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ABSTRACT

This report reviews the development and application of an influence function
method for calculating stress intensity factors and residual fatigue life for
two-and three-dimensional structures w’th coniplex stress fields and geometries.
Through elastic superposition, the method properly accounts for redistribution
of stress as the crack grows through the structure. The analytical methods
utilized and the computer programs necessary tor computation and application
of load independent influence functions are presented. A new exact solution
is obtained for the buried elliptical crack, under an arbitrary Mode ! stress
field, for stress intensity factors at four positions around the crack front.
The IF method is then applied to two fracture mechanics problems with complex
stress fields and geometries. These problems are of current interest to the
electric power generating industry and include (1) the fatigue analysis of a
crack in a pipe weld under nominal and residual stresses and (?) fatigue
analysis of a reactor pressure vessel nozzle corner crack under a cemple |
bivariate stress field.
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the crack explicitly in the stress analysis for each crack size. Furthermore,
the influence function, h, whicn depends only on geometry, can be accurately
obtained from relatively simple loading conditions and applied to coniplex stress

fields.

The following sections provide more detailed description of the (F

method. Section 2 presents the basic methodology and Section 3 and Appendices A
and B aiscoss methoas for accurate and efficient, computation of h end K for two-
and three-dimensional problems. Section 3 also reviews available h solutions
and computer programs including a new exact three-dimensional solution, derived
in Appendix C, for the K values of the four symmetry positions around the peri-
phery of a buried elliptical crack under arbitrary Mode | stress fields.

Section 4 describes the use of the IF method to predict residual fatigue lives

for two- and three-dimensional crack problems.

Finally, the IF method is applied to two engineering fracture mechanics
problems of interest to the electric power generating industry. Applicability
to two-dimensional problems is demonstrated in Section 5 with a fatigue analysis
example that accounts for both the nominal stresses and the non-uniform residual
stresses acting on a through-crack oriented perpendicular to a circumferential

weld in a large pipe, and in a finite width specimen.

A most important feature of the IF method is its applicability to three-
dimension problems. Here, the IF method accounts for the complications of
complex stress fields, crack shape, crack shape change during growth and K
variation along the crack front. Applicability to three-dimensional problems
with large stress gradients is demonstrated in Section 6 through a fatigue analysis

of a corner crack in the nozzle of a thick walled pressure vessel.



20 GENERAL DESCRIPTION OF THE INFLUENCE FUNCTION MEJHOD

The IF method has been previously described in (1-9)* for two-
dimensional elastic crack problems and in (9-11) for three-dimensional problems.
This section reviews only the major concepts of the IF method. Fig. ! illus-
trates the elastic superposition principle which is the basis of the IF method.
The superposition reduces the K solution of an arbitrary and, perhaps, difficult
crack problem to the solution of (1) the problem without the crack (i.e. uncracked
problem), and (2) a crack problem in which only the crack face is pressurized
so as to cancel the uncracked stresses (o(x) in Fig. 1) that would exist across
the cracl. locus in the absence of the crack. Influence functions are used to
solve this second, pressurized crack problem. An influence function h is simply
the K value arising from a unit point load at some position, usually on the
crack face. Thus h is independent of loading, as proven rigorously in (9), and

depends only on the crack face position and structural geometry.

To solve the pressurized crack problem, and, hence, the difficult original
problem, consider first the differential load o(x) dx (assuming constant thick-

ness) which causes a differential increment of K given by

dK(x) = h (x, geometry) o(x) dx (2.1)

so that the stress intensity factor is given by

=
1]

dK(x) =: h(x,geo.) ~(x)dx (Z?.2)

where La is the straight crack face boundary parallel to the x axis.

eUnderlined numbers enclosed in parentheses refer to references listed at the
end of the report.



To illustrate the utility of (2.2), consider the center-cracked
plate under symmetric loading shown in Fig. 2. For the case of uniform stress

on an infinite plate (a/b " 0), the stress intensity factor is given by

K = 00Mra (2.3)

where a is the half crack length and o is the applied uniform stress.

It has been shown by Fans (3) that, for any symmetric stress i ield, o(>:) =

o(-x). the influence function for the infinite plate is given by
J "
h=— | Ji-y- , 0 < x a defines L (2.4)
/a~ a-S | “~ a

Equations (2.2) and (2.4) reduce to Equation (2.3) for the case of constant

o(x) = o0

Thus, we see by example that the IF method can correctly quantify the
crack-induced redistribution of the uncracked elastic stress field. The utility
of the influence function method for handling complex stress fields becomes
clear once it is realized that if h is obtained for a particular cracked geometry
with several variable dimensional parameters, K computation is reduced to:

A. Determination and specification of the uncracked stress field, and

B. Numerical integration of Equation (2.2), for the appropriate crack

geometry.

The next section documents the references, procedures, and methods required for
accurate computation of h for a variety of simple geometries sufficient to solve

a majority of structural problems.



3.0 BASIC EQUATIONS AND AVAILABLE SOLUTIONS Of THE INFLUENCE FUNCTION ‘'ETHO3

The most direct method to solve for h is to obtain a solution for K due
to a point load at any crack face location. Table | outlines the published
sources of h solutions ana the computer algorithms, developed and modified by
the author at Failure Analysis Associates, that use h to compute K. The table
shows that a formidable selection of h solutions already exists to handle cracks
in complex stress gradients. If a point load solution is not directly available
nor easily derivable, the formulations below provide practical methods to
determine h.

A Basic Equations to Determine Influence Functions and Stress Intonsity

Factors

The root-mean-square (rms) stress intensity factor, K, has been defined
in (10) as an integrated average of K(s) (the specific value of the stress
intensity factor K along the crack front at point s) ov°r the new surface area
created by selected v'rtual displacement of the crack front. In the case of two-
dimensional elasticity problems, K(s) is constant, and K and K(s) are identical.
Consequently, k and K are used irtercnangeably for two-dimensional problems
throughout the remainder of this report. K and K are not exactly equivalent
for most three-dimensional problems, since K(s) is not, in general, constant.
However, K and K are similar enough for most three-dimensional crack problems

to lead to nearly identical static strength or -jtigue life estimates (10).

Consider now a two- or three-dimensional crack problem for which there
are n degrees of freedom (DOF), where a DOF is defined as that scalar dimension
or variable which is free to increase (e.g. propagate in fatigue) and do work
independently of all other dimensions or variables. Then K due to a small

perturbation of the j-th DOF (Fig. 3) may be expressed as (10, 11)



—rT

K. hJ, (X., aeoiretry) a (x ) dA; j =1, n, i =1,n (3.1 )t

where A represents the crack area, x* are the appropriate coordinate directions.

(n. = 2 or 3) a is the uncracked stress field, and h is the influence function
for the j-th of n DOF's and is given by (JJD, 1J) as !

hJ. (xi., geometry) = P QZ} [3.2)
where

A
5 B 9_€=J1-_ (3.3)
3A  9aj

In (3.1) and (3.2),
K = ms stress intensity factor due to perturbation of

tl!19 j-th DOF only,

=
n

crack opening displacement for the top half of the crack only, ard

o
n

appropriate modulus

H E , for isotropic plane strain

(3.4)
H E, for isotropic plane stress

and, for certain classes of orthotropic material problems, H is given
on page D-3 of (6). The superscript (*) indicates K and w values determined

J
for the given geometry for some arbitrary reference state of loading.

K*j, may be rewritten in terms of the strain energy, U* as

(3.5)

fin this report, repeated subscript indices do not imply summation.



Combining Equations (3.2, 3.3, 3.5) then gives the final form of the
influence function as

'J_ 3A 3U* 3w* (3.6)
' H 3a, 3a | 3d
J

It is seen from equation (3.6) that one need only determine
the strain energy and c”ack opening displacement for any single, simple
reference stress field applied to the given crack, and structural geometry
to determine h.. For some simple problems these quantities are known
by exact closed form expressions. They can also be measured experimentally
(12) or, more commonly, can be determined using numerical stress analysis
techniques, ihe analytical and numerical methods are described in some
detail in Appendices A, B, and C for three cases of increasing complexity:
a two-dimensional crack with one DDF fo*' crack propagation, a three-
dimensional crack with two DOF, (both size and shape may change), and
a three-dimens onal crack with four DOF (size, shape, and centroid of

the crack may change).
3.2 Some Exact and Approximate Influence Function Solutions

Table | lists source information for influence functions for
many geometries of interest. For convenience, all influence functions

utilized in Sections 5 and 6 are given below.

3.2.1 Center-Craclied__Strip

Fig. 2 shows a symetrically loaded center-cracked strip of width 2b.



The influence functions for all three loading nodes for this two-

Jinensional problem are given in (6) as

Zcari
111
[exact solution) (3.7)
hil 140.2967/1-(x/a)® (1-cos -a)* hjjj (+ 1 error)
2b f
(3.3)

In the limit of infinite width ((<4-—- > 0), the functions for
all three nodes reduce to (2.4). Equations (3.7, 3.8) have been programmed
and the subroutine (1F2-1) is listed as part of Appendix D and applied
in Section 4. 3otn IF2-1 and a published solution a>t? used in Table Il to com-
K anr a finite width plate under uniform stress. The excellent agreement

between solutions confirms the accuracy of the two-dimensional IF computer

method for this seometry.

3.2.2 The Two-Degree-of-Freedom Buried Elliptical_ Crack

Reference (1.0) presents the exact h and K. solution to this problem
(Fie. 6) for the case of arbitrary Mode | loading. (X, y), across the
elliptical crack with major and minor axes a_  and a, in the x-y plane. The
solution is derived by substitution of the appropriate displacement and

strain energy expressions in Appendix B into (3.6) and (3.1) to obtain



wrrrow

9 (kji_ + \a2qi-? (x»y) dA
ECOSa* i/ -
K
X
i E(k) /2 - 3 E(k)' |
—r [ a; mrsa”’ 2
(3.9)
i VAN
J (k) aS°zz (x,y) dA
K \  EK) a
y
T il- (K)
3 ETK)3a

In (3.9), E(k) is the complete elliptic integral of the second kind with
k2 = I-(ax/ay)2 and a = | - (X/ax)2 - (y/ay)2.

The area integrals of the above expressions are evaluated numerically
using a rectangular pattitioning scheme with a refined grid near the crack
front, a —» 0, to account for the t 2 singularity. Trial-and-error has shown
that for all 30-40 test cases investigated, with exact solutions for , 300
rectangular partitions are sufficient to obtain KX and Ky with less than 2.5
error and in less than three seconds central processing unit (CPU) time on the
IBM 360-67 computer. Table IlIl compares the three-dimensional IF computer code
(IF3-3) calculations with the exact solution for a circular crack under two

complex stress fields.

3.2.3 The Two-Degree-of-Freedom Quarter Ellipse Corner Crack in a Quarter Space

Reference (11) applies a three-dimensional boundary-integral equation
computer program (17) with Equations (3.1, 3.6) to obtain an accurate numerical
solution to this problem pictured in Figs. 5 and 7. Also, a fairly accurate
approximate solution can be obtained using a two-dimensional analog from (20).
Appendix B presents the approximate solution method which, typically, leads to

Vs computations within 5 of those resulting from the rigorous, full three-

dimensional analyses used in (11).
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3.24 The Two-Degree-of-Freedom Half-Ellipse Surface Crack in Space

Appendix B uses the two-cimensiondl analog mentioned above to obtain
approximate solutions to this problem, illustrated in Fig. 7.
3.2.5 Three-bimensional Problems with Finite Width and Other Effects That
Must be_ E\'aduated fiumerica!ly
As discussed previously in this section, both analytical (11, 17) and

experimental (T2) three-dimensional solution capabilities exist to obtain cracF
face displacements to compute tae h and K with Equations (3.6, 3.1).
J J

3.2.6 The Four-Degree-of-Freedom Buried F.fiptical Crack

Appendix C presents a new exact solution for h and K , j = 1, 4 for the
four DOF buried ellintical crack shown in Fig. 8. Thié four DOF model allows
independent growth of the major and minor elliptical axes and also translation
of the crack centroid. In other words, opposite ends of both the major and minor
axes can grow at different rates. Four DOF are necessary to analyze crack growth
under stress fields (x’.y’) that are not symmetric with respect to the elliptical

axes.



4-0 RESIDUAL FATIGUE LIFETIME PREDICTION METHODOLOGY

The use of two- and three-dimensional fracture mechanics analysis to
predict the residual lifetime of sharply notched or cracked structures has been
described in many previous papers (e.g. 2, 10, M, 18 19). Previous literature
has defined the three basic inputs to fracture mechanics lifetime prediction
as: (1) the experimental evaluation of the material's crack propagation law
under the appropriate thermal-mechanical loading cycle, (2) methods for the
analytical calculation of crack tip strain intensity factors, and (3) methods
(e.g. nondestructive inspection) for accurately defining initial flaws and early
detection of crack initiation. A procedure that utilizes the IF method in
conjunction with these three elements is presented in general terms below and

is adapted for specific applications in the next two sections.

4> Two- or Three-Dimensional Crack Propagation Analysis Procedure

The basis of reported life analyses is the notion of a finite number,
n. of character!'stic dimensions a.; i = 1, n, to describe crack geometry.
Crack propagation is then described by keeping track of the which are called
degrees of freedom or DCF. The continuous stress intensity factor function K(s)
is similarly approximated with a set of discrete stress intensity factors ;
i = 1, n, each associated with an a.. The applied general empirical model

of three-dimensional propagation is then expressed by n equations.

dfr ~ *» (K., Material, Environment, History) “4.1)

whore

=
"

residual lifetime;

K- - stress intensity factor associated with a.; and

-n
|

= empirically determined function.
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Each equation in (4.1) states that the instantaneous cyclic growth rate da’/dN
of freedom a. is given by the empirically determined function F. Further, (4.1)
implies that all load and geometry information relevant to da?/dN is contained
in one and only one stress intensity factor K.. The function F is independent
of load and geometry and ir.dy be obtained in the traditional way from simple
planar laboratory specimens. The stress intensity factors K each contain an
alternating component and mean value I'nedn associated with the alternating

and mean component of the stress cycle. A - and Cmean

Residual life prediction is accomplished by formulation and solution of
A 1) A four-step method is employed for life prediction. The steps are:
(1) Obtain F from simple specimens. F is often expressed in the
form of piecewise power functions of /K (e.g. da/d’i = C'K' ) for

given B, material, environment and history combinations.

(2) Determine the uncrac_ked structural detail geometry, loads, and, to

the extent required by step 3, stress.

(3) Model the propagating crack. This task includes selection of a
model with an adequate number of DOF, specification of the initial
and final track configuration aT. and ar. ann definition of K..
Further, an IF method-based algorithm is derived to compute all
of the K as functions of stress and geometry, especially the

changing crack geometry a..
(4) Substitute in (4.1) and solve for the life N.

The above procedure has been successfully anplied to predict fatigue
lives in many instances where accurate uncracked stress and material crack

growth rate data were available. Published examples of two-dimensional analyses
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in (21) and three-dimensional analyses in (Jl) exemplify the good agreement
obtained between calculated and observed fatigue crack growth. Additional
examples of fatigue growth calculations for a weld crack and a vessel or pipe

nozzle detail are described in the following sections.
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5-0 FATIGUE ANALYSIS Of A WELD CRACK

A weld seam under longitudinal (y-direction) load symmetric about
the y-axis, with a transverse through-thickness crack of length 2a is
illustrated in Fig.9. This section describes the analysis of fatigue
growth of the crack for two plate widths. The first width, 2b=10",
models a laboratory specimen while the second width, 2b - % models
the case of a pipe with radius and length substantially larger than 2a.
The longitudinal stresses include uniform alternating and mean components,
Lo and ' , respectively, and a complex residual stress field, e (x),
as illustnr]'ated in Fig. 9, for the case of the ten-inch specimen.reSThe
residual stress function is slightly different for the case of a large

pipe because of the additional elastic constraint; both residual stress

distributions were estimated from measurements in (22).

Since the subject problem assumes only one DOF, a, (4.1)
reduces to only one equation for application of the four-part life pre-
diction procedure given in Section 4. Equation (4.1) must account for the
effect of R-ratio, R=K.!lin/KM>;, on da/dN. For simplicity, a crack growth
relation suggested by Forman (23) for positive values of R has been applied
below for dll values of R, and, as is shown in (24), the relation over-
predicts da/d’i for negative R. The applied crack growtn relationship

is based on the weld region material data in (Zb) and is given by

da - 14 x 10 K 0
N rax
da = 0 0

d;j
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where the force, length and time units in(5.1)are kilopounds, inches,
and constant-amplitude fatigue cycles, and K[ridx= AK/(1-R). The initial
crack length is assumed to be Pa* = 0.25" and the final crack length, 2ap

is defined by the fracture toughness

Kmax(af) - Iﬁg = 150 ksi(in)? (5-2)

The above information and Fig. 9 comprise the first two parts of
the life calculation procedure and the crack problem model of the third
step. A computer program (IF2-1), with complete listing included in
Appendix A, has been written to accomplish the remainder of the procedure;
namely, the computation of K components using Equations (3.1,3.7,3.3), and the
numerical integration of (5.1) to obtain the relationship betweer crack

length and number of fatigue cycles (a vs. N).

Three load cases were analyzed for each of the two geometries as
summarized in Table IV. Appendix A lists the tabular computer output
for all six cases, ard Figs. 10 and 11 present the corresponding a vs. N
curves. Figures 10 and Il both ind’cate that, for the case of zero minimum
stress, = ' :/2=12.5 ksi, the residual stress significantly increases the
crack growth rate in the early stage and substantially reduces overall
fatigue life. The two figures also show that, even for the the case of
applied cyclic compression, corresponding to o = -17.5 ksi, the positive
residual stresses permit some initial growth of the crack followed by

subsequent arrest at Kmax "0 in Fur. (5.1).
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6- 0 FATIGUE ANALYSIS OF A PRESSURE VESSEL NOZZLE CORNER CRACK

Figure 12 shows the normalized stress o (X,y) contours computed 'n
(26) for a 1000 psi internal pressure at the pipe-nozzle junction represent-
ing an HSST program, intermediate test vessel. Figure 13 shows a hypothetical
corne" crack of initial dimensions ax = - 0.5 in. at the peak stress
location and also gives an equation which, when divided by the factor
4.662, fits the stress contours of Fig. 12 with 0.165 ksi average error.
The above factor represents the ratio between the actual and normalized
peak stresses estimated in (26) for the heat-up and cooldown vessel
operation transient. For simplicity, and due to the lack of a full thermal
stress distribution, the stress contours in Fig. 12 are assumed to apply
for all loading components (e.g. thermal as well as the pressure loading).
However, as demonstrated in Section 5, the IF method is capable of
analyzing more complex cases with combined stress distributions and non-
proportional loading. The equation in Figure 13 was obtained by multi-

parameter least square fit.

Table V lists tie vessel-nozzle junction, peak stress levels and
the frequencies associated with eleven types of plant operating transients.
The Table uses the conservative ASME Code (23) crack growth relation to sum
the individual da/dN contributions of all transients and obtain the final

crack growth relation

d_zil. 1.4 x 10°7 ."K.3-726,

" , i=Xx,y, (6.1

where the force, length, time units of (6.1) are kilopounds, inches, and

40-year increments of plant operation.
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The equations to compute AK* are derived from the approximate

corner crack (Fig. 7) solution in Appendix B and are given by

L--LiLOa *

/
K l fA\ax

X

JL - 3E ()
ay y

where fc is defined in Appendix B.

Equations (6.2) and (6.3) have been incorporated in computer program
IF3-3 which also substitutes the K., i = x,y values in (6.1) to compute
dalldN. The computer program then obtains a, and ay as a function of N by
solving the two simultaneous differential equations in (6.1) with a modified

Hamming's predictor-corrector numerical technique.

Figure 13 gives the results of the three-dimensional fatigue
analysis. As seen, the nozzle is estimated to endure 20 to 25 times the
expected (26) number of load transients in the 40 year plant operation.

The infinite solid model used herein is expected to break down approximately
at the "20 N" crack front contour in Fig. 13. As a temporary measure,

FAA plans to incorporate appropriate forms of the ASf/[E Code (28) approximate
finite width correction factors, such as the subprograms listed in (27), in
all its three-dimensional computer programs. A long range goal is to apply
a three-dimensional BIE program (17) to compute h rigorously for 3-D finite

width geometries with the methods detailed in Section 3.
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CONCLUSIONS

The infljence function (IF) method is an efficient, general
procedure for elastic fracture mechanics analysis of structures

with cracks in regions of complex stress.

Once influence functions are obtained, the IF method requires
only the stresses in the uncracked structural detail and thereby
eliminates the need for full two or three-dimensional stress
analysis ior each considered loading, c*ack size, shape, and

location, and increment of fatigue crack growth.

Since influence functions depend only upon geometry, they may be
computed from the crack opening displacements for any convenient
simple loading that can be accurately solved by analytical,
experimental, or numerical techniques. This eliminates the
numerical errors caused by inclusion of actual, complex

structural loading into computer stress analysis of cracks.

The IF method accounts for such three-dimensional complications
as complex crack shape, crack shape change during fatigue growth,

and variation of the stress intensity factor along the crack front.

The extension ot the IF method to more complex geometric models
is direct, requiring only specification of a model with appro-
pridte number of variable dimensions together with a minimum
number of two- or three-dimensional stress analyses to compute
the IF. Thus, the majority of crack problems are brought within

the scope of an efficient elastic fracture mechanics procedure.



The significant effect of residual stress upon fatigue growth

of a weld crack has been demonstrated with the IF method.

The fatigue growth of an elliptical corner crack in a geometry
representative of a reactor pressure vessel nozzle has been
analyzed, demonstrating the ease of use of the IF method for

a three-dimensional problem with complex stress distribution.
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APPENDIX A

Computation of Influence Functions and Stress

Intensity Factors for Two-Dimensional Problems

Al Calculation of Two-Dimensional Influence Functions, h

Consider a two-dimensional crack, oriented in the x-direction, for which
the one degree of freedom is the crack length, a. Then the area increment dA

in Equation (2.1) becomes t(x) dx and (3.1) becomes

h(x, a, geometry) (x) t(x) dx (A.D)

Since the area of the crack (assuming unit thickness, t = 1) is simply a, the

general equation to compute h (3.6) then becomes

The influence function given by Equation (A.2) may be determined using
w* from known, closed-form solutions or calculated from any appropriate numerical
stress analysis method, such as finite elements (FE) or boundary-integral

equations (BIE), as in (11_, IJ?).

To illustrate the use of analytical displacement solutions to determine
h, consider again the simple infinite plate case of the plane stress problem

shown in Fig. 2 for which

: c (A. 3)
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and the crack face displacements are known to be (S)

2/\
w* (A.4)

Therefore

*

d_w
L>a

(A.5)

and, from (A.2) we compute

which agrees with (2.4).

Numerical stress analysis to determine h, for each crack geometry cf
interest, can be performed in one of two ways: (1) using two separate stress
analyses of slightly different crack si?e to determine h from incremental
differences, or (2) usirg one stress analysis to determine strain energy and
crack opening displacements as mathematical functions of the different DOF,
for substitution into Equation (A.2) to determine h. Both methods are illustrated

below.

The method of using incremental differences between two stress analyses
to obtain h can be illustrated by the problem of a through-the-thickness edge
crack in a finite width strip (Fig. 4a). This problem has been solved using
a boundary-integral equation program in (13). Special care was taken in
modeling the crack, perturbing the crack tip, and choosing the arbitrary
reference loading. Experience has shown that the optimum accuracy and efficiency
results from a breakup of the crack into equal size segments over about 80

of the total crack length and successively smaller segments near the crack tip,
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with approximately a mirror imaye of/this breakup for some distance beyond the
crack tip. Perturbation of the crack tip is best accomplished by moving not only
the one node at the crack tip, but a series of nodes vey near the crack tip

(see Fig. 4b). Finally, the most accurate results are obtained when the crack
surface is uniformly pressurized. Having solved these two nearly identical stress
analyses, the work done by the applied loads (strain energy) for each crack
configuration is calculated. Then the incremental changes in strain energy, £U,
and crack opening displacement. Aw, between the two analyses are computed and

these results are used in the incremental form of Equation (A.2) to calculate h.

/1 AU\ " Aw

[H M} Aa FiT

The second numerical method to determine h requires only one stress
analysis for each crack length of interest. Then, U* and w* are determined as
mathematical functions of crack length (using, for instance, a least-square fit)

for substitution into Equation (A.2).

The two-dimensional influence functions can also be obtained using finite
element techniques, although such techniques in general require longer modeling
times, data preparation times, and computer run times than does the boundary-
integral equation metnod (13). However, for the specific choice of a uniformly
pressurized crack face leading, the finite element-computed influence function
results agree with boundary-integral equation results for a large class of

problems (no published reference available).

A.2 Calculation of Two-Dimensional K

The best way to use the influence function results, as determined above,
to compute K is to ratio those results to numerical results for some simple

reference problem geometry. This eliminates most systematic errors which might
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be inherent in the stress analysis and avoids the curve fitting of singular h
functions. The use of ratios also permits more accurate programming of the

stress intensity expressions (for purposes of life calculations, such as in
computer programs listed in Table 1) provided the solution to the simple reference
geometry is known in closed form. Using this method, a new function f may be

defined as

h

h (A.8)

where h' represents the influence function for the reference geometry. Similarly,

two new functions g* and g* may be defined as
U
9ol If g2 M S)

where the superscript (') again refers to the reference geometry, and the
superscript (*) has been dropped for convenience. Combining (A.l) and (A.8)
gives

K = 7 f(x, a, geometry) h' o(x) dx (A.10)

X
and combining (A.2), (A.8) and (A.S) gives

f (A.11)

Thus it is seen from Equations (A.10) and (A.11) that the best choice of a
reference problem is one for which h' (or U and w'; from which h' could be

determined using Equation (A.2)), is known exactly.
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The most convenient two-dimensional refeience problem for which a closed
form solution is known is a through-the-thickness center crack in an infinite

body for which h has already been given in (A.S).

Therefore, f may be determined by combining the results of stress analyses
of the actual problem and the reference problem as in Equation (A.S). This f

may then be used, with Equation (A.10) to determine K. Thus

It is best to perform a number of stress analyses in order to determine f, ,
and g, values in terms of the necessary geometric parameters, and then to
employ a curve fitting procedure to define expressions for f, g* and g* which

may be used in (A.S - A.11).
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APPENDIX B

Computation of Influence Functions and Stress Intensity

Factors for Three-Dimensional Problems

Analytical calculation of h, K, and K(s) is restricted to a very small
class of three-dimensional problems, as ndicated by Table |, because of the
scarcity of three-dimensional displacement solutions. However, Appendix C and
(10) do obtain exact solutions for the elliptical crack problem. Other three-
dimensional problems will be solved numerically and/or with approximations

derived from analogous two-dimensional solutions.
B.1 Numerical Methods for Three-Dimensional Anaiysis

The numerical methods described in Appendix A for two-dimensional problems
may be extended to three-dimensional problems. Consider a three-dimensional
elliptical crack, oriented in the x-y plane, for which the two DOF are the two
semi-axes of the ellipse, a, and ay. Then dA is dxdy and Equation (3.1)

becomes

K J J hA (x, y, a , ay, geometry) o(x,y) dxdy

(6-1)

Ky I’ hy (x, y, ax, a®, geometry) o(x,y) dxdy

Since the area of the crack is "axay, the influence coefficients hx

and h are given by Equation (3.6) as



26

tra.

3U* ow*

i H |)ax 3a
\ 2

na 3U* ! 3w*

8d. 3a

(B. 2)

To illustrate numerical methods to evaluate (B.2), consider the problem

of an elliptical corner crack in an infinite

body (Fig. 5a). The most efficient

current stress analysis technique for three-dimensional crack problems is the

boundary-integral equation method (1J).

in Fig. 5b and discussed extensively in (11).

calculate h, with the incremental difference

perturb only one degree of freedom (one axis) at a time.

Modeling of this problem is illustrated

If two analyses are performed to
techniques, care must be taken to

Equations (A.10) and

(A.11) may also be extended to three dimensions so that

KX = j j ﬁ( (X’ y! aX1 ay:
J J fy (x, y, ax, ay,
and
. U’',-l |
9 U 9,
3a i
X I
Slorotd (5PY) (<Li I g2
y ‘ay |/ '

geometry) rV o(x,y) dxd>

(B.3)
geometry) hy o(x,y) dxdy
r W‘ ( ‘V; |) '1 'q'
3a*. 9
X
(B.4)
+w (g-r1t 33 |
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The only three-dimensional problem with an exact crack opening displace-
ment solution is the buried elliptical flaw, under uniform pressure, for

which the strain energy is (14)

(B.

v ThTTKI (B. 5)
2
where E(K) is the complete elliptic integral of the second kind with k
2
I-fa~/a”) . The crack opening displacement is given by (ljj) as
200aX
w ¢ HETKT a (z-9)
where oi=Il-(x/a - (y/a )c. Using Equations (8.5) and (B.6), Equation C.%)
X y
then becomes
+ Al
9a 3
i -Hr
-1
f
y

The functions g* and g”, defined in Equation (A.9) may be determined

by stress analysis of both the solution geometry and the reference geometry

The rfcthodology given in this appendix has been applied in (IJJ to
solve the two DCF quarter-ellipse corner crack from only twelve full, three-
dimensional , boundary-integral equation stress analyses. Furthermore, the
methods described here could easily be extended to problems with more than one

or two DOF in order to solve much more complex geometries and loading states.
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B.2 Estimation of h for Three-Dimensional Problems From Ana logous Tw
Dimensional Solutions
Lacking the tools and time to oerfonn numerical three-dimensional
stress analysis, three-dimensional h can sometimes be estimated from analogous
two-dimensional h values. The estimated results may be in error and must be

checked against known analytical and experimental results.

To illustrate a two-dimensional approximation, consider the elliptical
surface and corner cracks in Fig. 7. The correct way to solve either of the
problems in Fig. 7 is outlined above and performed in (11 j. However, an approxi-
mation was initially assessed to compute K for surface and corner cracks in
infinite sol'ds. Fig. 7 illustrates the applied procedure. The influence
function due to Bueckner (2Jj) for the two-dimensional surface crack in a semi-
infinite plate is applied to each cartesian line of the elliptical crack that

intersects a free surface.

For two-dimensional problems, Bueckner's equation may be rewritten as:

K25 h*. (x, a) o (x) dx (B.8)
'0
where:
h28 = h'<’e (<)
hrc = two-dimensional surface crack influence function
h, = two-dimensional internal crack influence function for '(x) = ~(-x); given
in (2.4)
K2s = K-factor for two-dimensional surface crack for any o(x)
l. - xla

(o]

-l - /
and fs (x) = + x (1.3188 - .7884x + .1768x ) (B.9)
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By breaking up the surface and corner ellipses as shown in Fig. 7, inexact

three-dimensional analogs to (B.8) may be constructed for the surface crack.

h(@s) U.y,ax.ay)= 2hx 5 (x,.)

(B.10)
h(y} (“y.ax,ay)= 2hy fs (xs)
and for the corner crack
h(x) [fs ~s5 + s (*s) "I
(B.11)
h(y} (xX’y’ax’ay)= % fs + fs (ys) -
where
Xs ) XIxmax
axd - y2)1
(B.12)
Y 7 ¥Y¥max
a (1 - x2)-
y f

Equations (3.9, B.l, B9 - B.12) are being used to estimate Kx and Ky for
half-ellipse surface cracks and quarter-ellipse corner cracks. Table VI
compares normalized local values of K, K, with normalized K for several crack
geometries under uniform stress. The differences between K and K follow
expected trends. For example, for the embedded circle.
A
K
y

=1 (B.13)

For the surface cracks

K > K > K > K (B.14)
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vy
and this occurs, as expected. For the corner crack
A A
Kx = Ky < KX = Ky (B.15)

since, as shown by (11), the K level is highest near the surface.

Perusal of K and K results (11,28) for various points on the circular
periphery indicates that the K values computed here for surface cracks are
too high. The errors are up to 5% fcr the circular crack and less for

el lipses with b/a > 1.

I

For the elongated ellipse (b/a ¢ *) the surface correction is expected

to increase Kx by about 13/ as for the two-dimensional crack. Table VI shows

this expected trend.
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APPENDIX C

THE FOUR-DOF BURIED ELLIPTICAL CRACK

C.1 Introduction

This report introduces a new technique for residual lifetime estimates
for structures with part-through cracks. The notion of a set of stress intensity
factors (K#) is introduced to predict crack growth rates. Each k\ is related
to the strain energy release rate due to perturbation of only the ith crack

dimension or degree-of-freedorr, (DOF).

This appendix presents the exact solution for the case of a four DOF
embedded elliptical crack, described in Section 3.7.6 and Fig. d, which allows

selective axis growth end also allows x' and y! translation of the ellipse center.

A new computer code (IF3-1) has been written to use both the two and

four DOF results given in the report.
f2 P_ro_blem Desoription__and_ liefini tion

The x' -y’ origin is the initial center of the four-degree-of-freedom
(A DOF} buried elliptical crack in an infinite solid shown in Fig. 8. All
four DOF (a®, a®, a”®, a?) are measured from the X'-y* origin. The origin of
the coordinate system (x,y)that moves with the ellipse is the current ellipse
center as illustrated in Fig. 8. As shown, the ellipse dimensions are 2a*

and 2a

This kinematic description in terms of two coordinate systems is very
useful. This is true because it is obvious that under the applied reference

uniform stress field o*(x,y) = o”, the crack opening displacement (COD) field
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,a , X, and vy.
y y

The COD function for the upper crack face is given in Appendix R

is a function of only oo, ax

as
- °0 3x
w NninT " a c.n
Expressions for Kt, h., and (i = 1, 4) are now derived. These are the

reference (uniforn stress) root mean square irnis) stress intensity (K) factors,

the influence functions, and the general rms K-fcctcrs.

C.3 The Kt Comput;ation

From Section 3,

K> = (H Gl (C.2)

where the asterisk denotes the reference condition and the strain energy

release rate is

9d1
Gi A" (C.3)
and where the ellipse area is a A = -ax = —f (a* + a*} (a® + a?), and the
strain energy is
. *
u* o w* dA (C.4)

By inspection, a perturbation of a* will open half the new area and release

half the strain energy that would equal perturbation of That is
aa, aa, (C.9)
WA aA a
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3U* 3uU*
334 2 3 (C.6)
Thus, combination of (C.3), (C.5). and (C.6) gives
Ki = k: (C.7)
k2 K (C.8)
and
K4 K (C.9)
y
where K* and K* are derived by setting oz (X, y) = oo in Equation (3.6) in
Section 3, obtaining
K = ?c a uJ "2 3E(k) r
VX 0o X [JECKT  ax E(k) 3ax; (C.10)
« = o - \i—  J- —TE(k)__,
W = %4, EK ay E(K) 3ayi (C.11)
C4 The Computation of Influence Functions h.

The basic formula for influence functions is given in Section 3 and
the influence function for some point (x1, y') in the fixed coordinate system,

may be expressed as

3a
; W . H 3w* 1
hj (@, xt, y) = 3 TA (C.12)
Ki 1
Since w* depends only on - , a”®, a X, and y, it is advantageous to express
Sw in terms of From Fig. 3,

3a 1 od
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aj = ax - x + X (C.13)

aj 2ax - a2 (C.14)

The differentials of (C.13) and (C.14) are

daj = dax - dx + dx (C.I15)
/
datl = 2dax - da2 (C.16)
/

where dx' is zero because the reference point is fixed in the stationary
X'-y’ coordinate system in terms of which the stress fields a(xl, y') are
defined. The term da2 is zero because and h* are quantities resulting from
the perturbation of only the first freedom. The solution cf (C.15) and (C.16)

is

'3': a— (C.1Im)
Application of the chain rule and (C.17) yields
] 2w @
where the partial derivatives of (C.l) are
I:;‘g; " w (x> y ax’ \/w{J1 ‘ Eg(l%‘ga _+ 3 (C.19)
a  a

and
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* %

%V)V(— WX (C.20)
Combining (C.18 - C.20), we obtain
J% iﬁR% L3y g?@% (C.21)
Combination of (C.S), (C.10), (C.12) and (C.21) gives the influence function

for the first freedom.

the second, third and fourth freedoms, i=2,4. All
expressions.
1_ _ 3E(kJ
ah E(k)aa
ra . N
Ejjk) 2 5E(k),
2, Y YT A
vKil. + v. w ! 2
a 2 EIK) 3a a2+=\a ,27
- A V4 X ->
n dx ay E(k) F7 32(k) )
L 3 Vay ~ ATk} 3ay 7

C.5 The Computation of Stress

Stress Field (X', y'l

The K.,

h* as given in Section 3 and Appendix B.

The result is

Similar developments lead to similar expressions for

h* are given by the following

(C.22)

(C.23)

Intensity Functions for Completely General

i=1,4 computations follow immediately from the definition of the
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hr
hi (ax’ ay’ X O(x'>y') dxdy (C.24)
A
where
xi = x +a, -a
1 X
\% =y +t 83 - ay
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APPENDIX D

Listing of Computer Program IF2-1, Data Listing and Results of

the Six Weld Crack Fatigue Analyses of Table IV.
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oo

=2 ]

'§'jfsru* \= s=LIM',, "<vixir i

rstsiu ,C< L}0 1_osisclI ..sxtsoi

M« is i-iaao. 5-i.C
sc ~(s,3) 1\

i :5i
svi.715. M (e i, rsiii)’
) =riptc.’
Clo iz2rv.
i) s
cs tl )I' cs 11 )-csi;, =11
OM  Cmi I-CXI! - ¢)
cr.”Nos
c: i =1
i=X-CM,;Mi
is (r,) f, C,7
CC* ¥ r. E

lat x|

$-CSU). » DS(J*t! / CXuit

§ - (1Sl - 3§
SO - 0.
s6TJ2'4

E\D

Linear Interpolation of ore$ (x) Function

Which is Input as a "Table."



. e SCAT a

Die. TH3L»-C7T AN ol'iiL a.v RfcStOUSI STOPS'. :
0t 126073 <5 Aj Lines 230-366
1 :C_CC' " O min Input Data for Six Fatigue Analyses of Table IV.
ai*.. .- I/ E A
0 15. 1.75- ofCHp ~y
*30. Ao n K lc
> 37. 5.
236. 0-015
.33C. 52.5
?S0. LN 70.
. Hl) . Residual Stress Table for
142 32.
o '\
"3 1 'g i17; res ™ -~ 'res
’ss. 2.7 7.
Oftt. 3. 2.8
3.6 0.
*5 -c,
548
250. 7. -3.2
251 . 20. -7.
252, <75
253, 1 CCCO003.
ThSj-CrACK.
2 35. . 125003
2 5t. 1¢Co* <36 .
257 . 1.
2 5e. 1. 25,
250. . 1.72-072.77 iso.
20d° K> 3.
2tl. 3.
26 2. ACC15
2(3. 53.5
265. e 50.
265. .3 76 .
266. 1.2 32.5
2c7. 1.6 18.
263. 1.8 17.
267. 2.7 7.
270. 2.6
271. 3.6 0.
272. 7.5 -2.
273. 55 -2.6
27-. 7. -3
275. 20 . -7
276. 27.5
277. 10C0C00.
2 7a. Th«c'-ORACX
277. . 125003
230. 5.
261. 1.
262. 1. 25,
233. 1.7¢c-072.77 i so.
237. 30. 5.
Fte. CCCil
267. 52,

-t " + V. ofii.



v, 1.2 20.
?<1. 1.( 7.°
292. 1.6 3.1
2.5 -l
-1,
255. 1. ¢ -7
. 5.3 - 35.
2NT. 5.6 -37.
?So0. THoJ*CPACs IN A orL LN)t* NCAINAI AT =S I"UAI STPtSS
28> . 1125003
3CC. 5. - 30.
3C1. f
302. | . 56.
3C3. I.s£-C72.74 17 1.
30-.. 3C. 5.
3C5. 3.
3 Co. coon
307. 52.
3Co. .5 57 .
3CS. 9 36 .
3IC. 1.2 20.
311 . 1.6 7.
312. 1 ¢ 3.7
313. 2°s - .
Jis. 3. -17.
313. }.« e
316. 5.5 -35.
-IT. 5.5 -17.
3lo. TTfi't-CEACS IN 1 otlO LN31!' fTfriAl ANO ofSIDLAL EieiSS
318. . 125C03
320. 1CCO. 0.
321 . t.
322. Ce 26.
323. 1.5;-m3'.2.75 HO.
32s. 3C. 5.
325. 2.
326. 000 15
327. 525
323. .5 5C.
328. ot 55.
330. 1.2 32.5
331. 1.0 1°.
332. 1.8 15.
333. 2.< 7.
3 25. 3. 2.6
325. -t 0.
336. 55 =7
337. 55 ~ .t
33e. 7. -3.2
33S. 2C. -7
350. 27 5
351. IC 0J000.
352. TH>J-C ACis If A oHCD LN3tP fiCMI*IAL tNC AE? ni)Al STArEc
353. .125003
355. 5. 0.
355, 1.
356. 0. 25.

357. 1.65-072.75 150.



3AL.
?A0.
15C.
101

3S<;.
J. 3.
35'..
i'Ji.
3jbe
3-iT.
353.
359 .
3aC.
3cl.
362.
3t3.
it™.
303.
366 .
367 .

2C.
27.5

1003000.

tsrc?
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JDATA

THRI-CKACK n A VELD IWUER NOMINAL AND REStCUAI STRESS - Case 1

FHE INITIAL HALF CRACK LENGTH IS 0.12500

OELTA SIGMA MIN SIGMA EFr-rcTivc FRACTION OF P.ESIDJAL STRESS HALF PLATE WIDTH
27°-000 PAO0O000 A,”000 (Tooo.0%) Large Pipelnfinite Plate
L 1 g N*C*] K IOFFCCTIVF-K TH Kl C*l I.-REFF)-KIEFf rc Tl VEI
The o ANTC C(RuEE- ARt g/ CAICN'CY) K IOFFCCTIVE-K TH) ol S-KIEFT e
O.IROE-06 2.TA 0.000 ISO.

THE ALABER oOF INTECRATI'VN POINTS TO COMPUTE K-FACTORS IS  30.
THE NLNStR ofF LIFE INTEGRATION POINTS TO DOUBLE THE CRACX DIMENSION IS 5.

HALF
CRACK RES IOUAL STRESS THICKNESS STRESS INTENSITY FACTORS EFFECTIVE CYCLIC CRACK CYCLIC
LFNISTH AXIAL SHEAR KMAX K MJN DELTA K KMIN /KM AX GKOLTH RATE LIFE
A SXX(A) SXY (A) TUI K MAX K“I N KMAX-KMW R EFF DA/ON N
0.12500 51 .72 0 .00 1.cOCOC AB.60 32. 82 15.7,6 0.675 0.B16E-05 0.
0.1A358 51 .60 0 .00 l.ccoco 52.0A 35.13 16.91 0.675 C.102E-OA 2026.
0. 1C ASA 51.A7 0.00 l.cCccC 55.71 37. 59 18.13 0.675 0.128E-0A 3863.
0. 13SA7 51 .32 3 .00 1-00000 5S.6A AO. 21 19.A3 0. 67A 0. 161E-0A 5579.
Ce2176" 51.1A 0.00 1. ocooo 13. £2 A3.00 20 .82 0.67A 0. 20AE-OA 7121.
C.25CC1 50.9A 0.00 1.00000 6B.29 A5.97 22.32 0.673 C.260E-0A 8516.
0.: 67 13 50.71 0.0C l.CCCCC 73.C5 A9. 13 23.92 0.673 0.333E-0A 9770.
0.3 <569 50.AA 0 .00 1.CO000 76.12 52.A8 25.63 0. 672 0. A3CE-0A 10339.
0.3/6¢cA 50.12 0.00 1. CO000 63. 51 56.03 27 .A3 0.671 C. 56 1E-0A 11379.
C-%3528 A9.56 3 .00 1.00000 09-19 *>9.74 29.A5 0.670 C.739E-0A 127A6.
C.Scccp o.oc l.coocc 95..09 63.53 31.56 0.660 0.98AE-0A 13A97.
C.57A3C 47,62 0 .00 1.CcOCOC 101.25 67.A3 33.83 0. 666 0.133E-03 1 A139¢
0.(SS7S A6. -5 0.00 1. occoc 10 7.65 71.39 36.25 0.663 C °CAE-03 1A678.
C.75790 A5.53 ¥ .00 1.00000 11A.26 75. A0 30.65 0.660 0.26 1C-03 15119.
0e/1Cfc A2.79 '3.00 1.00030 120.Ct 79.02 4!.64 0.6 55 C.37SE-03 15A72.
1.CCGC5 33.75 0.00 1.cOCOC 12<.13 61. 50 AA .63 0.6A6 0.5A9S-03 15751 .
1e 17676 3a.lC 0.00 1.00000 130.70 2?2817 47*33 0. 63A 0. 79AE-03 159772 .
1.:1E53 23. At 0.00 ieC0COO0 13A.CA 62.77 51.27 0.61P C. 111E-02 16152.
i.c ircc 21.BA 3.00 1 .00000 135.65 BO. 70 5A.95 0. 595 0. 1A1E-02 16337.
feYridi TA.AT 0.0c 1.CCOOC 13". 59 76. 1C Sit .69 0.566 0. 158F-C2 16A50.
2.CCC12 11.67 0 .00 1 .0CCOC 133.AB 72. 3t 63.12 0.53A 0.1 77E-02 16612.
2.iSTIA 8+2C 0.00 1.CCCCC 135.56 67.90 <7.65 0.501 0.20 IE- 02 16770.
2.CJs 19 5.33 0.00 1.00000 125.M 62. SI 72.51 0.A65 0.22AE-02 16930.
3- (Z/£4 265 0.00 1.COO00 135.27 57.55 77.72 0.A25 0. 250E-02 17096.
3.AC2AA 0.55 0.00 1.COCOC 135.2A 51.S§5 63.29 0.38A 0.282E-02 17265.
A CCC28 -0.39 0.00 l.ocooo 135.50 A6.33 £9.27 0. 3A1 0.32AE-C2 17A16.
A+8'?2513 m*2.03 0.0C l.ccoco 13C .26 40. 39 95.67 0.296 0.38RE-02 17603.
5.276A3 -2.62 0.00 i.ooocc 137.9? 35.AA IC2.5A 0. 257 C.5C7E-02 17756.
6Ct323 -2.95 0.00 l.coocc 1AC.39 33. A9 1C9.90 0.217 C.72 6E-02 17883.
6. 5fcAS5 -3.19 0.00 1.CO000 1A 3.7A 25.°5 117.79 0.161 0.129E-01 17972.
8.CCo65 -3.A9 0.00 )-cccoc 1A7.79 21.55 126 .;;A 0. US C.A2AE-C1 Q3007?p

RUN TEPMJNATfC-FRACTURE TOUGHNESS HAS BEFN EXCEEDEC



THRI-CCACK

INITIAL HALF CRACK

OELTA SIGMA

IN' A rLo UVIE - 1*. ‘L

LENGTH IS 0.12500

MIN SIGMA

nc =EStrjAl ST=585 —

Case 2, Negative Applied o
THE

rFrt" TIVE fFAAC TiE:r. rf OTril 2UAL STPr,~ MALT oOLATF V. lorMm
25.000 -30.000 1. TC iof"_ n
TEE Cc“ACK C™Cf."H ELL Ar |1 T, is tOoA/:N= "t MEFFE: TiVr _ Kk THM eVv / (k fcv ( == ' rF)-KBI:FFECTIVE1
TEE CCE STAST'S VALI.f5 A. I M KT E IC.
C - IECf —C6 2. 7E c. ccc
TI'S NLMSEE. Or ISTEdATIrN PJI*T$ 7C rr—rL u b-rtcTCPS is Yo.
THE M. "f:fp CF jiff isn r=AT|C. f "I'T, rc OOHI? 7TM (»AR rl«'sr,sir.:i IS 5.
HALF
CRACK sSNniAL ST- ESS THICENF Ss S7r ESS INTENSITY F AC »ESF E rF ECT IVE cvcllc c56Ci/
A< 1AL L k VAX K VI ™ OH TA X *VIN/KvVA< OCOUTH P AT E
r s>T1A) SAV (A) T(A) K v AX K* 1 KVAX-KVIfi Prfr D3 /.07 1
C. nsco 31.72 >. 30 l.ccccc 2c.67 13.29 16.78 row7p C.E15E-C5 o.
Cc.ir.uss Vi1.c) J.Jc 1 .1ococ 31.75 iE.F? 16.51 o.a67 oO.Ssi 5F-05 397 7 .
0. 1<AEA sS1.E7 0.0 : l.ccccc 33.ro o.8~ 1r .13 o - 466 C. 6 3Er — C5 769 3.
c. iT:A7 s1 .32 --0 1 .00uoC 3t .27 1o.~O 1+.43 O. a6r C. 731E-05 11181 .
ooz i A S1.1A 3. oc | .cccoc 38.8A 1T, 32 20 >m O.ESE c.s8 7E-C6 1E3°2.
c. Esc cl s z.sE 0 -0c 1. LCcCC E .51 177, 15 22.32 O.afc2 C.115E-0-". 17379.
C-2d?a8 s 7i 3,..'0 1.7C ccc A'e . 3<t 7095 " 4neTA o. EM c. 1E 7--DE 7 010,
o. 302" SJ.EE J.rc l.ccccc E7.25 21. 72 2r.63 0.E59 O. 18 3E-OS 22731
c. 276~ 53.13 o .00 1.03030 50.5€E zz.06 27.as O _ant, C. 22 7F-OE 25177.
c.a25 ~ =11 o.occ 1. cccc c E3.ES 2M. 4 1 r7.m3 0.E53 O-2q2r-CE 2 7390.
c.s~ccc <*3.7s o.o0o0 1.03030 b7.27 25-65 31.56 O. 4 4P Cc. 351=-0. 2°E35 .
cC.t7~;c E7. '3 3.cc l.ccccc 6c.66 <ti. 3 3} .8] o#4a? C.47?25r—-cCca 3 1328 .
-7 >33 1.00000 27, 2- 7/ 0. 435 Cc.54Cc-04a 33770.
C. ISTS.” 454c2 o _c i.cccc: 6 7.63 28.78 3-.°5 0.a25 c.< /rr-Ca 34700.
O.ETCfC N2 7 o.~yJ l.ccccc 7C.63 25. C/. E1.6E O.E 11 36712,
i-cccch ? 78 J ,00 lL.ooccc 72.57 27.5/. EE .6 ~ 0. 385 3 7655 .
1. ¥<i 76 3E. 11 o.oc i.ccccc 72.30 25 -7 E7.T} 1.3E7 39075.
1.11«SE 2 3.E6 J . i .crooco 72.52 21.26 51.27 O. 253 EOoSs25.
1.S 1SEC 2 .~ o.oc 1. ccccc 65.71 » A7 fe 8a.4a > 22 4Jj74a .
1- 14iE1 1p.~T J-co i .Oocooo 6<i a.c»? 53.8) 0.053 az 2?2,
2.ccc IE 11.57 ) anr l.ccccc os. 73 -3.35 63.12 —-0.C57 4585 1
2-ES7S4 i.2o0 3 -V lL.cococ 55.37 -13.28 - 7.65 -O.=244 EF2SS.
=.(TN IS 9. 37 lLoc l.ccccc —-2E.10 72.6 1 —0.ao0s8 5 11E9.
3.CE1<8 2-c o.10 1 .1cccc mi-cCl -3s.7C 77.7./ O.10(8-03 =
3- “fE2fiU o.65 o.10 lLooccc 35.29 -En .90 fe .29 -1.3;9 O.55fc- OE 591 39.
. ccczrs -3.M< o. oc i.rcccec 2F .38 —(=z.es5 89.27 -2.1 ES O.F 10c-OE 65087.
S. S«s1J —2.cs8 5.J0 i-LCcLOG 21 .E5 -75.22 =5.6" - 7.4acaq C.£53F - CE 73219,
3-<7cnJ 2. 62 d-cc l.ccccc 14. M -FT.6,1 1IC' .SE -5.867 C.E8E=— OE pP5I3r.
& .Cc6333 —2.95 o.oc 1.02030 6.51 1ci.~. - 11 .521 C.390F-OE 1AL T
t.c<n~rCH -3.19 0. oc 1.ccocc 7. 39 11 9. 1177/ —Srt . 23E Cc.s11E-C5 1 M27P.
C7ACK h/J< ARP. ESTA ); LIEE is
TESL-CFACK IS A »ELC I' 4;C 7 =jrvi® ;L A%Tu cr510JAL 5TP? $5 Case 3

THE

INITIAL HALF CRACK. LENGTH

IS 0.12500



MIN SIGMA

OELT4 SIGyA "
*OUS EFFECT! VE FPACI 1O'i

PES11. 8%4h_) FTpFES

0.0C000
THE CFACK GROWTH p.ci A-10-i is :OA/ON»C*( XIEFFECTI VC-KTM)* <M/ KIC»( I 'EFF)
TFE CC.NSTANT"S wVvALUES APE: Cc H H Tu x! r )
C.I'ACt-Ofc  2.TA Cc.cco I1SO.

THE NLy3fP oF INTEOFATICY PCi“T> TC CCHPITE X-FACTQPS IS
THE NLP5EP CF LIFE riTtCOAilICN I,,INTS TC OCL'OIF THE CPACX

HALF
CRACK 5FSIDUAL STRESS THICKNESS
AXIAL SMF K K
t SXXI1A) Sxr (a) TIJ) KVAX
0. 12ECO SC.91 V'eTC |.CCCCC A7.97
0. iA3S<3 53.7A 0.00 eV, JJ 51.A3
Ceil\ C.ro 1.COCOC 55.07
0. IfcSR* 59.34 J.7C 1.CCCCC 5S.C3
0+ <I7LA 5 .iC 0.30 1.00030 63.13
C.2SD0 1 s HI 1. C'COC «7.59
c.TET1 “roo ““.c: 4-3 ' vl 712.25
0.;2SE9 45.11 O.oc |.CCCCC 717.20
0. 3 TfISA “j.c>a -+ 2c i =cccoc P2 .53
C+A35<9 4,.b" c.CC | .CCCCC 82.13
O .EC *C2 43 .57 - - L« VNICW s 93.67
C.17A3f A .92 t.cc I.CCCCC 99.27?
C.CES7R 41.5s ~c ..CCCCC 1CA9A
Ce '5770 KRR i.ooonc 1I1C .10
0.8 TOtC 3.2 j-cc 1. CCCCC 115.02
1.0CCC5h / *n - *g\) ; .CcCcocC 119-F.4
i* 776 22 3. - | .CCCOC 122 .6A
1.31953 i5.r% G-, ¢ i. cocco 124 .59
1. 515{C i:-i3 ’ 1.COCOC 121.43
iec dui 2 JeCc l.CCCCC 127.35
AeCCCit z i.CCCCC 12P.96
Co <> ™ -c.e? Z.C0 1e0occcC 13C.77
2.t3919 -12- N 0-CC l.CCCCC 132.AA
3.C31<A 7.2 v )0 i .ooonc 137.A3
3.Ae2AL -7L.:2 0.0cC l.CCCCC IAS.21
ALCCC23 —23.30 0-cc 1.00vTOO i74.96

N TEFYINATE :-FR acTAPE TOUGHNESS Has SEEN EXC EEUEF)

THPL--CSACK IN a HELD LN'DE3 NO"INAL ANC RESIDUAL STRESS ~

THE INITIAL HALF CRACK LENGTH IS 0O.’ZS00

MIN SIGMA
-30.000

OELTE S IG*A EFFECTIVE FRACTION

25*cct:

30.
nlyFfSICM IS f..

ST"r3S INTENSI TV r ACTORS

KIN DELTA K
KHI\ KVAX-KVJIN
32.25 15.72
34.55 16.87
36.98 18.10
29. 60 19.A3
A2.30 20.88
48. 2t 22 35
48 ’9 23.55
51 .56 25.70
55.01 27.57
55 .5A 29 59
6i. 9; 31.76
15 .16 3A.U
18. 28 36.66
71.17 286 #4p
73.36 A2 AT
7A.03 A5.no
73.13 4f;. so
70.9A 53+6A
67.76 §<2.3P
63.50 (3.85
58. 1A 73.33
52.01 7*.76
44. 06 r. 3f,
36 .20 17N 15
26.58 122.7A
15. AS 159.51
Case 4

CF RESIDUAL STRESS
I >0000

HAL r “LATE w Jo TH
S.0000

-XIEFFECT IVE)

EFFECTIVE
KHIN/xV AX

?FFF

C. 672
0.672
0.171
0.67 1
0.670
0.669
C.T<r
0.667
C+ 666
0.6(A
0.6 61
3.156
0.651
0. 1A3
0.633
C.613
0. 556
0.569
0. 47?7
0.49'7
0.A55
0. X2
0.333
0.257
0.178
C. C£8

HAuF PLATE WIDTH
5. 0GCO

THE CRACK GROWTH RELATION |% :D A0 NG »&KlEFFECTH/l_Ili-KTH) ** ,M{émc"M | .-REF c!-KI EFFECT 1VE)
K

TFE CCNSTANT’S VALUES ARC:
C.IRCE-Cf 2.7A 0. 0uc

Ti‘E NLJ?EF OF INTEGPAT I'N POINTS TC CQHPLTE X-HACTDRS IS
THE NLNPER CF LIFE IiNTEGFAriCN POINTS TC DCUF-LE THE CRACK

IFO.

3C.
DIMENSION IS 5.

10" Wide Specimen

CYCLIC CRACK CYC

CPu«7H CAT? LI
CA/ON ”

C. 7SAE-C5 0
C.997=-05 2075
C. 125E-CA 3973
C.159E-CA 5700
0. 2CCE-CA 7217C
O.756E-CA 8639
C. 327R-0A 99S5
C.A22E-0A 11105
0O.550E-OA 1211 A
0. 72A: -CA 12993
0.S56E- 0A 13759
C. 127E-03 i4416
0.172F-07? 15008
0. 235E-03 1 5A90
0.323E-03 1500A
C. A82F-C3 16237
0.55FE-03 165)8
C. 702E-03 16F.09
C.P76E-03 17058
C. 1095-02 17287
C. IACP-02 17AC5
C. 18 7F-02 i 76T0
0.257E-07? 17835
C.AHCE-07 179A |
0.132E 00 1 7PAR
0.668E 00 Qj'vvsT

Si



C3i0< H

TH-C-C"-C" IN 4 .ECO

Tet'

" 13l
Sy Mi
S i
b2 i"
A f_

R
A

<t Lw)

[
V5. 7
A3.7:
41. 3
7 (.11
3 #u/
27.V)
22.il
1Le26
1J.13
4.-3
"y enn
“n o
-12.15

-17.2t
-21.32

A5 £S7t;i:

DELTA SIGMA
25.000

T4S C4A;« oco"." "
CCNSTA\T 1S V7 LT

Tt-*:

H= NI_NPrc

H? Ni.v" t-

HALF
CRACK
7

0.12'¢c3
3.143V)
c. i(* <4
C.itOF?
o.:17M
C.2tCC

Lir-:

I INTEOSA™:—

Cf Lir?

=
— -l
(11
1. 1)
Yoamee:

sf~:. A

YA
>.»C
3.05
) JNi
J.J!'
> jr

is BTN\

" mlL-EF -CMOIl
HE INITIAL HALF CRACK LENGTH
min SIGMA

0.00000

7.LL

V'F r.O
c < 4

io

tedd
.02
7.
/.+O

Tr'l CK\E r> )
1)
laCl.vOC
i.ccccc
I.(CMC
1.C0000
i.crcrec
1. 0000
1. c.- 'oc
el b
i.crrcr
i.ccccc
1 .ccccc
i.C000c
1 .ccccc
l.CCCCC
1.00070
i *recce
1 .ccccc
1.C'. CCC
l.CCCCC
1.cr;rc
i. coac
l.CCCCC
1.CCCcc
1+0000c
1. cccc"

AND RE SIBUAL

IS 0.12500

FFFECT | VE

1?2 :0OA/"N*C™* j«k:
c o
(= iAacr '06 2 iV

I F*7$ 71

10’:.": T4 e

TE k-TFE"

SUIMS 70 L"C"L

T HC * N" 88

T(A1
i.-freer
1.3033C
1."3)30
l.CCccC
1.OO'Ol)
1.COO00O

MAS
HVAX
24 11
%E'iS
Ve oo
_r' rg
21. 14
act7l
9 to
t
'i .so
-vif
wh0%S
rc.
tc s
t3.27
t'<.°7
[a.c7
(3.23
$C .23
*) e CH
JC . 73
<"<*."7
31.36
it.33
14 UC
4 .03
E7FF
r CAC
EFlcec
3
7rRS
7f C®
“pn
«EA*
ym .73
(.1
1».13
15.43
2C.£2

r 55 ] °9f

K|~
<wv !
13,
14.4i1
14. 24
1o .33
1731
roM?
)
10, 7.
VAN
23.C3
2 7
/4. 3
2- .2°
3. Py
2 .43
v .c7
a7
3. SE
-/ .3cC
iv.o11
-
41.07
(3.30
£7.
yr ~
case
x> £yt
e—L:.'O-
K TH 0 *e S (e

F \\ Zc > !

'J. cc

.Co

~Y P acT :?s
Wora K
KvCX=-»vj
16.72
U .2
1:.1 ¢
1oL
22.36
. ICc
?1 t
Pro.orn o«
LT1f
.11
1t .-t
36.43
4 P 7
44 ., 1
sc
o .
1
.. s
73.33
20,
PJ? . 39
122.16
123.74
— - NN
1 ££ F)-

7a x

V(*=, F ;¢
t 0
1 .
I . 17
1r.43
23 .42
22.32
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a/b Near Exact Values ( 0.1% error (6)) IF Calculated Values
0.00CS 1.0000 1.0073
0.2 1.0246 1.033
0.5 1.1867 1.200
0.8 1.8160 1.821
0.9 2.5776 2.628
Table II. Comparison of Published and IF Method-Calculated Stress

Intensity Factors for Center-Cracked Plate Under Uniform

Stress

Error
0.7%
0.8%
1.1%
0.3%
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(-PVar)"  ksi, = (xMy2)*

exact @ = K.(@) = K(@) = yy- (Tral " ksi WTn, i = xy
IF Calculation

Error _Ky_ Error

(a in_inches) Exact K(a)
axisynmetric 0.07253 0.0719 -0.9% 0.0718 -1.1?
f 0.10258 0.1016 -0.9; 0.1015 -1.17?
2 0.14507 0.1438 -0.9 0.1435 -1.1
4 0.20516 0.2033 -0.9 0.2030 “.1-

Penny-Shaped Crack Cross Section
(Lower Half of Stress Field Not Shown)

r3 ksi

K@ =7 (m) ksi>in

r in inches) IF Calculation

a Exact K(a) Kx Error K Error

0.5 0.05875 0.0599 +1.9 0.0595 +1.3
] 0.66467 0.6774 +1.9 0.6730 +1.3
2 7.51988 7.6639 +1.9 7.6141 +1.3

4 85.07777  86.7073 +1.9  86.1441 +1.3

Penny-Shaped Crack Cross Section
(Lov;er Half of Stress Field Not Shown)

Table 1I1I. Comparison of Exact (6) and IF Method-Calculated Stress Intensity
Factors for Penny-Shaped Crack in Infinite Solid Under Two Complex
Symmetric Stress Fields.



Cas-' ?

Table 1V.
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For each Heatup-Cooldown cycle,

so that for the 40-year lifetime

ith Load Transient

Heatup-Cooldown

Plant Loading and

Unloading

Power Step Change

Steam Drop

Steady State
Fluctuations

Loss of Load
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Turbine Rcll Test

Cold Hydro Test

Hot Hydro Test

Table V.

Cumulaf.ve Damage Analysis of Nozzle Alternating Stresses

Caused by eleven Distinct Types of Load Transients

Peak An.
(ksi) |
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7.4

4.2
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0.2
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7.3
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31.2

as in Equation (0.1) of the text.

Lxpected Number of

Transients

200

18400

2000
200

1,000,000

80
80

400

increments N.

in 40

Year life - ni

- 36H.9 N,

Damage Measure

0.7834

0.3186

0.0042
0.0179

0.0000

0.0000
0.0888
0.0066
0.0008
0.0765
0.4 477

1.4447

“t 308.9 (.3795x10'9) AKijj726 = 1.4xI0*7 AKijj726

y. - 10'Bn: Am 3-726

the upper bound crack growth rate is (28):

equivalent « of Heatup-
Cooldown (i=l) Transients
in 40 Years

% = Vilyl
200

81.4

1.1

4.6

22.7
1.7
0.2

19.5

3.

368.9

2 (infcyc) = .371'»5xI0 <5



TABLE VI

COMPARISON OF K AND K FOR SEVERAL CASES OR SURFACE AND CORNER CRACKS

K
UNDER UNIFORM NORMAL PRESSURE n VALUES GIVEN ARE "
20 o/ arrr
K =
GEOMETRY r K K K K
X x y y
Embedded Ellipse 1 1.00 1.00 1.00 1.00
c0 1.46 1.57 1.03 0.0
Surface Half-Ell ipse 1 1.11 1.04* 1.16 1.26*
€0 1.65 1.77 1.17 ?
Corner Quarter-El 1 ipse f 1.26 1.28* 1.26 1.28*
€0 1.89 ? 1.22 9

“Taken from Tracey (31)
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THERMAL STRESSES
RESIDUAL STRESSES

(@)

K=K + K"
n
100F
THERMAL O
RESIDUAL a
T (x)
/ (b) (©)
X
F . Compressive Loadin
(Tensile Stress (()n AcF;uaI Crack Fac%)
on Crack Face
Locus)
rmn
Fig. 1. The Reduction of a Problem, (a). Into Two Simpler

Problems, (b) and (c), for Computations of Stress
Intensity Factor (from Reference 3, lllustrated
for a Center-Cracked Infinite Plate)



Fig. Center-Cracked Plate Under Symetric Stress
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r-AREA, A

Fig. 3. Schematic of Prescribed
Normal Perturbation [Slj(s!li of Crack Front



Fig. 4a.

Through-The-Thickness Edge Crack in a Finite Width Plate

i

_._.,



CRACK AREA <=
jrmmmm——— | | [ |  LUIiia |, |

NODES TO
BE PERTURBED

Fiq. 4b. 2-D Bie Crack Surface Break-Up



5a. Synmetric Three-Dimensional Coundary-Intearal
Equation Model of a Corner Crack in an Infinite Body
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CRACK AREA MODAL HOWS
TO BE PERTURBED

Fig. 5b 3-D Bie Crack Surface Break-Up



FREEDOM
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ax:

Fig. 6. A Two DOF Buriefi Elliptical Cruel



HALF-ELLIPSE SURFACE CRACK

INFLUENCE FUNCTION CORRECTION FACTOR
fs(*s>

QUARTER EILPSE CORNER CRACK

INF LUENCE t UNCTION CORRECTION FACTOR
(s(xsl + fs(vs) ~ 1

WHERE x, =

=

.1
H
H
H
H
H
H
H
1

fs - 2-D CORRECTION FACTOR FOR
SURFACE CRACK

75

max.

max.

Fia. 7. Approximate Rear-Surface Correction Factors
*or 3-D Surface and Corner Crack Influence Functions



FOUR DOF ARE

Fia. 8

Dirpensions of a 4 DOF Buried Elliptical

Crack

(K]

U= X



— Wold

Fig. 9. Veld-Induced Symmetric Residual Stress,
?{x), in an lincracked Specimen and Resultinn Stress Intensity
Factor K(a) When a Center-Crack of Length, 2a is Introduced



x “allure Point

- Crack Arrest
AC= 25 kS!

Residual Stress

- Om = AO/2

£

1

<

>

£

3

K4 .

o Residual Stress

S 0™ = —30 ksi + AO/;

“—

©

T
No Residual Stress
Om = AO/2

50.000 100,000

Cyclic Life, N

Fin. 10. Weld Crack Propaoation in a 10-Wide Speciren for Three 'Wean Stress Distributions



H;ilf Crack Lenyth, a(in.)

Hyure 11.
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-'eld Crack Propagation in a Larye Pipe for Three Mean Stress Distributions



SO

NOZZLE

Fig. 12. Circumferential Stress Contours,
for 1000 psi Internal Pressure
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Initial Crack Size = ax = ay = 0.5".
N Represents 40 Years of Loading Transients.

Complex Stress Field:

(x,y) = .4662 [ 44.68 + 8.46 x + 199.55 y
+6.88 x2 157.12 y2 + 6.69 x4

GO + 28.20 y4 + 22.95 x y]

where x
y

2/(2 + x)
2/(2+y) '

Nozzle
Radius

ION

Fig. 13
Growth of Elliptical Comer Crack
at a Symmetric Cross Section of an HSST
Program, Intermediate Test Vessel, Pipe No.vle Junction



