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ADIFOR Working Note #7:

Extending Compile-Time Reverse Mode and
Exploiting Partial Separability in ADIFOR

by

Christian H. Bischof and Moe EL-Khadiri

Abstract. The numericM methods employed in the solution of many scientific computing problems require tlm
computation of the gradient ,sf a function f : R n --+ P_. ADIFOR is a source translator that, given a collection of
subroutines to compute ], generates Fortran 77 code for computing the derivative of this function. I Ising the so-called
torsion problem from the MINPACK-2 test collection as an example, this paper ,'xplores two issues in automatic
differentiation: the eiticient computation of derivatives for partial separable functions and the use of the compile-t ime
reverse mode for the generation of derivatives. We show that orders of magnitudes of improvement are possible when
exploiting partial separability and maximizing use of the reverse mode.

1 Introduction

Differentiation is oue of the most fundamental mathematical concepts. In system analysis and
control, the investigation into the effect of a disturbance or a change in design parameters on the
performance of the overall system is essential. Mathematically, the change can be modeled by
the derivative of the system output with respect to a design parameter. Another application is the
llumerical solution of initial value problems in stiff ordinary differential equations (see, for example [7,
18]). Methods such as implicit Runge-Kutta and backward differentiation formula (BDF) methods
require a Jacobian which is either supplied by the user or approximated by finite differences. In the
context of optimization, one needs the derivatives of the objective function. For example, given a
function

] : R" --*R,

one can find a minimizer x, of f using variable metric methods that involve the iteration

for i = 1, 2, .... do
Solve Bisi = -V f(xi)
Xi+ 1 --- Xi -_-0_i8i

end for

where Bi is a symmetric positive definite matrix approximating the Hessian of f at xi.
These methods are examples of typical methods applied in numerical computations, where the

computation of the derivative is a crucial step in the numerical solution process ([6, 9, 12, 8, 21]).
One particular optimization problem is the elastic plastic torsion problem, which arises from the
determination of the stress field on an infinitely long cylindrical bar. The iniinite-dimensional version
of this problem is of the form

min{g(v) : v 6 If},

where q : h" ---.R is the quadratic

'/o /oq(v) = -_ II_Tv(z)lludx - c v(z)dx

for some constant c, and D is a bounded domain with smooth boundary. The convex set K in dcfined
by

K = {v 6 1t1(0) "l v(x) I<_ dist(x, OD),x 6 D},



wllere dist(x, OD) is the distance function to tile boundary of D, and H_(D) is tile Ililbert space of

a!l functions with compact support in D such that v and [1Vv[[ 2 belong to L2(D). This formulation
and the physical interpretation of the torsion problem are discussed ill the test problem collection

of MINPACK-2 [1]. A finite element approximation of the torsion problem leads to

1 L 1 v
q(v) = -_ _ qi,j(v) + -__ qi,j(v)- h_:hu Z wt(zi,j)vi,j,

where
vi,j._ --vi,i 2

vi+tj-via q.

qi,j(V) = ._i,j h.= + ha_ '

and #i,j, ,ki,j, h_,, and h u are constants.

u
Note that qLj(v) and qi,j(v) are quadratics which depend only on vi+x,j, vi,j+1, vi,j, and on

Vi_l,j, Vi,j_l, Yi,j, respectively. The third contribution to q(v), which is the linear part, depends
only on vi,j. So if we define

Ls, =

&=
then

f(x) = _Sl + _S2-hxh, Sa.

II1 the MINPACK-2 code for the torsion problem shown in Appendix A, LOOP1, LOOP2, and

LOOP3 correspond to the computation of ocl, $2, and Sl, respectively.
The torsion problem is a particular instance of a particular class of functions that arises often

in optimization contexts, the so-called partially separable functions [11,17,19]. These are functions
f ' R '_ _ R which can be expressed as

nb

=
i=1

Usually each fi depends on only a few (say, ni) of tile x's, and one can take advantage of this fact
ill computing the (sparse) Ilessian of f.

ADIFOR (Automatic Differentiation of Fortran) is a source translator that augments Fortran

codes with statements for the computation of derivatives [3, 2]. ADIFOR employs a mixed for-
ward/reverse mode paradigm. The forward mode propagates derivatives of intermediate variables
with respect to the input variables; tile reverse mode propagates derivatives of the final values with
respect to intermediate variables [14]. The forward mode follows the flow of execution of the original
program, whereas the reverse mode of automatic differentiation requires the ability to access values
generated in the execution of a program zn reverse order, which is usually achieved by logging ali
values on a so-called tape, and then interpreting the tape in reverse order [14, 16, 15]. ADIFOR
pioneered the use of the compile-time reverse mode where, instead of logging values at run time, we
apply the reverse lnode at compile time, thereby eliminatil_g the storage req,firement.s and run-tithe
overhead of tile tape scheme.

In this paper, we are concerned with the efficient generation of derivative code through the re-
verse moJe of automatic differentiation, and the efficient use of the generated derivative code for



fquad = 0.0

do 20 j = O, ny
do 10 i = O, nx

k = nx*(j-1) + i
vr = 0.0

vu = 0.0

if (i .ge. I .and. j .ge. I) v = x(k)
if (i .lt. nx .and. j .Kt. O) vr = x(k+1)

if (i .gt. 0 .and. j .lt. ny) vu = x(k+nx)
fquad=fquad + hyx*(vr-v)**2 + hxy*(vu-v)**2

I0 continue
20 continue

Figure 1" Code for LOOP1

computing gradients of partially separable functions. We use the torsion problem as a case study

and explore how to improve the current ADIFOR-generated code and decrease the time and storage
complexity of computing derivatives.

The paper is structured as follows. In the next section, we recall the key points about the method
that is currently used in ADIFOR to generate derivatives. In Section 3, we then illustrate extensions
of the compile-time reverse mode from basic blocks ali the way to generating an adjoint code for the
whole program. In Section 4, we explore the use of partial separability in computing derivatives.
We present experimental results on Sparc-2 and IBM RS6000/550 workstations ill Section 5.

2 Current ADIFOR Strategy

Automatic differentiation techniques rely on the fact that every function, no matter how com-

plicated, is executed on a computer a.s a (potentially very long) sequence of elementary operations
such as additions, multiplications, and elementary functions such as sin and cos. By applying the
chaiti rule

/rg fs ,,=g(to)) ( ff-ff--_g(t),, 1

over and over again to the composition of those elementary operations, one can compute derivative
information of f exactly and in a completely mechanical fashion [5]. ADIFOR transforms Fortran 77
programs using this approach.

To illustrate automatic differentiation with current ADIFOR, we differentiate the subroutine
torten for the torsion problem that maps an n-vector x into a scalar f. The vector x contains the
independent variables, and the scalar f contains the dependent variable. The full code for torfcn
call be found in the appendix.

The first loop (LOOP1) is shown in Figure 1. lt computes SI, whose value is stored in fquad.

Currently, ADIFOR generates the code shown in Figure 2 for computing afquad In accordancedX

with the specification of ADIFOR. (see [3]), g$p denotes the actual length of the derivative objects
in a call to derivative code. Since Fortran 77 does not allow dynamic memory allocation, derivative
objects for local variables are statically allocated with leading dimension pmax. pmax is specified
by the user when ADIFOR processes the Fortran code for torfcn. A variable and its a.ssociated

objects are treated in analogous manner; that is, if x is function parameter, so is g$x. Derivative
objects corresponding to locally declared variables or variables in common blocks are declared as

local variables or variables in common blocks. Given x and gSx, tile derivative code computes



FqUAD = 0.0

DO G$I$ = I,GSP$
G$FQUAD(G$I$) = O.OdO

EED DO

DO 99998 J = O,NY

DO 99999 I = O,|X
K = IX* (J-i) + I
V=O.O

DO G$I$ = 1,G$P$
GSV(G$I$) = O.OdO

E|D DO

VR = 0.0

DOG$I$ = 1,G$P$
G$VR(G$I$) = O.OdO

END DO

VU = 0.0

DO G$I$ = I,GSP$
G$VU(G$1$) = O.OdO

E|D DO

IF (I.GE.t .AID. J.GE.I) THEN
C v = x(k)

DO G$I$ = 1,G$P$

G$V(G$I$) = G$X(G$I$,K)
END DO

V = X(K)
EBD IF

IF (I.LT.NX .AID. J.GT.O) THEM
C vr • x(k + 1)

DO G$I$ = 1,G$P$

G$VR(G$1$) = GSX(G$X$,K.I)
END DO

VR = X(K+I)
E|D IF

IF (I.GT.O .AND. J.LT.|Y) THEM
C vu = x(k + nx)

DO G$I$ = 1,G$P$

GSVU(G$I$) = GSX(GSI$,K+BX)
END DO
VU = X(K+IX)

END IF

C fquad = fquad + hyx * (vr - v) ** 2 + hxy * (vu - v) ** 2
D$O = VR - V
D$4 = VU - V

DO G$I$ = 1,GSP$

G$FQUAD(G$I$) = GSFQUAD(G$I$) + HYX*2*D$O*GSVR(G$I$) +
+ (- (HXY*2*D$4)- (HYX*2*D$O)),
+ GSV(G$I$) + HXY*2*D$4eGSVU(Q$I$)

E|D DO

FQUAD = F_UAD + HYX*D$O**2 + HXYeD$4**2
10 CONTINUE

99999 CO|TINUE

20 CO|TINUE
99998 CONTINUE

Figure 2: ADIFOR-generated Derivative Code forLOOP1



dX " _IT.gSfquad(1 • gSp)= ( ( d_ )g$x(1 gSp, l'n) T

In particular, if g$p equals n and g$x is the n x n identity matrix, it computes the gradient of fquad
with respect to x.

An active variable is one that is on the computational path from indopendent to dependent

variables (see [4]). Notice that in the ADIFOR-generated code, a loop of length gSp is associate.d
with ,:very assignment statement involving an active variable. Therefore the cost of floating-point
operations can be approximated as (g$p × function evaluation). The storage requirement for
ADIFOR-generated code is (gSp x number of active variables). We note two key points about the
current ADIFOR:

• ADIFOR uses the forward mode overall to compute derivatives. That is, ADIFOR code
maintains the derivatives of intermediate variables with respect to ali input variables. So, for

example, g$vu= -_-_-.

• ADIFOR uses the reverse mode to preaccumulate "local" derivatives for assignments state-
lnents.

The reverse mode is best understood with an example. For example, iu the torsion problem, we
have the assignment

:fquad = hyx • (vr -- v) • *2 + hxy • (vu - v) • ,2,

where hxy and hyx are constants. The chain rule tells us that

0 :fquad 0fquad 0fquad• Vvr + _ • Vvu + _ • Vv.
Vfquad -- 0 vr 0 vu 0 v

IIence, if we know the "local" derivatives (° :fcluad 0 fquad 0 f__quad) of fquad with respect to v ,vu,0 V ' 0 VU ' 0 vr

and vu, we can easily compute Vw, the derivatives of w with respect to x. The "local" derivatives

(ofcluad 0 fcluad 0fquad'oy ,' 0vu , 0vr ) can be computed efficiently by using the reverse mode of automatic
differentiation, tIere we maintain the derivative of the final result with respect to an intermediate
quantity. These quantities are usually called adjoints. They measure the sensitivity of the final
result with respect to some intermediate quantity. In the reverse mode, let tbar denote the adjoint

object corresponding to t. The goal is for tbar to contain the derivative 0:fquad0t . We know that
0 :_quad

wbar = o_quad = 1.0. We can compute ybar and zbar by applying the following simple rule to the
statements executed in computing fquad, but in reverse order:

if s = f(t), then tbar += sbar * (df/dt)
i:f s = f(t,u), then tbar += sbar * (dr/tit)

ubar += sbar * (df/du)

Using this simple recipe (see [14,20]), we generate the code shown in Figure 3 for computing vubar,
vrbar, and vbar. One can easily convince oneself that

vubar = 2,hxy,(vr-v)

vrbar = 2,hyx,(vr-v)

vbar --- -2.hxy,(vu-v)-2.hyx,(vr-v)
_

so that we have in fact computed the correct "local" derivatives. The code shown in Figure 2 ha.s
been generated by applying this same technique to all other assignments statements involving active
variables and by optimizing t_lle resulting code by removing additions with 0 and multiplications

with 1. The ADIFOR-generated code for the whole subroutine is shown in Appendix B. ADIFOIt
is currently not consistent about pulling loop invariant subexpressions out of the loop, but will do
so reliably in the future.



/* Compute function values */
d$O = (vr-v)

d$4 = (vu-v)

t l =d$O *d$O

t2 = tl * hyx

t3 = d$4 * d$4

t5 = t3 * hxy
w = t2 + t5

/* Initialize adjoint quantities */

wbar m 1.0; t3bar a 0.0; t2bar ,, 0.0;

tlbar = 0.0; d$Obar = 0.0; d$4bar = 0.0;

/* Adjoints for w = t2 + t5 */

t2bar = t2bar + vbar * I

tSbar = t5bar + wbar * 1

/* Adjoints for t5 = t3 * hxy */

t3bar = t3bar + tSbar * hxy

/* Adjoints for t3 = d$4 * d$4 */

d$4 = d$4 + t3bar * d$4

d$4 = d$4 + t3bar * d$4

I* Adjoints for t2 = tl * hyx */

tlbar = tlbar + t2bar * hyx

/* Adjoints for tl = dO* dO */

d$O = d$O + tlbar * d$O

d$O = d$O + tlbar * d$O

/* Adjoints for d$4 = vu - v */

vubar = vubar + d$4bar * I

vbar = vbar + d$4bar * (-I)

/* Adjoints for d$O = (vr-v) */

vrbar = vrbar + d$Obar * i

vbar = vbar + d$Obar * (-I)

Figure3: U.optimizedReverseMode Computation



3 Extending the Scope of the Compile-Time Reverse Mode

In this section, we explore extensions of the compile-time reverse mode to

= • a sequence of assignment statements,

• a nested loop, and

• the whole program.

A closer look at the current ADIFOR-generated code in the preceding sections reveals a substan-
tial time and space overhead associated with the computations of auxiliary gradients such as g$v,
gSvu, and g$vr. In this section, we explore different ways for improving the overall computation of
the gradient by extending the scope of tile reverse mode.

3.1 Case 1: Reverse Mode for Basic Blocks inside the Loop

In the program for the torsion problem, there are three loops: two for the computation of the
quadratic part of the function and one for the computation of the linear part. Consider, for example,
LOOP1. Each loop iteration can be viewed as a mapping

We use the notation fquadol d and fquadnew to distinguish between tile original and updated value
of the variable fquad. Hence, if we know

cOIquadnew cofquadnew (9fquadnew (9fquadnew

0x(k) ' cOx(k+ 1) ' cox(k+nx)' and cgfquadold , (2)

then we can update Vfquad as follows:

Vfquad = cofquadnew 69fquadnew,_.

0 fquadnew,_,,, (9:fquadnew

+? x-_7_-_x)vx(K + nx)+ 0 fquadoldVfquad.

The derivatives in the equation (2) can easily be computed by applying the reverse mode to the
loop body. The resulting code is shown in Figure 4. Note that each variable is assigned only once in
each loop iteration. If this had not been the case, we would have had to save tlle sequence of values
of variables that are overwritten by allocating some extra temporary variables. This extension of

the scope oi' the reverse mode saved us 3 derivative vectors gSv, gSvr, and gSvu, and decreased the
number of derivative vector operations from 10 to 4.

In general, we can apply this technique in a straightforward fashion to any piece of code that has
only one entry and exit, point and does not contain subroutine or function calls or loops. We call
such a piece of code a basic block. We may have to introduce some temporaries to make sure that

each variable is assigned only once (i.e., represents a unique value) in a basic block, but this requires
at most as many scalar temporaries as there are lines of code, an insignificant increase of storage.
The savings achieved by this technique depend on the particular code at hand, but, in general, will
be the more pronounced the more statements a basic block contains. The code that results from
applying this technique to the whole subroutine is shown in Appendix C.

=

3.2 Case 2 : Reverse Mode for the Whole Loop

In order to expand the scope of the compile-time reverse mode, the special structure of the
torsion problem is imI)ortant Defining

t k :=-hyx,(vr-v)**2+hxy*(vu-v)**2

7



FQUAD = 0.0

DO 05Z$= 1,05P$
O$FqUAD(O$1$) = O.OdO

END DO

DO 99998 J = O,|Y

DO 99999 I = O,NX

K = NX* (J-l) _ I
C

c compute new contribution to sum
C

V=O.O

VR = 0.0

VU = 0.0

IF (I.GE.I .AND. J.GE.1) THE|

V = X(K)

END IF

IF (I.LT.NX .AND. J.GT.O) THE|

VR = X(K+I)
E|D IF

IF (I.ffT.O .AMD. J.LT.|Y) THEN

VU = X(K+|X)

E|D IF

C fquad = fquad + hyx * (vr - v) ** 2 + hxy * (vu - v) ** 2

?
C

C reverse mode computation for computing derivatives of

c x(k), x(k+1), x(k+nx). We know that the deriv, of fquad_neg
c with respect to fquad_old is 1.
C

D$O = VR - V

D$4 = VU - V

FQUAD = FQUAD + HYX*D$O**2 + HX¥*D$4**2

VBAR = -2*HXY*D$4 - 2*HYX*D$O

VUBAR = 2*HXY*D$4

VRBAR = 2*HYX*D$O
XKBAR = 0.0

XKIBAR = 0.0

XK|XBAR = 0.0

IF (I.GE.I .AND. J.GE.1) XKBAR = VBAR

IF (I.LT.NX .AND. J.GT.O) XKIBAR = VRBAR

IF (I.GT.O .AND. J.LT.|Y) XK|XBAR = VUBAR \

c

c Chain Rule to update derivatives of fquad w.r.t, x
c

DO PP = 1,GSP$

GSFQUAD(PP) = GSFQUAD(PP) + XKBAR*GSX(PP,K) +

+ XK1BAR*GSX(PP,K+I) +

+ XK|XBAR*GSX(PP,K+_X)
EID DO

99999 CONTINUE

20 COJTI|UE

99998 CO|TIJUE

Figure 4: Reverse Mode for Basic Block in LOOP1 __



to be the value computed in loop iteration k to upgrade fquad, we can express

(nx+l)(ny+l)

fquad = _ "ck. (3)
k=l

Sincev, vu, and vr are defined!uterms ofx(k+l),x(k+nx),and x(k),tk isa functionofthese
values,thatis,

tk = tk(X(k+ I),x(k+ nx),x(k)).

Sinceno entryof x isoverwritteninany of the loopiterations,tk and tI do not depend on
eachotherfork _-i,and we can compute thesum (3)illany order.Incompilerterms,thereareIlo

loop-carrieddependenciesand thisloopisa parallelloop.

Remember thatthereversemode implicitlyassumesthatwe areabletotracethevaluescomputed

duringsome computationin thereverseorder.Ilence,a loopthatisnot.parallelwould requireus

to Sl,-. some intermediate values. However, for a parallel loop, it is sutticient simply to generate
the rc,_erse mode code for the lo_p body. But this is exactly what we already did in tile preceding

• )section, where we coral u,,ed
0tk 0tk 0_k

cgx(k+ i)'ax(k)'cJx(k+nx)"

Now, sinceI;l and "ck do not dependon eachotherfori ¢ k,thcassociativityofadditionallowsus
to compute

cgtj_nx Otjdfquad __ cgtj__1 + __ + __.__
d_(j) ,9x(j) c9x(j) (9x(j)c

a___.a_u.ad
in a piecemeal fashion, as eactl of the iterations j, j - 1, and j - nx contributes to 0x(jT" The

res.u_ r,t, code is shown in Figure b. The xbar vector contains af__quadand components k+l, k, anddX
k+r_ : updated in iteration k. After the loop, we limply the chain rule to compute

_Tfquad= dfquad
dx - " Vx.

This matrix-vector multiplication is performed using tile BLAS routine DGEMV [13].
To summarize, we exploited the fact that

• loop iterations do not depend on each other, and

• the result of each loop enters into the dependent variable (fquad) in an additive fashion.

q his allowed us to generate reverse mode code for the whole loop by simply generating reverse mode

cc de for the loop body, and the forward mode propagation of the global derivatives could be moved
ou'side of the loop.

(:ompared with the code in the previous section, we now have a multiplication of an g$p x (nx+l)
(n)+l) matrix by a vector outside the loop instead of (nx+l)(ny+l) multiplications of an gSp x4
lnatrix by a vector multiplication inside a loop that is executed (nx+l) (ny+l) times, requiring
rou_llly one-fourth the number of operations. Applying this technique to the whole subroutine
resu ts in the code shown in Appendix D.

a.a Case a : The Pull Reverse Mode

So far we exploit,:d only the particular structure of the code in LOOPI, LOOP2, and LOOP3.
()n tile other hand, f(.) is II. _.sum of tile contributions computed in I,O()P1, LOOP2, LOOP3,

and, in addition to being parallel loops themselves, these loops do not depend on each other. So,
ijl_te;td of computing



FQUAD = 0.0
DOG$I$= X,GSP$

GSFQUAD(G$I$) = O.OdO
EBD DO

DO I = 1,XBARSiZE
XBAR(1) = 0.0

E|D DO

DO 99998 J = O,IY
DO 99999 I = O,|X

K = IX* (J-l) + I
V=O.O
VR = 0.0
VU = 0.0

IF (I.GE.1 .AID. J.GE.1) V = X(K)
IF (I.LT.IX .AID. J.GT.O) VR u X(K+I)
IF (I.GT.O .AID. J.LT.IY) VU = X(K+IX)

C fquad = fquad + hyx * (vr - v) ** 2 + hxy * (vu - v) ** 2
D$O = VR - V
D$4 = VU - V

FQUAD = FQUAD + HYX*D$O**2 + HXY*D$4**2
VBAR = -2*HXY*D$4 - 2*HYX*D$O
VUBAR = 2*HXY*D$4
VRBAR = 2*HYX*D$O
IF (I.GE.I .kiD. J.GE.1) XBA_(K) = XBAR(K) + VBAR

IF (I.LT,IX .AID. J.GT.O) XBAR(K+I) • XBAR(K+X) + VRBAR
IF (I.GT.O .AID. J.LT.|Y) XBAR(K+|X) = XBA_(K+|X) + VUBAR

99999 CO|TI|UE

20 CO|TI|UE
99998 CO|TI|UE
C

c xbar is the vector of partial derivatives of the contribution
c to fquad with respect to x. Since fquad wee zero before this
¢ loop, the derivative dSfquad = g$x * xbar.
C

CALL DGERV('n',G$P$,XBARSIZE,I.0dO,GSX,LDGSX,XBAR,I,I.0dO,GSFQUAD,
+ 1)

Figur,:. 5; _everse Mode for the Whole Loop

10



xbar(l:n) = O;

/* Update xbar in LOOP1 */

d$fquad ffig$x * xbar

xbar(1:n) w O;

/* Update xbar in L00P2 */

d$fquad = d$fquad + g$x * xbar

xbar(1:n) = 0;

/* Update xbar in L00P2 */

dSfquad ffi d$fquad + g$x * xbar

wc could simply keep on updating xbar in LOOP1, LOOP2, and LOOP3 and perform compute

d/quad = gx * xbar once at the end. This is possible since none of these loops updates the vector

x, and hence g$x remains unchanged. But we can go even further: Since in the forward mode, g$x Jt.

initialized to the identity, we can eliminate the final multiplication gSfquad -- g$x • xbar and simply
a._sign return xbar, In this fashion, we have generated adjoint code for the whole subroutine, and

lhc code for computing the gradient does not contain any vector operations.

II, is important to note that we were able to do the full implementation of the reverse mode
bccaus2

• each of the three loops is a parallel loop,

• the three loops do not depend on each other,

• the contribution computed inside each loop enters in the final result in an additive fashion,
and

• the results of each of the three loops are added to achieve the final result.

The resulting reverse mode code for the torsion problem is shown in Appendix E. While we did not

decrease the storage requirement any further compared with the preceding section, we saved another

three loops of size gSp nx ny, and the run time of this program no longer depends on gSp.

4 Exploring Partial Separability

As was mentioned in the introduction, the torsion problem is a partially separable function

[ :lt n ---. lt, in that it can be expressed as

nb

i-1

This structure can also be used advantageously in computing the (usually dense) gradient Vf of [

(see [9]). Assume that the code for computation of f looks as follows:

subroutine f (n, x, fval)

integer n
real x(n), fval, temp

:[val = 0

call fl (n,x,temp)
fval = fval + temp

call fnb(n,x,temp)

II



fval = fval + temp
return
end

If we submit f to ADIFOR, it generates

subroutineg$fn(n,x,g$x,IdgSx,fval,g$fval,Idg$fval),

To compute Vr, the first(and only)row oftheJacobianoff, we setgSp--n and initializegSx to

a n × n identitymatrix.IIence,incurrentADIFOR, the costofcomputingVf isoftheorderofn
timesthefunctionevaluation.

As an alternative, we realize that with f :R" _ R "b defined as

(,)g--

I.b
we have the identities

f(x) = eTg(x), and hence VJ'(x) = eTJg,

where e is the vector of ali ones, and J9 is the Jacobian of g. Itowever, if most of the component
functions fi depend only oil a few parameters xi, the Jacobian of g is sparse, and this fact can l)c
exploited advantageously.

The idea is best understood with an example. Assume that we have a function

F= f3 " x E R4 _'* Y E I't 5
I4
15

whose Jacobian J has the following structure (symbols denote nonzeros, and zeros are not shown):

lo /
O <>

J= A O .
A []
A o

Tlmt is, the function fl depends only on xi, f2 depends only on xi and x4, and so on. The key idea in

computing sparse Jacobians is to identify so-called structurally orthogonal columns ji of J (see [10]),
that is, columns whose inner product is always zero, independent of the numerical values of their
nonzero entries. In our example, columns 1 and 2 are structurally orthogonal, and so are columns
3 and 4. This means that the set of functions that depend nontrivially on xi, namely {fl, f2}, and
the set of functions that depend nontrivially on x_, nanlely {la, f,t, fr,}, are disjoint. Because of the
graph-coloring approaches that are used to reveal this structure, one usually associates a "color"
with every set of structurally orthogonal columns.

To exploit this sparsity structure, we recall that ADIFOR (ignoring transposes) computes J • ,5',
where S' is a matrix with g$p columns. For our example, setting S = I4×4 will give us J at roughly
four times the cost of evaluating f, but if we exploit the structural orthogonality and set

(10)
1 0

S= 0 1 '
0 1

12



the running time for the ADIFOR code is roughly halved. The ADIFOR-generated code remains
unchanged.

This idea can readily be applied to the torsion problem. By storing the contribution of iteration
k to fquad iii the k-th element of separate vectors FQ, FQQ, and FP (for the LOOPI, LOOP2, and

LOOP3, respectively), the derivative of fquad is the sum of the row sums of the Jacobians of FQ,
FQQ, and FP.

For example, the code for the loop corresponding to FQ is

SUBROUTINE TORFCN1(N,X,X,F,NX,NY,HX,HY,FORCE,FQ)

C .. Scalar Arguments ..
DOUBLE PRECISION F,FORCE,HX,HY

INTEGER N,NX,NY
C , .

C .. Array Arguments ..
DOUBLE PRECISION FQ(*),X(N)

C . o

C .. Local Scalars ..

DOUBLE PRECISION FQUAD,HXY,HYX,V,VR,VU

INTEGER FQK,I,J,K
C ..

HXY - HX/HY

HYX = HY/HX

FQUAD = 0.0

DO 20 J - O,NY

DO 10 I = O,NX
= K = NX* (J-l) + I

V=O.O

VK= 0.0
VU= 0.0
IF (I.GE.1 .AND. J.GE.1) THEN

v = X(K)
END IF

IF (I_I,T.NX.AND. J.GT.O) THEN
VR = X(K+I)

END IF

IF (I.GT.O .AND, J.LT.NY) THEN
VU = X(K+NX)

END IF

: FQK = (J* (NX+l)) + I + 1

= FQ(FQK) = HYX* (VR-V)**2 + HXY* (VU-V)**2
10 CONTINUE

20 CONTINUE
END

Tile only change (compared with the corresponding code fragment in Appendix A) is that we replaced
the accumulation of fquad by an assignment to FQ. Subroutines torfcn2 and torfcn3 to compute

, FQQ and FP, respectively, are generated in the same fashion. For these codes, ADIFOR then generates
the derivative codes shown in Appendix F.

For n - 40, the structures of ddF-_xand dFa--_xare shown in Figure 6, and dd-F_P-is diagonal. The
Jacobian for FQ and FQQ can be grouped into three sets of structurally orthogonal columns, in-

dependent of the size of the problem. And in the case of the function FP, the Jacobian can be

: compressed into only one column.

Exploiting this structure, we can now initialize the gradient vector as follows:

13
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Figure 6" Sparsity Structures of Component Jacobians

• *******************************************************4*********

• * find sparsity pattern and compute compressed Jacobian pattern *
• *****************************************************************

CALL SPARSITY(N,X,F,NX,NY,HX,HY,INDROWQ,INDCOLQ,NNZQ,INDROWQQ,

+ INDCOLQQ,NNZQQ)

DO I = 1,NNZQ

INDROWQS(1) = INDROWQ(1)

INDCOLQS(1) = INDCOLQ(I)

INDROWQQS(1)= INDROWQQ(I)

INDCOLQQS(I) = INDCOLQQ(I)
END DO

CALL DSM((NY+I), (NX+I),N,NNZO,INDROWQ,INDCOLO,NGRPQ,MAXORPQ,

+ MINGRPQ,INFO,IPNTRQ,JPNTRQ,IWA,LIWA)

CALL DSM((NX+I), (NY+I),N,NNZQQ,INDROWQQ,INDCOLQQ,NORPQO,

+ MAXGRPQQ,MINGRPQO,INFO,IPNTRQQ,JPNTRQQ,IWA,LIWA) E

L

, **********************************************

* * compute Jacobians for the individual loops *
, *************4*********4**********************

1

c..... calc g$FQ

DO I - I,N

DO J = I,MAXORPQ

O$X(J,I)= 0
END DO

G$X(NGRPQ(I),I) = 1.0

END DO

CALL REVOA(MAXORPQ,N,X,GSX,PMAX,F,NX,NY,HX,HY,FORCE,FQ,

+ O$FQ,MAXCOLOR)



c........ calc g$FQQ
DO I = I,N

DO J - I,MAXGRPQQ

QSX(J,I) = o
END DO

G$X(NGRPQQ(I),I) = 1.0
END DO

CALL REVOB(MAXGI%PQQ,N,X,G$X,PMAX,F,NX,NY,HX,HY,FORCE,FQQ,

+ G$FQQ,MAXCOLOR)

c....... calc G$FP

c ...... ngrpfp -1 as Jacobian is diagonal
MAXGRPFP = !

DO I - I,N

G$X(1,I) - 1.0
END DO

CALL REVOC(MAXGRPFP,N,X,GSX,PMAX,F,NX,NY,HX,HY,FORCE,FP,

+ G$FP,MAXCOLDR)

• *********************************

• * Assemble final gradient value *
• *********************************

DO I = 1,N

SPARSEGF(I) - O.OeO
END DO

DO I = 1,NNZQ

ROW = INDROWQS(I)

COL = INDCOLQS(I)
SPARSEGF(COL) = SPARSEGF(COL) +

+ 0.25,G$FQ(NGRPQ(COL),RDW)
END DO

DO I _ I,NNZQQ

ROW = INDROWQQS(I)

GOL = INDCOLQQS(I)
SPARSEGF(COL) = SPARSEGF(COL) +

+ 0.25,GSFQQ(NGKPQQ(COL),ROW)
END DO

a

TEMP = -FORCE,HX.HY

DO K = 1,N
SPARSEGF(K) = SPARSEGF(K) + TE_L°*G$FP(1,K)

END DO

After we have initialized some arrays determining tile sparsity pattern of the Jacobian, we call the

MINPACK subroutine DSM [9] to determine the proper coloring for the Jacobians of F0 and FQQ.
llaving thus determined NGRPQ(i), the "color" of column i and MAXGRPQ, the number of colors for

the Jacobian of FQ, we initialize gSx and calls revOa (a renamed version of the ADIFOR-generated

subroutine for torfcnl) to compute the compressed Jacobian of FQ. The same idea is applied to

_ compute gSFQQ and g$FP. Lastly, the derivative values of the subfunctions are ali added into a

sparse vector, without, ever expanding the compressed component Jacobians, as shown below. For

tile Jacobian of FQ, the index arrays INDROWQS and INDCOLQS indicate the row and columu illdex of
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nonzero entries, and the NGRP0array indicates the group (corresponding to one particular color) ¢,f a
certain coltlmn. The ,lacobian of FQQ is dealt with accordingly. The uncolltl)ression of the .lacol,iml
of FQ is trivial, since it. was diagonal -- we just add the i-th diagonal entry (properly scaled) tc, the
i-th entry of the gradient accumulation vector $PARSEGF. The MIN PA(',K docunlentation c()nt;tirls

details on the particular data structures used to represent the sparse derivative lnatrices.

We note that we could of course apply the idea of the "basic block reverse nlode" to generat_ •
improved derivative code for torfcnl, etc. This code is shown in Appendix (;. We would exl)(:ct

mt|eh less spectacular savings in this case, since the length of the derivative objects was not i_ore

than three for our sparse ,lacobians (whereas it was n when we did not exploit partial separability).

5 Experimental Results

We tested the performance of our various derivative codes on a Sun Sparcstation tPX with 48

Mbytes of memory and an IBM RS6000/550 with 128 Mbytes of memory. We computed gradients
for n = 10. 10, 20,20 .... ,100,100. For the alternatives described in Sections 2, 3.1, and 3.:2, we

col,_puted gradients in slices of 10 elements (i.e., the gradient was computed by calling the derivatiw_
code In/10] t,imes). Figure 7 shows the ratio of the run time of a gradient to a function evaluation
obtained for these derivative codes. As expected, the run time is linear in n, hut the slope decrease.s
a.,; we expand the scope of the reverse mode.

In Figure 8 we show the ratio of the run time of a gradient to a function evaluatio|| obtained

by the full reverse mode (Section 3.3) and by exploiting the partial separability of the torsion
problelll. These graphs also show the run time of the handcoded derivative subroutine supplied in
the M1NPA(:K-2 test, suite. We see that by exploiting partial separability, we can achieve very good

performance for computing the gradient of the torsion problem. This is particularly noteworthy as ,,
we do not need to know anything more about the structure of the problem than that it, is partially
separable, lt,, contrast, intimate knowledge of the code is required to develop the full reverse llJo(le
and the handcoded versions.

a
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APPENDICES: Code Listings for the Torsion Problem

A Minpack-2 Code for the Torsion Problem

SUBROUTINE TORFCN (N, X,F,NX, NY, HX, HY, FORCE)

c This subroutine computes the function of the torsion problem.

c The spacing parameters hx and hy are for a rectangle with

c nx points on the x-axis and ny points on the y-axis

C .. Scalar Arguments ..

DOUBLE PRECISION F,FORCE,HX,HY

INTEGER N,NX,NY
C • .

C .. Array Arguments ..
DOUBLE PRECISION X(N)

C . .

C .. Local Scalars ..

DOUBLE PRECIS 1ON FLIN, FQUAD, HXY, HYX, V, VD, VL, VR, VU

INTEGER I,J,K

C , ,

HXY = HX/HY

HYX = HY/HX

c Computation of the quadratic part of the function._

c LOOP1 :

FQUAD - 0.0

DO 20 J - O,NY
DO 10 I = O,NX

- K --NX* (J-l) + I

- V=O.O

VR= 0.0

= VU= 0.0

IF (I.GE.I .AND. J.GE.1) V = X(K)

IF (I.LT.NX .AND. J.GT.O) VR - X(K+I)

IF (I.GT.O .AND. J.LT.NY) VU = X(K+NX)

FQUAD = FOUAD + HYX* (VR-V)**2 + HXY* (VU-V)**2

I0 CONTINUE

2O CONTINUE

C

c LOOP2 :

- C

DO 40 J = I,NY + 1

- DO 30 I = 1,NX + 1

K = NX* (J-l) + I

V=O.O

= VL= 0.0

VD= 0.0

: IF (I.LE.NX .AND. J.LE.NY) Y = X(K)

IF (I.GT.I .AND. J.LE.NY) VL = X(K-I)_

IF (I.LE.NX .AND. J.GT.I) VD = X(K-NX)

FQUAD = FQUAD + HYX* (VL-V)**2 + HXY* (VD-V)**2
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30 CONTINUE

40 CONTINUE

c Computation of the linear part of the function.

c LOOP 3:

FLIN = 0.0

DO 50 K = 1,NX*NY

FLIN = FLIN + %(K)

50 CONTINUE

F = 0.25*FOUAD - FORCE*HX*HY*FLIN

END

-=

s

=
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B Current ADIFOR Code for Torsion Problem

SUBROUTINE REVO(GgP$,N,X,G$X,LDG$X,F,G$F,LDGgF,NX,NY,HX,HY,FORCE)

* generated by current ADIFOR for computing gradient of

* torsion problem, x independent, f dependent.

C

C ADIFOR: runtime gradient index

C ADIFOR: translation time gradient index

C ADIFOR: gradient iteration index
C

C This subroutine computes the function of the torsion problem.

C The spacing parameters hx and hy are for a rectangle with

C nx points on the x-axis and ny points on the y-axis
C

C ADIFOR: gradient declarations
C .. Parameters ..

INTEGER G$PMAX$
PARAMETER (G$PMAX$=4900)

C . .

C .. Scalar Arguments ..
DOUBLE PR_CISION F,FORCE,HX,HY

INTEGER GgP$,LDG$F,LDG$X,N,NX,NY
C ..

C .. Array Arguments ..
DOUBLE PRECISION G$F(LDG$F),GSX(LDGSX,N),X(N)

C • .

C .. Local Scalars .. _'

_ DOUBLE PRECISION D$O,DS4,FLIN,FQUAD,HXY,HYX,V,VD,VL,VR,VU
INTEGER G$I$,I,J,K

C ..

C .. Local Arrays ..
DOUBLE PRECISION G$FLIN(G$PMAX$),G$FQUAD(GgPMAX$),GgV(GgPMAX$),

+ GSVD(G$PMAXS),GSVL(GSPMAXS),GSVR(GSPMAX$),
+ GSVU(GgPMAX$)

C ..

IF (GgP$.GT.GgPMAX$) THEN

PRINT *,'Parameter gSp is greater than ggpmax.'
STOP

: END IF

HXY = HX/HY

HYX = HY/HX

C Computation of the quadratic part of the function.
FQUAD = 0.0

DO G$I$ = 1,GgP$

G$FQUAD(G$1$) = O.OdO
END DO

DO 99998 3 = O,NY
DO 99999 I = O,NX

g = NX* (3-1) + I
V=O.O

DO G$I$ = 1,GSP$
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GSV(G_$) = O.OdO
END DO

VR= 0.0
DO G$I$ = 1,GSP$

GSVRCG$I$) =_O.OdO
END DO

VU= 0.0

DO G$I$ = 1,GSP$
GSVUCG$I$) = O.OdO

END DO

IF (I.GE.1 .AND. J.GE.1) THEN

C v = x(k)

DO G$I$ = 1,GSP$
GSV(G$I$) = GSX(G$I$,K)

END DO

v = X(K)
END IF

IF (I.LT.NX .AND. J.GT.O)THEN

C vr = x(k + I)

DO G$I$ = 1,G$P$
GSVR(G$I$) - G$X(G$I$,K+I)

END DO

VR = X(K+I)
END IF

IF (I.GT.O .AND. J.LT.NY) THEN

C vu = x(k + nx)
DO G$I$ = 1,GSP$

GSVU(G$I$) = G$X(G$I$,K+NX)
END DO

VU = X(K+NX)
END IF

C fquad = fquad + hyx * (vr - v) ** 2 + lucy * (vu - v) ** 2
D$O = VR - V
D$4 = VU - V

DO G$I$ = 1,G$P$ -
G$FQUAD(G$I$) = GSFQUADCG$I$)+ HYXs2*D$O*GSVR(G$I$) +

+ (- (HXY*2*D$4)- (HYX*2*D$O))*
+ G$V(G$I$) + HXY*2*D$4_,GSVU(G$I$)

END DO

FQUAD = FQUAD + HYX*D$O**2 + HXY*D$4**2
10 CONTINUE

99999 CONTINUE
20 CONTINUE

99998 CONTINUE

DO 99996 J = 1,NY + 1
DO 99997 I = 1,NX + I

K = NX* (J-l) + I
V=O.O

DO G$I$ = I,GSP$
G$V(G$I$) = O.OdO -

END DO

VL-- 0.0

DO G$I$ = 1,G$P$
G$VLCG$I$) = O.OdO

END DO

VD = 0.0
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DO G$I$ = I,G$P$

G$VD(G$I$) = O.OdO

END DO

IF (I.LE.NX .AND. J.LE.NY) THEN
C v = x(k)

DO G$I$ = 1,G$P$

G$V(G$1$) = G$X(G$1$,K)
END DD

V = X(Z)
. END IF

IF (I.GT.1 .AND. J.LE.NY) THEN

C vi = x(k - I)

DO G$I$ = I,G$P$

G$VL(G$I$) = G$X(G$I$,K-I)
END DO

VL = X(K-1)
END IF
IF (I.LE.NX .AND. J.GT.1)THEN

C vd = x(k - nx)

DO G$I$ = 1,G$P$
G$VD(G$I$) - G$X(G$I$,K-NX)

END DO

VD = X(K-NX)
END IF

C fquad = /quad + hyx * (vl - v) ** 2 + hxy * (vd - v) ** 2
D$O = VL - V
D$4 = VD - V

DO G$I$ ,- 1,GSP$

GSFQUAD(G$I$) - GSFQUAD(G$I$) + HYX*2*D$O*G$VL(G$I$) +
+ (- (HXY*2*D$4)- (HYX,>2*D$O))*
+ GSV(G$I$) + HXY*2*D$4*G$VD.fC-,$i$)

END DO

FQUAD= FQUAD+ HYX*D$O**2 + HXY*D$4**2
30 CONTINUE

99997 CONTINUE
40 CONTINUE

99996 CONTINUE

C Computation oi the linear part of the function.
FLIN = O.0

DO G$I$ = 1,G$P$
= G$FL_N(G$I$) = O.OdO

END DO

DO 99995 K = 1,NX*NY
C flin = flin + x(k)

DG G$I$ = 1,G$P$

G$FLIN(G$I$) = G$FLIN(G$I$) + G$X(G$I$,K)
END DO

FLIN - FLIN + X(K)
50 CONTINUE

- 99995 CONTINUE

C f = 0.25 * fquad - force * hx * hy *flin
- DO G$I$ = 1,GSP$

GSF(G$I$) = 0.25.GSFQUAD(G$I$) - (FORCE,HX.tiY),GSFLIN(G$I$)
END DO

_= F = 0.25*FQUAD - FORCE*HX*IiY*FLIN
- END
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C Reverse Mode for Basic Blocks

SUBROUTINE REVI(GSP$,N,X,GSX,LDGSX,F,OSF,LDG$F,NX,NY,HX,HY,FORCE)

* reverse mode at basic block level

C

C ADIFOR: runtime gradient index

C ADIFOR: translation time gradient index

C ADIFOR: gradient iteration index
C

C **********

C This subroutine computes the function of the torsion problem.
C SsSe*s$$*$ =

C The spacing parameters hx and hy are for a rectangle _ith
C nx points on the x-axis and ny points on the y-axis
C

C ADIFOR: gradient declarations
C .. Parameters ..

INTEGER GSPMAX$

PARAMETER (GSPMAX$=IO000)

C .o

C .. Scalar Arguments ..

DOUBLE PRECISION F,FORCE,HX,HY

INTEGER GSP$,LDGSF,LDGSX,N,NX,NY
C • •

C .. Array Arguments ..

DODBLE PRECISION G$F(LDGSF),G$X(LDG$X,N),X(N) _

C ..

C .. Local Scalars ..

DOUBLE PRECISION D$O,D$4,FLIN,FLINBAR,FQUAD,HXY,HYX,V,VBAR,VD, r
_

+ VDBAR,VL,VLBAR,VR,VRBAR,VU,VUBAR,XKIBAR,XKBAR,

+ XKNXBAR

INTEGER G$1$,I,J,K,PP E

C ..

C .. Local Arrays ..

DOUBLE PRECISION GSFLIN(GSPMAX$),G$FQUAD(GSPMAX$)
C • •

IF (G$P$.GT.GSPMAX$) THEN

PRINT .,'Parameter gSp is greater th_, gSpmax.'
STOP

END IF

HXY = HX/HY

HYX = HY/HX

C Computation of the quadratic part of the function.

FQUAD = 0.0

DO G$I$ = I,G$P$

GSFOUAD(GSI$) = O.OdO

END DO -

DO 99998 J = O,NY =

DO 99999 1 = O,NX

K = NX* (J-l) + I

C

c compute new contribution to sum

C
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V = 0.0
VR = 0.0

VU=O.O
IF (I.GE.1 .AND. J.GE,1) THEN

V = x(K)
END IF

IF (I.LT.NX .AND. J.GT.O) THEN

VR = X(K+I)
END IF

IF (I.GT.O .AND. J.LT.NY) THEN

VU = X(K+NX)
END IF

C fquad = fquad + hyx * (vr - v) ** 2 + hxy . (vu - v) ** 2

C

c reverse mode computation for computing derivatives of
c x(k), x(k+1), x(k+nx). We know that the deriv, of fquad_new
c with respect to fquad_old is I.
c

D$O = VR - V
D$4 = VU - V

FOUAD - FQUAD + HYX*D$O**2 + HXY*D$4**2
VBAR = -2*HXYeD$4 - 2*HYX*D$O
VUBAR= 2*HXY*D$4
VRBAR= 2*HYX*D$O
XKBAR = 0.0

XKIBAR = 0.0
XKNXBAR= 0.0

IF (I.GE.I .AND. J.GE.I) XKBAR= VBAR
IF (I.LT.NX .AND. J.GT.O) XKIBAR = VRBAR

IF (I.GT.O .AND. J.LT.NY) XKNXBAR= VUBAR

¢

c Chain Rule to update derivatives of fquad w.r.t, x
C

_

DO PP - 1,GSP$

GSFQUAD(PP) = GSFQUAD(PP) + XKBAR,GSX(PP,K) +
+ XKIBAR*G$X(PP,K+t) +
+ XKNXBAR*G$X(PP,K+NX)

J END DO

99999 CONTINUE

= 20 CONTINUE

99998 CONTINUE

DO 99996 J = t,NY + 1
DO 99997 I = 1,NX + 1

= K = NX* (J-l) + I

-_ V=O.O
VL=O.O
VD=O.O_

: IF (I.LE.NX .AND. J.LE.NY) V = X(K)

= IF (I.GT.I .AND. J.LE.NY) VL = X(K-1)
IF (I.LE.NX .AND. J.GT.1) VD = X(K-NX)
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C fquad = fquad + hyx * (vl - v) ** 2 + hxy • (vd - v) ** 2

D$O = VL - V

D$4 = VD - V

FQUAD ffi FOUAD + HYX*D$O**2 + HXY*D$4**2

VBAR = -2*HXY*D$4 - 2*HYX*D$O

VDBAR ffi 2*HXY*D$4

VLBAR = 2*HYX*D$O
XKBAR = 0.0

XKIBAR ffi 0.0

XKNXBAR = 0.0
IF (I.LE.NX .AND. J.LE.NY) XKBAR = VBAR

IF (I.GT.I .AND. J.LE.NY) XKIBAR = VLBAR

IF (I.LE.NX .AND. J.GT.1) XKNXBAR = VDBAR

DO PP = I,G$P$

G$FQUAD(PP) = G$FQUAD(PP) + XKBAR*G$X(PP,K) .
+ XKIBAR*G$X(PP,K-1) +

+ XKNXBAR*G$X(PP,K-NX)
END DO

99997 CONTINUE

99996 CONTINUE

C Computation of the linear part of the function.
FLIN = 0.0

DO G$I$ = 1,GSP$

G$FLIN(G$I$) = OoOdO
END DO

_

DO 99995 K = 1,NX*NY

cm gSflin(k) m g$flin(k) + 1
FLINBAR = 1.0

DO I = 1,GSP$

G$FLIN(1) = G$FLIN(1) + FLINBAR.GSX(I,K) L
END DO

FLIN ffi FLIN + X(K)
99995 CONTINUE

C f = 0.25 * fquad - force * hx * hy *flin
DO G$I$ m I,G$P$

G$F(G$I$) = 0.25*GSFQUAD(G$I$) - (FORCE*HX*HY)*G$FLIN(G$I$)
END DO

F = 0.25*FQUAD - FORCE*HX*HY*FLIN
END

_

_

26



D Reverse Mode for Loop Bodies

SUBROUTINE REV2(GSP$,N,X,GSX,LDG$I,F,G$F,LDGSF,NX,NY,HX,HY,FORCE,
+ XBAR,XBARSIZE)

***********************

* reverse mode at individual loop level
*

C

C ADIFOR: runtime gradient index

C ADIFOR: translation time gradient index

C ADIFOR: gradient iteration index
C

C ,*********

C This subroutine computes the function of the torsion problem.

C The spacing parameters hx and hy are for a rectangle with

C nx points on the x-axis and ny points on the y-axis
C

C ADIFOR: gradient declarations

C .. Parameters ..

INTEGER G$PMAX$

PARAMETER (GSPMAX$=IO000)
C ,,

C .. Scalar Arguments ..
DOUBLE PRECISION F,FORCE,HX,HY

INTEGER GSP$,LDGSF,LDGSX,N,NX,NY,XBARSIZE
- C ,,

C .. Array Arguments ..
DOUBLE PRECISION G$F(LDGSF),GSX(LDGSX,N),X(N),XBAR(.)

C .o

C .. Local Scalars ..

DOUBLE PRECISION D$O,D$4,FLIN,FLINBAR,FQUAD,HXY,HYX,V,VBAR,VD,_

+ VDBAR,VL,VLBAR,VR,VRBAR,VU,VUBAR

INTEGER G$I$,I,J,K

C .. Local Arrays ..
DOUBLE PRECISION G$FLIN(G$PMAX$),GSFQUAD(G$PMAX$)_

C ..

= C .. External Subroutines ..

= EXTERNAL DGEMV

C o .

- IF (GSP$.GT.GSPMAX$) THEN

PRINT *,'Parameter g$p is greater than g$pmax.'
STOP

END IF

HXY - HX/HY

HYX = HY/HX

C Computation of the quadratic part of the function.
FOUAD = 0.0

- DO G$I$ = I,G$P$

i G$FQUAD(G$I$) = O.OdO
END DO

DO I = I,XBARSIZE

XBAR(I) = 0.0
_
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END DO

DO 99998 J '- O,NY

DO 99999 I " O,NX
K = NX* (J-l) + I

V '_ 0.0
VR= 0.0

VU = 0.0

IF (I.GE.1 .AND. J.GE.I) V - X(K)
IF (I.LT.NX .AND. J.GT.O) VR = X(g+l)

IF (I.GT.O .AND. J.LT.NY) VU = X(K+NX)

C fquad = fquad + hyx * (vr - v) ** 2 + hxy • (vu - v) ** 2
D$O = VR - V

D$4 ,. VU - V

FQUAD = FQUAD + HYX*D$O**2 + HXY*D$4**2
VBAR = -2*HXY*D$4 - 2*HYX*D$O

VUBAR = 2*HXY*D$4

VRBAR ffi 2*HYX*D$O

IF (I.GE.1 .AND. J.GE.1) XBAR(K) " XBAR(K) + VBAR

IF (I.LT.NX .AND. J.GT.O) XBAR(K+t) - XBAR(K+I) + VRBAR

IF (I.GT.O .AND. J.LT.NY) XBAR(K+NX) - XBAR(K+NX) + VUBAR
99999 CONTINUE

20 CONTINUE

99998 CONTINUE
C

c xbar is the vector of partial derivatives of the contribution

c to fquad with respect to x. Since fquad was zero before this

c loop, the derivative d$fquad = g$x • xbar.
C

CALL DGEMV ('n' ,G$P $,XBARS IZE, I.OdO, GSX, LD(ISX,XBAR, I, I.OdO, G$FQUAD,
+ I)

DO I = I,XBARSIZE

XBAR(I) = 0.0

END DO

DO 99996 J = 1,NY + 1

DO 99997 I = 1,NX + 1
K = NX* (J-l) + I

V=O.O

VL = 0.0

VD = 0.0

IF (I.LE.NX .AND. J.LE.NY) V = X(K)

IF (I.GT.1 .AND. J.LE.NY) VL = X(K-1)

IF (I.LE.NX .AND. J.GT.1) VD = X{K-NX)

C fquad = fquad + hyx * (',I - v) ** 2 + hxy * (vd - v) ** 2
D$O = VL - V

D$4 = VD - V

FQUAD = FQUAD + HYX*D$O**2 + HXY*D$4**2

VBAR - -2*HXY*D$4 - 2*HYX*D$O
VDBAR = 2*HXY*D$4

VLBAR = 2*HYX*D$O

IF (I.LE.NX .AND. J.LE.NY) XBAR(K) = XBAR(K) + VBAR

IF (I.GT.I .AND. J.LE.NY) XBAR(K-I) = XBAR(K-I) + VLBAR

IF (I.LE.NX .AND. J.GT.1) XBAR(K-NX) = XBAR(K-NX) + VDBAR
99997 CONTINUE

99996 CONTINUE
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c

c xbar is the vector of partial derivatives of the contribution

c to fquad with respect to x. Since fquad was already initialized

c before this loop, the derivative d$fquad - d$fquad + g$x • xbar.
c

CALL DGEMV('n',G$P$,XBARSIZE,I.0dO,G$X,LDG$X,XBAR,I,I.0dO,GSFQUAD,
+ I)

C Computation of the linear part of the function.
FLIN = 0.0

DO G$I$ = I,G_P$

G$FLIN(G$I$) - O.OdO
END DO

DO I - I,XBARSIZE
XBAR(I) = 0.0

END DO

DO 99995 K = 1,NX*NY

c gSflin(k) = gSflin(k) + 1
FLINBAR = 1.0

XBAR(K) - XBAR(K) + FLINBAR

FLIN = FLIN + X(K)
99995 CONTINUE
c

c again, dSfquad = dSfquad + gSx • xbar.
c

CALL DGEMV('n',G$P$,XBARSIZE,I.OdO,GSX,LDG$X,XBAR,I,I.OdO,GSFLIN,
+ I)

C f = 0.25 * fquad - force * hx * hy • flin
DO G$I$ = 1,GSP$

G$F(G$I$) = 0.25*GSFQUAD(G$I$) - (FORCE*HX*HY).G$FLIN(G$I$)
END DO

F = 0.25.FQUAD - FORCE*HX_HY.FLIN
END
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E Reverse Mode for tile Whole Program

SUBROUTINE REV3(N,X,F,NX,NY,HX,HY,FORCE,XBAR,XBARSIZE)
C

C ADIFOR: runtime gradient index

C ADIFOR: translation time gradient index
C

C This subroutine computes the function of the torsion problem.
C _i_

C The spacing parameters hx and hy are for a rectangle with

C nx points on the x-axis and ny points on the y-axis
C

C ADIFOR: gradient declarations

C .. Scalar Arguments ..
DOUBLE PRECISION F,FORCE,HX,HY

INTEGER N,NX,NY,XBARSIZE
C . .

C .. Array Arguments ..
DOUBLE PRECISION X(N),XBAR(*)

C ..

C .. Local Scalars ..

DOUBLE PRECISION D$O,D$4,FLIN,FLINBAR,FQUAD,HXY,HYX,T,V,VBAR,VD,
+ VDBAR,VL,VLBAR,VR,VRBAR,VU,VUBAR

INTEGER I,J,K
C ..

HXY = HX/HY

HYX = HY/HX

C Computation of the quadratic part of the function.
FQUAD = 0.0

DO I = I,XBARSIZE

XBAR(I) = 0.0
END DO

DO 99998 J = O,NY f
DO 99999 I = O,NX

K = NX* (J-l) + I

V=O.O

VR= 0.0

VU = 0.0

IF (I.GE.1 .AND. J.GE.1) V = X(K)
_

IF (I.LT.NX .AND. J.GT.O) VR = X(K+I)

IF (I.GT.O .AND. J.LT.NY) VU = X(K+NX)
C fquad = fquad + hyx * (vr - v) ** 2 + hxy * (vu - v) _* 2

D$O = VR - V

D$4 = VU - V
FQUAD= FQUAD+ HYX,D$O**2 + HXY,D$4,*2
VBAR = -2*HXY*D$4 - 2*HYX*D$O
VUBAR = 2*HXY*D$4
VRBAR = 2*HYX*D$O

IF (I.GE.I .AND. J.GE.1) XBAR(K) - XBAR(K) + VBAR
IF (I.LT.NX .AND. J.GT.O) XBAR(K+I) = XBAR(K+I) + VRBAR

IF (I.GT.O .AND. J.LT.NY) XBAR(K+NX) = XBAR(K+NX) + VUBAR
99999 CONTINUE

_

99998 CONTINUE

DO 99996 J = 1,NY + 1

30 t
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DO 99997 I = 1,NX + 1
K = NX* (3-1) + I

V=O.O

VL = 0.0

VD = 0.0

IF (I.LE.NX .AND. J.LE.NY) V = X(K)

IF (I.GT.1 .AND. J.LE.NY) VL = X(K-1)

IF (I.LE.NX .AND. J.GT.1) i'D = X(K-NX)

C fquad = fquad + hyx * (vl - v) ** 2 + hxy * (vd - v) ** 2
D$O = VL - V

D$4 = VD - V

FQUAD = FQUAD + HYX*D$O**2 + HXY*D$4**2

VBAR = -2*HXY*D$4 - 2*HYX*D$O
VDBAR = 2*HXY*D$4

VLBAR = 2*HYX*D$O

IF (I.LE.NX .AND. J.LE.NY) XBAR(K) = XBAR(K) + VBAR

IF (I.GT.I .AND. J.LE.NY) XBAR(K-I) = XBAR(K-I) + VLBAR

IF (I.LE.NX .AND. J.GT.I) XBAR(K-NX) = XBAR(K-NX) + VDBAR
99997 CONTINUE

99996 CONTINUE

C Computation of the linear part of the function.
FLIN = 0.0

T = - (FORCE*HX,HY)

cm all the flinbar(k)'s are equal to 1.0
FLINBAR = 1.0

DO 99995 K = 1,NX*NY

XBAR(K) = (0.25,XBAR(K)) + (T*FLINBAR)

FLIN = FLIN + X(K)
99995 CONTINUE

F = O.25*FQUAD - FORCE*HX*HY*FLIN
END
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F Derivative Code for Component Functions

SUBROUTINE REVOA(G$P$,N,X,GSX,LDGSX,F,NX,NY,HX,HY,FORCE,FQ,GSFQ,
+ LDGSFO)

* derivative of first loop -- current ADIFOR

C

C Formal fq is active.
C Formal x is active.
C

C

C .. Parameters ..
INTEGER GSPMAX$

PARAMETER (GSPMAX$=IO0)
C ..

C .. Scalar Arguments ..

DOUBLE PRECISION F,FORCE,HX,HY

INTEGER G$P$,LDGSFQ,LDG$X,N,NX,NY
C ,.

C .. Array Arguments ..
DOUBLE PRECISION FQ(*),GSFQ(LDG$FQ,*),GSX(LDGSX,N),X(N)

C ..

C .. Local Scalars ..

DOUBLE PRECISION D$O,D$OBAR,D$3,D$3BAR,FQUAD,HXY,HYX,V,VR,VU
INTEGER FOK,G$I$,I,J,K

C ..

C .. Local Arrays ..

DOUBLE PRECISION GSV(GSPMAXS),GSVR(GSPMAX$),GSVU(GSPMAX$)
. .

IF (GSP$.GT.G$PMAX$) THEN

PRINT *,'Parameter gSp is greater than gSpmax.'
STOP

END IF

HXY = HX/HY

HYX = HY/HX

C Computation of the quadratic part of the function.
FQUAD = 0.0

DO 99998 J = O,NY

DO 99999 I = O,NX

Z = NX* (J-l) + I i_
V=O.O

DO 99990 G$I$ = 1,GSP$
O$V(O$I$) = O.OdO

99990 CONTINUE

VR=O.O

DO 99989 G$I$ = I,G$P$

GSVR(G$1$) = O.OdO
99989 CONTINUE

VU = 0.0

DO 99988 G$I$ = 1,G$P$ =
GSVU(G$I$) = O.OdO

99988 CONTINUE =

IF (I.GE.1 .AND. J.GE.I) THEN

C v = x(k)

DO 999_7 G$I$ = 1,G$P$ -=
OSV(O$I$) = O$X(GSI$,K)
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99987 CONTINUE

V = X(X)
END IF

IF (I.LT.NX .AND. J.GT.O) THEN

O vr = x(k + I)

DO 99986 G$I$ = 1,GSP$

G$VR(G$I$) - G$X(G$I$,K+I)
99986 CONTINUE

VR = X(K+I)
END IF

IF (I.GT.O .AND. J.LT.NY) THEN

C vu = x(k + nx)

DO 99985 G$I$ = I,GSP$

G$VU(G$I$) = G$X(G$I$,K+NX)
99985 CONTINUE

VU = X(K+NX)
END IF

C m fquad = fquad + hyx*(vr-v)**2 + hxy*(vu-v)**2
FOK = (J* (NX+I)) + I + 1

C fq(fqk) - hyx * (vr - v) ** 2 + hxy * (vu - v) ** 2
D$O = VR - V
D$3 = VU - V

D$3BAR = HXY* (2.D$3)
D$OBAR = HYX* (2_D$0)

DO 99984 G$I$ = 1,GSP$

G$FQ(G$I$,FQK) = D$OBAR.G$VR(G$I$) +
+ (-D$3BAR+ (-D$OBAR))*G$V(G$I$) +
+ D$3BAR,GSVU(G$I$)

99984 CONTINUE

FO(FQK) - HYX*D$O**2 + HXY*D$3**2
10 CONTINUE

99999 CONTINUE
20 CONTINUE

99998 CONTINUE

END
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SUBROUTINE REVOB(G$P$,N,X,GSX,LDG$X,F,NX,NY,HX,HY,FORCE,FQO,GSFQQ,

+ LDGSFQQ)

* derivs for second loop , current ADIFOR

C

C Formal fqq is active.
C Formal x is active.

C

C

C .. Parameters ..

INTEGER GSPMAX$

PARAMETER (G$PMAX$=IO0)

..

C .. Scalar Arguments ..

DOUBLE PRECISION F,FORCE,HX,HY

INTEGER G$P$,LDG$FQQ,LDG$X,N,NX,NY
C ..

C .. Array Arguments ..

DOUBLE PRECISION FQQ(*),GSFQQ(LDGSFQQ,*),GSX(LDGSX,N),X(N)
C • •

C .. Local Scalars ..

DOUBLE PRECISION D$O,DSOBAR,D$3,D$3BAR,HXY,HYX,V,%q),VL

INTEGER FQK,G$1$,I,J,K
C . .

C .. Local Arrays ..

DOUBLE PRECISION G$V(G$PMAZ$),G$VD(GSPMAX$),GSVL(GSPMAX$)
C ..

IF (GSP$.GT.GSPMAX$) THEN

PRINT *,'Parameter g$p is greater than g$pmax.'
STOP

END IF

HXY = HX/HY

HYX = HY/HX

DO 99998 J = 1,NY + 1

DO 99999 I = 1,NX + 1
K = NX* (J-l) + I

V = 0.0

DO 99990 G$I$ = I,GSP$

G$V(G$I$) = O.OdO

99990 CONTINUE

VL = 0.0
_

DO 99989 G$I$ = 1,GSP$

GSVL(G$I$) = O.OdO

99989 CONTINUE

VD = 0.0

DO 99988 G$I$ = I,GSP$
G$VD(G$I$) = O.OdO

99988 CONTINUE

IF (I.LE.NX .AND. J.LE.NY) THEN

C v = x(k)

DO 99987 G$I$ = I,G$P$

GSV(GSI$) = GSX(G$IS,K) -

99987 CONTINUE =

v = X(K)
END IF
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IF (I.GT.I ,AND. J.LE.NY) THEN

C vl ffix(k - I)

DO 99986 G$I$ = I,G$P$

G$VL(G$I$) = G$X(G$I$,K-I)

99986 CONTINUE

VL = X(K-I)

END IF

IF (I.LE.NX .AND. J.GT.I) THEN

C vd = x(k - nx)

DO 99985 fi$I$ = I,G$P$

G$VD(G$I$) = G$X(G$I$,K-NX)
99985 CONTINUE

VD = X(K-NX)

END IF

C m fquad = fquad + hyx*(vl-v)**2 + hxy*(vd-v)**2
FQK = ((J-l)* (NX+I)) + I

C fqq(fqk) = hyx * (vl - v) ** 2 + hxy * (vd - v) ,. 2
D$O = VL - V

D$3 = VD - V

DS3BAR = HXY* (2"D$3)

D$OBAR = HYX* (2"D$0)

DO 99984 G$I$ = I,G$P$

G$FQQ(G$I$,FQK) = D$OBAR,G$VL(G$I$) +

+ (-D$3BAR+ (-D$OBAR))*GSV(G$I$) +

+ D$3BAR*GSVD(G$I$)

99984 CONTINUE

FQQ(FQK) = HYX*D$O**2 + HXY*D$3**2

30 CONTINUE

99999 CONTINUE

40 CONTINUE

99998 CONTINUE

END

=
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SUBROUTINE REVIO(GSP$,N,X,G$X,LDGSX,F,NX,NY,HX,HY,FORCE,FP,RGFP,
+ LDGSFP)

• third loop, basic block reverse mode

C .. Scalar Arguments ..

DOUBLE PRECISION F,FORCE,HX,HY

INTEGER GSP$,LDG$FP,LDG$X,N,NX,NY
C • .

C .. Array Arguments ..

DOUBLE PRECISION FP(*),GSX(LDGSX,,),RGFP(LDG$FP,,),X(N)
C . .

C .. Local Scalars ..

DOUBLE PRECISION FPBAR,HXY,HYX

INTEGER I,K

C °o L

HXY = HX/HY

HYX = HY/HX

¢ Computation of the linear part of the function.

DO 50 K = I,NX*NY

FPBAR = 1.0

RGFP(I,K) = 0.0

DO I = I,GSP$

RGFP(I,K) = RGFP(I,K) + FPBAR*GSX(I,K)
END DO

FP(K) = X(K)

50 CONTINUE

END _-

.-

=

_

_

f

=
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G Enhanced Derivative Code for Component Functions

SUBROUTINE REVIA(G$P$,N,X,GSX,LDG$X,F,NX,NY,HX,HY,FORCE,FQ,RGFQ,

+ LDG$F0)
_SSSI_SS

* first loop contribution, basic block reverse mode
_88_simsl

C

C ADIFOR: runtime gradient index

C ADIFOR: translation time gradient index

C ADIFOR: gradient iteration index
C

C The spacin E parameters hx and hy are for a rectangle with

C nx points on the x-axis and ny points on the y-axis
C

C ADIFOR: gradient declarations

C .. Parameters ..

INTEGER GSPMAX$

PARAMETER (GSPMAX$=4900)

C ..

C .. Scalar Arguments ..

DOUBLE PRECISION F,FORCE,HX,HY

INTEGER GSP$,LDGSFQ,LDGSX,N,NX,NY
C ..

C .. Array Arguments ..

DOUBLE PRECISION FO(,),GSX(LDG$X,N),RGFQ(LDGSFQ,*),X(N)

i C ..

C .. Local Scalars ..

DOUBLE PRECISION D$O,D$4,FQUAD,HXY,HYX,V,VBAR,VR,VRBAR,VU,VUBAR,

. XKIBAR,XKBAR,XKNXBAR

INTEGER FQK,I,J,K,PP
C . .

IF (GSP$.GT.GSPMAX$) THEN

PRINT *,_Parameter gSp is greater than gSpmax.'
STOP

END IF

HXY _ HX/HY

HYX = HY/HX

c Computation of the quadratic part of the function.a

c the following is not needed

c do g$i$ = I, gSp$

c do ]- I. ((nx+1)*(ny+1))

c rgfO(g$i$,]) = O.OdJ
c e,Lddo

c enddo

FQUAD = 0.0

DO 20 J - O,NY

DO I0 I = O,NX

K = NX* (J-l) + I

V=O.O

VR = 0.0

VU = 0.0

IF (I.GE.1 .AND. 3.GE.l) V = X(K)

IF (I.LT.NX .AND. J.GT.O) VR = X(K+I)
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IF (I.GT.O .AND. J.LT.NY) VU = X(K+NX)

F0K = (J* (NX+I)) + I + t

FQ(FQK) = HYX" (VR-V)**2 + HXY* (VU-V)*'2
D$O = VR - V

D$4 = VU - V

FO(FQK) = HYX,D$O**2 + HXY=D$4,-2

VBAR = -2*HXY,D$4 - 2*HYX.D$O
VUBAR = 2"HXY*D$4

VRBAR = 2*HYX*D$O
XKBAR = 0.0

XKIBAR = 0.0

XKNXBAR = 0.0

IF (I.GE.1 .AND. J.GE.I) XKBAR = VBAR

IF (I.LT.NX .AND. J.GT.O) XKIBAR = VRBAR

IF (I.GT.O .AND. J.LT.NY) XKNXBAR = VUBAR

DO PP = t,G$P$

RGFQ(PP,FQK) = XKBAR*G$X(PP,K) + XK1BAR*G$X(PP,K+I) +

+ END DO XKNXDAR*GSX(PP,K+NX) 1

10 CONTINUE

20 CONTINUE

END
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SUBROUTINE REVIB(GSP$,N,X,G$X,LDG$X,F,NX,NY,HX,HY,FORCE,FQQ,ROFQQ,

+ LDG$FQQ)

* second loop, basic block reverse mode

C

C ADIFOR: runtime _radient index
C ADIFOR: translation time gradient index

C ADIFOR: gradient iteration index
C

C The spacing parameters hx and hy are for a rectangle with
C nx points on the x-axis and ny points on the y-axis
C

C ADIFOR: gradient declarations

C .. Parameters ..
INTEGER GSPMAX$
PARAMETER(GSPMAXS=4900)

C ..

C .. Scalar Arguments ..
DOUBLE PRECISION F,FORCE,HX,HY

INTEGER GSP$,LDGSFOQ,LDG$X,N,NX,NY
C ,.

C .. Array Arguments ..
DOUBLE PRECISION FQQ(*) ,GSX(LDGSX,N),RGFQQ(LDGSFQQ,*),X(N)

C ,_

C .. Local Scalars ..

DOUBLE PRECISION D$O,D$4,FOUAD,HXY,HYX,V,VBAR,VD,VDBAR,VL,VLBAR,

+ XKIBAR,XKBAR,XKNXBAR
INTEGER FQK,I,J,K,PP

C **

IF (GSP$.GT.G$PMAX$) THEN

PRINT *,'Parameter gSp is greater than gSpmax.'
STOP

END IF

HXY = HXIHY
HYX = HY/HX

c Computation of the quadratic part of the function.

c the following is NOT needed

c do g$i$ = 1, g$p$

c do j= I, ((nx+l)*(ny+1))

c rgfQQ(g$i$,j) = O.OdO
c enddo

c enddo

FQUAD= 0,0
DO 40 J = I,NY + l

DO 30 I = 1,NX + 1

K = NX* (J-l) + I
V=O.O
VL= 0.0
VD=O.O

IF (I.LE.NX .AND. J.LE.NY) V = X(K)
IF (I.GT.I .AND. J.LE.NY) VL = X(K-I)
IF (I.LE.NX .AND. J.GT.1) VD * X(K-NX)

cm fquad = fquad + hyx*(vl-v)**2 + hxy*(vd-v)**2
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FQK = ((J-X)* (NX+l)) + I
FQQ(FQK) = HYX* (VL-V)**2 + HXY, (VD-V)**2
D$O = VL - V
D$4 = VD - V

FQQ(FQK) - HYX*D$O**2 + HXY,D$4**2
VBAR = -2*HXY*D$4 - 2*HYX*D$O
VLBAR = 2*HYX*D$O
VDBAR= 2*HXY*D$4
XKBAR= 0.0
XKIBAR = 0.0
XKNXBAR= 0.0
IF (I.LE.NI .AND. J.LE.NY) XKBAR- VBAR
IF (I.GT.I .AND. J.LE.NY) XKIBAR= VLBAR
IF (I.LE.NX .AND. J.GT.I) IKNXBAR - VDBAR

DO PP = 1,GSP$
RGFQQ(PP,FQK) - %KBAR*G$X(PP,K) + %KIBAR*GSX(PP,K-1) +

+ XKNXBAR*GSX(PP,K-NX)
END DO

30 CONTINUE

40 CONTINUE

END
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SUBROUTINE REVIC(G$P$,N,X,G$X,LDG$X,F,NX,NY,HX,HY,FORCE,FP,RGFP,

+ LDG$FP)

* third loop, basic block reverse mode
***************

C .. Scalar Arguments ..

DOUBLE PRECISION F,FORCE,HX,HY

INTEGER GSP$,LDGSFP,LDGSX,N,NX,NY

C • ,

C .. Array Arguments ..

DOUBLE PRECISION FP(.),GSX(LDGSX,.),RGFP(LDG$FP,*),X(N)

C ,,

C .. Local Scalars ..

DOUBLE PRECISION FPBAR,HXY,HYX

INTEGER I,K

C .,

HXY = HX/HY

HYX = HY/HX

c Computation of the linear part of the function.

DO 50 K = I,NX*NY

FPBAR = 1.0

RGFP(1,K) = 0.0

DO I = I,GSP$

RGFP(I,K) = RGFP(I,K) + FPBAR,GSX(I,K)
END DO

FP(K) = X(K)

50 CONTINUE

END

41



EIOI ''"




	DE93004668_ANLMCSTM163
	DE93004668_ANLMCSTM163-02
	DE93004668_ANLMCSTM163-03
	DE93004668_ANLMCSTM163-04
	DE93004668_ANLMCSTM163-05
	DE93004668_ANLMCSTM163-06
	DE93004668_ANLMCSTM163-07
	DE93004668_ANLMCSTM163-08
	DE93004668_ANLMCSTM163-09
	DE93004668_ANLMCSTM163-10
	DE93004668_ANLMCSTM163-11
	DE93004668_ANLMCSTM163-12
	DE93004668_ANLMCSTM163-13
	DE93004668_ANLMCSTM163-14
	DE93004668_ANLMCSTM163-15
	DE93004668_ANLMCSTM163-16
	DE93004668_ANLMCSTM163-17
	DE93004668_ANLMCSTM163-18
	DE93004668_ANLMCSTM163-19
	DE93004668_ANLMCSTM163-20
	DE93004668_ANLMCSTM163-21
	DE93004668_ANLMCSTM163-22
	DE93004668_ANLMCSTM163-23
	DE93004668_ANLMCSTM163-24
	DE93004668_ANLMCSTM163-25
	DE93004668_ANLMCSTM163-26
	DE93004668_ANLMCSTM163-27
	DE93004668_ANLMCSTM163-28
	DE93004668_ANLMCSTM163-29
	DE93004668_ANLMCSTM163-30
	DE93004668_ANLMCSTM163-31
	DE93004668_ANLMCSTM163-32
	DE93004668_ANLMCSTM163-33
	DE93004668_ANLMCSTM163-34
	DE93004668_ANLMCSTM163-35
	DE93004668_ANLMCSTM163-36
	DE93004668_ANLMCSTM163-37
	DE93004668_ANLMCSTM163-38
	DE93004668_ANLMCSTM163-39
	DE93004668_ANLMCSTM163-40
	DE93004668_ANLMCSTM163-41
	DE93004668_ANLMCSTM163-42
	DE93004668_ANLMCSTM163-43
	DE93004668_ANLMCSTM163-44
	DE93004668_ANLMCSTM163-45
	DE93004668_ANLMCSTM163-46
	DE93004668_ANLMCSTM163-47


