than any other effect. We therefore expect that only the impedance
of the machine matters. However, when simulating below this
threshold (as in the present case), other stabilizing effects not
included in the simulation (like octupoles) have to be accounted for
by reducing the shunt impedance.

The energy spread, the bunch length and the RF voltage as a
function of the cycle time are plotted in Fig. 7. When compared to
experimental observations, these simulation results do exhibit three
interesting features, namely:

1) When the bunch is injected above the threshold for
longitudinal instability, a fast increase of the energy spread occurs
(see Fig. 7). Actually, the same behaviour is also observed
experimentally, as can be seen from Fig. 8 which shows the
evolution of the energy spread measured along the cycle.

2) Simulation results and analytical estimations predict that the
thresholds for both longitudinal and transverse instabilities are
very close from each other all along the cycle, and almost constant
(see Table 3). Experimentally, one observes that: at higher energies,
when the bunch length decreases, these intense bunches may
become unstable. However, the consequences are very different
depending on which threshold is crossed first. If the transverse
instability is dominant, a large fraction of the beam is lost (Fig. 9a).
If the longitudinal microwave instability starts first, the result is an
increase of the bunch length, which pushes the transverse
threshold to higher values, and no loss occurs (Fig. 9b). In our SPS
experiments, 4 bunches were simultaneously accelerated. Only one
of them (the first one) was used to pilot the RF phase loop. As a
consequence, this bunch was probably injected and captured in a
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more efficient way than its followers. At any rate, it systematically
suffered from a microwave instability during the ramp, and was
transmitted without important losses (Fig. 9b). The other bunches,
which did not show any longitudinal instability suffered important
losses while high frequency signals could be detected on a vertical
monitor (Fig. 9a).

3) Under the conditions defined for this experiment, it was
possible to accelerate about 2.2 1010 particles up to 18 GeV in the
first bunch, provided the RF phase loop was active on this bunch.
Without this RF phase loop the bunch intensity was limited around
1.8 1010 particles. Remembering that the effect of the RF phase loop
is not part of the simulation, this last result fairly agrees with the
simulated thresholds given in Table 3.

7. Conclusions

Experimental observations of the transverse mode coupling
instability and the longitudinal microwave instability of lepton
bunches in the SPS were used in a simulation program to fit a broad
band resonator model as a description of the machine coupling
impedance. The simulation outcome is in fair agreement with
measurements performed previously with protons.

With this impedance model, it is then possible to simulate the
dynamical behaviour of the bunch along the whole SPS cycle and
thus try to predict the increased thresholds one could expect by
varying the injection conditions. Here again, the predicted
thresholds are in reasonable agreement with the experimental ones.
It therefore clearly demonstrates that a broad band resonator is an
adequate model for the representation of the SPS impedance. It is
felt that this agreement is related to the fact that one has to deal
with relatively long bunches and also that the SPS impedance is
composed of many different contributions which are spread out
over the whole machine. Another very interesting comparison
between simulation and experiments will become available very
soon with the experimental data collected in LEP. This next step will
basically differ from the present one in the sense that the bunches
are short and that the LEP impedance is known to be dominated by
both the RF cavities and the vacuum chamber bellows.
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1. INTRODUCTION

A high level of current dependent bunch lengthening has been observed on

the North damping ring of the Stanford Linear Collider (SLC)/1) At currents

of 3 x 1010 this behavior does not appear to degrade the machine's performance

significantly. However, at the higher currents that are envisioned for the future one

fears that its performance could be greatly degraded due to the phenomenon of

bunch lengthening. This was the motivation for the work described in this paper.

In Chapter 2 we calculate the longitudinal impedance of the damping ring vac-

uum chamber. More specifically, in this chapter we find the response function of

the ring to a short Gaussian bunch, which we call the Green function wake. In

addition, we try to estimate the relative importance of the different vacuum cham-

ber objects, in order to see how we might reduce the ring impedance. Chapter 3

describes bunch length measurements performed on the North damping ring. In

Chapter 4, we use the Green function wake, discussed above, to compute the bunch

lengthening. Then we compare these results with those obtained from the measure-

ments. In addition, in this chapter we calculate the current dependence of the tune

distribution. Note that each of these chapters is based on work already described

in a published report: Chapter 2 in "The Calculated Longitudinal Impedance of

the SLC Damping Rings" by K. Bane, Ref. (2), Chapter 3 in "Bunch Lengthening

in the SLC Damping Ring" by L. Rivken et al., Ref. (1), and Chapter 4 in "Bunch

Lengthening Calculations for the SLC Damping Rings" by K. Bane and R. Ruth,

Ref. (3). The only completely new work is the tune calculations.

2. THE CALCULATED LONGITUDINAL IMPEDANCE

2.1 Introduction

The SLC damping ring vacuum chamber contains many small discontinuities—

such as shallow steps, transitions, masks, and bellows—as well as larger objects

like the beam position monitors and the rf cavities. In this chapter we study the

relative importance of the various objects to the total ring impedance. In addition,
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we obtain a Green function that will be used in a later chapter for bunch length

calculations.

In this paper we are interested only in the single bunch effects of the vac-

uum chamber impedance. The true vacuum chamber impedance is normally very

complicated, containing many resonances and other structure, and covers a wide

frequency range. A single bunch, however, only probes the impedance after it has

been smoothed by the bunch spectrum, the so-called "broad-band impedance."

The time domain correspondent to this impedance is the short range wakefield.

In this paper, we choose to work in the time domain, and all our results are

based on wakefield computations. Consider an infinitely long tube which at some

position is momentarily interrupted by a cavity, an obstruction, or other change

in cross-section. Now consider a bunch of electrons (or positrons) passing at the

speed of light c parallel to the axis of the pipe, from minus to plus infinity. The

longitudinal wakefield W{t), then, is defined as the total voltage—divided by the

charge in the bunch—gained by a test particle that has followed the same path,

also at velocity c, but at relative position ct. We will use the convention that a

more negative value of time t is more toward the front of the bunch. In most of the

cases that we consider the structure geometry is cylindrically symmetric, and we

use T. Weiland's computer program TBCI^4^ to calculate the wakefield. Note that

by limiting our structures to those with equal beam pipes we force the system's

potential energy at the beginning of the calculation to be the same as at the end.

2.2 Types of Impedances

2.2.1 Introduction

A vacuum chamber object in a storage ring can be described as inductive,

resistive, or capacitive, depending upon whether it tends to cause bunch lengthen-

ing, bunch shortening, or does not affect the bunch length. We can discern which

of these catagories applies to an object from the shape of the voltage that it in-

duces. We can further speak of a vacuum chamber object as being a good—or
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ideal—inductor, resisitor, or capacitor if its induced voltage is related to the driv-

ing current in a manner analogous to that found in the corresponding simple circuit

element. It is important to note, however, that in either case the applicability of

the terms inductive, resistive, or capacitive depends not only on the shape of the

object itself, but also on the length of the exciting bunch. As the bunch length

changes different parts of the object's impedance become emphasized. Normally,

vacuum chamber objects appear more inductive to longer bunches, more capacitive

to shorter bunches.

2.2.2 Inductive Objects

If the effective slope of the induced voltage opposes the slope of the rf wave

then the object is inductive, and it will tend to lengthen the bunch. We denote

as good inductors objects for which the induced voltage can be approximated by

V{nj = —Ldl/dt with the constant L the inductance and / the bunch current.

We note that this model, in detail, is unphysical: it predicts that the beam loses

no energy passing by the object. If the induced voltage of a vacuum chamber

object is well approximated by the above relation, it means that the beam sees

primarily the low frequency part of the object's impedance; and that in this region

the impedance is purely imaginary, and linear with a slope of — L. Note that if an

object is a good inductor at a certain bunch length, it will continue to be so at

longer bunch lengths.

It is often easy to see whether or not an object is a good inductor for a Gaussian

bunch with length a. Normally, inductive objects tend to be small discontinuities.

Now suppose we have a small obstruction in a tube of radius a. If the bunch length

obeys the relation a £ a/2 then little of its power spectrum (^ 9%) is above the

tube cut-off frequency. When the beam passes by the obstruction it will therefore

leave little energy behind, since the tube will not support free waves below its cut-

off. The head of the beam will lose energy to the discontinuity, but the tail will

reabsorb most of it, resulting in an inductive wakefield. In the SLC damping rings

there are many small discontinuities on tubes of radius 11 mm (or less) which,
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according to the above criterion, are good inductors for bunch lengths down to

5.5 mm. Note that since only for the tails of the beam's spectrum—at frequencies

above the tube cut-off—is the real part of the impedance nonzero, the higher mode

loss that we do find in inductors decreases exponentially fast as the bunch length

is increased.

Objects that can be considered good inductors for bunch lengths normally

found in storage rings are shallow transitions, shallow cavities, bellows, masks, or

bumps in the vacuum chamber walls. We shall see that the SLC damping ring

contains many such objects, which therefore define the character of its impedance.

As an example of a good inductor Fig. l(b) displays the shape of a QD bellows of

the SLC damping rings. The wakefield of a 6 mm Gaussian beam passing by this

object, as calculated by TBCI, is shown in Fig. l(a). The beam shape is represented

by the dotted curve, with the front to the left. Note that in our convention the

slope of the applied rf must be negative for machines operating above transition.
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Fig. 1. An inductive example: the wakefield of a 6 mm Gaussian bunch

passing by the QD bellows of the SLC damping ring.

2.2.3 Resistive Objects

If the effective slope of the induced voltage is almost zero then the object is

resistive, and it has little effect on bunch lengthening. We denote as good resistors
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objects for which the induced voltage ca be approximated by Vind = —IR, with the

constant R the resistance. We note that this model is also not strictly physical:

since these beams are assumed to be moving at the speed of light, the induced

voltage must lag, even if by a slight amount, behind the driving current. Note that

for good resistors the loss factor—the total higher mode loss divided by the bunch

charge—is approximated by k = R/(2y/Jfa). Examples of good resistive elements

found in storage rings are deep cavities, such as the rf cavities, for bunches that

are not short compared to the beam tubes. As resistive example Fig. 2(a) shows

the wakefield left by a 6 mm Gaussian bunch passing by one of the two 2-cell rf

cavities of the SLC damping rings [Fig. 2(b) displays the shape of one cell].
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Fig. 2. A resistive example: the wakefield of a 6 mm Gaussian bunch

passing by one of the rf cavities of the SLC damping ring.

2.2.4 Capacitive Objects

Finally, if the effective slope of the induced voltage enhances the rf slope then

the object is capacitive, and it will tend to shorten the bunch. We denote as good

capacitors objects for which the induced voltage is approximately proportional to

the integral of the current, with constant of proportionality —1/C, and C the
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capacitance. This model is strictly unphysical in that it predicts that the energy

loss of a bunch depends only on the total charge of the beam, and not on the peak

current. This type, of the three types of objects, is probably the least commonly

encountered in storage rings. Reference (5) describes a capacitive device, the so-

called "SPEAR capacitor," that was installed in a ring for the specific purpose of

shortening the bunch. The wakefield of very short bunches in deep cavities falls

somewhere between that of a pure resistor and a pure capacitor. The rf cavity

of Fig. 2 can be considered slightly capacitive in that the average slope of the

induced voltage is slightly negative. However, there are no very capacitive objects

in the SLC damping rings. But to give an example of a fairly good capacitor, we

show ic Fig. 3(a) the wakefield of a 6 mm Gaussian bunch passing by the cavity

of Fig. 3(b).
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-0.2

-0.4

2-90

i

24 mm

10 mm c

6562A5

Fig. 3. A capacitive example: the wakefield of a 6 mm Gaussian bunch

passing by the structure shown at right.

2.3 The Effective Inductance

The loss factor k is often used to estimate the contribution of an object to the

ring impedance. This parameter gives the higher mode losses of the object but

says little about its contribution to bunch lengthening. Alternatively, we can say

that it is a measure of the real, not the imaginary, part of the impedance. As a
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figure of merit that is a complement to the loss factor, and that is a measure of

the imaginary part of the impedance, we will use the effective inductance I.

Recall that the loss factor is given by the average value of the wakefield along

the bunch

OO 00 00

k=- f W(t)X(t)dt = I fws(t')X{t-t')dt'
—oo —oo LO

X(t)dt , (1)

with A the longitudinal charge distribution and Wg the Green function (or delta

function) wake. The Green function, in turn, is given by the inverse Fourier trans-

form of the impedance Z:

oo

= ± J ZMe-^du , (2)
—oo

with w the frequency. Therefore, the loss factor can also be written in terms of the

impedance as

u)\2du> , (3)

0

with A the Fourier transform of the charge distribution and X the real part of Z.

Thus k gives the real part of the impedance averaged over the square of the bunch

spectrum.

Let us define the effective inductance £ by the following operation: We compute

the wakefield for a Gaussian bunch and then perform a least squares fit to

W(t) = - ^ . (4)

Therefore ( can be written in terms of the impedance as

oo oo

£=- fY(u)\~\(u)\2u;du/ f \\(u;)\2u}2 du; , (5)
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with Y the imaginary part of Z. We see that £—up to a bunch length factor—is

the product of Fw averaged over the square of the bunch spectrum. For a pure

inductance, Z = —iuL, we see that £ reduces to L. For a Gaussian beam Eq. (5)

becomes
oo

V d w . (6)

Note that, as in Ref. (5), we might alternatively have chosen as figure of merit

the bunch length times the average slope of the wake:

OO

a = a f W'(t)\(t)dt = 2a j Y{u>)\\{u)?udw . (7)
—oo 0

We see that a—up to a bunch length factor—is the same as £. As a fine point, we

also note that in the results to be presented a Gaussian weighting factor has been

included in the least squares calculations that determine £. Therefore, instead of

by Eq. (6), £ will be given by

(8)

2.4 Some Simple Inductors

Let us consider the simple discontinuities of Fig. 4. To a Gaussian bunch

sufficiently long (i.e., one with length a greater than half the tube radius) they

will appear as good inductors. For each of the three models we have performed

parametric studies to find its inductance. To obtain a data point, we first computed

the wakefield of a reasonably long Gaussian bunch passing by the structure in

question, using TBCI. Then, we performed a least squares fit to Eq. (4), weighted

by the Gaussian bunch shape, in order to obtain the effective inductance I. And

finally we found the limiting value of £, as a becomes large, which we take as the

inductance L of the object.
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In order to reduce our work we computed the wakefield in the following manner:

We first performed a TBCI calculation for a short Gaussian bunch of length a\,

calculating the wakefield to a long distance behind the driving bunch. Given this

wakefield W\, we then obtained the wakefield for longer bunches, with length a,

by performing the following integration^6);

with a\ = a2 — a\. In this way, for any given structure, one TBCI calculation

provides the wakefield for Gaussians over a wide range of bunch lengths.

We began our studies with the small cavity, shown in Fig. 4(a). It is interesting

to note that the numerical results we obtained for it can be well approximated by

a simple application of Faraday's Law. According to Faraday's Law the voltage

induced across the gap depends on the time rate of change of the magnetic flux

ipm in the cavity. If we approximate <pm by the product of the beam's unperturbed

magnetic field at the cavity times the cavity cross-sectional area, we obtain the

inductance^7'

L = <pm/I = ^-9— (A/a small) . (10)

with / the beam current and ZQ = 377 £2. The inductance of a bellows—which

is just a sequence of small cavities—can be approximated by the above result

multiplied by the number of convolutions. Next we studied the shallow iris [see

Fig. 4(c)]. The numerical results agree well with

= Zl^- (A/ft small, gib small) . (11)
7TC 0

It appears that for the shallow iris the effective distance from the corner over which

the magnetic flux changes with time is on the order of A.
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Fig. 4. Some simple vacuum chamber elements: (a) a small cavity, (b) a

symmetric pair of shallow transitions, and (c) a shallow iris.

Finally we considered a pair of symmetric, shallow transitions [Fig. 4 (b)]. Our

simulation results—if the transitions are separated by a distance at least on the

order of b—can be approximated by

(A/6 small, <,/&;> 1, 0 < */2) . (12)

Note that this equation approximates the numerical results well even for A/6 ~ 0.5.

We see from Eq. (12) that when 6 < v/2 the inductance of a transition can be

reduced, though only very slowly, by changing the transition angle. However, if

we break up a transition into n smaller steps, that are separated by a sufficient

distance, we can gain by the factor n. Note that Eq. (12) with 0 — x/2 must also

apply to the iris of Fig. 4(c) when g/b ^ 1.

For the example transition with parameters a = 10 mm and A/b = 1/6 we

demonstrate, in Fig. 5, the validity of the angular dependence of Eq. (12). The

plotting symbols signify the computed results, the dotted curve the approxima-

tion Eq. (12). More specifically, the plotted values give the effective inductance I

computed for a 16 mm Gaussian bunch; when the bunch length was doubled the

results remained essentially unchanged. We see that within its limits of validity

Eq. (12) agrees very well with the computations. Note that, over the entire range

of data points, the results of Fig. 5 vary roughly as y/tan(9/2).

Finally we point out that the formulas of this section may also be used to

estimate the imaginary part of the transverse impedance Y± at the origin for these
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Fig. 5. The 0 dependence of L for a symmetric pair of shallow transitions

when a = 10 mm and A/6 = 1/6. The dotted curve gives the analytic

approximation, Eq. (12).

structures. Using a well-known formula^8) for estimating the transverse from the

longitudinal impedance of a cylindrically symmetric structure, with tube radius a,

we find near the origin

r-L * 3 * • (13)

2.5 The Damping Ring Vacuum Chamber

The damping ring vacuum chamber is divided into 8 girders (see Fig. 6). Of

these girders 2, 3, 6 and 7 are almost identical. They each contain 4 1/2 FODO

cells, with the quadrupole vacuum chambers—which are cylindrically symmetric—

separated by the roughly square bend vacuum chambers (see Fig. 7). Girders 5 and

8, in addition to half a FODO cell on each end, contain kickers, septa, rf cavities

and other vacuum chamber elements not found in the rest of the ring.

The vacuum chamber of the FODO cells can be divided into two groups of

objects, each of which is repeated 20 times in the ring. One group, which we

will call a "QD vacuum chamber segment" is centered on a defocusing quadrupole

vacuum chamber, with each end at the middle of the neighboring bend chamber.
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Fig. 6. The girders of the SLC north damping ring.

5-88 801SA3

Fig. 7. The cross-section of the bend chamber. The dashed circle shows

the size of a quad chamber.

The "QF vacuum chamber segment" is similar, though centered on a focusing

quadrupole. The vertical profile of these segments is sketched in Fig. 8, with the

ends truncated. Nonsymmetric portions are shown dashed. The figures are drawn

to scale. The total length of each segment is about 60 cm; the half-length of the

bend chamber is 15 cm.

A QD segment (see the top sketch) begins with the roughly square bend cham-

ber (1), which is connected by a tapered transition (2) to the cylindrically sym-

metric defocusing quadrupole (QD) chamber. The QD chamber contains a 1 inch

beam position monitor (1" BPM) (3), a QD bellows (4), a serf gasket (5), and a

QD mask (6). Finally there is another transition (7) into the next bend (8). The
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Fig. 8. The vertical profile of a QD segment (top) and a QF segment

(bottom). The noncylindrically symmetric portions are drawn with dashes.

ends of a QF segment are similar (see the bottom of Fig. 8). The cylindrically

symmetric QF chamber, however, contains a l" BPM (3), a flex joint (4), and a

QF mask (5).

Ring Girders 5 and 8 include two kickers, two septa, a two cell rf cavity, two

1" to 2" transitions, four 2" BPM's, four 1.4" BPM's, an optical monitor and a

dielectric gap.

2.6 The Impedance of Individual Vacuum Chamber Elements

2.6.1 The Inductive Elements

In order to estimate the relative importance for bunch lengthening of the differ-

ent objects found in the SLC damping rings we divided the vacuum chamber into

a number of recognizable pieces. Then, for each piece we computed the wakefield

of a Gaussian bunch with length a — 6 mm using TBCI. This length was taken

as typical for the damping rings. Then finally we obtained t by performing a least

squares fit, as described earlier. Note that dividing a stretch of several vacuum

chamber objects into its parts does not affect the answer so long as a J£ a/2,

with a the tube radius, and so long as neighboring pieces are separated by at least

2a. With typically a = 11 mm the former condition is normally met. The latter

condition, unfortunately, cannot always be met. Therefore, the results we present
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only approximately give the relative importance of the various vacuum chamber

objects.

Unfortunately, many of the vacuum chamber objects are not cylindrically sym-

metric. Whenever possible, we took a suitable cylindrically symmetric (2-D) model

to represent the noncylindrically symmetric (3-D) object in the calculations. In

some cases it was evident how one might go about this. For example, the geometry

of the ion pump slots, a 3-D object, can partially be seen in Fig, 7. We see that

each slot can be approximated by a simple, shallow transition, whose outer radius

is defined by the pump housing, and which fills only 10% of the azimuth. For

the slots, we computed the wakefield for a cylindrically symmetric version of the

shallow transition using TBCI, and then multiplied the results by a filling factor of

0.1. The beam position monitors (BPM's), with their noncylindrically symmetric

electrodes, were treated in a similar manner. In other cases, it was not so evident

what the right 2-D model should be. For example, the QD and QF transitions are

transitions from an approximately square to a round vacuum chamber tube. For

such objects, we obtained insight into how best to model them by applying the

computer program T3,(9' the 3-D counterpart of TBCI, to a simple 3-D approxi-

mation to the real structure.

Table 1 gives the results for the elements that are inductive to a 6 mm Gaussian

bunch. Figure 9 shows the geometry used for (a) the QD bellows, (b) the QD mask,

(c) the QD transitions, and (d) the ion pump slots. The factor in Column 3 is an

azimuthal filling factor used to account for the contribution of noncylindrically

symmetric objects. Column 4 gives the total number of these objects in the ring.

We see that the total effective inductance of the ring is approximately 50 nH,

spread over many objects. Not included in the table are the septa, each of which

is a complicated obstruction in a 25 mm ID tube. Using the computer program

T3 on a simple 3D model we find that the septum has an inductive and resistive

component. We estimate that t « 2 nH for each septum.
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Table 1. The inductive vacuum chamber elements.

Single Element Inductance

Type

QD bellows

QD k QF masks

QD k QF trans.

Ion pump slots

Kicker bellows

Flex joint

1" BPM trans.

Other

L/(nH)

0.62

0.47

0.52

1.32

2.03

0.18

0.10

Contribution in Ring

Factor

1.0

1.0

0.9

0.1

1.0

1.0

0.8

Number

20

20

20

40

2

20

40

Total

L/(nH)

12.5

9.5

9.3

5.3

4.1

3.6

3.3

2.4

50.0

11.2 mmI I IXIIIIII i

lr~injuuuuuiM_ i7'8""" I
9.65 mm mm

11-1 mm 11.1 mm

I
2-90

f
(b)

115.9 mm

(d) 6562A33

Fig. 9. The geometries used to calculate t for: (a) the QD bellows, (b) the

QD mask, (c) the QD transition, and (d) the pump slots.

Since the inductance of the ring is spread over so many objects it would take

more than a small modification to reduce it significantly. Recently sleeves were

installed to shield the QD bellows from the beam. From the table we would

estimate that the ring inductance would therefore be reduced by 25%. However,

since the bellows are close to the QD mask (see Fig. 8) there is coupling between

these two objects. By performing the calculation for the entire QD segment taken
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as one piece, once with and once without the bellows, we estimate the bellows

contribution to the ring inductance to be more like 15%.

2.6.2 The Resistive Elements

There are objects in the ring that are resistive, most important of which are the

two 2-cell rf cavities. At a bunch length of 6 mm the rf cavities contribute 5.8 V/pC

to the ring loss factor k. We can speak of them having an effective resistance of

411 Q. At this bunch length the forty 1" BPM cavities are also resisitive with a

total k of 3.2 V/pC. However, these small cavities become less resistive at longer

bunch lengths. Other objects that are resistive at this bunch length, but contribute

little to the ring loss are two 2" BPM's, two 1.4" BPM's, two kicker gaps, an optical

monitor, the ion pump holes and a dielectric gap.

How can we compare the contribution of the inductive and the resistive vacuum

chamber components to the longitudinal instability? In instability analysis the

impedance enters as the quantity |Z(n)/n|, with n = U>/WQ and wo the revolution

frequency. For the damping rings UQ = 5.4 x 107 s"1. Therefore, for the inductive

elements the effective inductance of 50 nH corresponds to an effective \Zfn\ of

2.6 fi. For resistive elements let us consider only the rf cavities. If for the cavities

we take as typical frequency w = I/IT we find that an effective resistance of 411 ft

corresponds to an effective \Z/n\ of 0.44 ft. According to this rough estimate the

inductors contribute 6 times as much to the \Z/n\ of the ring as the cavities. If we

want to bring the contribution of the inductors down to that, of the rf cavities we

would clearly need to rebuild the entire vacuum chamber.

2.7 The Green Function Computation

We will need a Green function wake for the damping rings in order to perform

bunch length calculations. However, it suffices if we can find the wakefield of a

bunch that is very short compared to the natural bunch length in the ring, and

that has been calculated out to a sufficient distance behind the driving bunch.

Ideally we would like to compute the wake for one whole turn around the ring in
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one long computer run, with the beam moving from one element to the next just

as it does in the real machine. Then all interference effects between neighboring

elements, even at frequencies above cut-off, are properly accounted for. However,

due to the limitations in computer time and memory available to us we need to

make compromises.

500

o
a. 0 -

-500 h"
i I i i i

15
2-90 Ct /Cm 6562A11

Fig. 10. The longitudinal wakefield of a 1 mm Gaussian bunch in the SLC

damping ring.

For our Green function we first calculated the wakefield of a 1 mm Gaussian

bunch, out to 15 cm behind the bunch, for the various damping ring vacuum cham-

ber objects. The only exception is for the rf cavities, where a 2.7 mm bunch was

used, due to limitations in the computer memory available to us. As best as pos-

sible we wanted to properly include the interference effects of neighboring objects.

To this end we calculated the wakefields of the entire QD and QF segments each

in one piece. To account for the noncylindrical symmetry of the BPM electrodes

we performed the calculation for each segment twice—once with and once without

cylindrically symmetric electrodes—and then added the two results in the ratio

8:2, according to the azimuthal filling factor of the real electrodes. However, the

calculations of the pump slots, as well as of the remaining objects found in girders

5 and 8, were all done in separate computations. Objects that were not included
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Fig. 11. The longitudinal wakefield of a 6 mm Gaussian bunch in the SLC

damping ring. The current distribution is also shown.

in the calculations are the septa, the ion pump holes, the optical monitor, and the

dielectric gap.

The sum of all the computations, which we take to represent the wakefield of

a 1 mm Gaussian bunch in the SLC damping rings, is shown in Fig. 10. We note

that most of the response occurs within the first 2 cm behind the driving bunch.

By performing the integral of Eq. (9) we can find the wakefield of any Gaussian

bunch that is longer than 1 mm. Figure 11 shows the results that are obtained for

a 6 mm Gaussian bunch. At this length the ring is clearly very inductive.

In the same manner we have obtained the wakefields of Gaussian bunches with

different lengths. From these wakefields we have found the loss factor k and the

effective inductance £ of the ring as functions of bunch length. These results are

shown in Fig. 12. The dotted curve gives the contribution to the loss factor of

the rf cavities alone. We see that both k and £ reach asymptotic values at long

bunch lengths. In addition, we see that the loss factor of the entire ring drops in

an exponential fashion with increasing a, while the loss of the rf cavities drops only

very slowly.
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Fig. 12. The loss factor k and the effective inductance I of the damping ring

as function of bunch length. The dotted curve gives the loss contribution

of the rf cavities alone.
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Fig. i3. The impedance \Zjn\ of the damping ring. The dots give what

remains when the QD bellows (with their antechambers) are perfectly

shielded. The power spectrum of a 6 mm Gaussian bunch is also shown.

By taking the Fast Fourier Transform of the 1 mm wake we can obtain the

impedance. In Fig. 13 we plot the quantity \Z/n\ (remember u>0 = 5.4 x 107 s"1).

We see a large broad peak at 16 GHz, with a peak value of 5.5 fi and Q of 2; it is due

mostly to the bellows. A smaller resonance, at 6.5 GHz, with a peak value 4.4 fi,

and a Q of about 1, is due to the BPM cavities. (We note, however, that the results
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for this resonance may be very inaccurate, due to the very approximate manner in

which we included the BPM electrodes.) In Fig. 13 we also see that \Z/n\ obtains a

constant value at high frequencies, an effect that is due to numerical noise. When

we repeat the calculation of the 1 mm wake, but this time leaving out the QD

bellows, and then take the Fourier transform, we obtain the results shown by the

dots in Fig. 13. These results are meant to represent the damping ring with the

QD bellows shielded, as has recently been done. We note a substantial reduction

in the impedance beyond 10 GHz. Although we do not expect this modification to

have a great effect on the bunch length it may still have a significant effect on the

instability threshold.

From the 1 mm wake we contracted the Green function wake W$ in the follow-

ing manner: we first changed its sign and then modified the front of the function

so that it is 0 for t < 0. This modification yields a Green function that is causal.

This Green function will later be used to calculate the wakes for bunch shapes that

are long compared to 1 mm and that are rather smooth. We therefore expect the

results not to be very sensitive to the details of the modification just mentioned,

provided that the changes are localized near t = 0 and that the area under the

curve remains unchanged. For our calculations we have chosen to reflect the lead-

ing tail to the back, and then to add it to the existing wake. The leading part of

the Green function wake is shown in Fig. 14. The dots give the negative of the

1 mm wake.

3. BUNCH LENGTHENING MEASUREMENTS

3.1 Introduction

Under normal SLC operations the beam, after leaving the damping ring, is

shortened by about a factor of 10 in the Ring-to-Linac (RTL) transfer line before

entering the linac proper. The bunch shortening is the result of a phase space

rotation. It is accomplished by an rf section, which induces an energy variation

that is correlated with longitudinal position, followed by a beam line with nonzero
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Fig. 14. The Green function wake for the SLC damping rings.

momentum compaction. Using this hardware and, in addition, a phosphor screen

and video camera, we are able to measure the longitudinal charge distribution of

individual damping ring pulses, of pulses having an rms length on the order of

5 mm. Although the measurements to be discussed contain some fluctuations due

to screen imperfections, we expect that with a better, newly installed screen we can

now measure the longitudinal intensity accurately to a resolution of 0.1 mm(10' for

a bunch with a length of 5 to 10 mm.

Using the same hardware but with the compressor rf off, and with a modified

optics, we can measure the bunch's energy distribution as function of current. In

particular, this measurement allows us to find the threshold current for turbulence.

We also discuss, in this chapter, measurements of the current dependence of the

beam's synchronous phase and of the longitudinal quadrupole tune.

3.2 Measuring the Longitudinal Charge Distribution

3.2.1 Introduction

The hardware, as it is configured for bunch length measurements, is shown in

Fig. 15. The setup is essentially the same as during normal operations. However, at

a downstream position of high horizontal dispersion a phosphor screen is inserted in
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the path of the beam. An off-axis camera can then capture the image, the intensity

of which can—in turn—be digitized over a grid and sent to a computer. If we can

assume that the response of the screen to charge intensity and the response of the

camera to light intensity are linear, then the horizontal distribution measured in

this way will be correlated to the longitudinal charge distribution in the ring.

damping
ring

screen
rf section

2-90 6562A1

Fig. 15. Layout of the apparatus used in the bunch length and energy

spread measurements.

Now let us assume for the following discussion that (i) the longitudinal distri-

bution does not reach past the crests of the rf wave, (ii) the induced energy spread

is large compared to the beam's initial energy spread and compared to the wake-

field induced energy variation, and (iii) the dispersive part of the beam size (T}2$2)

dominates the emittance part (/3e). For the measurements about to be presented

all these conditions were met. Given these assumptions, the connection between

longitudinal position t within the bunch and transverse position x on the screen is

x — xo = Ksin krf(ct — ZQ) , (14)

with xo the screen position that corresponds to the zero of the rf the sine wave ZQ ,

and krf the rf wave number. The parameter n = rjeVc/E, with rj the disp<version
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at the screen, Vc the peak compressor voltage, and E the beam energy. The

longitudinal charge distribution is given by

A = cA
dx

(15)

Equations (14) and (15) allow us to obtain the beam distribution X(t) given the

measured distribution \x(x).

Note that in the SLC the compressor wave length is 10.5 cm and the beam

energy E = 1.153 GeV. For the bunch length measurements we took Vc RS 33 MV.

3.2.2 Results

We began the measurements by finding K and XQ . Taking a low current beam

we varied the rf phase and measured the excursion limits of the spot: the half

distance between these two points gave us K. Thus the dispersion and the com-

pressor voltage do not need to be known explicitly. For our data K =• 18.25 mm;

thus a 1 mm distance near XQ on the screen corresponded to a 1.1 mm longitudinal

distance within the bunch. Then measuring the spot with the compressor rf off

gave us XQ . We then turned the compressor back on and adjusted the phase so the

low current spot was again at XQ . With this setup we measured and stored the

distributions over a range of currents, at a ring rf voltage V = 0.8 MV. For each

measurement a toroid reading, giving us the current, was also taken.

As an example, Fig. 16 gives the measured distribution Xx for a bunch popula-

tion N — 2.9 x 1010 after it has been transformed to A (as described above). The

vertical axis is y = eNXZo/(VTf(To), with ZQ = 377 il and CTQ the natural bunch

length (e<7o = 5 mm at this ring voltage); the horizontal axis is </<7<j. We note

that the distribution is broad and it is not symmetric: the rising edge is steeper

than the falling edge. The corresponding centroid shift is a measure of the higher

mode losses. For the moment, however, we should take the position t = 0 on the

plot as arbitrary since the beam's position on the screen drifted over the duration

of the measurements, apparently due to phase drift of the rjng rf. (We will present
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Fig. 16. The measured bunch shape for N = 2.9 x 1010 when Vrf = 0.8 MV.

more accurate measurements of the centroid shift below.) As in this example all

the measured distributions are quite smooth, except in the vicinity of their peaks.

We believe the fluctuations that we do see in the data are due to imperfections in

the screen. Recently a new screen with a more uniform phosphor layer has been

installed in the RTL. We expect, therefore, that future measurements will result

in smoother distribution curves.

We present the rms widths of the distributions, times 2.355, as function of

current in Fig. 17(c) (the full circles). On the same frame we plot the full-width-at-

half-maximum (the open circles). For a Gaussian distribution these two quantities

should be equal. That the open circles lie above the closed ones at higher currents

implies that these distributions are more bulbous than a Gaussian. Note that there

is very little scatter in the data.

We mentioned earlier that the current values of each measurement were based

on toroid readings. However, we could alternatively have taken the areas under the

distribution curves as the measure of current, since these areas are also proportional

to the charge. In fact, with the areas one obtains a current reading for the same

pulse that is being measured, whereas with the toroids one never knows to which

pulse the reading corresponds. In any case, the pulse-to-pulse current variation
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Fig. 17. Measurement results: (a) the relative energy spread cubed, (b) the

relative rms energy spread, (c) the bunch length, and (d) the synchronous

phase shift as function of current. The ring voltage VTf = 0.8 MV.

was small during the course of our measurements. We found that the correlation

of the areas of the distributions with the toroid readings was extremely good. This

suggests that, despite the local fluctuations that we saw in the distribution curves,

the overall response of the hardware to intensity was essentially linear. When we

plot the bunch length as function of distribution area rather than as function of

toroid reading the data follows a smoother curve.

3.3 Other Measurements

ii.fi. I Energy Spread Measurement

The beam's energy spread was measured in a fashion similar to its bunch

length. For this measurement we turned off the compressor, used another screen,

and modified the RTL optics to give an increased dispersion function at the screen.



216

In this configuration increases in the beam's intrinsic energy spread translate into

an increased spot size on the screen. This measurement is difficult since at high

currents the small, intense spot will tend to damage the screen.

The energy spread measurements yielded distributions that all appeared to be

Gaussians. Figure 18 shows the measured distribution when iV = 3 x 1010, with a

Gaussian curve superimposed on the data. The rms energy spread as function of

current is displayed in Fig. 17(b). We see that the data is rather flat up to about

N = 1.5 x 1010, at which point it begins to rise. We will take this value as the

threshold current Nth • By plotting the energy spread cubed as function of current

[see Fig. 17(a)] we see that above threshold the data agrees well with

(N>Nth) , (16)

with <7f0 the initial energy spread. As we shall see in tha next chapter, we expect

the energy spread to behave in this way for a ring with an inductive impedance,

such as the damping ring.

POSITION C048A7

Fig. 18. The measured energy spectrum for N = 3 x 1010 when Vrf =

0.8 MV.
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3.3.2 Measurement of the Synchronous Phase

The measurement of the synchronous phase complements the bunch length

measurement. The bunch length measurement probes the imaginary part of the

broad band impedance, while the synchronous phase measurement probes the real

part, giving also the higher mode losses. We began the measurement by first storing

a high current beam in the ring. Then, we gradually scraped away beam while

we continually monitored the beam's phase using a vector voltmeter and a chart

recorder. At the same time the circulating current, which we could continually

read from a current monitor in the ring, was marked at frequent intervals on the

chart. For more details of the measurement technique see Ref. (11).

The measured phase shift as function of current is shown in Fig. 17(d). The

plot gives the average of several traces of the chart recorder, all of which agreed

quite well with one another. The data grows linearly at low current, and more

slowly as the current increases. This is the kind of behavior we would expect since,

as we have seen above, as the damping ring current increases the bunch length also

increases, and we know that the higher mode losses depend inversely on bunch

length. Note that the total shift at N = 1.5 x 1010 is only 2.3 degrees. This size of

shift corresponds to a higher mode loss of 32 keV and a loss factor k = 13 V/pC.

3.3.3 Synchrotron Tune Shift Measurement

Measuring the current dependence of the coherent oscillation frequencies is

another way of probing the broad band impedance of the ring. Sometimes this

coherent shift is also taken as a measure of the incoherent tune shift with current.

In this measurement we excited quadrupole mode oscillations by amplitude mod-

ulating the rf gap voltage, and then measured the response from a beam position

monitor. In Fig. 19 both the measured dipole and half the quadrupole frequencies

are displayed over a range of currents. We see that the quadrupole frequency ini-

tially decreases but then appears to level ofF near N = 5 x 109. The maximum

reduction is 3 to 4%. From the plot, we also see the dipole frequency, which should

remain flat, rise slightly with current.
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Fig. 19. The longitudinal dipole and half the quadrupole oscillation frequency

as function of current.

3.4 Measurements Since the Addition of Bellows Sleeves

The bellows mentioned previously, in Chapter 2, are inner bellows, which are

themselves surrounded by a set of outer bellows. Since the inner bellows are very

inductive we normally expect a bunch to leave almost no energy behind after its

passage. If, however, there is not a complete contact between the inner bellows and

the vacuum chamber walls, then the beam can deposit energy in the cavity between

the two bellows. We believe this to be the case for some of the QD bellows. During

very high current operation it was observed that some of these bellows became very

hot, in at least one instance resulting in a puncture of the outer bellows and a loss

of vacuum. Largely to guard against more of this type of damage, and partly to

reduce the bunch lengthening, sliding shields were placed within all the QD bellows

in the North damping ring. This modification will be repeated in the South ring

soon.

Since the introduction of the bellows shields in the North ring more bunch

lengthening measurements were performed/12^ We found that the current depen-

dence of the bunch length did not change significantly from the earlier measure-

ments, at least up to currents of 2.8 x 1010. We also repeated the energy spread
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measurements. As mentioned before this measurement can be difficult. For cur-

rents greater than 1.5 x 1010 the beam, if left on the screen more than a moment,

tended to damage it. Although we are not so confident in this new data, it appears

that the turbulent threshold of the ring, at Vrj = 0.8 MV, has risen from 1.5 to

about 1.9 x 1010 since the introduction of the bellows sleeves. We hope to repeat

this measurement, and obtain better data, soon.

4. BUNCH LENGTHENING CALCULATIONS

4.1 Introduction

Once we know the Green function wake we can calculate the bunch shape as

function of current. All our bunch length calculations are based on the theory

of potential well distortion, as formulated by J. Haiissinski/13) This method has

been applied to a pillbox impedance,(14'15) to an rf cavity impedance^16*17) and

to a broad band resonator impedance,'18' to find the steady state shape of a beam

in a storage ring. Given the potential well, we can also calculate the amplitude

dependence of the tune within the well. E. Keil has performed this calculation for

a pillbox impedance/15)

We begin this chapter by reviewing potential well theory and describing the

calculation of the incoherent tune. We follow by describing our method for extend-

ing the calculations into the turbulent regime. Then, in order to illustrate different

types of behavior, we give the bunch shapes and the tune distributions for a purely

inductive, resistive, and capacitive impedance. Finally, we repeat the calculations

using the Green function for the damping rings, and compare the results with the

measurements.

4.2 Potential Well Distortion^13)

The steady-state phase space distribution in a storage ring ip(e, t) is given by

the Hamiltonian of the system //:

^(e,i) = e- / / ( M ) • (17)
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For electron machines below the threshold current for turbulence the Hamiltonian

is—up to an arbitrary constant—given by

with at the energy spread, CTQ the natural bunch length, Vrf the slope of the rf

voltage at the position of the bunch (we assume the applied rf wave is linear)

and Vjnd the transient induced voltage. In Eq. (18) a smaller value of * signifies

an earlier point in time, while t = 0 designates the synchronous point for a low

current beam.

The induced voltage Vin(j is given by

oo oo

Vindit) = - j W6(t')I{t - 0 dt' = - j S{t')i(t -1') dt' , (19)
0 0

with Ws(t) the longitudinal Green function wakefield, / the current [note: / =

eJVA], and S(t)—known as the step function response—the indefinite integral of

Wf,{t). By taking the phase space distribution and integrating out the energy

dependence we find the longitudinal charge distribution. Then, by multiplying by

the total charge Q [Q — eN] we obtain the current:

~ + J-;Js(t)I(t-t)dA , (20)

with K a normalization constant. Note that I(t), the unknown, is on both sides

of Eq. (20). However, note also that at time t the integral on the right depends

only on the current at more negative (earlier) times. Therefore, we can solve for

I(t) numerically by beginning far in front of the beam (say at i = —5<TO), where

we assume the induced voltage is zero, and then proceeding, in small time steps,

to the back of the bunch. And then finally, if the area under the newly computed
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curve does not equal Q we adjust K, and iterate the whole procedure until it does.

Taking the derivative of both sides of Eq. (20) yields an alternative form of it:

4 +
This form of the problem is more convenient when Vind is given explicitly in terms

of / , as is the case for the simple inductive, resistive, and capacitive models that we

consider later. Of particular interest to us will be the rms length, the full-width-at-

half-maximum, and the centroid shift of the current distribution. The ratio of the

first two quantities is a measure of the similarity of the distribution to a Gaussian.

Due to energy conservation the third quantity, when multiplied by —Vrf i gives the

higher mode losses.

In what follows all distances will be given in terms of <TQ . Thus the independent

variable becomes x = t/aa . We will also normalize voltages to Vrf<ro: the induced

voltage becomes v,-n(j = Vind/{Vrf<TQ), and the total voltage v — «;„<? — x.

4.3 The Incoherent Synchrotron Tune

Once we know the current shape, we also know the shape of the potential

well. For convenience let us choose the bottom of the well to be at zero energy.

Then the potential energy is simply given by u — — ln(///) with / the peak of the

distribution. Given the shape of the potential well we can numerically solve for

the incoherent synchrotron tune.

The equation of motion for a test particle moving in the well is

£ | - 4TT2I;(Z) = 0 , (22)
(lT~

with r the time in units of the low current synchrotron period and v the total

voltage. If the test particle has the initial conditions x = x and x' = 0 then its

period of oscillation is given by

V2TT J y/u(x) - u{x')
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The integration is performed over half a cycle: beginning at x, we move down

the potential well and up the other side until we reach the position xc for which

u(xc) = u(x). Note that when vind = 0 [u(x) = x2/2] then T = 1. The relative

incoherent tune v is simply given by 1/7". Note that from Eq. (23) we can find the

tune either as function of x or as function of energy h = u(x).

If we know the tune as function of h, then we can also calculate the tune

distribution:

e~h

The sum in Eq. (24) is there to indicate that if more than one value of k corresponds

to a certain value of v we need to sum the contribution from each correspondence.

This will happen when there is an interior extremum of v(h). It will also happen

when v(h) has more than one branch, as will occur when there is a relative max-

imum in the potential well curve. Note also that Eq. (24) implies that wherever

dvfdh = 0 the distribution is infinite.

4.4 Some Simple Impedance Models

Over a frequency interval the impedance of vacuum chamber elements can often

be characterized by a simple electrical circuit element—an inductor, a resistor, or

a capacitor. We study in this section the potential well distortion when the whole

ring can be characterized by these simple models.

4-4-1 An Inductive Impedance

For a purely inductive impedance the induced voltage is given by VJn(j =

—Ldl/dt, with the constant L the inductance. Bunch lengthening has been ob-

served in many storage rings, and we expect it to be due to an inductive impedance.

In the case of the SLC damping rings we have seen that the impedance is domi-

nated by the many inductive vacuum chamber elements. We, therefore, expect the

general features of the bunch shape to be given by this model. Note that Haissinski

has presented numerically calculated bunch shapes for this model in Ref. (13).
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For a purely inductive impedance Eq. (21) can be written as

(25)

with prime denoting the derivative with respect to x = t/ao. The normalized

current is given by y = LI/(Va%); the normalized charge F (the complete integral of

y) equals LQ/(V<7Q). The normalized induced voltage Vin& = Vinii/(Vrfcro) = —y1.

7.5

5.0

2.5

n

1

r=

— y

/

AS/N
/30^-s^

M ^

< 1

, (a)

\
\ \

1

-

—

-5 0

x

3

2

1

n

1

_ XFHWM/2.355.,

• 1

1 1 _

«.--""""•"'""

^ -

—

i 1

20
3-89 X : T

Fig. 20. An inductive impedance: (a) the bunch shape for several values

of bunch population and (b) the bunch length variation as a function of

current.
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The numerical solution of Eq. (25); for several values of F, is shown in Fig. 20(a).

Note that the charge distribution for a perfect inductor is symmetric about x = 0

(since there are no losses) and is more bulbous than a Gaussian distribution. From

Eq. (25) it is apparent that the solution is parabolic wherever y ^> 1. In Fig. 20(b)

we display ax and z/wtf A//2.355 (the dashes) as functions of I\ Note that for

large currents ax varies roughly as F1^3. If we apply the inductive model to the

SLC damping rings, taking L = 50 nH, then an intensity of F = 7.5 corresponds

to N = 1.5 x 1010 at Vrf = 0.8 MV. At this current we see from Fig. 20(b) that

ax = 1.33 and XFWHM = 3.69. We shall see, in a future section, that these values
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approximate the results of the more detailed calculations, calculations that use the

Green function wake.

Consider a current of T = 7.5 in an inductive machine. Now suppose a test

particle is initially at rest at position x = x in the potential well. Figure 21 (b)

then displays the tune v as function of x. Only half of the curve is shown; since the

well is symmetric about the origin t/(x) = v{—x). We see that the tune decreases

monotonically as x approaches zero, and that it is very much depressed at the

bottom of the well, to about 60% of its nominal value. On the same plot v as

function of energy h = u(x) is also shown. We note that the slope of the tune is

nonzero for h = 0, i.e., at the bottom of the well. In Fig. 21 (a) we give the tune

distribution A,,. [It is plotted sideways so that its connection with v(x) and v(h)

is easier to see.] We note that the peak of the distribution is at the tune minimum,

that the tune at the peak is greatly depressed, and that the distribution is broad.
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Fig. 21. (a) The tune distribution and (b) the dependence of tune on x

and h when T = 7.5 for an inductive impedance.

Let us use the following notation: let vx denote the tune above the fraction of

the beam given by x. Thus 1/.50 gives the median value of the tune. Then Fig. 22
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displays as functions of current the tune at the peak of the tune distribution I/Q , as

well as 1/.25 , i/.50 , .̂75 » and v.95. We see that VQ drops most quickly at the low end

of the current scale, and levels off at the high end. Note that for T > 0.5 the curve

for VQ in Fig. 22 can be approximated by 1—0.15(1+ln V). We can estimate the low

amplitude tune shift At>o at low currents by assuming the bunch remains Gaussian

and that ~y"(0) is small compared to 1. Then Av0 « y"(0)/2 « -Tf{2y/2^) «

-0.2I\ The quantity 1 - 0.2r is given by the doited curve in Fig. 22. We note

that it only approximates VQ for very low currents. At F = 0.5 it already deviates

from the exact calculation by 30%. For the damping ring this current corresponds

to a bunch population of only 109.
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Fig. 22. .The current dependence of the characterizing parameters of the

tune distribution UQ , v.25 , v.50 , ".75 , and 1/.95 , for an inductive impedance.

J^.J^.2 A Resistive Impedance

For an ideal resistive impedance the induced voltage can be written as V£n(j =

—IR, with the constant R the resistance. This model is applicable to electron rings

that don't have many inductive elements, and whose impedance is dominated by

the rf and other large cavities. In storage rings where the builders have been very

careful to avoid transitions and bellows we would expect the impedance to be

resistive.
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For an ideal resistive impedance Eq. (21) becomes

y' = -(x + y)y ,

with y = RI/(Va0) and F = RQI{V<rl). Note that vini

solution to Eq. (26) was found by A. Ruggiero^19);

y= \ -

(26)

—y. The analytic

(27)

with erf(z) the error function.
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Fig. 23. A resistive impedance: (a) the bunch shape for several values

of total charge and (b) the change of bunch length and centroid position

(dots) with current.

The solution, Eq. (27), for several values of current is displayed in Fig. 23(a).

As F is increased the bunch tilts forward (up the rf wave) by an ever increasing

amount, in order to compensate for the increased higher mode losses. Figure 23(b)

gives <rx and XFWHM/2.355 (the dashes). We see that the bunch length increases

only very slowly in a resistive machine. The dots give the centroid shift {x) of the

bunch. It can be approximated by (x) = —F/(2v^), which is the centroid shift

assuming that the bunch shape does not change with F.
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Suppose we could remove all the impedance of the SLC damping rings except

that of the rf cavities. As we saw before, we could approximate what was left by a

resistive impedance with R = 411 il. A bunch population of 5 x 1010 in this ideal

machine, when Vrf = 0.8 MV, corresponds to T = 3.4. For this current Fig. 24(b)

displays the tune as function of the maximum extent of oscillation x, for x more

negative than the position of the bottom of the potential well. We see that for both

low and very high amplitude oscillations the tune is not changed. For amplitudes

in between these two extremes, however, the tune is depressed, but by a very small

amount. Also shown on the plot is the tune as function of energy v(h).
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Fig. 24. (a) The tune distribution and its integral (dashes) and (b) the

dependence of tune on x and h when T = 3.4 for a resistive impedance.

In Fig. 24(a) we show the tune distribution \ v . Note that there is an infinite

spike at the lowest tune value. The dashed curve in the figure gives the integral

of the tune distribution nu. We note that 50% of the particles have tunes in

the lowest 20% of the tune range. In Fig. 25 we give as function of current the

parameter VQ , f.25 , .̂50 , .̂75 , and 1/95 that charactrize the tune distribution.
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Fig. 25. The current dependence of VQ , ^.25, f.50 •> ".75, and Z/.95 for a

resistive impedance.

4-4-3 A Capacitive Impedance

For an ideal capacitive impedance the induced voltage is proportional to the

integral of the current, with constant of proportionality —1/C, and C the capaci-

tance. Deep cavities, such as the rf cavities, are slightly capacitive at normal bunch

lengths, and become more capacitive for very short bunches. Of the three simple

models the capacitive is probably the least applicable to the types of impedances

one finds in storage rings. We note that bunch shortening has not been observed in

storage rings, except possibly at low currents in SPEAR, when the ring had many

rf cavities/20^

For a purely capacitive impedance Eq. (21) becomes

X

y = -y[x + I y(x')dx] , (28)

with y = I/(VrfC) and T = Q/(Vrf<r0C). The solution to Eq. (28) closely approx-

imates a Gaussian that has been shortened and shifted. Since the energy stored in

a capacitor is Q2/2C, the centroid shift is given by (x) = —F/2. Figure 26 shows

the bunch length dependence on F. By substituting a Gaussian into Eq. (28) we
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Fig. 26. (a) The bunch shape for various currents and (b) bunch shortening

as a function of current, for a capacitive impedance.

can arrive at, an analytical approximation of the bunch shortening, which for small

current becomes ax ss 1 —

In a capacitive machine the bunch becomes shorter and the tune of all the

particles will rise. As was the case for the inductive machine the tune as function

of energy is monotonic. The low amplitude particles have the highest tune. Their

tune shift can be approximated by Af « 1/<TZ « YjsJ%Tr fa 0.2F.

4.5 The Turbulent Regime

4-5.1 Calculations Beyond Threshold

Beyond some threshold current the energy spread begins to increase, and we

enter what is known as the turbulent regime. At the moment, there is, unfortu-

nately, still no reliable calculation of the behavior of short bunches in this regime.

However, for a formalism that at least in theory can be used to solve the problem

see, for example, J. M. Wang and C. Pellegrini/21)

In the case of SLC damping rings, however, we will use a simpler method. We

believe that the instability that we find in the damping rings is a fast instability

of the microwave type, and we expect the potential well approach to calculating

the bunch shape still to be applicable. As threshold current we take the value
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given by the measurements. To find the bunch shape beyond this current we

(i) scale the energy spread according to the Boussard criterion (see below), and

then (ii) perform the normal potential well calculation but replacing <TQ in Eq. (20)

by a'o = crocr£/<Tf0 , with at0 the nominal energy spread. Implicit in our method is

the assumption that the energy distribution remains Gaussian.

4-5.2 The Boussard Criterion

The Boussard criterion is often used to estimate the threshold for instabil-

ity. Boussard^22) conjectured that the longitudinal instability in a bunched beam

is due to a coasting-beam-like instability within the bunch. Then in estimating

the threshold for instability one might use the coasting beam threshold^23) but

replacing I by I the peak current. The issue of the applicability of a coasting

beam instability criterion to a bunched beam was studied in detail by J. M. Wang

and C. Pellegrini/21^ They found that one obtains a coasting-beam-like instability

condition provided that: (i) the impedance is broad band relative to the bunch

spectrum, (ii) the growth rate is much greater than the synchrotron frequency,

and (iii) the instability occurs at wavelengths much shorter than the bunch length.

Their threshold condition looks like a coasting beam threshold condition^21':

with Z the broad band (or smoothed) impedance and n = wi/wo, with u>\ a

representative frequency sampled by the bunch spectrum and wo the revolution

frequency; with a the momentum compaction factor and E the beam energy.

Equation (29) is a stability condition, i.e., a condition for no fast blow-up. In

our calculations we will take as threshold the measured value, and use Eq. (29)

solely for scaling the energy spread in the turbulent regime.

In Eq. (29) both / and Z/n in general depend on bunch length which, in turn,

depends on the energy spread. Consider, for example, a very resistive impedance

where Z — R the resistance. As typical frequency nwo we might take the inverse
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bunch length. Then since / is also proportional to the inverse bunch length we find

that Eq. (29) implies that, above turbulence, cre ~ N1/2, with N the bunch popu-

lation, for a resistive machine. On the other hand, for a very inductive machine,

such as the SLC damping rings, \Z/n\ is approximately constant. If we substitute

the peak current for a Gaussian beam in Eq. (29), and note that the bunch length

is proportional to the energy spread, we see that, above threshold,

(N>Ntk) , (30)

with Nth the threshold current. This is the scaling we will use for calculating the

damping ring bunch shapes in the turbulent regime.

We make two observations: (1) This scaling is roughly supported by the mea-

surement results discussed in Chapter 3. (2) For an inductive machine the bunch

length increases with current due to potential well distortion, and thus the growth

of the peak current with current is somewhat reduced. To be more consistent we

could have included this fact in determining the scaling of energy spread with cur-

rent. For the purely inductive impedance discussed earlier we find that the peak

current increases approximately as N08, rather than as simply N, due to potential

well distortion. Thus, for the damping rings we would expect <r{ to vary as JV0"27

rather than as JV1/3 above threshold. And this modification, in turn, would result

in a slight reduction in the calculated bunch lengths at the higher currents. For

the results to be presented, however, the difference would not be significant.

4-5.3 Another Threshold Criterion

P. B. Wilson^24) has suggested that one threshold criterion might be that the

slope of the total voltage v' becomes zero (or equivalently u" = 0) somewhere within

the bunch. This criterion has also been studied by G. Besnier/18) who has used it

to predict turbulent bunch lengthening for ESRF, the European light source. It is

easy to show that if we assume a purely inductive impedance, and we also assume

that the bunch shape remains Gaussian, then Wilson's criterion is equivalent to
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the Boussard criterion. We can also show that this condition can never be met for

the models of a purely inductive, resistive, or capacitive impedance. For it to be

met requires some high frequency structure in the impedance curve (as is the case,

for example, for the broad band resonator model with a high frequency resonance).

Note that if Wilson's conjecture (u" = 0) is met at the bottom of the potential

well, then the tune becomes zero for small amplitudes. If, however, u" = 0 is

first met at another position within the bunch, as we will see in our potential well

calculations using the damping ring Green function, then the physical significance

of the conjecture is not so clear.

Wilson's conjecture suggests another, more stringent threshold condition with

a simple physical interpretation. Consider as threshold criterion that there be a

relative maximum in the potential well shape, i.e., u' = 0, u" < 0, somewhere

within the bunch. If this condition is met then there will be two stable fixed points

within the bunch and one unstable fixed point at the position of the maximum.

Consequently, a subset of bunch particles will oscillate about a relative minimum

of the potential well, rather than about the absolute minimum. Note that this is a

more stringent condition than Wilson's and will tend to be met at higher currents

than his condition. Finally, we should stisss that both these threshold criteria are

merely conjectures. Their validities need to be demonstrated in a self consistent

manner.

4.6 Bunch Lengthening in the SLC Damping Rings

4.6.1 The Bunch Shape

Using our pseudo-Green function (see Fig. 14) in the potential well equation,

Eq. (20), we have calculated bunch shapes for many values of current, for a ring

voltage VTf = 0.8 MV. Figure 27(a) displays the rms length ax and xpwuM/2.355,

and Fig. 27(b) gives the centroid shift (x) of the calculated distributions as func-

tions of current. Length dimensions are again given in units of <JQ (at this rf

voltage cao — 4.95 mm). In Chapter 3 we saw that the measured threshold at this

rf voltage was Nth = 1-5 x 1010. Taking this as our threshold, we extended the po-
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tential well calculations into the turbulent regime by simply scaling the parameter

(To as (N/Nth)1/3, as was discussed earlier. (The turbulent regime is indicated by

the dashed lines in the figure.) Superimposed on the curves are the measurement

results presented in Chapter 3.
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Fig. 27. (a) Bunch lengthening and (b) the centroid shift calculated for

the SLC damping rings at Vrj = 0.8 MV. The symbols indicate the mea-

surement results.

As we saw for the simple inductive model the current distributions calculated

for the damping rings are more bulbous than a Gaussian. At N = 1.5 x 1010,

we see that crx = 1.38 and and xpwHM — 3.93. These values compare well with

those obtained assuming a purely inductive machine with L = 50 nH, for which

we found crx = 1.33 and and Xf\\rHM — 3.69. The turbulent threshold is seen as

a slight kink in the curves. Beyond this point ax varies roughly as TV1'3. We see

that at N = 3 x 1010 the rms bunch length is increased by 70%. From Fig. 27(b)

we see that the calculations give a significant amount of higher mode losses. At

N = 1.5 x 1010 the centroid shift (x) = —0.5 is equivalent to a higher mode loss of

30 keV; at 3 x 1010 the loss is 38 keV. For both the bunch length and the centroid

shift the calculations agree well with the measurements.

In Fig. 28 we present the bunch shapes for bunch populations of N = 0.7, 1.2,

2.1, and 2.9 x 1010. The abscissas give x — t/cro, the ordinates are y = IZo/(V(To)
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>f. N = 2.9x10'^

3-89

Fig. 28. The calculated damping ring bunch shapes for several current val-

ues, when Vrf = 0.8 MV. Superimposed on the curves are the measurement

results.

with ZQ = 377 fi. Superimposed on the curves are the digitized measurement

results. The fluctuations in the data (especially at the peaks) are due to nonuni-

formity in the response of the screen. Considering that there are no fit parameters,

the agreement between the data and the calculations is very good. Finally, in

Fig. 29 we show the induced voltage u,n(f and the total voltage v calculated for

these same four currents.

4.6.2 The Incoherent Tune

For the following calculations let us consider the current N = 1.5 x 1010 at

Vrf = 0.8 MV in the damping rings. Suppose we begin a test particle at rest

at position x = x in the distorted potential well. Then subsequent oscillations
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Fig. 29. (a) The induced voltage v,Brf and (b) the total voltage v — Vind —

when N = 0.7, 1.2, 2.1, and 2.9 x 1010 and Vrf = 0.8 MV.

within the well are shown in Fig. 30(b), for the cases x = —2, —1, 0, 1, and 2. The

horizontal axis is the time in units of the nominal synchrotron period. We see quite

a variation in oscillation period. The potential well itself is shown in Fig. 30(a);

the dashes give the well of the rf alone. Note that « = 0, the bottom of the well,

is at x = —0.24. Note also that the bottom of the well is not just broadened and

that there is an inflection point (u" = 0) away from the bottom.

For the same current we display, in Fig. 31(b), v(x), for x more negative than

the position of the bottom of the well. We see that, as with a simple inductive

impedance, there is a great tune depression within the bunch. We also note that, as

with a simple resistive impedance, the curve has a minimum within the distribution;

at the minimum v = 0.18. In the same frame we display v(h). [Although h values

up to 10 were included in the calculation, we only show the very beginning of the

h range, in order that the dip in v{h), near h = 0.1, can be seen.] At h = 0 the

tune is 0.66. In Fig. 31(a) we show the tune distribution. We see that it is broad,

centered about v — 0.7 with a full-width-at-half-maximum of 0.24. Also visible in

the plot is a spike, at v = 0.18, containing very few particle.
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Fig. 30. (a) The potential well and (b) five oscillations within the well

when N = 1.5 x 1010 and Vrf = 0.8 MV.
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Fig. 31. (a) The tune distribution and (b) the dependence of tune on x

and h when JV = 1.5 x 1010 and Vrf = 0.8 MV.

In Fig. 32 we characterize the current dependence of the tune distribution by

five parameters: 1/.05, ^.25, f.50, f.75, and 1/.95 which signify, respectively, the

tune above the first 5%, 25%, 50%, 75%, and 95% of the particles. The region
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with dashed curves is the turbulent regime. We see that the tune spread is quite

large beyond 5 x 109. If we look, for the moment, at the the curve representing

the median tune 1/.50 , we note that it drops most quickly at the beginning of the

range, for currents up to 5 x 109 and then begins to level off. This general behavior

was observed for the quadrupole tune measurements discussed in Chapter 3. In

absolute terms, however, the 25% shift shown here at 5 x 109 does not agree with the

3 to 4% shift given by the measurements. We believe that this discrepancy signifies

that the connection between the coherent quadrupole tune and the incoherent tune

of a machine with a broad tune distribution is not so simple.

1.00

0.75 -

0.50 -

0.25 -

1 I 1 I 1

1 2 3
2-90 N / 1 0 6562A31

Fig. 32. The current dependence of f. 05, ".25» ".50, ".75, and 1/.95 as

calculated for the damping rings when Vrf = 0.8 MV.

5. CONCLUSIONS

The study of bunch lengthening in the SLC damping rings, described in this

paper, can be divided into three parts: the impedance calculations, the bunch

length measurements, and the bunch length calculations.

In the paper's first part we described the vacuum chamber geometry of the

damping rings. We introduced a figure of merit for bunch lengthening, the effective

inductance £. We found that the ring impedance is dominated by many small,
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inductive discontinuities—such as bellows, shallow transition, and masks. There

are so many objects that contribute to the total inductance, that if we want to

reduce bunch lengthening, we basically need to rebuild the entire vacuum chamber.

We ended this part of the paper by computing the wakefield of a very short bunch

passing through the entire damping ring, a function that can be used as Green

function for the bunch length calculations.

In the paper's second part we described measurements of energy spread, syn-

chronous phase shift, and longitudinal quadrupole tune shift with current that

were performed on the SLC North damping ring. We saw that by taking ad-

vantage of the unique hardware features found in the SLC it is possible to mea-

sure the bunch shape of individual damping ring pulses to good resolution. We

found a large amount of bunch lengthening at higher currents; at an rf voltage

of Vrf — 0.8 MV and bunch population TV = 3 x 1010 the rms bunch length was

doubled. From energy spread measurements we found the threshold current—at

the same rf voltage—was 1.5 x 1010.

In the paper's final part we described bunch length calculations that are based

on the theory of potential well distortion. We saw, for example, that an inductive

machine has lots of bunch lengthening, a resisitive machine little. We saw that in

an inductive machine the incoherent tune shift and the tune spread are both large,

in a resistive machine they are small. In this chapter we also described a method

of extending the potential well calculations into the turbulent regime, once the

threshold current for turbulence is known. Then taking the measured threshold

value, and using the Green function discussed above, we calulated bunch shapes as

function of current. When these shapes were compared with the measured shapes

we found excellent agreement. Then finally we computed the tune distribution

we expect for the damping rings. As for a purely inductive impedance at higher

currents we found the tunes depressed, with the average tune shift large and the

tune spread broad.



239

ACKNOWLEDGMENTS

Credit for the measurements described in Chapter 3 goes to the SLC Damping

Rings Commissioning Group, of which the author was but one member. Also,

aside from the tune shift calculations, Chapter 4 is based on work that was done

with R. Ruth. In addition, the author has profited from discussions with R. Ruth,

M. Sands, R. Warnock, T. Weiland, and P. B. Wilson.



240

REFERENCES

1. L. Rivkin et al., Proc. of the 1st European Particle Ace. Conf., Rome, 1988,

p. 634.

2. K. Bane, Proc. of the 1st European Particle Ace. Conf., Rome, 1988, p. 637.

3. K. Bane and R. Ruth, Proc. of the 1989 IEEE Particle Ace. Conf., Chicago,

1989, p. 789.

4. T. Weiland, DESY 82-015 (1982) and Nucl. Inst. Metk. 212, 13 (1983).

5. K. Bane et al., Proc. of the 1st European Particle Ace. Conf., Rome, 1988,

p. 878.

6. K. Bane, in Physics of High Energy Particle Accelerators, AIP Conf. Proc.

No. 153 (Am. Inst. of Physics, New York, 1987), p. 978.

7. E. Keil and B. Zotter, Particle Accelerators 3, 11 (1972).

8. F. Sacherer, CERN Report 77-13, 198 (1977).

9. R. Klatt and T. Weiland, 1986 Linear Accelerator Conference Proceedings,

SLAC, p. 282.

10. M. Ross, private communication.

11. L. Rivken et al., IEEE Trans. Nucl. Sci. NS-32, No. 5, 2628 (1985).

12. K. Bane, L. Rivken, and R. Ruth, measurements taken on Nov. 1988 (not

published).

13. J. Halssinski, // Nuovo Cimento 18B, No. 1, 72 (1973).

14. A. Papiernik, M. Chatard-Moulin, and B. Jecko, Proc. of the 9th Int. Conf.

on High-Energy Ace., SLAC, 1974, p. 375.

15. E. Keil, PEP Note 126, SLAC (1975).

16. K. Bane and P. B. Wilson et al., IEEE Trans. Nucl. Sci. NS-24, 1485

(1977).



17. K. Nakajima et al., Proc. of the 1st European Particle Ace. Conf., Rome,

1988, p. 570.

18. G. Besnier, "Etude de la Stability d'un Paquet Intense dans l'Anneau

ESRF: Effets Longitudinaux," Laboratoire Theorie des Systemes Physiques,

Universite de Rennes I (1987).

19. A. Ruggiero et al, IEEE Trans. Nucl. Sci. NS-24, No. 3, 1205 (1977).

20. P. B. Wilson et al, IEEE Trans. NucL Sci. NS-24, No. 3, 1211 (1977).

21. J. M. Wang and C. Pellegrini, Proc. of the 11th Int. Conf. on High-Energy

Ace, CERN, 1980, p. 554.

22. D. Boussard, CERN LABII/RF/INT/75-2 (1975).

23. V. K. Neil and A. N. Sessler, Rev. Sci. Instr., 36, 429 (1965).

24. P. B. Wilson, private communication.



243

Status of Impedance Measurements

for the SPring-8 Storage Ring

T. Yoshiyuke and S.H. Be

RIKEN-JAERI

Synchrotron Radiation Facility Design Team

Argonne National Laboratory
Advanced Photon Source

Impedance and Bunch Instability Workshop
October 31 - November 1, 1989



245

Abstract

The coupling impedance of vacuum chamber components is

estimated for the SPring-8 storage ring. Three different approaches

are discussed; analytical calculation, numerical simulation, and

measurement. The simulation shows that the contribution to the

impedance is mainly attributed to RF cavities, bellows, flanges, and

transitions to ID chambers. Loss parameters of an RF cavity are also

measured by using the coaxial wire method.
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Motivation of impedance estimate

Before a quantitative estimation of the impedance, we must get a
reasonable idea on how much it can be allowed. The allowable
impedance IZ/nl is , in a classical stability criterion, described by

|Z | < aE(AE
l n l e lp l E

where <x is the momentum compaction factor, E the total particle
energy, AE/E the FWHM of relative energy distribution, and Ip the
peak current defined by

T - T 2TCR

IAv is the average current in M bunches, o"i the rms bunch length,
and 27i R the circumference of the ring, n is the ratio of storage ring
circumference to the wavelength of perturbation traveling around the
bunch. For our storage ring; E = 8 GeV, a = 1.5 x 10~4, AE/E = 3 x

10"3, IAV = 100 raA, 2TCR = 1,436 m, M = 1000, and o\ = 3.2 mm,

therefore IZ/nl < 0.7 £2. This quantity is relatively small compared
with the other rings, indicating that the impedance problem is more
serious in our ring.
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Estimate of Impedance

Measurement Numerical
Simulation

wire
measurement

TBCI(2-D)
MAFIA(3-D)

Wake Potential

Loss Parameter

each element
^ add up

total

Broad-band
Impedance
Model

(by B. Zotter)
CERN LEP-TH/87-34

total

Analytical
Calculation

cylindrical
symmetry

each element

Impedance

Fig. Flow diagram for estimation of impedance.
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Fig. Single-cell cavity without nose cones, which is under design as a
low HOM-impedance cavity for our storage ring.

We calculate loss parameters of this type of cavity by using TBCI.
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TH010 mode

Fig. Single-cell cavity with nose cones.

We calculate loss parameters of this type of cavity by using TBCI
to compare with the cavity without nose cones.

We also measure loss parameters of this type of cavity.
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Fig. Loss parameters for cavities both with and without nose cones;
(a) longitudinal case, (b) transverse case.

The HOM impedances which exert a harmful effect'on a beam
are suppressed in the cavity without nose cones, but other HOM
impedances seem to become larger than we expected, especially
above cut-off frequency.
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It turns out that, in a longitudinal case, step changes give a large
effect on the impedance, and the step changes and flanges do in a
transverse case. As far as the step changes are concerned, however,
as the transitions to ID chambers consists of tapered parts, the loss
parameters are, in fact, reduced further. Bellows themselves have
large effect on the impedance, but the loss parameters are steeply

in

40
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M e t h o d

coaxial wire technique, in the time domain.
(PKP-95; M. Sands. J. Rees^

the comparison between the pulses transmitted through
the vacuum chamber to be tested and the reference
chamber gives the wake potential:

w//=2Z0(i0(t)-im(t)}

and longitudinal loss parameter:

2Zn -U*))*
k / /="

where ZO is the characteristic impedance of the
reference line.

PICOSECOND
PULSE LABS MODEL4050J HP54120T

Fig. Set-up for the measurement of the loss parameter.



Fig. Tapered chamber which is used to measure the loss parameter
of the cavity.

The coaxial wire is stretched by putting in and out the screw
cutting connector at the narrow end.

S3

_££.
74

- *= • *
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Fig. Photo of the experimental equipment: upper one is the reference
chamber, lower one is the single-cell cavity with nose cones under
experiment.
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Fig. Recorded output pulses from both the reference chamber, Io(t),
and the RF cavity, im(t).
(a) FWHM : -50 ps, (b) FWHM : -100 ps.

The 50 ps pulse looks like a Gaussian pulse, but other pulses don't.
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The 150 ps and 200 ps pulses are rather close upon square pulses.
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Fig. Loss parameters of the RF cavity for measurements and
numerical simulations.

The measured data seem to be overestimated somewhat, but the
measurements and calculations show the same distribution
properties. Overestimation is considered to be due to that the
generated pulse had no perfect Gaussian distribution and the
coaxial line in a tapered chamber didn't match well with a 50 Q
and connectors.
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Upcoming plan for measurements of impedance

1) Impedance comparison between racetrack
type chamber and antechamber type

The step change-induced impedance is also
measured.

2) Comparison of impedances for bellows
between the RF contact and RF slide finger

3) Impedance of the flange with gaps of various
sizes

4) Impedance of the cavity without nose cones

5) Crotch etc.
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Fig. Straight chamber with a slot-isolated antechamber to measure
the loss parameter.

Next we measure loss parameters of this chamber.
We compare the loss parameters between rapid transition and
smooth one at the part of the slot to antechamber.



Fig. Chamber with a Conflat flange to measure the loss parameter.

We can change the gap size by inserting various sicknesses
of gaskets.

Next we measure loss parameters of this flange.
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Fig. Chamber with an RF contact to measure the loss parameter.

Next we measure loss parameters of this RF contact and compare
with conventional RF slide fingers.
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Appendix

This paper is contributed to
the 7th Symposium on Accelerator
Science and Technology
(Dec. 1989, Osaka, Japan)
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T. Yoshlyuki, T. Kusaka, M. Kara, and S. H. Be
RIKEN-JAERI Synchrotron Radiation Facility Design Team

2-28-8 Honkomagome, Bunkyo-ku, Tokyo 113, Japan

Abstract

The coupling impedance of vacuum chamber components
Is estimated for the SPring-8 storage ring. Three
different approaches are discussed; analytical
calculation, numerical simulation, and measurement. The
results turn out that the contribution to the Impedance
is mainly attributed to RF cavities, bellows, flanges,
and transitions to ID chambers.

Introduction

The SPring-8 storage ring is under design to be a
low emittance synchrotron-radiation ring covering even
the hard x-ray domain. High brilliance, which is
implied by the low eaittance, is related to large
stored beam current in the ring. The beam current is,
however, limited by the coherent instabilities of
bunched beam. The important ingredients to evaluate the
instabilities are a longitudinal coupling impedance
Z/n, and a transverse impedance Zj., the latter of which
is usually correlated to the former. The storage ring
consists of a large variety of structures which
contribute to the impedance: vacuum chambers, bellows,
gaps between flanges, step changes, box-like objects,
vacuum ports, slits of RF contacts, RF cavities, and so
on. Charged particles passing through the above
components induce electromagnetic fields that act back
on the beam, which results in energy losses and
instabilities. The impedance is usually employed to
describe the interaction of the beam with the
environment. In order to estimate the effect on the
beam nor-: precisely, a detailed impedance analysis is
carried out. In this report, we analyze the
contribution of several vacuum components to the
impedance, and suggest the way to minimize the energy
losses.

Motivation of impedance estijnate

Before a quantitative estimation of the impedance,
we must get a reasonable idea on how much it can be
allowed. The allowable impedance |Z/n| is , in a
classical stability criterion,1 described by

sULl
el p\ E

(1)

where o is the momentum compaction factor, E the total
particle energy, AE/E the FWHM of relative energy
distribution, and lr the peak current defined by

3Mo.

IAv is the average current in M bunches, a\ the rms
bunch length, and 2uR the circumference of the ring, n
is the ratio of storage ring circumference to the
wavelength of perturbation traveling around the bunch.
For our storage ring; E - 8 GeV, a » 1.5 x 10"4, AE/E -
3 x 10"3, IAV - 100 mA, 2:tR - 1,436 m, M « 1000, and O)
=• 3.2 mm,_ therefore |Z/n| < 0.7 Q. This quantity is
relatively small compared with the other rings,2

indicating that the impedance problem is more serious
in our ring.

Method of Impedance estimate

Since an exact analysis of the Impedance of a
storage ring is impossible, some different approaches
have been developed to estimate this quantity;

- analytical calculations for several simple
geometries,

- numerical simulations of electromagnetic fields in
some elements of the vacuum chamber, and

- impedance measurements for test components.

We can obtain the contribution of several simple
geometries to the longitudinal impedance analytically,
assuming a cylindrical symmetry.2 Naturally, i t i s
followed that most of the vacuum components can not be
evaluated in this way owing to their complicates
geometries.

The electromagnetic f ield, which Is created by a
bunch circulating through a given section of the vacuum
chamber, can be computed numerically by means of T3CI3

and MAFIA.4 Either T3CI or MAFIA computes wake
potentials as a function of delay with respect to the
head of bunch, together with the loss parameters, wker.
a Gaussian-distributed rigid bunch i s traveling ir.
structures. The results of numerical computations car.
be used for the longitudinal and transverse broad-band
impedances, Z«{u) and Z±{e>), respectively, which are
given by

(3)1+C

where Rs i s the shunt impedance, Q the quality factor,
and fr the resonant frequency (- « r /2x) . The loss
parameters of different contributions are computed as a
function of oj., and summed for a l l the vacuum
elements. The derivation of impedance i s based on the
fact that the loss parameter i s proportional to the
integral over the real part of irapedance, according to

(4)

Therefore, the parameters of a broad-band impedance
(fr> Q/ Rs) can be fitted to match a computed loss-
parameter curve.*

On the other hand, the loss parameter can be
measured for each element of the vacuum chamber by a
coaxial wire method as discussed later. In principle
every geometry can be measured in this method, but it
is impossible to measure the loss parameters for all
the kinds of elements of the storage ring. Practically,
the loss parameters of most of the elements are
acquired using both methods: numerical simulations and
measurements.

Profile of vacuum chamber elements

The vacuum chamber is designed in a racetrack
geometry of 8 cm wide and 4 cm high with a slot-
isolated antechamber in which NEG strips are installed
for pumping. Figure l(a) shows the H-field lines for
the first TM mode at a frequency of 4.3 GHz. Figure
l(b) also indicates deep penetration of electromagnetic

B u m ChamMr
H-n«ld Untt

To Antechamber -»

(a) 4.3 GHz
Pumping Slot twtwttn
Bum Chamber and Antechamber

(b) 15.3 GHz

Fig. 1 Calculation of the H-fields lines for the
vacuum chamber; (a) the first TM mode, 4.3
GHz, (b) higher-order mode, 15.3 GHz.
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Fig. 3 Loss parameters for cavities both with and
without nose cones; (a) longitudinal case,
(b) transverse case.

Fig. 2 RF contact by which the bellows are screened
on the vacuum chamber.

fields into the pumping slot at frequencies above 15
GHz. A distortion of the H-field lines is remarkable
compared with the beam chamber without antechamber. In
case of a short bunch below S mm in length, as the
modes above 15 GHz have a large contribution to the
loss parameter according to Eq. (4), it Bay be that the
slot has significant effects.

The RF contact screens the bellows to reduce the
energy losses, and keep the electric contact between
the chambers, as shown in Fig. 2. The numerous long and
narrow slits absorb the shrinkage of bellows at baking,
and make between the Ri' contact and bellows evacuated.

We adopt the Conflat flanges for our ring. The
outer diameter gets over 350 n in case of the
connection between vacuum chambers. The gap between
conventional Conflat flanges comes even to a few mm
with a gasket inserted, but a special flange is
designed so as to reduce the gap below 0.5 mm for a
less impedance.

There is a radius discontinuity between the normal
and insertion-device (ID) chamber. In fact, a tapered
transition is used in place of a step change between
different chambers. Nevertheless, the calculation was
carried out assuming the step changes in the aspect of
safety.

Calculation results

y
He have estimated the impedances of the various

kinds of elements analytically: free space, space
charge, resistive wall, bellows, flanges, pick-up
electrodes, step changes, and slits and holes. Table 1
shows the impedances of typical elements. This
preliminary study suggests that the bellows must be
securely screened and RF contacts are effective to
screen them. It also shows that transitions to ID
chambers and flanges must be improved to achieve the
design goal.

Table 1 Preliminary study of the Impedance for
analytical calculations

Impedance source Number

Free space —
Space charge —
Resistive wall —

Bellows
(without RF contact) 336
(with RF contact) 336

Flanges (1 mm gap) 912
Step changes 96
Fick-up electrodes 432
Vacuum pump holes -300

|Z/n| (Q)

0.2 (f - 10 GHz)
4 x 10"6

0.1 (f - 100 MHz)
0.01 <f - 3.8 GHz)

9.0
3.9 x 10"6

0.39
0.26
0.05
0.005

Calculation (cometry

Finite Siepclunfe
Cavities x 32
Flanges x 912
Step changes x 96

I d b •• 30.15 mm
20.33 mm
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Fig. 4 Total loss parameters of the whole ring for
typical components; (a) longitudinal case,
(b) transverse case.

A 2D code, TBCI, is used to calculate the loss
parameters, assuming again cylindrical symmetry. The
simulation was carried out for longitudinal (monopole
fields) and transverse impedance (dipole fields)
independently, and applied to RF cavities, bellows,
flanges, and transitions to ID chambers.

As far as RF cavities are concerned, the
calculation has been done for the single-cell cavities
both with nose cones, which have been already studied,

and without nose cones, which are under design* as a
low impedance cavity for our ring. The loss parameters
for both cases are plotted in Fig. 3 as a function of
bunch length. He .expected the loss parameters of the
cavity without nose cones to be lower than those of the
cavity with nose cones for every bunch length, but the
loss parameters become reversed for short bunch
lengths. The HCM impedances which have a harmful effect
on the beam are suppressed in the cavity without nose
cones as in Ref. 6, but the other HCM impedances seem
to get larger than we expected, especially over cut-off
frequency. In either case, it turns out that the
contribution from the RF cavities to the loss parameter
are inevitable.

Figure 4 shows the total loss parameters of the
whole ring, considering only the elements which have
large contributions to the impedance. The bellows
themselves have large loss parameters, because the
number is large (N - 336) and the shape looks like a
pill-box type of cavity. On the other hand, once they
are screened adequately by the RF contacts, the loss
parameters are decreased tremendously even not to be
plotted in Fig. 4. It turns out that in longitudinal
case step changes have a large effect on the .impedance,
and step changes and flanges do in transverse one.
However, as far as step changes are concerned, the loss
parameters are. In fact, reduced further as the
transitions to ID chambers get tapered. In case of
flanges, the real loss parameters can be also reduced
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Cavity under test

<„(!)

Sampling
oscilloscope Comrallei

rise time < 20 ps
time resolution < 1 ps

Fig. s Set-up for the measurement of the loss
parameter.

Cavity K loss longitudinal

Measurements

10 20 30
Bunch length {mm}

40

Fig. 7 Loss parameters of the RF cavity for
measurements and numerical simulations.

at the rate of reduction of the gap, but they are still
larger than those of the cavities in transverse case.
The impedance needs to be decreased more.

In the next step, we calculate the loss parameters
of the asymmetric geometries using the 3D code MAFIA.
But as a 3D simulations have limitations such as the
number of meshes, minimum bunch length, and
computational time, there is some room for improvement.

Measurement of loss parameter

The coaxial wire method which has been described by
Sands and Rees 7 is a widely-spread tool for bench
measurements of bean coupling impedance. By the
introduction of a thin wire into the chamber components
under test, a surface current distribution on the inner
surface of the bean pipe can be obtained, which
corresponds approximately to the current distribution
produced by a. passing bunch. When this image-current
distribution has been perturbed by a discontinuity, a
reaction on the wire takes place similar to that of a
perturbed wake field on the bunch.

A measurement set-up is shown in Fig. 5. A nearly
Gaussian pulse is generated with SO ps of the minimum
pulse width by a pulse generator. It travels through
either the reference chamber with a thin wire at the
axis of beam, or a component under test of the same
mechanical length. Both signals, reference signal io(t)
and object signal i m(t), are recorded sequentially,
and stored in a sampling oscilloscope which has time
resolution below 1 ps. The. data acquired into the
oscilloscope are sent to a controller and then the
longitudinal loss parameter k, (o[) is calculated by

"«<«.)-«. |
(5)

; RF Ctvity ;

f 0V

10.7900 ns 31.0400 BS

Fig. 6 Recorded output pulses Io<t) for the
reference pipe and Im(t) for the RF cavity.

where Zo is the characteristic impedance of the coaxial
line formed by the reference chamber with wire and <q
the length of the Gaussian pulse. Figure 6 shows the
recorded output pulses from both the reference chamber
and an RF cavity with noss cones. The Measured loss
parameters are plotted in Fig. 7 together with the
calculated results by T3CI. They were obtained for four
pulse widths; about 50, 100, ISO, and 200 ps. The
measurement data look somewhat overestimated, but both
measurement and calculation show the same distribution
property. The causes of overestimation are considered
such that the generated pulse didn't have a perfect
Gaussian distribution and the coaxial line in the
tapered chamber didn't match well with the 50 Q cable
and connectors.

Measurement method has its drawbacks: the first is
the measurement precision and the second is that the
objects are limited in number. In the next step, we
improve the measurement precision and then measure the
loss parameters of a vacuum chamber with antechamber, a
Conflat flange, and RF contact.

Conclusion

The impedances of vacuum chamber components turns
out to be serious problem in our storage ring. A
special attention has to be paid on the design of each
component in order to achieve the designed performance.
The most critical elements have been found to be
transitions to ID chambers, flanges, and RF cavities.
However, the transitions to ID chambers are, in fact,
tapered smoothly and the impedance gets saall. On the
other hand, the impedance of bellows can be reduced
sufficiently by screening them with RF contacts.

He have estimated the impedance in three ways:
analytical calculation, numerical simulation, and
measurement. The analytical calculation is only
preliminary and limited to simple geometries. The
numerical simulation and measurement also have many
limitations. He need to estimate almost all the vacuum
components of the storage ring by using three ways.
From now on, we have to advance the calculation
efficiency and have a plan to employ a 3D code, MAFIA.
He also have to improve the measurement precision and
estimate the other vacuum components: a crotch, gate
valve, and so on.
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Summary of the APS Workshop on
(1) Bunch Lengthening and Instabilities

(2) Computation of Bunch Length
(3) Impedances and Wakes

B.Zotter

9 January 1990

1 Single Bunch Effects
While the title of the workshop changed several times, the interest of the organizers was
clearly centered or* single bunch effects, which are feared to limit the performance of
the Advanced Photon Source (APS) which is in construction at the Argonne National
Laboratory. The present state of calculations of impedances and their effect on bunch
lengthening and beam stability in the APS were reported by W. Chou and H. Bizek.
A certain number of problems with existing computer programs were enumerated, some
of which could be resolved in the following days. E.g. a strong discrepancy was found
in bunch length - and hence transverse stability - when either the wake potential or a
Q — I broad-band resonator were used in the simulation program SIMTRAC. However,
the results did agree when all 3 parameters of the resonator were matched, yielding an
extremely low Q value: then the bunch length - and the threshold for transverse mode
coupling instability - were as small as with the wake potential computations. Convergence
difficulties in the wake potential computation for chambers with long tapers could be traced
to an unfavorable ratio of spatial to temporal steps. However, the changes required in the
relevant programs appear somewhat more difficult to apply.

There exist a number of approaches to calculate single bunch effects, some of which
will be discussed below. For brevity, we shall omit references to well-known computer
programs, as most of these have already been referred to in the individual presentations.
Similarly, references to talks at this workshop will be limited to the names of the authors
in the text.

1.1 Wake function
The wake function (i.e. the wake potential of a delta function pulse) can be used as a Green
function for arbitrary particle distributions. It is particularly useful for the simulation of
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(super) particle motion including wall effects (e.g. SIMTRAC, HERSIM etc.), where the
bunch shape is not known a priori and changes with time.

The main problem with the wake function is the fact that it cannot be calculated exactly
for realistic structures. Analytic expressions exist only for (closed) pillboxes, uniform tubes
and similar over-simplified geometries.

Numerical computation of wake potentials with time-domain codes like TBCI, ABCI,
MAFIA etc. is limited in principle to finite bunch lengths, e.g. the mesh size has to be less
than one quarter of the standard deviation of a Gaussian bunch. One thus needs very fine
meshes in order to obtain the important short-range part of the wake correctly. However,
small mesh sizes lead rapidly to excessive computer space requirements and to extremely
long computation times. For tubes with long tapers, W.Chou reported that longitudinal
wakes depended on mesh size, and even several days of computing were not sufficient to
yield convergence. Discrepancies of wakes computed with existing 2-D and 3-D codes were
mentioned by him and W.Ng, who is working on a new finite element code permitting
variable mesh sizes.

Adding the leading part of the wake function of a finite bunch to the trailing one (i.e.
conserving the area under the curve) is an often used approximation. However, it is far
from unique and may give completely incorrect results for the wake at very short distances.

1.2 Impedances
The wake function is the Fourier transform of the (wall) impedance, and may also be
obtained from the frequencies and loss factors of the resonances of a structure. These can
be computed by computer codes for the frequency domain (e.g. SUPERFISH, URMEL
etc. for single obstacles; KN7C, TRANSVRS etc. for periodic ones). The wake function
then can be found by a simple summation

V)(T) = - 2 Y * Jfe-cosw-r. (l)
n

Clearly, one would need a very large number of resonances to obtain the short-range wake
correctly, which requirement again leads to excessive demands on computer time and space.

Replacement of the high-frequency tail of the impedance by an analytic estimate like
the "optical resonator model"[1] has yielded quite good results in the past, but again relies
on a number of arbitrary assumptions which may break down in specific geometries.

A novel method to compute impedances of single, rotationally symmetric obstacles
with infinite side tubes was described by R. Gluckstern[2]. It is based on the solution
of an integral equation, and yields a wide variety of results in a rather compact fashion.
E.g. it shows the transition of the asymptotic frequency dependence of the impedance of a
single obstacle (u>~1/2) to that of periodic ones (u>'3/2), and yields criteria for the validity
of these expressions. Another application of the method was to coaxial wire measurement
of the impedance, where the presence of the wire is often suspected to change the results
as reported by L. Farvarque.
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1.3 De-convolution of impedances
In principle, the Fourier transform of the wake potential of a finite bunch (sometimes
called an "effective impedance") could be used to compute the wall impedance by "de-
convolution"

p,

where A is the Fourier transform of the bunch distribution. However, this technique leads
to insurmountable numerical difficulties. This can easily be seen e.g. for a Gaussian bunch,
where the effective impedance has to be multiplied with the inverse of the Fourier transform
of a Gaussian distribution, i.e. with exp(+u;2<T2/2). This factor becomes exponentially
large for frequencies higher than \jo where, on the other hand, the effective impedance
is nearly zero. This excessive weighting of the (effective) impedance where it is very
small (and hence rather noisy) leads to completely unusable results for the high-frequency
impedance and for short-range wakes.

1.4 Gaussian wakes
One method mentioned in this workshop[3] circumvents all of these problems by expressing
the wake potential of a Gaussian (standard deviation <T\) by that of a Gaussian with smaller
standard deviation (<r3 < <ri)

(3)

Thus one avoid the wake function altogether, and use the wake potential of a short
Gaussian bunch like a Green function. However, the method appears to be limited to the
computation of wake potentials of Gaussian bunches.

Shortly after the workshop, a generalization of this method to arbitrary distributions
has been developed[4], which is based on an expansion into a series of Hermite polynomials
(also called "Gram-Charlier" series). It could be shown that the products of Hermite
polynomials and a Gaussian have the same property as a Gaussian alone, i.e. they can
be expressed as convolutions of similar functions with smaller standard deviations. This
technique may be used to compute wake potentials of arbitrary distributions inside a
simulation program. However, applying this procedure at every turn might still slow down
the simulation unduly. Therefore it may be preferable to use it only once for the generation
of pre-calculated tables which can be read by the code using fast interpolation techniques.

2 Model Impedances

2.1 Broad-Band Resonator
A broad-band (BB) impedance corresponds to a short-range wake and is thus generally
sufficient for the calculation of effects of single bunches. In particular, the BB resonator
model has been used widely in the past for its simplicity: it contains only 3 parameters
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(resonant frequency w,, shunt impedance R,, and quality factor Q to describe the (complex)
impedance function over all frequencies. Its Green function has the simple, analytic form
of a damped oscillation. Many integrals and infinite sums, which appear in the theory of
instabilities, can be evaluated analytically.

However, there are limitations to the applicability of this model, in particular at high
frequencies where the real part falls off too quickly

Re (ZBB) - «>~2 (4)

while the correct behavior is expected to be u>~1/2 for single obstacles, and u~3fi for periodic
structures. This incorrect asymptotic behavior may lead to wrong answers for very short
bunches.

For such bunches, the determination of the parameters of the resonator impedance
may cause problems in the longitudinal direction (m=0 mode). In the transverse direction
(m=l mode), matching of the loss factors of long bunches yields in general quite good
results for the ratio R,/Q[b).

In the longitudinal direction, however, this technique fails since the wake depends on
both the shunt impedance and the quality factor individually, not only on their ratio.
Straight forward fitting of the loss factors may lead to extremely small quality factors,
which furthermore depend on the bunch lengths used[6]. It has therefore been proposed
to obtain the broad-band resonator parameters by fitting directly to the wake potential.
However, also these results depend on the bunch lengths considered.

In order to alleviate these problems, we make here the following proposal:
Alter existing simulation programs to permit variation of the broad-band resonator pa-

rameters in accordance with the instantaneous bunch length. The latter is calculated in
some program options anyhow, if not its calculation can be added easily, without unduly
slowing down the execution. The corresponding BB parameters may be stored in a pre-
calculated table which can be read and interpolated by the program.

2.2 Improved Model Impedances
It is possible to construct model impedances which have the expected asymptotic frequency
dependence and are only slightly more complicated than the BB resonator. A number of
such models have been described recently[7], which tend either towards w"1/2 or towards
u}~3/7 at high frequencies, while their low frequency behavior is proportional to w2 as for the
BB resonator. The corresponding wake functions can still be expressed analytically, and are
eith exponentials divided by a square-root exp y/y/y, or "complementary error functions"
of square-root argument erfc( y/y) ( y is a quantity proportional to the distance behind the
particle). Both these models contain 3 free parameters which may be adjusted to fit wake
potentials or loss factors over a given range of bunch lengths. The application of these
model impedances to analytical work and/or to simulation appears quite straightforward,
but has not been attempted yet to our knowledge.

A second set of model impedances is described in the same report: in addition to
the asymptotic high-frequency dependence, also the low-frequency behavior is improved.
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For lossless structures, the real part of the impedance should remain zero up to the first
resonant frequency (usually related to the largest transverse dimensions). While the ex-
pressions for both the real and imaginary part of these model impedances remain rather
simple, the corresponding wake functions become too complicated for analytical work.

3 Bunch Lengthening
Over the past 25 years, at least as many theories of bunch lengthening in particle acceler-
ators and storage rings have been published. Also computer simulation has a long history
since the early 60's. We list here an incomplete selection in Table I. While many of these
theories gave good agreement with observations in some machines, none of them seems to
be valid over the whole parameter range. One of these theories [8], based on the inclusion
of negative mode numbers, was described by Y. Chin.

In recent large electron storage rings (e.g.PEP, PETRA, CESR) with short bunches
(i.e. with standard deviation smaller than vacuum chamber diameter), observed bunch
lengthening is often less than calculated. For longer bunches, such as electrons in the
CERN SPS, the agreement with theory - but in particular with simulation - is much
better as reported by D. Brandt. Bunch lengthening in the SLC damping rings could
finally be explained satisfactorily by careful calculation of even the smallest obstacles in
the vacuum chamber wall, as shown by K. Bane. First measurements of bunch lengthening
and calculations of impedances in LEP required some tricky corrections as reported by
D. Brandt and B. Zotter. Comparisons with the expected bunch lengthening obtained
with the code BBI were presented.

4 Conclusions
Computation of wake potentials in rotationally symmetric structures with existing mesh
programs may be rather time consuming, but usually the results converge for fine enough
mesh sizes. However, for tubes with long tapers, even several days of computing were
not enough to give convergence. For unsymmetric structures the situation is worse: 3-
dimensional codes with even larger space and time requirements have to be used, and the
results often differ significantly from those obtained with 2-D codes.

The wake potentials may be used to approximate impedances and wake functions re-
quired to simulate the evolution of bunch length and other parameters of single bunches in
accelerators and storage rings. Existing simulation programs can give quite good results,
but may need some adaptation to the particular machine studied.

Quite satisfactory results can often be obtained with simplified model impedances, even
if they fail in extreme cases. In particular, we propose to alter existing simulation programs
to permit variation of broad-band resonator parameters. We summarize this situation with
the provocative slogan: "The BB resonator is dead - long live the BB resonator!"
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Table I
Bunch Lengthening Theories

Author
C. Pellegrini, A. Sessler
K. Robinson
A. Piwinski
J. Haissinski
M. Chatard-Moulia et al
D. Boussard
P. Channel, A. Sessler
£. Messerschmid, M. Month
A. Chao, J. Gareyte
F. Sacherer
P. Wilson
A. Hofmann, J. Maidment
B. Zotter
Y. Chin, K. Yokoya
R. MeUer
R. Channel
K. Hirata
G. Besnier

Year
68
69
72
73
73
75
76
76
76
77
77
78
81
82
84
85
87
88

Bunch Lengthening

Author
R. Dory
A. Renieri
K. Bane, P.Wilson
T. Weiland
D. Brandt
R. Siemann
V. Nys
S. Myers
T. Wang

Year
63
75
79
81
82
83
85
86
89

Subject
Potential well
Potential well
power losses
Integral Equation
Pillbox wake
Localized impedance
Turbulence
Vlasov Equation
Waterbag
Mode-coupling
"HP-35" model
Combined model
Potential well - BB
Overshoot
Thermodynamic model
Waterwaves
Mapping approach
Absence of mode-coupling

Simulation

Subject
Overshoot
Capacitive wake
Computed wakes
PETRA
LEP
SPEAR
Hermite polynomials
reactive feedback
multiple RF


