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ABSTRACT

This report reviews the development and application of an influence function 
method for calculating stress intensity factors and residual fatigue life for 
two-and three-dimensional structures w’th coniplex stress fields and geometries. 
Through elastic superposition, the method properly accounts for redistribution 
of stress as the crack grows through the structure. The analytical methods 
utilized and the computer programs necessary tor computation and application 
of load independent influence functions are presented. A new exact solution 
is obtained for the buried elliptical crack, under an arbitrary Mode 1 stress 
field, for stress intensity factors at four positions around the crack front. 
The IF method is then applied to two fracture mechanics problems with complex 
stress fields and geometries. These problems are of current interest to the 
electric power generating industry and include (1) the fatigue analysis of a 
crack in a pipe weld under nominal and residual stresses and (?) fatigue 
analysis of a reactor pressure vessel nozzle corner crack under a cemple ■ 
bivariate stress field.
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the crack explicitly in the stress analysis for each crack size. Furthermore, 

the influence function, h, whicn depends only on geometry, can be accurately 

obtained from relatively simple loading conditions and applied to coniplex stress 

fields.

The following sections provide more detailed description of the (F 

method. Section 2 presents the basic methodology and Section 3 and Appendices A 

and B aiscoss methoas for accurate and efficient, computation of h end K for two- 

and three-dimensional problems. Section 3 also reviews available h solutions 

and computer programs including a new exact three-dimensional solution, derived 

in Appendix C, for the K values of the four symmetry positions around the peri­

phery of a buried elliptical crack under arbitrary Mode I stress fields.

Section 4 describes the use of the IF method to predict residual fatigue lives 

for two- and three-dimensional crack problems.

Finally, the IF method is applied to two engineering fracture mechanics 

problems of interest to the electric power generating industry. Applicability 

to two-dimensional problems is demonstrated in Section 5 with a fatigue analysis 

example that accounts for both the nominal stresses and the non-uniform residual 

stresses acting on a through-crack oriented perpendicular to a circumferential 

weld in a large pipe, and in a finite width specimen.

A most important feature of the IF method is its applicability to three- 

dimension problems. Here, the IF method accounts for the complications of 

complex stress fields, crack shape, crack shape change during growth and K 

variation along the crack front. Applicability to three-dimensional problems 

with large stress gradients is demonstrated in Section 6 through a fatigue analysis 

of a corner crack in the nozzle of a thick walled pressure vessel.
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2•0 GENERAL DESCRIPTION OF THE INFLUENCE FUNCTION MEJHOD

i

5
i
'

The IF method has been previously described in (1-9)* for two- 

dimensional elastic crack problems and in (9-11) for three-dimensional problems. 

This section reviews only the major concepts of the IF method. Fig. 1 illus­

trates the elastic superposition principle which is the basis of the IF method.

The superposition reduces the K solution of an arbitrary and, perhaps, difficult 

crack problem to the solution of (1) the problem without the crack (i.e. uncracked 

problem), and (2) a crack problem in which only the crack face is pressurized 

so as to cancel the uncracked stresses (o(x) in Fig. 1) that would exist across 

the cracl. locus in the absence of the crack. Influence functions are used to 

solve this second, pressurized crack problem. An influence function h is simply 

the K value arising from a unit point load at some position, usually on the 

crack face. Thus h is independent of loading, as proven rigorously in (9), and 

depends only on the crack face position and structural geometry.

1

To solve the pressurized crack problem, and, hence, the difficult original 

problem, consider first the differential load o(x) dx (assuming constant thick­

ness) which causes a differential increment of K given by

dK(x) = h (x, geometry) o(x) dx (2.1)

so that the stress intensity factor is given by

K = dK(x) =: h(x,geo.) ~(x)dx
L a

(?.2)

where L. is the straight crack face boundary parallel to the x axis.
d

♦Underlined numbers enclosed in parentheses refer to references listed at the 
end of the report.
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To illustrate the utility of (2.2), consider the center-cracked 

plate under symmetric loading shown in Fig. 2. For the case of uniform stress 

on an infinite plate (a/b *• 0), the stress intensity factor is given by

K = o0^Tra (2.3)

where a is the half crack length and o is the applied uniform stress.

It has been shown by Fans (3) that, for any symmetric stress i ield, o(>:) =

o(-x). the influence function for the infinite plate is given by

j ' 1
h = —- ! J5--y- , o < x a defines L (2.4)

/a~ a-S , “ ~ a ■

Equations (2.2) and (2.4) reduce to Equation (2.3) for the case of constant 

o(x) = o .

Thus, we see by example that the IF method can correctly quantify the 

crack-induced redistribution of the uncracked elastic stress field. The utility 

of the influence function method for handling complex stress fields becomes 

clear once it is realized that if h is obtained for a particular cracked geometry 

with several variable dimensional parameters, K computation is reduced to:

A. Determination and specification of the uncracked stress field, and

B. Numerical integration of Equation (2.2), for the appropriate crack 

geometry.

The next section documents the references, procedures, and methods required for 

accurate computation of h for a variety of simple geometries sufficient to solve 

a majority of structural problems.
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3.0 BASIC EQUATIONS AND AVAILABLE SOLUTIONS Of THE INFLUENCE FUNCTION ‘•'ETH03

The most direct method to solve for h is to obtain a solution for K due 

to a point load at any crack face location. Table I outlines the published 

sources of h solutions ana the computer algorithms, developed and modified by 

the author at Failure Analysis Associates, that use h to compute K. The table 

shows that a formidable selection of h solutions already exists to handle cracks 

in complex stress gradients. If a point load solution is not directly available 

nor easily derivable, the formulations below provide practical methods to 

determine h.

^ ^ Basic Equations to Determine Influence Functions and Stress Intonsity
Factors

The root-mean-square (rms) stress intensity factor, K, has been defined 

in (10) as an integrated average of K(s) (the specific value of the stress 

intensity factor K along the crack front at point s) ov°r the new surface area 

created by selected v'rtual displacement of the crack front. In the case of two- 

dimensional elasticity problems, K(s) is constant, and K and K(s) are identical. 

Consequently, k and K are used irtercnangeably for two-dimensional problems 

throughout the remainder of this report. K and K are not exactly equivalent 

for most three-dimensional problems, since K(s) is not, in general, constant. 

However, K and K are similar enough for most three-dimensional crack problems 

to lead to nearly identical static strength or -jtigue life estimates (10).

Consider now a two- or three-dimensional crack problem for which there 

are n degrees of freedom (DOF), where a DOF is defined as that scalar dimension 

or variable which is free to increase (e.g. propagate in fatigue) and do work 

independently of all other dimensions or variables. Then K due to a small 

perturbation of the j-th DOF (Fig. 3) may be expressed as (10, 11)
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K.
J

h, (x., aeoiretry) a (x ) dA; j = 1, n, i = 1, n
J *

(3.1 )t

where A represents the crack area, x^ are the appropriate coordinate directions.

(n. = 2 or 3) a is the uncracked stress field, and h is the influence function
j

for the j-th of n DOF's and is given by (JJD, 1J) as

h. (x., geometry) = —— ~- 
J i k> dAj

[3.2)

where

. 9a. ^
9 _ _J_

3A 9a j
(3.3)

In (3.1) and (3.2),

K = rms stress intensity factor due to perturbation of 
j

the j-th DOF only,

w = crack opening displacement for the top half of the crack only, ard 

H = appropriate modulus

H

H

E___, for isotropic plane strain

E, for isotropic plane stress

(3.4)

and, for certain classes of orthotropic material problems, H is given

on page D-3 of (6). The superscript (*) indicates K and w values determined
j

for the given geometry for some arbitrary reference state of loading.

K*j, may be rewritten in terms of the strain energy, U*, as

fin this report, repeated subscript indices do not imply summation.

(3.5)
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Combining Equations (3.2, 3.3, 3.5) then gives the final form of the 

influence function as

2

' J_ 3A 3U* .
! H 3a, 3a 1
1 ^

(3.6)3w* 
3d •

j

It is seen from equation (3.6) that one need only determine 

the strain energy and c^ack opening displacement for any single, simple 

reference stress field applied to the given crack, and structural geometry

to determine h.. For some simple problems these quantities are known

by exact closed form expressions. They can also be measured experimentally 

(12) or, more commonly, can be determined using numerical stress analysis 

techniques, ihe analytical and numerical methods are described in some 

detail in Appendices A, B, and C for three cases of increasing complexity: 

a two-dimensional crack with one DDF fo*' crack propagation, a three- 

dimensional crack with two DOF, (both size and shape may change), and 

a three-dimens onal crack with four DOF (size, shape, and centroid of 

the crack may change).

3.2 Some Exact and Approximate Influence Function Solutions

Table I lists source information for influence functions for 

many geometries of interest. For convenience, all influence functions 

utilized in Sections 5 and 6 are given below.

3.2.1 Center-C ra c !;ed_ _S_t r ip

Fig. 2 shows a symetrically loaded center-cracked strip of width 2b.
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The influence functions for all three loading nodes for this two- 

Jinensional problem are given in (6) as

'III

Zcari

[exact solution) (3.7)

hII 1 + 0.2967/1-(x/a)^ (1-cos -a)^ hjjj (+ 1 error)
2b f

(3.3)

In the limit of infinite width (04----- > 0), the functions for

all three nodes reduce to (2.4). Equations (3.7, 3.8) have been programmed 

and the subroutine (1F2-1) is listed as part of Appendix D and applied 

in Section 4. 3otn IF2-1 and a published solution a>'t? used in Table II to com-

K. ■nr a finite width plate under uniform stress. The excellent agreement

between solutions confirms the accuracy of the two-dimensional IF computer 

method for this seometry.

3.2.2 The Two-Degree-of-Freedom Buried Ell iptical_ Crack

Reference (1_0) presents the exact h and K. solution to this problem

(Fie. 6) for the case of arbitrary Mode I loading. (x, y), across the

elliptical crack with major and minor axes a and a in the x-y plane. They *
solution is derived by substitution of the appropriate displacement and 

strain energy expressions in Appendix B into (3.6) and (3.1) to obtain
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K x

Ky

9E__(kj_ + \a2qi-? (x»y) dA
ECOSa^ I/ •) _________

iray
E(k) / 2 - 3 E(k) '
-r [ a; mrsa^

1
2

TT

j- ^ (k)

\ E(k) a 

3

aS°zz (x,y) dA

:i|. .(K)
ETK)3a

(3.9)

In (3.9), E(k) is the complete elliptic integral of the second kind with 

k2 = l-(ax/ay)2 and a = 1 - (x/ax)2 - (y/ay)2.

The area integrals of the above expressions are evaluated numerically 

using a rectangular pattitioning scheme with a refined grid near the crack 

front, a —» 0, to account for the t 2 singularity. Trial-and-error has shown 

that for all 30-40 test cases investigated, with exact solutions for , 300 

rectangular partitions are sufficient to obtain K and K with less than 2.5
x y

error and in less than three seconds central processing unit (CPU) time on the 

IBM 360-67 computer. Table III compares the three-dimensional IF computer code 

(IF3-3) calculations with the exact solution for a circular crack under two 

complex stress fields.

3.2.3 The Two-Degree-of-Freedom Quarter Ellipse Corner Crack in a Quarter Space

Reference (11) applies a three-dimensional boundary-integral equation 

computer program (17) with Equations (3.1, 3.6) to obtain an accurate numerical 

solution to this problem pictured in Figs. 5 and 7. Also, a fairly accurate 

approximate solution can be obtained using a two-dimensional analog from (20). 

Appendix B presents the approximate solution method which, typically, leads to 

Vs computations within 5: of those resulting from the rigorous, full three- 

dimensional analyses used in (11).
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3.2.4 The Two-Degree-of-Freedom Half-Ellipse Surface Crack in Space

Appendix B uses the two-cimensiondl analog mentioned above to obtain 

approximate solutions to this problem, illustrated in Fig. 7.

3.2.5 Three-bimensional Problems with Finite Width and Other Effects That 
Must be_ E\'aJuated fiumerica 1 l_y

As discussed previously in this section, both analytical (11, 17) and 

experimental (T2) three-dimensional solution capabilities exist to obtain cracF 

face displacements to compute tae h and K with Equations (3.6, 3.1).
j j

3.2.6 The Four-Degree-of-Freedom Buried F.1 iptical Crack

Appendix C presents a new exact solution for h and K , j = 1, 4 for the
j J

four DOF buried ellintical crack shown in Fig. 8. This four DOF model allows 

independent growth of the major and minor elliptical axes and also translation 

of the crack centroid. In other words, opposite ends of both the major and minor 

axes can grow at different rates. Four DOF are necessary to analyze crack growth 

under stress fields (x’.y’) that are not symmetric with respect to the elliptical

axes.
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4•0 RESIDUAL FATIGUE LIFETIME PREDICTION METHODOLOGY

The use of two- and three-dimensional fracture mechanics analysis to 

predict the residual lifetime of sharply notched or cracked structures has been 

described in many previous papers (e.g. 2, 10, M, 1_8, 19). Previous literature 

has defined the three basic inputs to fracture mechanics lifetime prediction 

as: (1) the experimental evaluation of the material's crack propagation law 

under the appropriate thermal-mechanical loading cycle, (2) methods for the 

analytical calculation of crack tip strain intensity factors, and (3) methods 

(e.g. nondestructive inspection) for accurately defining initial flaws and early 

detection of crack initiation. A procedure that utilizes the IF method in 

conjunction with these three elements is presented in general terms below and 

is adapted for specific applications in the next two sections.

4> ' Two- or Three-Dimensional Crack Propagation Analysis Procedure

The basis of reported life analyses is the notion of a finite number, 

n. of character!'stic dimensions a.; i = 1, n, to describe crack geometry.

Crack propagation is then described by keeping track of the which are called 

degrees of freedom or DCF. The continuous stress intensity factor function K(s) 

is similarly approximated with a set of discrete stress intensity factors ; 

i = 1, n, each associated with an a.. The applied general empirical model 

of three-dimensional propagation is then expressed by n equations.

dfr ~ ^ (K., Material, Environment, History) (4.1)

whore

N = residual lifetime;

K- - stress intensity factor associated with a.; andi J i ’

F = empirically determined function.
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Each equation in (4.1) states that the instantaneous cyclic growth rate da^/dN 

of freedom a. is given by the empirically determined function F. Further, (4.1) 

implies that all load and geometry information relevant to da^/dN is contained 

in one and only one stress intensity factor K.. The function F is independent 

of load and geometry and ir.dy be obtained in the traditional way from simple 

planar laboratory specimens. The stress intensity factors K. each contain an 

alternating component and mean value l'nedn associated with the alternating 

and mean component1- of the stress cycle. A - and cmean

Residual life prediction is accomplished by formulation and solution of 

^4.1) A four-step method is employed for life prediction. The steps are:

(1) Obtain F from simple specimens. F is often expressed in the 

form of piecewise power functions of /.K (e.g. da/d’i = C.'.K' ) for 

given K, material, environment and history combinations.

(2) Determine the uncrac_ked structural detail geometry, loads, and, to 

the extent required by step 3, stress.

(3) Model the propagating crack. This task includes selection of a 

model with an adequate number of DOF, specification of the initial 

and final track configuration aT. and ar. ann definition of K.. 

Further, an IF method-based algorithm is derived to compute all

of the K. as functions of stress and geometry, especially the 

changing crack geometry a..

(4) Substitute in (4.1) and solve for the life N.

The above procedure has been successfully anplied to predict fatigue 

lives in many instances where accurate uncracked stress and material crack 

growth rate data were available. Published examples of two-dimensional analyses
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in (21) and three-dimensional analyses in (Jl) exemplify the good agreement 

obtained between calculated and observed fatigue crack growth. Additional 

examples of fatigue growth calculations for a weld crack and a vessel or pipe 

nozzle detail are described in the following sections.
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5-0 FATIGUE ANALYSIS Of A WELD CRACK

A weld seam under longitudinal (y-direction) load symmetric about 

the y-axis, with a transverse through-thickness crack of length 2a is 

illustrated in Fig.9. This section describes the analysis of fatigue 

growth of the crack for two plate widths. The first width, 2b=10", 

models a laboratory specimen while the second width, 2b - % models 

the case of a pipe with radius and length substantially larger than 2a.

The longitudinal stresses include uniform alternating and mean components,

Lo and ' , respectively, and a complex residual stress field, e (x),
m res

as illustrated in Fig. 9, for the case of the ten-inch specimen. The

residual stress function is slightly different for the case of a large

pipe because of the additional elastic constraint; both residual stress

distributions were estimated from measurements in (22).

Since the subject problem assumes only one DOF, a, (4.1) 

reduces to only one equation for application of the four-part life pre­

diction procedure given in Section 4. Equation (4.1) must account for the 

effect of R-ratio, R=K.!in/KM>;, on da/dN. For simplicity, a crack growth 

relation suggested by Forman (23) for positive values of R has been applied 

below for dll values of R, and, as is shown in (24), the relation over­

predicts da/d’i for negative R. The applied crack growtn relationship 

is based on the weld region material data in (Zb) and is given by

da - 1.4 x 10
dN

Krax 0

da = 0
d;j

o
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where the force, length and time units in(5.1)are kilopounds, inches, 

and constant-amplitude fatigue cycles, and K[ridx= AK/(1-R). The initial 

crack length is assumed to be Pa^ = 0.25" and the final crack length, 2ap 

is defined by the fracture toughness

K , (a,) - Kr. = 150 ksi(in)2 ma x f' Ic (5-2)

The above information and Fig. 9 comprise the first two parts of 

the life calculation procedure and the crack problem model of the third 

step. A computer program (IF2-1), with complete listing included in 

Appendix A, has been written to accomplish the remainder of the procedure; 

namely, the computation of K components using Equations (3.1,3.7,3.3), and the 

numerical integration of (5.1) to obtain the relationship betweer crack 

length and number of fatigue cycles (a vs. N).

Three load cases were analyzed for each of the two geometries as

summarized in Table IV. Appendix A lists the tabular computer output

for all six cases, ard Figs. 10 and 11 present the corresponding a vs. N

curves. Figures 10 and II both ind’cate that, for the case of zero minimum

stress, = ' :/2=12.5 ksi , the residual stress significantly increases the

crack growth rate in the early stage and substantially reduces overall

fatigue life. The two figures also show that, even for the the case of

applied cyclic compression, corresponding to o[n = -17.5 ksi, the positive

residual stresses permit some initial growth of the crack followed by

subsequent arrest at K ' 0 in Fur. (5.1).max ' '
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6- 0 FATIGUE ANALYSIS OF A PRESSURE VESSEL NOZZLE CORNER CRACK

Figure 12 shows the normalized stress o (x,y) contours computed 'n 

(26) for a 1000 psi internal pressure at the pipe-nozzle junction represent­

ing an HSST program, intermediate test vessel. Figure 13 shows a hypothetical 

corne'' crack of initial dimensions ax = - 0.5 in. at the peak stress

location and also gives an equation which, when divided by the factor 

4.662, fits the stress contours of Fig. 12 with 0.165 ksi average error.

The above factor represents the ratio between the actual and normalized 

peak stresses estimated in (26) for the heat-up and cooldown vessel 

operation transient. For simplicity, and due to the lack of a full thermal 

stress distribution, the stress contours in Fig. 12 are assumed to apply 

for all loading components (e.g. thermal as well as the pressure loading). 

However, as demonstrated in Section 5, the IF method is capable of 

analyzing more complex cases with combined stress distributions and non­

proportional loading. The equation in Figure 13 was obtained by multi­

parameter least square fit.

Table V lists tie vessel-nozzle junction, peak stress levels and 

the frequencies associated with eleven types of plant operating transients.

The Table uses the conservative ASME Code (23) crack growth relation to sum 

the individual da/dN contributions of all transients and obtain the final 

crack growth relation

da.
j

dN '
1.4 x 10‘7 .'.K.3-726,

i i=x,y, (6.1)

where the force, length, time units of (6.1) are kilopounds, inches, and 

40-year increments of plant operation.
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The equations to compute AK^ are derived from the approximate 

corner crack (Fig. 7) solution in Appendix B and are given by

K x
If IL- - LiLOa *

A\ax

(:a2 x

Ky i.2

JL - 3 E (k) )
ay y

where fc is defined in Appendix B.

Equations (6.2) and (6.3) have been incorporated in computer program 

IF3-3 which also substitutes the K., i = x,y values in (6.1) to compute

da/dN. The computer program then obtains a and a as a function of N by i x y
solving the two simultaneous differential equations in (6.1) with a modified 

Hamming's predictor-corrector numerical technique.

Figure 13 gives the results of the three-dimensional fatigue 

analysis. As seen, the nozzle is estimated to endure 20 to 25 times the 

expected (26) number of load transients in the 40 year plant operation.

The infinite solid model used herein is expected to break down approximately 

at the "20 N" crack front contour in Fig. 13. As a temporary measure,

FAA plans to incorporate appropriate forms of the ASf/E Code (28) approximate 

finite width correction factors, such as the subprograms listed in (27), in 

all its three-dimensional computer programs. A long range goal is to apply 

a three-dimensional BIE program (17) to compute h rigorously for 3-D finite 

width geometries with the methods detailed in Section 3.
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CONCLUSIONS

The infljence function (IF) method is an efficient, general 

procedure for elastic fracture mechanics analysis of structures 

with cracks in regions of complex stress.

Once influence functions are obtained, the IF method requires 

only the stresses in the uncracked structural detail and thereby 

eliminates the need for full two or three-dimensional stress 

analysis ior each considered loading, c^ack size, shape, and 

location, and increment of fatigue crack growth.

Since influence functions depend only upon geometry, they may be 

computed from the crack opening displacements for any convenient 

simple loading that can be accurately solved by analytical, 

experimental, or numerical techniques. This eliminates the 

numerical errors caused by inclusion of actual, complex 

structural loading into computer stress analysis of cracks.

The IF method accounts for such three-dimensional complications 

as complex crack shape, crack shape change during fatigue growth, 

and variation of the stress intensity factor along the crack front.

The extension ot the IF method to more complex geometric models 

is direct, requiring only specification of a model with appro- 

pridte number of variable dimensions together with a minimum 

number of two- or three-dimensional stress analyses to compute 

the IF. Thus, the majority of crack problems are brought within 

the scope of an efficient elastic fracture mechanics procedure.



The significant effect of residual stress upon fatigue growth 

of a weld crack has been demonstrated with the IF method.

The fatigue growth of an elliptical corner crack in a geometry 

representative of a reactor pressure vessel nozzle has been 

analyzed, demonstrating the ease of use of the IF method for 

a three-dimensional problem with complex stress distribution.
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APPENDIX A

Computation of Influence Functions and Stress

Intensity Factors for Two-Dimensional Problems

A.1 Calculation of Two-Dimensional Influence Functions, h

Consider a two-dimensional crack, oriented in the x-direction, for which 

the one degree of freedom is the crack length, a. Then the area increment dA 

in Equation (2.1) becomes t(x) dx and (3.1) becomes

h(x, a, geometry) (x) t(x) dx (A.I)
x

Since the area of the crack (assuming unit thickness, t = 1) is simply a, the 

general equation to compute h (3.6) then becomes

The influence function given by Equation (A.2) may be determined using 

w* from known, closed-form solutions or calculated from any appropriate numerical 

stress analysis method, such as finite elements (FE) or boundary-integral 

equations (BIE), as in (11_, IJ?).

To illustrate the use of analytical displacement solutions to determine 

h, consider again the simple infinite plate case of the plane stress problem 

shown in Fig. 2 for which

1C*
E

2 a
G* o (A. 3)C



21

and the crack face displacements are known to be (S)

2^
w* (A.4)

Therefore

d_w*
L>a (A.5)

and, from (A.2) we compute

(A. 6)

/

which agrees with (2.4).

Numerical stress analysis to determine h, for each crack geometry cf 

interest, can be performed in one of two ways: (1) using two separate stress 

analyses of slightly different crack si?e to determine h from incremental 

differences, or (2) usirg one stress analysis to determine strain energy and 

crack opening displacements as mathematical functions of the different DOF, 

for substitution into Equation (A.2) to determine h. Both methods are illustrated 

below.

The method of using incremental differences between two stress analyses 

to obtain h can be illustrated by the problem of a through-the-thickness edge 

crack in a finite width strip (Fig. 4a). This problem has been solved using 

a boundary-integral equation program in (13). Special care was taken in 

modeling the crack, perturbing the crack tip, and choosing the arbitrary 

reference loading. Experience has shown that the optimum accuracy and efficiency 

results from a breakup of the crack into equal size segments over about 80 

of the total crack length and successively smaller segments near the crack tip,

/
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with approximately a mirror imaye of/this breakup for some distance beyond the 

crack tip. Perturbation of the crack tip is best accomplished by moving not only 

the one node at the crack tip, but a series of nodes ve^y near the crack tip 

(see Fig. 4b). Finally, the most accurate results are obtained when the crack 

surface is uniformly pressurized. Having solved these two nearly identical stress 

analyses, the work done by the applied loads (strain energy) for each crack 

configuration is calculated. Then the incremental changes in strain energy, £U, 

and crack opening displacement. Aw, between the two analyses are computed and 

these results are used in the incremental form of Equation (A.2) to calculate h.

/ 1 AU \ " _Aw
[ H A^a } Aa f ''i 7 \

The second numerical method to determine h requires only one stress 

analysis for each crack length of interest. Then, U* and w* are determined as 

mathematical functions of crack length (using, for instance, a least-square fit) 

for substitution into Equation (A.2).

The two-dimensional influence functions can also be obtained using finite 

element techniques, although such techniques in general require longer modeling 

times, data preparation times, and computer run times than does the boundary- 

integral equation metnod (13). However, for the specific choice of a uniformly 

pressurized crack face leading, the finite element-computed influence function 

results agree with boundary-integral equation results for a large class of 

problems (no published reference available).

A.2 Calculation of Two-Dimensional K

The best way to use the influence function results, as determined above, 

to compute K is to ratio those results to numerical results for some simple 

reference problem geometry. This eliminates most systematic errors which might
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be inherent in the stress analysis and avoids the curve fitting of singular h 

functions. The use of ratios also permits more accurate programming of the 

stress intensity expressions (for purposes of life calculations, such as in
!

computer programs listed in Table 1) provided the solution to the simple reference 

geometry is known in closed form. Using this method, a new function f may be 

defined as

h
h' (A.8)

where h' represents the influence function for the reference geometry. Similarly, 

two new functions g^ and g^ may be defined as

9l
U
If' g2

w
w S)

where the superscript (') again refers to the reference geometry, and the 

superscript (*) has been dropped for convenience. Combining (A.l) and (A.8) 

gives

K = j” f(x, a, geometry) h' o(x) dx (A.10)

x

and combining (A.2), (A.8) and (A.S) gives

f (A.11)

Thus it is seen from Equations (A.10) and (A.11) that the best choice of a 

reference problem is one for which h' (or U‘ and w'; from which h‘ could be 

determined using Equation (A.2)), is known exactly.
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The most convenient two-dimensional refeience problem for which a closed 

form solution is known is a through-the-thickness center crack in an infinite 

body for which h has already been given in (A.S).

Therefore, f may be determined by combining the results of stress analyses 

of the actual problem and the reference problem as in Equation (A.S). This f 

may then be used, with Equation (A.10) to determine K. Thus

It is best to perform a number of stress analyses in order to determine f, , 

and g„ values in terms of the necessary geometric parameters, and then to 

employ a curve fitting procedure to define expressions for f, g^ and g^ which 

may be used in (A.S - A.11).
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APPENDIX B

Computation of Influence Functions and Stress Intensity 

Factors for Three-Dimensional Problems

Analytical calculation of h, K, and K(s) is restricted to a very small 

class of three-dimensional problems, as ndicated by Table I, because of the 

scarcity of three-dimensional displacement solutions. However, Appendix C and 

(10) do obtain exact solutions for the elliptical crack problem. Other three- 

dimensional problems will be solved numerically and/or with approximations 

derived from analogous two-dimensional solutions.

B.1 Numerical Methods for Three-Dimensional Anaiysis

The numerical methods described in Appendix A for two-dimensional problems

may be extended to three-dimensional problems. Consider a three-dimensional

elliptical crack, oriented in the x-y plane, for which the two DOF are the two

semi-axes of the ellipse, a and a . Then dA is dxdy and Equation (3.1)x y
becomes

Kx

Ky

J J 
If

h (x, y, a , a , geometry) o(x,y) dxdy 
a y

hy (x, y, ax, a^, geometry) o(x,y) dxdy

(6.1)

Since the area of the crack is ^a a , the influence coefficients hx y x
and h are given by Equation (3.6) as
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tra.
i H

3U*-
i)a x Ii

9w* 
3 a

na \ -'2
3U* 1
8d.

3w*
3a ’

(B. 2)

To illustrate numerical methods to evaluate (B.2), consider the problem 

of an elliptical corner crack in an infinite body (Fig. 5a). The most efficient 

current stress analysis technique for three-dimensional crack problems is the 

boundary-integral equation method (IJ). Modeling of this problem is illustrated 

in Fig. 5b and discussed extensively in (11). If two analyses are performed to 

calculate h, with the incremental difference techniques, care must be taken to 

perturb only one degree of freedom (one axis) at a time. Equations (A.10) and 

(A.11) may also be extended to three dimensions so that

Kx = j j fx (x, y, ax, ay, geometry) rV o(x,y) dxd>

J J fy (x, y, ax, ay, geometry) hy o(x,y) dxdy

(B. 3)

and

g. U'i
•U',-l

3a i x i

' q r w' ( 'v;_' ) 
^ 3 a*.

-1 'q.

‘d
X /

(B.4)

,3l r tJ. (:;P') ;(<Li ! g2 + w (g-r1 3 1

y ’ay / ' i' )dy ,
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The only three-dimensional problem with an exact crack opening displace­

ment solution is the buried elliptical flaw, under uniform pressure, for 

which the strain energy is (14_)

(B. 5)U ThTTkl

2
where E(k) is the complete elliptic integral of the second kind with k 

2
l-fa^/a^) . The crack opening displacement is given by (Ijj) as

2o a o x
w ‘ HETkT a (3.6)

where oi=l-(x/a - (y/a )c. Using Equations (8.5) and (B.6), Equation C.^)
x y

then becomes

+ ..aI.
9a 3

(B.i -H r
-1 :

fy

The functions g^ and g^, defined in Equation (A.9) may be determined 

by stress analysis of both the solution geometry and the reference geometry

The rfcthodology given in this appendix has been applied in (IJJ to 

solve the two DCF quarter-ellipse corner crack from only twelve full, three- 

dimensional , boundary-integral equation stress analyses. Furthermore, the 

methods described here could easily be extended to problems with more than one 

or two DOF in order to solve much more complex geometries and loading states.
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B. 2 Estimation of h for Three-Dimensional Problems From Ana logo us T w 
Dimensional Solutions

Lacking the tools and time to oerfonn numerical three-dimensional 

stress analysis, three-dimensional h can sometimes be estimated from analogous 

two-dimensional h values. The estimated results may be in error and must be 

checked against known analytical and experimental results.

To illustrate a two-dimensional approximation, consider the elliptical 

surface and corner cracks in Fig. 7. The correct way to solve either of the 

problems in Fig. 7 is outlined above and performed in (11 j. However, an approxi­

mation was initially assessed to compute K for surface and corner cracks in 

infinite sol'ds. Fig. 7 illustrates the applied procedure. The influence 

function due to Bueckner (2Jj) for the two-dimensional surface crack in a semi- 

infinite plate is applied to each cartesian line of the elliptical crack that 

intersects a free surface.

Bueckner's equation may be rewritten as: 

h^. (x, a) o (x) dx (B.8)

(x)

influence function

h„ = two-dimensional internal crack influence function for '(x) 
in (2.4)

K2s = K-factor for two-dimensional surface crack for any o(x)

/. - x/a
o

J---------I - /
and fs (x) = + x (1.3188 - .7884x + .1768x )

= ^(-x); given

(B.9)

For two-dimensional problems,

1

K 2s
'0

where:

h„ = h.,2 s < e

h^c = two-dimensional surface crack
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By breaking up the surface and corner ellipses as shown in Fig. 7, inexact 

three-dimensional analogs to (B.8) may be constructed for the surface crack.

h(xs) U.y,ax.ay)= 2hx f$ (x,.) 

h(y} (^y.ax,ay)= 2hy fs (xs)
(B.10)

and for the corner crack

where

h(x) [fs ^s5 + fs (^s) "l!

h(y} (x’y’ax’ay)= % fs + fs (ys) -1
(B.11)

X = x/x s ma x
axd - y2)'1

(B . 12)

y = y/yJ ‘'max
a (1 - x2)'-’
y 1

Equations (3.9, B.l, B.9 - B.12) are being used to estimate Kx and Ky for 

half-ellipse surface cracks and quarter-ellipse corner cracks. Table VI 

compares normalized local values of K, K, with normalized K for several crack 

geometries under uniform stress. The differences between K and K follow 

expected trends. For example, for the embedded circle.

A _ A
K = K = K - K =1 y y x x (B.13)

For the surface cracks

K > K > K > K y y x x (B.14)



30

: '■ 'y •. • - '.'J
i

and this occurs, as expected. For the corner crack
I
I

A A
K = K < K = K (B.l5)x y x y ' ' |

since, as shown by (11), the K level is highest near the surface.
-<

Perusal of K and K results (11,28) for various points on the circular 

periphery indicates that the K values computed here for surface cracks are 

too high. The errors are up to 5“, fcr the circular crack and less for 

el 1ipses with b/a > 1.

For the elongated ellipse (b/a ■> “>) the surface correction is expected

to increase K by about 13/ as for the two-dimensional crack. Table VI shows x J
this expected trend.
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APPENDIX C

THE FOUR-DOF BURIED ELLIPTICAL CRACK

C. 1 Introduction

This report introduces a new technique for residual lifetime estimates 

for structures with part-through cracks. The notion of a set of stress intensity 

factors (K^) is introduced to predict crack growth rates. Each k\ is related 

to the strain energy release rate due to perturbation of only the ith crack 

dimension or degree-of-freedorr, (DOF).

This appendix presents the exact solution for the case of a four DOF 

embedded elliptical crack, described in Section 3.?.6 and Fig. d, which allows 

selective axis growth end also allows x' and y1 translation of the ellipse center.

A new computer code (IF3-1) has been written to use both the two and 

four DOF results given in the report.

f. 2 P_ro_blem Desor iption__and_ lief ini tion

The x' -y’ origin is the initial center of the four-degree-of-freedom 

(A DOF} buried elliptical crack in an infinite solid shown in Fig. 8. All 

four DOF (a^, a^, a^, a^) are measured from the x'-y* origin. The origin of 

the coordinate system (x,y)that moves with the ellipse is the current ellipse 

center as illustrated in Fig. 8. As shown, the ellipse dimensions are 2a^ 

and 2a .y

This kinematic description in terms of two coordinate systems is very 

useful. This is true because it is obvious that under the applied reference 

uniform stress field o*(x,y) = o^, the crack opening displacement (COD) field
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is a function of only o , a , a , x, and y.^ o x y
The COD function for the upper crack face is given in Appendix R 

as

w
- °0 3x
ni nT " a (C.l)

Expressions for Kt, h., and (i = 1, 4) are now derived. These are the 

reference (uniforn stress) root mean square irnis) stress intensity (K.) factors, 

the influence functions, and the general rms K-fcctcrs.

C.3 The Kt Comput;ation

From Section 3,

K> = (H G|) (C.2)

where the asterisk denotes the reference condition and the strain energy 

release rate is

G*i

9d .__1
9A ' (C.3)

and where the ellipse area is a A = -ax = -j (a^ + a^} (a^ + a^), and the 

strain energy is

U* ;
A

o w* dA. o (C.4)

By inspection, a perturbation of a^ will open half the new area and release 

half the strain energy that would equal perturbation of That is

aa 1
;,A

a a y

aA
2
a y

(C.S)
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3U*
33^ 2

3U*
3a. (C.6)

Thus, combination of (C.3), (C.5). and (C.6) gives

Ki = k: (C.7)

k2 K*x
and

(C.8)

K4 K*y (C.9)

where K* and K* are derived by setting o^z (x, y) = oo in Equation (3.6) in 

Section 3, obtaining

K* = ?c a U ' -2_ 3E(k) r
,vx o x [JECkT ax E (k) 3ax; (C.10)

K* = 2a 
V o

..Vi- J- -!E(k)___ ,
_ E(k) ay E(k) 3ayi (C.11)

C.4 The Computation of Influence Functions h.

The basic formula for influence functions is given in Section 3 and 

the influence function for some point (x1, y') in the fixed coordinate system, 

may be expressed as

hj (a. , x1, y') = H

k' *Ki

3w*
3a 1

3a
Ta

1 (C.12)

Since w* depends only on - , a^, a x, and y, it is advantageous to express 
3w*
3a 1 od From Fig. 3,in terms of
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a j = ax - x + x’ (C.13)

a j = 2ax - a2 (C.14)

The differentials of (C.13) and (C.14) are

daj = dax - dx + dx’ (C.l5)

/
da1 = 2dax - da2 (C.16)

/

where dx' is zero because the reference point is fixed in the stationary 

x'-y’ coordinate system in terms of which the stress fields a(xl, y') are 

defined. The term da2 is zero because and h^ are quantities resulting from

the perturbation of only the first freedom. The solution cf (C.15) and (C.16) 

is

!!>
3a.

oX
'3a, (C.l7)

Application of the chain rule and (C.17) yields

3w^ 
3a j

3w*
3a

3w* ^ 
3x / (C.l8)

where the partial derivatives of (C.l) are

^w* , w/ 1 9E(k) . x
3ax " w (x> y> ax’ V U ‘ E(T)3a _+ 3

a a x

(C. 19)

and
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9w_*
3x

-w*x

Combining (C.18 - C.20), we obtain

(C.20)

JW’
-j

ax°0O
HEW aL- X

3E(k)_
ETWa (C.21)

Combination of (C.S), (C.10), (C.12) and (C.21) gives the influence function 

for the first freedom. Similar developments lead to similar expressions for 

the second, third and fourth freedoms, i=2,4. All h^ are given by the following 

expressions.

2,

1_ _ 3E(_kJ_
a^ E(k)aa

ra
y Ejjk)

s
^ 2 
VaT

5E(k), "
IW ax J

(C.22)

,
a 2

vKil. + _v. w ! ^
Elk) 3a a 2 *= \a „ 2 7

- . .. . y y x y ->
7T dx ay E(k) f'i 32(k) ')

L 3 Vay ~ ^Tk} 3ay 7

2 (C.23)

C.5 The Computation of Stress Intensity Functions for Completely General 
Stress Field ^(x',y'l

The K., i = l,4 computations follow immediately from the definition of the 

h^ as given in Section 3 and Appendix B. The result is
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/■ r
hi (ax’ ay’ x’ 0(x'>y') dxdy (C.24)

A

where

x1 = x + a, - a1 x

y' = y + a, - a 3 y
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APPENDIX D

Listing of Computer Program IF2-1, Data Listing and Results of

the Six Weld Crack Fatigue Analyses of Table IV.
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5 1 Call ThICkia,t,C)
S? ZZ*Sunk/t«a
S 3 sk : i ; = sv<•ii/r*a
5 5 K I = 2 2 « • 2 4»3:.II I * • 2
5 i K I » S 0 F 71 k I I
56 SF XM IN -S KMI N/ I >A
S 7 IN ♦ *< l
58 OZ 2N <l5 )*2 2 *. 1
5 5 CK 3M = C( 6)*S< I II

1 cc C<Im-CZZv**2^h *CK3V**2
10 1 C< T (CK, 1 M)
iCZ IF ( SUM x ♦ Sx. v I ri I i Cl , I Cl .102
10 3 101 WPITF (6,103)
105 103 F 0 S v A Tt/ • CxACK HIS AFRESTEC;
105 CO TO 17
10 6 102 CCN T INLC
1C 7 P E - x •' I *< / ( SL»x 4 SxMNI
ICC 0< 1 x =x I •"------
ICO K 1 = 0 x I x ♦ CX I M
1 1C 0 DX 1 = 2 2- 06 6 V
in C0k3 = $xI 11-0x3“

(S*C(2I)

l IFE IS INF INI T£

----R = Kmin/,,,'niax

Break-up for Numerical Integration of

K = h(x, a, etc.) o(x) t(x) dx

Effective Width, Variable Thickness Calculations

CO
VO

AK Integration

•Suin Inte9ratio"

for Kmax < 0



\

i

is; Oa;'*;* : * ( \ i -• *■
1 1 3 IM kI-yT H 1 ■
Um 10 ./ A''*< " 1.

C KI c-rc^;
l 1 ! 1 1 IF U \ I X - K I c 1
i u 1 3 C4C\--103.M A
11 ? S^Y ='> .
11 ? 12 n ( I) = " A \
1 IT Cill r: r ' iC
12 C call STtr; i
i: i CALL Tr.[ r- ( A.
122 3 C r;

i ?tc.rss ir;ir
123 31 F j G ^ A T I *

IK “P.
124 32 r ?t y ;,y (1

1 K-.p:
125 WR IT EI6,33 ) L
1 2 E 33 F 25'’ATtr 11.6 ,
127 I F (L 12 l-K) p;
12E IS C 3 M ; MF
1 2 S 15 f ; : ■•ATI F 20. 7. i

C P2 EA-:
no IF l S = >- 1. > 3
1 3 I S com rujc
122 1 B RRI TE(>., 16)
132 16 f ;g«/t (/ ?
1 24 SPY ~0. 7S 7.13y5
1 3 5 GO TC 17
136 1000 :* 7 ££>
137 t'.C

:c"t i
: 11

.i ’ .n

)-Kl) "Forman’s Rule" da/dN Relation

.i 'V ,' ,r. ] 
i

\; ' RESI.TJM. STTESS T h ICKV F SS
V. TY Picnas EFFECTIVE C VCl I C CFACK CYCLIC)
‘>T M LY I AL SHEA^ K'^AX

< K.MIN/K^AX C-SCwTH LIP?')
SXX(A) SxrtA) T I A) K.max

K^AX-KVIN R £ F F 'J A/ f)N f. ' )
1) .S,SXY ,T ,SKMAX, SRKf'^.Kl , Rf .DA^rof?;
^ 1 o.? • ?!<».?* ? 10.5* 2F 10.2 • ? 16.r, Fl**#?fri6. )#r io.O)

Jt 1 3

T K c y IN A T f 0 - ^ p a c T t'R E TO’^HNESSwAS fcC£N FXCHECri:)

; .5t 1

O

«
s
! I

i 1
I

? i< 3
i s 11 
! i

«i
U
?1

l\

n



13? S'JR®eut f.t l \ HI i*CIN,PNfL
12<: RE l
1AO ci^NSir’j Li' ) . i. )
!<. 1 IE ( IA- 1 > t *,
!<•; 5 c ; r, i. ri * 1 ) rO^N C J )
li 3 >; » or r. / • ;! J.
1-.4 L ( 11 - LI 1 I *1,1 •< i -
1*'. 4 DL t'l l'.= L 1 n •> (C : i . )
146 c;’N(Z) = d ;'j i; i
14 ) LI 2) *L1 l l»ni" r .
'.4£ RETCS-J
14T e sn

Integrates

with Trapizoidal Rule

da
Tda/dNj



■ ' * ' ' r \

J
-<r Thickness

;

!
X*TnJ

}
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I?: '
F UNC 7! C’ HCS t A

C Pi'LU ENC
c FLATf ~f -
c cCsdinc.
c c ;; t a : r ;
c P 5 i ‘ £
r

i 5 £ CC '-.C-57; 7 H
151 p U-= I .5 7:7TM
15 ( P js p ;i/.j
HI F". ■PIP*C/3

c IS PA 7
I £0 I F (P A-. C 15) 1 . 1 .7
It 1 i F J, PS/ (P ,-*f A-P C*
1 6 7 HCS='L= H C3I

r 1 r -r
153 COTC I 3 .3 , I “C
1'jA 3 FH 1 »FC 7 “SCF TI 1
16 5 h;s • ^cs*fi
U £ CO TC a
lb 1 Z T.*.-'A-.( PA)
l(C C = C C S ( P AI
lb 9 c : *c r s (p c i
l 7 t C‘rr.-:’./rc
17 ) F 3= x 4 / ( ;-c ACC ■»*;
l 7? mCS’SITT(F3 1

c IF v,E
17 i GC TC (5,3, A I, l*
1 7‘ 5 f I * 1 » c;r » s;
17! “ c s * >•: s • ’ ’
175 9 hC ' -1 . a; I 3 5
17 7 P E*UFN
I 7 ( EM)

SJ'JCf E : Pftc.r !.}* r* IAOA nAf!'i"Ca|'«
■t‘. IT. TCB ’.“Cf'f*!.?: fxACT TCP t “CDE* 1. 
'ML . f-APCH 1 975

. 5 f. P A/ 2

P3= IN “CCE HI, the CALCULATION IS FINISHED

( 1 .-CA)

Influence Function Subroutine; to be 

Changed for Each General 2-D Problem 

Class.



S'jfsru* ;\= s-l IM'.,, ' < V 1 X 1 ' 1ISC r: rstsiu ,c< i::o i.osisci ..sxtsoi
It* 1 :"<c is i-iaao.) ;.i.c
;e; i s c ~ (s , 3) 1 \
».r'; 3 i :5i
i • •• svi.715. ^ i < c > (; i , r s i ii ) ♦ I a 1 ♦ I*< J
I * x ► 3;r i ;■ tc.')
; f i Clo i 2i’.V'..
; c i i') s \
i 5 { cs t! )■• cs 11 )-csi; -11
IS “ 5 O M C Ml l-CXl! - t)
is z 2 c r.’ i\o s
i St c: : ; -1.:
i°; :: - x-c m ; m i
na ^ = I
ic,, is (r.;) f, c, 7
t')5 7 CC*,* f... E
i‘4 6 S = CS U) » DS (J*t 1 / CX U ♦ l ! • (
IS', S - C ! S1 - S
IS E SO •= 0.
:ss s 6 T'J2'4

zee E\D

Linear Interpolation of ore$ (x) Function 

Which is Input as a "Table."

-T»



M.V RfcStOUSl STOPS'.
. :e>. scat a
: ic. Th3l»- C7 A l N
»? J 1 • .1260^3 •<5-------

1 = ICCC. l' • 0
1 . 1

a i*.. 4. • l ^
0 15. 1.75- ofCHp

*3C. ^ •
.’37. .5 .
236. 0-015
.33C. 52.5
?S0. • *« 70.

. .6 *» !) .
1 • 2 3 2 .

•.'^3 . 1 .6 17.
1 .6 i •

’ss. 2.7 7.
Ott. 3 . 2.8

3.6 0.
* .5 - c,
5 • S

2 50. 7 . -3.2
2 51 . 20. -7.
252. <7.5
2 53. 1 CCC003.

ThSj-CrACK. !
2 35. . 1 2 500 3
2 5t. 1 C CO* “36 .
257 . 1.
2 5e. 1. 25.
250. 1.72- 072.77
2 o J • ■3 > 3 .
2tl. 3.
26 2. ^ C C 1 5
2(3. 53.5
265. • <• 50.
265. .3 76 .
266. 1.2 32.5
2c7. 1.6 1 S.
263. 1.8 17.

267. 2.7 7.
2 70. 2.6
2 71. 3.6 0.
272 . 7.5 -2.
273. 5.5 -2. 6
2 7-.. 7. - 3. 2
275. 20 . -7.
2 76 . 27.5
2 77. 10C0C00.
2 7a. Th«c'- ORACx
2 77. . 12 500 3
2 30. 5 .
2 61. 1.
2 62 . 1. 25.
233. 1.7c- 0 72 . 77
237. 30. 5.

4* t t . CCCil
2 6 7. 52.

•I'iiL
^i

min

n (E^~ K Ic

Residual Stress Table for 

res ^ ~ 'res

iso.

i so.

Lines 230-366

Input Data for Six Fatigue Analyses of Table IV.

ii
i

*

- * •• • V./ •tfii.i.

\



. e ' ‘1 .
.’‘Iv. 1 .2 20 .
? < 1 . 1 .( 1.‘
2')?. 1.6 3 . I

2.5 - •!.
- 1 i .

255. 1. t — ? *
. 5.3 - 35.

2 NT. 5.6 -3 7.
? So . THo J*•CP A Cs
2S'> . .125003
3CC. 5. - 30.
3 C l . 1 .
3 02. I . 5 6.
3 C3 . I.s£- C 7 2.7 4
3 0-.. 3 C . 5 .
3C5. 3 .
3 Co. coon
307. 52.
3Co. . 5 5^ . ;
3 CS . .9 36 .
3 IC. 1. 2 20.
311 . 1.6 7 . !)
3 12. l ,c 3 . 7
3 13. 2 • s - .
3 is. 3 . -17.
3 13. }.« * fc •
3 16. 5.5 - 35 .
•IT. 5.5 -.17.

3 lo . T Tfi't- CEACS
3 IS. . 125C03
3 20. 1CC0. 0.
321 . t.
322. C • 26.
323. 1.5;-■3'.2.75
32s. 3 C • 5.
3 25. 2.
326. 000 15
3 2 7. 5 2.5
323 . . 5 5C.
3 2 S. . t 5 5.
3 30 . I .2 32.5
331. l .0 1°.
3 32. 1. S 15.
3 33. 2.< 7.
3 25. 3. 2.6
325. :.t 0.
336. 5.5 _ ->
3 37. 5.5 ~ . t
33e. 7 . -3.2
33S. 2 C. - 7.
350. 27 .5
351. lC 0j0O0.
352. TH> J- C A C is
353. .125003
355. 5. 0 .
3 5 5 . 1 .
356. 0 . 2 5.
357. 1.55- 072.75

IN A or L LN)t*

IN 1 otlO LN311'

If A oHCD LN3tP

NC^INAl i\T =;S I^UAl

1^.1.

fTf'riAl A NO ofSIDLAL

HO.

fiCMI*IAL tNC AE? ni)Al

150.

STPtSS

EieiSS

S T A r E c.

?
i

]

o

1
I !

}
i

)

j
1



3A£. 3 C.
?AO. 3 .
15C. 03015
1 C 1 ‘o /
3S<;. • I *3 v)
J‘. 3. f. “I '1
3 5'.. 1 . ?
i'Ji. 1.6 i •;
3 ‘jb • 1.0 1 N
3-iT. 2 . 4 7,
3 5 3. 3. ? ^
3 59 . 3.6 C •
3aC. -..5 -<:>
3 c l . 5. 5 ~ 2
362. 7 . -3
3t3. 2 C. -7
it*. 2 7.5
3 03 . 1003000.
3 66 .
367 . tsrc?

I

/
"7

I

i'i

M

;• 5

> a

J

i

. :

(
{

■ I

.i.'J



JDAT A

THRl-CKACK n A VELD IWUER NOMINAL AND REStCUAl STRESS - Case 1

FHE INITIAL HALF CRACK LENGTH IS 0.12500

OELTA SIGMA MIN SIGMA EFr-rcTivc fraction of p.esidjal stress half plate width
2^-000 PaOOOOO A,^000 (Tooo.o^) Large PipeInfinite Plate

THE CRACK OftCWTH pel at I (If! is J CA/CN*C*I K lOFFCCTIVF-K TH) «»K/IKI C*l l.-REFF)-KIEFf rc TI VEI THE CONSTANT'S VALUES ARE'. C M KfH KIC
0.IROE-06 2.TA 0.000 ISO.

the ALABER of INTECRATI'Vni points TO COMPUTE K-FACTORS IS 30.
THE NLNStR of LIFE INTEGRATION POINTS TO DOUBLE THE CRACX DIMENSION IS 5.

HALF
CRACK RES IOUAL STRESS THICKNESS STRESS INTENSITY FACTORS EFFECTIVE CYCLIC CRACK CYCLIC
LFNISTH axial SHEAR K M AX K MJN DELTA K K Ml N /KM A X gkolth rate LIFE

A S X X ( A ) SXY ( A ) TUI K MAX K“l N KMAX-KMW R EFF DA/ON N
0.12500 51 .72 0 .00 l.COCOC AB.60 32. 82 15.7,6 0.675 0.B16E-05 0.0. 1 A 3 5 S 51 .60 0 .00 l.ccoco 5 2.0A 35.13 16.91 0.675 C.102E-OA 2026.0. 1C ASA 51.A 7 0 .00 I.CCCCC 55.71 37. 59 18.13 0.675 0.128E-0A 3863.0. 1 3S A 7 51 .32 3 .00 i.00000 5S.6A AO. 2 1 19.A3 0. 67A 0. 161E-0A 55 79.C • 2 17 6 '♦ 5 1 .1 A 0.00 I. ocooo 13. £2 A3.00 20 .82 0.67A 0. 20AE-OA 7121.C.25CC1 50.9A 0 .0 0 1.00000 6B.29 A5.97 22.32 0.673 C.260E-0A 8516.0.: 67 13 50.71 o.oc I.CCCCC 73.C5 A9. 1 3 23.92 0.673 0.333E-0A 9770.0.3 <S 69 50.AA 0 .00 l.COOOO 76.12 52.AS 25.63 0. 672 0. A3CE-0A 1 0339.0 . 3 / 6 c A 50.12 0.00 1. COOOO 63. 51 56.03 27 .A3 0.671 C. 56 1E-0A 11379.C - *• 3 52 S A 9.5 6 3 .00 I.00000 09 • 19 *>9.74 29. A 5 0.670 C.739E-0A 127A6.C . SCCCP o.oc l.coocc 9 5 ..09 63.53 3 1 .56 0.660 0.98AE-0A 13A97.C. 5 7 A 3 C 4 7, G 2 0 .00 l.COCOC 101.25 67.A3 33.83 0. 666 0.133E-03 1 A139•0 . (SS 7 S A6. - 5 0.00 1. occoc 10 7.65 71.39 36.25 0.663 C ’CAE-03 1A678.C . 75 790 A 5.53 V> .00 1.00000 1IA.26 75. A 0 30.65 0.660 0.26 1C-0 3 15119.0 • l 1 C f c A 2 . 7 9 '3 .00 1.00030 1 20. Ct 79.02 4 ! .64 0.6 55 C.37SE-03 15A72.1. C C G C 5 33.75 0.00 l.COCOC 12 < . 1 3 6 1. 50 AA .63 0.6A6 0.5A9S-03 15751 .1 • 1^676 3 A . I C 0 .00 1.00000 1 30.70 ?2.8 7 4 7*33 0. 63A 0. 79AE-03 1 597? .1 . : 1 E 5 3 23. At 0.00 i • C 0 C 0 0 1 3 A. CA 62.77 51.27 0.61P C. 1 1 IE-02 16152.i.: ir- c c 2 I .BA 3 .00 I .00000 135.65 BO. 70 5 A . 9 5 0. 595 0. 1A1E-02 16337.1 • "J ^ i i i 1 A . A 7 o.oc l.CCOOC 1 3'. 59 76. 7 C Sit .69 0.566 0. 158F-C2 16A50.2.CCC12 l 1 .6 7 0 .00 1 .occoc 133.AB 72. 3t 63.12 0.5 3A 0.1 77E-02 16612.2 . i S 7 I A 8 • 2 C 0.00 1.CCCCC 135.56 67.90 <7.65 0.501 0.20 IE- 02 16770.2 . C J s 19 5.33 0.00 1.00000 125.A1 62. SI 72.51 0.A65 0.22AE-02 16930.
3•(Zl£4 2.6 5 0.00 l.COOOO 135.27 57.55 77.72 0 . A 2 5 0. 250E-02 17096.3 . A C 2 A A 0.55 0 .00 l.COCOC 135.2A 51. S 5 63.29 0.38A 0.282E-02 17265.^. C C C 2 8 -0.39 0 .00 I.ocooo 135.50 A 6.3 3 £9.27 0. 3A1 0.32AE-C2 17A16.^ • S'?5 13 ■•2.03 o.oc l.ccoco l3C .26 4 0. 3 9 95.67 0.296 0.38RE-02 17603.5. 2 7 6 A 3 -2.62 0 .00 i.ooocc 137.9? 35. AA IC2.5A 0. 257 C.5C7E-02 17756.6 • C t 3 2 3 -2.95 0.00 I.coocc 1AC.39 33. A9 1C9.90 0.217 C.72 6E-02 17883.6. S fc A S 5 -3.19 0.00 l.COOOO 1 a 3.7A 25.°5 117.79 0.161 0.129E-01 17972.8 . C C o 6 5 - 3. A 9 0 .00 ).cccoc 1A7.79 21.55 126 .;;a 0. US C.A2AE-C1 Q3oo?p

RUN TEPMJNATfC-FRACTURE TOUGHNESS HAS BEFN EXCEEDEC



THRl-CCACK IN' A r L I*. i‘L n C = ES trjAl ST = 5 S5 - Case 2, Negative Applied o0 UVI E -

THE INITIAL HALF CRACK LENGTH IS 0.12500
OELTA SIGMA MIN SIGMA r F r t" T I VE f ^ac t i: r. rf 0TriI 2'jAL STPr,“'c malt o L A.T F V, I or M

25.000 -30.000 1 . TC i 0f'. n

tee c “ ACK C^C'f. ’ H ELL Ar I T, is :oA/;n< *t meffe: t i vr -k th M ♦ v / (k f cv ( i» r f ) - k I: F F E C T I VE 1
Tee C C e STAST'S VA LI.f 5 A. : C. M K T E IC.

C • IeCf -C6 2. 7E C. CCC

TI'S NLMSEE. 0r IS T Ed A T i rN P JI *;T $ 7 C rr-rL u b-rtcTCPS is )0.
The M. *’f:fp CF i if f is n r =• AT | C . f ' ! *L T .j rc OOHl? 7 M (»Af\ r!«'sr,sir.:i IS 5.

HALF

CRACK sniAL ST-' ESS THICENF SS S7r ESS INTENSITY F AC »E5F E rF ECT IVE CVCIIC C5 6Ci/ CYCLIC
A < I A l L- k VAX K VI *: OH T A X * v T \ / K v A < OCOUTH P AT E -IFF

f S > T I A ) SAV ( A ) T ( A ) K v AX K* I '» k V A X - K V I fi p rf r D 3 /.l ’1 1
C. IISCO 3 1.72 ). 3 0 I.CCCCC 2 c . 6 7 13.29 16.78 r » •« 7 p C.E15E-C5 0.

' C.i'.JSS V 1 .c ) J . J c 1 .1ococ 3 1.75 iE.F? 16.51 0.467 O.Si 5F-05 397 7 .
0 . I < A E A S 1 . E 7 0 . C> : I.CCCCC 3 3 . r- o 10.8‘* 1 r . 1.3 0 • 466 C. 6. 3Er - C5 769 3.
c. if4;a7 SI .32 • - 0 1 .OOuOC 3t .2? lO.^O 1 •• . 4 3 0. 4 6r- C. 731E-05 1 11S1 .
c.; i ?{A S l . 1 A 3. oc I .cccoc 3 8.8A IT. 3 2 20 .>■ O.ESE C.S8 7E-C6 1E3°2.
C. ESC Cl s :.se 0 • 0 c 1 . L C C C e :.5l 1’'. 15 22.32 0.4fc2 C.115E-0-'. 17379.
C • 2 d ? a 8 s:. 7i 3 ,..'0 1.7C CCC A '♦ . 3<t 7 0 9 '» ’* 4 ^ • T ^ o. EM c. ie 7-:-DE 7 010’,
0.30 2'* S J . E E J. r c I.CCCCC E7.25 21. 72 2 r'. 6 3 0.E59 0. 18 3E-0S 2273 1 .
C. 2 7 6^ 5 3.13 0 .00 1.03030 50.5e 22.06 27.48 0.4^t, C. 22 7F-0E 25177.
C . 4 2 5 ^ ^ ^ .St o.oc 1. CCCC C E3.E5 2 M . 4 1 r ‘ 7 . M *3 0.E53 0•2q2r-CE 2 7390.
C . S ^ C C C <*3.7 S 0.0 0 1.03030 b7.2? 25-65 31.56 0. 4 4P C. 351=-O'. 2 ° E 3 5 .
C . t 7 ^ ; c E 7 . '.3 3.CC I.CCCCC 6C.66 < ti. 3 3 } . S j 0 # 4 4 ? C . 4 ? 5r - C4 3 1328 .

.7‘j ».;; 1.00000 2 ' . 2 - 7 / . : 0. 4 35 C.54Cc-04 33770.
C. ISTS.’ 4,5 # c 2 o.c i.cccc: 6 7.63 28.78 3-.° 5 0.425 c.< /rr-C4 34 70 0.
O.ETCfC ^ 2.7 ‘7 0 . ^ J I.CCCCC 7C.63 25. C/. E1.6E 0 . E 11 0.821=-CE 36712.
i • c c c c ^ ? • 7 S J ,00 I.OOCCC 72.57 2 7.5/. EE .6 ’ 0. 3 85 C . 0 7 4f - 04 3 765 5 .
1 . Ki 76 3E. 1 1 o.oc i.ccccc 72.30 25.-7 E7.T} 1.3E? 0.112E-03 39075.
1 . 1 I « S E 2 3.E6 J .Cl i .crooo 72.52 21.26 51.27 0. 253 C. T2EE-C3 E0S25.
l.S 1SEC 2 1.'^ O.OC 1. CCCCC 6 5.71 » 4.7 fc 8 4.4 > ''.2:2 C. 13CE-03 4 J j74 .
1 • 14 i E 1 1 p . ^ 7 J • c o i .OCOOO 6<i 4.C? 53.8) 0.053 C. 12 ?E -03 43"??.
2.CCC IE 11.57 ,•) an r I.CCCCC OS. 73 -3.35 63.12 - 0 . C 5 7 C. 126C-C3 4 585 1 .
2-ES7S4 i .2 0 3 • V l.COCOC 5S.37 -13.28 • 7,65 -0.2 44 0.12 2F-03 EF2SS.
2.(TN IS cj. 3 ? l.OC I.CCCCC -2E.I0 72.6 1 -0.408 C. Il'F-03 5 11E9.
3. C E 1 < S 2 • c 0.10 1 .1CCCC *» i • C l -3S.7C 7 7.7,/ 0.10(8-03 57.
3 - ** ft 2 fi U 0.6 5 0.10 I.OOCCC 3 5.29 -En .90 f ■> .29 - !. 3 ;,9 0.5 5 f c - OE 5 91 3 9.

. CGC2!8 - 3. m <; o. oc i. r c c c c 2 F . 3 8 -(2.65 89.27 -2.1 ES O.F lOc-OE 65087.
s. S« S 1 J - 2 . C 8 5 . J 0 i • L. C L. 0 G 2 1 . E.5 -75.22 <5.6’ - 7.4CQ C. £ 5 3F - Ce 73219.
3 • < 7 c ^ J -2.62 .). c c I.CCCCC 14. M -FT.6,1 IC' .5E -5.86 7 C . E 8 E = - OE p 5 l -3 r .
6.C6333 — 2.95 o.oc 1.02030 6.51 ICi.*. - I 1 .521 C.390F-OE 1 ^ ‘A ! 1 7 r
t . C < ^ C ^ -3.19 0 . oc 1.CCoCC 7. 39 11 9.e; 117.7/ — S rt . 2 3 E C.S11E-C5 1 M 2 7_P .

C7ACK h/J< ARP. EST^ ); LIE e is is1!*.; ir

Tesl-CFACk IS a »'ELC l! 4l;C 7 •jrvj' ;. L A*1: u c r 5 10 'JA L 5 TP? $ 5 Case 3
THE INITIAL HALF CRACK. LENGTH IS 0.12500

Case 3



0ELT4 S IG y A
*0U0

MIN SIGMA 
0.OCOOO

EFFECT! VE FPACI lO'i PES 1 rXl4L F T pF E S1. OO.Ii)
The CFACK Growth p.ci A-lO-i is :OA/ON»C*( XIEFFECTI vC-KTm)*«m/( KIC»( l. 

TFE CC.NSTANT’S values APE: C H H Tu x! r

C.l'ACt-Ofc 2.TA C.CCO ISO.

THE NLy3fP of IN T EOF A T I C‘J PCi‘'T> TC CCHPITE X-FACTQPS IS 30.
THE NLP5EP CF LIFE riTtC0 A i I Cn l,',INTS TC OCL'OIF ThE CPACX n lyF f.S I CM IS f..

HAL r ‘’LATE w jo Th
S.0000

:EFF) -XIEFFECT IVE)

10" Wide Specimen

HALF
CRACK 5 F S I DU A L STRESS THICKNESS ST"r 3 S INTENSI tv r actors EFFECTIVE CYCLIC CRACK CYCAXIAL Smf K K KIN DELTA K K H J N /x V AX CPu’«7H CAT? L It S X X I A ) Sxr ( a ) TIJ) KVAX K H I \ KVAX-KVJN ? F F F c a/on »•
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Table I. list of Available Crack-Taco Influence Function Solutions to Allow 
K-Ccmputation for Comp!ok. Arbitrary Stress Distributions

pros'ie*. 'escriprionls)

Oimensional ity 
of Elastic 
Solution Mooes D3F/M1

1/1

Error
iMaximum Value 
Cuoted Oy Sour^e)

Cer.ter CracKpd PiJte 
Ir.cer Syretr-. - Loais 

sy.‘.retry.
Fig. 2)

2 I,II.Ill III (exact)
I y I * (- 1 * i

Center Crac».ec P'.ate 
Ir.der Any Loading

2 11111111 1/2 III (exact)
I.II (*H)

Single cCge CracK in. 
Finite Strip

2 I,II,III I/l III (exact)1.11 (-*2t)4

uOuDie luge urack in 
Finite Str’p

2 1, 11.111 1/1 ill (exact)
I.II (tan)

ir.f ini te Crac*,
Infinite Plate

Infinite CoIIinear 
Crac<5, Infinite
Plate:

2 I,II.Hi exact

One Crac« Loaded 2 » » I I , I I I 2/2 exact
txo uracks loaceo 
Syntretricaily

2 I.II.Ill I/l exact

Fin'te CoIIir.ear Cracus 
ir. Infinite Plate, 
Various Loadings of
Ail Cracks

2 1,11,111 I/i or 
1/2

exact

FAA Computer Cocoes Nar.e^/Status^

Puoiisr.ed Source's) 
(not necessarily 
comprehensive) K-Calculation

Constant
Amplitude
Fatigue

Other Capabilities
I 2

(6), Section 3 
(See Fig. 2)

IFS2-1/A IF2-1/A Residual 
Mean o/A

Variable Thick­
ness Approximation

(6). p. 2.33 -- -- -- —

(6).4 pp. 227'*- 
228,
(20)

IFS2-2/S IF2-I/A Combined 
Iiooes I 
a i: 
Cycling

Variable Thick­
ness Approx.

(6) p. 2.31 — — — —

(6) p. 3.6 — — -- —

(6) p. <.5
(6) p. 4.6 •• ““ — —

(6) pp. 7.6-7.7 .. .. ..

fi7



Ta&'.e 5 (Cnr.t'd)

Przzrir

O’.r.ensiona' ity 
of £'dr.tic
Solution_____ VcOes DOF/M

Error
(,va*iruT. Value 
Quoted by Source)

PuPlisnrd SojrceJs) 
(not recevsarily 
corprerensive)

2 3VAA Conouter CoOes Name /Status
unr.itar.t 
Anpl tti-cle

K-Calculation fafigue
Otner Capaoilities 

1------------ 2---------

Irfinite Cracx 2 1/1 ait ^ CXtiC t } (61 ?. 3.5
Apprcacning Edge of 
half-S:ace

t « 1 1 i%;

Rows o* Infinitely 2 a i 4 1/1 exact P- 13.2
Col 1 ir.ear

Infinite Cr^Ck' in

Infinite 3!ate

Assorteo Finite Wiotn 2 -- 1.2/ worst Case s t2» (&) . (8) • (i
a"-; height Straight 
“late Problems

1.2

Assorted Finite Aidtn 2 Worst Case r :5I (8)

and Height C.,r.eo
Structure Prooiens

Infinite Cracx in 3 l/*» exact (6) P. 23.1
Infinite Sol'd;
Straignt Crack Front

Circular Crack, Aroitrary 3 I S/” exact {6}, p. 24.2
.Vooe 1 uCaoir.g, Infinite 
So ■ 10

Circular Cracrs. Internal 2-3
ar.c External Various 
Special Cases of Loading,
Infinite Solid

Buried Elliptical Cracx 3
Arbitrary Moce i Loading 
(Infinite Solid)

1/1 Most are exact (6), Chap. 25

4/4 exact This report, IFS3-1/A IF3-1/A
App. C (See 
Fig-d )



Tub’.e I (Cont'di

Program Descriptions)

Dimensionality 
of Elastic
Solution Modes DDF/M1 * 3 4

Error
(Maximum Value 
Quoted by Source)

Published Source(s) 
(not necessarily 
comprehensive)

2 3FAA Ccr.putor Codes Name /Status
Constant
Amplitude Other Capabilities

K-Caiculation Fatigue 1 2

Buried Elliptical Crack 
A'bitra-y N!sde i Leading 
(Infinite Solid)

3 I 2/2 exact (1JD) (See Fig. 8 ) IFS3-2/C -- —

Corner Crack, 1/4 
Elliptical Crack, 
Arbitrary Mode I Loading 
(Infinite Solid)

3 i 2/2 Three-Dimensional 
Numerical Stress 
Analysis

(]2) (See Fig. 5) mm mm

Surface Cracxs, 1/2 
Elliptical ;Corner Crack, 
1/4 Elliptical, Arbitrary- 
Mode I, Infinite Mods

3 I 2/2 Combined 3-D and 
2-D Eng. Approx.

This report, App. B 
(See Fig. 7)

IF53-3/C IF3-3/C

‘,v, * The r.iirr.ter of distirct stress intensity factors that may oe computed with the IF solution (e.g., two K values, one for each of two crack tips). 
2-Current FAA computer program and subprogram names.
3
Status symbols: A ■ program nearly complete; lacks documentation and user features

3 1 major portion o' program complete but substantial cleanup work is required 
C = incomplete program, existing code has been checked out

4
Refs, (n) and (20j results indicate that Ref. (6J solution is in error.



r^s

a/b Near Exact Values ( 0.1% error (6)) IF Calculated Values Error

O.OOCS 1.0000 1.0073 0.7%

0.2 1.0246 1.033 0.8%

0.5 1.1867 1.200 1.1%

O.S 1.8160 1.821 0.3%

0.9 2.5776 2.628 2.7%

Table II. Comparison of Published and IF Method-Calculated Stress 
Intensity Factors for Center-Cracked Plate Under Uniform 
Stress
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(a) = K.(a)exact

(a i_n_ inches)

axisynmetric

1

2

4

Penny-Shaped Crack Cross Section 
(Lower Half of Stress Field Not Shown)

(l-r'Va^)"' ksi, r = (x^+y2)*

= K(a) = yy-- (Tral '" ksi ►/Tn, i = x,y

IF Calculation

Exact K(a) *i Error K__ y__ Error

0.07253 0.0719 -0.9% 0.0718 -1.1?

0.10258 0.1016 -0.9;: 0.1015 -1.1?

0.14507 0.1438 -0.9 0.1435 -1.1

0.20516 0.2033 -0.9 0.2030 “ 1 . 1 -

K(a) = l

r3 ksi

( ■a ) ksi > in 

r in inches)

_ a _ Exact K(a) K
X

0.5 0.05875 0.0599

] 0.66467 0.6774

2 7.51988 7.6639

4 85.07777 86.7073

IF Calculation

Error K
__ Error

+1.9 0.0595 + 1.3

+1.9 0.6730 + 1.3

+ 1.9 7.6141 +1.3

+ 1.9 86.1441 +1.3

Penny-Shaped Crack Cross Section 
(Lov;er Half of Stress Field Not Shown)

Table III. Comparison of Exact (6) and IF Method-Calculated Stress Intensity 
Factors for Penny-Shaped Crack in Infinite Solid Under Two Complex 
Symmetric Stress Fields.



Table IV. Summary of Six Fatigue Analyses of the Weld Crack in Figure 9

Width of Alternating
Mean Stress
Components (ksi)

Fig. H for 
Fatigue Anal. Calculated Cycles From

Cas--' ? rtructure (in.) Stress, Ao (ksi) Uniform Residual Results 2a=0.25" to Failure

1 2000 25 12.5 See App. D 11 18009

2 2000 25 -17.5 App. D 11 CO

3 10 25 12.5 Fig. 9 + App. D 10 17949

4 10 25 -17.5 Fig. 9 10 CO

5 2000 25 12.5 0 11 107439

6 10 25 12.5 0 10 95852



Table V. Cumulaf.ve Damage Analysis of Nozzle Alternating Stresses 
Caused by eleven Distinct Types of Load Transients

equivalent « of Heatup-
Lxpected Number of Damage Measure Cooldown (i=l) Transients

i ith Load Transient
Peak An. 
(ksi) 1

Transients in 40 
Year life - n.i

y. - 10'Bn. A.m 3-726 
' i i i

in 40 Years
°i = Vi/y!

1 Heatup-Cooldown 31.7 200 0.7834 200

2 Plant Loading and 
Unloading

7.4 18400 0.3186 81.4

3 Power Step Change 4.2 2000 0.0042 1.1

4 Steam Drop 11.5 200 0.0179 4.6

5 Steady State 
Fluctuations

0.2 1,000,000 0.0000 0

6 Loss of Load 0.9 80 0.0000 0

7 LOSS of Flow 22.6 80 0.0888 22.7

8 Reactor Trip 7.3 400 0.0066 1.7

9 Turbine Rcll Test 11.0 i 'J 0.0008 0.2

10 Cold Hydro Test 45.7 5 0.0765 19.5

11 Hot Hydro Test 31.2 JO 0.J_4_77 _37_. 7_

l 1.4447 368.9

For each Heatup-Cooldown cycle, 

so that for the 40-year lifetime

the upper bound crack growth rate is (28): ^ (in/cyc) = .37l'»5xlO_<5

increments N. - 36H.9 N,: “f. 308.9 (.3795x1 O'9) AKjj726 = 1.4xl0*7 AKjj726

as in Equation (0.1) of the text.



TABLE VI

COMPARISON OF K. AND K FOR SEVERAL CASES OR SURFACE AND CORNER CRACKS
K

VALUES GIVEN AREUNDER UNIFORM NORMAL PRESSURE n 2o /”a7rr o

K =

GEOMETRY r K
X

K
X

Ky Ky

Embedded Ellipse 1 1.00 1.00 1.00 1.00

CO 1.46 1.57 1.03 0.0

Surface Half-El1 ipse 1 1.11 1.04* 1.16 1.26*

CO 1.65 1.77 1.17 ?

Corner Quarter-El 1 ipse 1 1.26 1.28* 1.26 1.28*

CO 1.89 ? 1.22 9

‘Taken from Tracey (31)
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THERMAL STRESSES 
RESIDUAL STRESSES

(a)

K = K' + K’"

Him.
THERMAL O 
RESIDUAL a

F

F

CT (x)
/

rn

(b)

x

(Tensile Stress 
on Crack Face 
Locus)

(c)

(Compressive Loading 
on Actual Crack Face)

Fig. 1 . The Reduction of a Problem, (a). Into Two Simpler 
Problems, (b) and (c), for Computations of Stress 
Intensity Factor (from Reference 3, Illustrated 

for a Center-Cracked Infinite Plate)
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Fig. Center-Cracked Plate Under Symetric Stress
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r-AREA, A

Fiq. 3. Schematic of Prescribed
Normal Perturbation [Slj(s!i of Crack Front
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Fig. 4a. Through-The-Thickness Edge Crack in a Finite Width Plate
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Fiq. 4b. 2-D Bie Crack Surface Break-Up

NODES TO 
BE PERTURBED



5a. Synmetric Three-Dimensional Coundary-Intearal 
Equation Model of a Corner Crack in an Infinite Body



73 !

MODAL HOWS 
TO BE PERTURBED

CRACK AREA

Fig. 5b 3-D Bie Crack Surface Break-Up
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Fig. 6. A Two DOF Buriefi Elliptical Cruel'
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HALF-ELLIPSE SURFACE CRACK

INFLUENCE FUNCTION CORRECTION FACTOR 
fs(*s>

QUARTER ElLPSE CORNER CRACK

INF LUENCE t UNCTION CORRECTION FACTOR 
(s(xsl + fs(vs) ~ 1

WHERE x , = r--------, Vs = r--------
xinax. ymax.

fs - 2-D CORRECTION FACTOR FOR 
SURFACE CRACK

max.

max.

Fiq. 7. Approximate Rear-Surface Correction Factors 
*or 3-D Surface and Corner Crack Influence Functions



v'

'.’u- x

FOUR DOF ARE

Fia. 8 Dirpensions of a 4 DOF Buried Elliptical Crack



- Wold

Fiq. 9. Veld-Induced Symmetric Residual Stress,
?{x), in an llncracked Specimen and Resultinn Stress Intensity 
Factor K(a) When a Center-Crack of Length, 2a is Introduced
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x ^allure Point 
- Crack Arrest

AC= 25 kS!

Residual Stress 
Om = AO/2

Residual Stress 
0™ = —30 ksi + AO/;

No Residual Stress 
Om = AO/2

100,00050.000

Cyclic Life, N

Fin. 10. Weld Crack Propaoation in a 10-Wide Speciren for Three '•'ean Stress Distributions
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Hyure 11. .-.'eld Crack Propagation in a La rye Pipe for Three Mean Stress Distributions
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Fig. 12. Circumferential Stress Contours, 
for 1000 psi Internal Pressure
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Nozzle
Radius

Initial Crack Size = ax = ay = 0.5".

N Represents 40 Years of Loading Transients. 

Complex Stress Field:

(x, y) = .4662 [ 44.68 + 8.46 x + 199.55 y 

+ 6.88 x2 157.12 y2 + 6.69 x4 

+ 28.20 y4 + 22.95 x y]GO

where x = 2/(2 + x) 
y = 2/(2 + y) '

ION

Fig. 13
Growth of Elliptical Comer Crack 

at a Symmetric Cross Section of an HSST 
Program, Intermediate Test Vessel, Pipe No.vle Junction


