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ADIFOR Working Note #T7:

Extending Compile-Time Reverse Mode and
Exploiting Partial Separability in ADIFOR

by
Christian H. Bischof and Moe EL-Khadiri

Abstract. The numerical methods employed in the solution of many scientific computing problems require the
computation of the gradient »f a function f : R® — R. ADIFOR is a source translator that, given a collection of
subroutines to compute f, generates Fortran 77 code for computing the derivative of this function. Using the so-called
torsion problem from the MINPACK-2 test collection as an example, this paper explores two issues in automatic
differentiation: the efficient computation of derivatives for partial separable functions and the use of the compile-time
reverse mode for the generation of derivatives. We show that orders of magnitudes of improvement are possible when
exploiting partial separability and maximizing use of the reverse mode.

1 Introduction

Differentiation is one of the most fundamental mathematical concepts. In system analysis and
control, the investigation into the effect of a disturbance or a change in design parameters on the
performance of the overall system is essential. Mathematically, the change can be modeled by
the derivative of the system output with respect to a design parameter. Another application is the
numerical solution of initial value problems in stiff ordinary differential equations (see, for example (7,
18]). Methods such as implicit Runge-Kutta and backward differentiation formula {BDF) methods
require a Jacobian which is either supplied by the user or approximated by finite differences. In the
context of optimization, one needs the derivatives of the objective function. For example, given a
function

f:R®* =R,
one can find a minimizer z, of f using variable metric methods that involve the iteration

fori=1,2, ... do
Solve Bis; = =V f(x;)
Tit1 = Zi + a8

end for

where B; is a symmetric positive definite matrix approximating the Hessian of f at z;.

These methods are examples of typical methods applied in numerical computations, where the
computation of the derivative is a crucial step in the numerical solution process ([6,9,12,8, 21]).
One particular optimization problem is the elastic plastic torsion problem, which arises from the
determination of the stress field on an infinitely long cylindrical bar. The infinite-dimensional version
of this problem is of the form

min{g(v) : v € K},

where ¢ : K — R is the quadratic

o) =5 [1vu@Idz - [ oz)as

for some constant ¢, and D is a bounded domain with smooth boundary. The convex set I i3 defined
by

K = {ve HY{(D):|v(z) | < dist(z,dD),z € D},



where dist(z, D) is the distance function to the boundary of D, and H}(D) is the Hilbert space of
all functions with compact support in D such that v and || Vv||* belong to L2(D). This formulation
and the physical interpretation of the torsion problem are discussed in the test problem collection
of MINPACK-2 [1]. A finite element approximation of the torsion problem leads to
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and g; 5, Aij, hz, and hy are constants.

Note that quj(v) and qu’j(v) are quadratics which depend only on vi41j, vij+1, vi,j, and on
Vi-1j, Vij-1, vij, respectively. The third contribution to g(v), which is the linear part, depends
only on v; ;. So if we define

S = Z qz'ljj(”)
S2=)_al;(v)
S3 = Zwl(zi.j)vi,j»
then
f(z) = %Sl + %Sg — hzhySs.

In the MINPACK-2 code for the torsion problem shown in Appendix A, LOOP1, LOOP2, and
LOOP3 correspond to the computation of Sy, Sa, and Ss, respectively.

The torsion problem is a particular instance of a particular class of functions that arises often
in optimization contexts, the so-called partially separable functions [11,17,19]. These are functions
[ R™ — R which can be expressed as

f(z) =) aifi(x).

=1

Usually each f; depends on only a few (say, n;) of the x’s, and one can take advantage of this fact
in computing the (sparse) Hessian of f.

ADIFOR (Automatic Differentiation of Fortran) is a source transiator that augments Fortran
codes with statements for the computation of derivatives [3,2]. ADIFOR employs a mixed for-
ward/reverse mode paradigm. The forward mode propagates derivatives of intermediate variables
with respect to the input variables; the reverse mode propagates derivatives of the final values with
respect to intermediate variables [14]. The forward mode follows the flow of execution of the original
program, whereas the reverse mode of automatic differentiation requires the ability to access values
generated in the execution of a program in reverse order, which is usually achieved by logging all
values on a so-called tape, and then interpreting the tape in reverse order [14, 16, 15]. ADIFOR
pioncered the use of the compile-time reverse mode where, instead of logging values at run time, we
apply the reverse mode at compile time, thereby eliminating the storage requirements and run-time
overhead of the tape scheme.

Iu this paper, we arc concerned with the eflicient generation of derivative code through the re-
verse mode of automatic differentiation, and the efficient use of the generated derivative code for



fquad = 0.0
do 20 j = 0, ny
do 10 i = 0, nx
k = nx*(j-1) + i
vr = 0.0
vu = 0.0
if (i .ge. 1 .and. j .ge. 1) v = x(k)
if (i .1t. nx .and. j .gt. 0> vr = x(k+1)
if (i .gt. 0 .and. j .1t. ny) vu = x(k+nx)
fquad=fquad + hyxs(vr-v)#*#*2 + hxy*(vu-v)*s2
10 continue
20 continue

Figure 1: Code for LOOP1

computing gradients of partially separable functions. We use the torsion problem as a case study
and explore how to improve the current ADIFOR-generated code and decrease the time and storage
complexity of computing derivatives.

The paper is structured as follows. In the next section, we recall the key points about the method
that is currently used in ADIFOR to generate derivatives. In Section 3, we then illustrate extensions
of the compile-time reverse mode from basic blocks all the way to generating an adjoint code for the
whole program. In Section 4, we explore the use of partial separability in computing derivatives.
We present experimental results on Sparc-2 and IBM RS6000/550 workstations in Section 5.

2 Current ADIFOR Strategy

Automatic differentiation techniques rely on the fact that every function, no matter how com-
plicated, is executed on a computer as a (potentially very long) sequence of elementary operations

such as additions, multiplications, and elementary functions such as sin and cos. By applying the
chain rule

a 8 0
af(g(t))lzmo = (‘a_sf(s)la=y(to)) <ag(t)|i=tu> (1)

over and over again to the composition of those elementary operations, one can compute derivative

information of f exactly and in a completely mechanical fashion [5]. ADIFOR transforms Fortran 77
programs using this approach.

To illustrate automatic differentiation with current ADIFOR, we differentiate the subroutine
torfcen for the torsion problem that maps an n-vector x into a scalar £. The vector x contains the
independent variables, and the scalar £ contains the dependent variable. The full code for torfcn
can be found in the appendix.

The first loop (LOOP1) is shown in Figure 1. It computes S;, whose value is stored in fquad.

Currently, ADIFOR generates the code shown in Figure 2 for computing gi?%aﬁ. In accordance
with the specification of ADIFOR (see [3]), g$p denotes the actual length of the derivative objects
in a call to derivative code. Since Fortran 77 does not allow dynamic memory allocation, derivative
objects for local variables are statically allocated with leading dimension pmax. pmax is specified
by the user when ADIFOR processes the Fortran code for torfen. A variable and its associated
objects are treated in analogous manner; that is, if x is function parameter, so is g$x. Derivative
objects corresponding to locally declared variables or variables in common blocks are declared as

local variables or variables in common blocks. Given x and g$x, the derivative code computes



FQUAD = 0.0
DO G$I$ = 1,G$P$
G$FQUAD(G$1I3) = 0.0d0
END DO
D0 99998 J = O,HY
DO 99999 I = 0,NX
K =1IX« (J-1) + I
Vv=20.0
DO G$I$ = 1,G$P$
G$V(G31$) = 0.0d0
END DO
VR = 0.0
DO G$1% = 1,G3$P$
G$VR(G$I$) = 0.0d0
END DO
VU = 0.0
DD G$I$ = 1,G$P$
G$VU(G$I3) = 0.0dO
EED DO
IF (I.GE.1 .AED. J.GE.1) THENW
c v = x(k)
DO G$I$ = 1,G$P$
G3V(GSI$) = G$X(G3IS$,K)
ERD DO
vV = X(K)
ERD IF
IF (I.LT.NX .AND. J.GT.0) THEEN
c vr = x(k + 1)
DO G$IS$ = 1,G$PS$
GSVR(GS$IS) = GIX(GSI$, K+1)
EED DO
VR = X(K+1)
END IF
IF (I.GT.O .AND. J.LT.NY) THEW
c vu = x(k + nx)
DO G$I3$ = 1,G3$P$
G3VU(GSIS$) = GIX(GSIS K+EX)
END DO
VU = X(K+NX)
END IF
c fquad = fquad + hyx & (vr - v) #% 2 + hxy * (vu - v) #« 2
D30 = VR -~ v
D$4 = VU - v
DO G$I$ = 1,G3P3
G$FQUAD(GSIS$) = GSFQUAD(GSIS) + HYX#2+D$0*GSVR(GSI$) +

+ (- (HXY%2¢D$4)- (HYX#2sD$0))#
+ GIV(GSI$) + HXY«2+D34+G$VU(GSIS)
ESD DO
FQUAD = FQUAD + HYX#D$O##2 + HXYsD$4#42
10 CONTINUE
99999 CONTINUE
20 CONTIRUE

99998 COBTINUE

Figure 2: ADIFOR-generated Derivative Code for LOOP1



g¥fquad(l : gép) = ( ( d_"fﬂd;_l@_ ) g$x(1:gép,1:n)7 )T

In particular, if g$p equals n and g$x is the n x n identity matrix, it computes the gradient of fquad
with respect to x.

An active variable is one that is on the computational path from independent to dependent
variables (sce [4]). Notice that in the ADIFOR-generated code, a loop of length g$p is associated
with every assignment statement involving an active variable. Therefore the cost of floating-point
opcrations can be approximated as (g8p x function evaluation). The storage requirement for
ADIFOR-generated code is (g¥p x number of active variables). We note two key points about the
current ADIFOR:

e ADIFOR uses the forward mode overall to compute derivatives. That is, ADIFOR code
maintains the derivatives of intermediate variables with respect to all input variables. So, for
example, ggvu= &8

e ADIFOR uses the reverse mode to preaccumulate “local” derivatives for assignments state-
ments.
The reverse mode is best understood with an example. For example, in the torsion problem, we
have the assignment
fquad = hyx * (vr — v) % %2 + hxy * (vu — v) * %2,
where hxy and hyx are constants. The chain rule tells us that

0 fquad 0 fquad dfquad
Viquad = - d *er+——q———*'§7vu+——i~———*§7v.
Ovr O vu Ov
lence, if we know the “local” derivatives (at;p‘:ad, 8 g%%ad, agc%,urad of fquad with respect to v ,vu,

and vu, we can easily compute Vw, the derivatives of w with respect to x. The “local” derivatives

(éi;l?,—a—q, agq;luuad’ 6gqv1;.ad) can be computed efficiently by using the reverse mode of automatic

differentiation. Here we maintain the derivative of the final result with respect to an intermediate
quantity. These quantities are usually called adjoints. They measure the sensitivity of the final
result with respect to some intermediate quantity. In the reverse mode, let tbar denote the adjoint

object corresponding to t. The goal is for tbar to contain the derivative g_t;{c}g' We know that

wbhar = %f_%% = 1.0. We can compute ybar and zbar by applying the following simple rule to the
statements executed in computing £quad, but in reverse order:

if s = £(t), then tbar += sbar * (df/dt)
if s = £(t,u), then tbar += sbar * (df/dt)
ubar += sbar * (df/du)
Using this simple recipe (see [14,20]), we generate the code shown in Figure 3 for computing vubar,
vrbar, and vbar. One can easily convince oneself that

vubar = 2xhxyx* (vr—v)
vrbar = 2xhyx#(vr—v)
vbar = —2xhxyx(vu—v)—2xhyxx(vr—v)

so that we have in fact computed the correct “local” derivatives. The code shown in Figure 2 has
been generated by applying this same technique to all other assignments statements involving active
variables and by optimizing the resulting code by removing additions with 0 and multiplications
with 1. The ADIFOR-generated code for the whole subroutine is shown in Appendix B. ADIFOR
Is currently not consistent about pulling loop invariant subexpressions out of the loop, but will do
so reliably in the future.



/*

/*
/%

/*

/*

/»

/*

/* Compute function values &/

d$0 = (vr-v)
d$4 = (vu-v)
t1 = d30 « d3$0
t2 = t1 + hyx
t3 = d$4 » d34
t5 = t3 = hxy
W = t2+ t5

Initialize adjoint quantities ¢/
wbar = 1.0; t3bar = 0.0; t2bar = 0.0;
tibar = 0.0; d$Obar = 0.0; d$4bar = 0.0;

Adjoints for w = t2 + t5 »/

t2bar = t2bar + wbar = 1

tSbar = tSbar + wbar » 1

Adjoints for t5 = t3 s hxy /

t3bar = t3bar + tSbar * hxy

Adjoints for t3 = d$4 * d$4 */

d$4 = d$4 + t3bar = d$4

d34 = d$4 + t3bar » d$4

Adjoints for t2 = t1 * hyx s/

tibar = tibar + t2bar #* hyx

Adjoints for t1 = d0xd0 */

d$0o = d$0 + tibar » d$0

d$0 = d$0 + tibar * d30

Adjoints for d$4 = vu - v «/

vubar = vubar + d$4bar * 1

vbar = vbar + d$4bar * (-1)

Adjoints for d$0 = (vr-v) */

vrbar = vrbar + d$Obar » 1

vbar = vbar + d$Obar * (~1)

Figure 3: Unoptimized Reverse Mode Computation



3 Extending the Scope of the Compile-Time Reverse Mode
In this section, we explore extensions of the compile-time reverse mode to
¢ a sequence of assignment statements,
e a nested loop, and
e the whole program.

A closer look at the current ADIFOR-generated code in the preceding sections reveals a substan-
tial time and space overhead associated with the computations of auxiliary gradients such as g$v,
g$vu, and g$vr. In this section, we explore different ways for improving the overall computation of
the gradient by extending the scope of the reverse mode.

3.1 Case 1: Reverse Mode for Basic Blocks inside the Loop

In the program for the torsion problem, there are three loops: two for the computation of the
quadratic part of the function and one for the computation of the linear part. Consider, for example,
LOOP1. Each loop iteration can be viewed as a mapping

[x(k), x(k + 1), x(k + nx), fquady] 4] = fquadney.

We use the notation fquad,i4 and fquadney to distinguish between the original and updated value
of the variable f£quad. Hence, if we know

0fquadney Jfquadpney Ofquadnew 0 fquadnew
P y 3 , an fne.. . (2)
0 x(k) dx(k+1) = Jx(k+ nx) O0fquadgyg
then we can update VEfquad as follows:
] 'fquadnew 4] 'fquadnew
Vit d ——FV{ - k
qua 9 () Viquad + Fx(x 1) Vx(k+ 1)
5 'fquadnew 6 fquadnew
—— Vx(k ——— Vfquad.
+ 0 x(k + nx) x(k +nx) + dfquadgyy g qua

The derivatives in the equation (2) can easily be computed by applying the reverse mode to the
loop body. The resulting code is shown in Figure 4. Note that each variable is assigned only once in
each loop iteration. If this had not been the case, we would have had to save the sequence of values
of variables that are overwritten by allocating some extra temporary variables. This extension of
the scope of the reverse mode saved us 3 derivative vectors g$v, gvr, and g$vu, and decreased the
number of derivative vector operations from 10 to 4.

In general, we can apply this technique in a straightforward fashion to any piece of code that has
only one entry and exit point and does not contain subroutine or function calls or loops. We call
such a piece of code a basic block. We may have to introduce some temporaries to make sure that
cach variable is assigned only once (i.e., represents a unique value) in a basic block, but this requires
at most as many scalar temporaries as there are lines of code, an insignificant increase of storage.
The savings achieved by this technique depend on the particular code at hand, but, in general, will
be the more pronounced the more statements a basic block contains. The code that results from
applying this technique to the whole subroutine is shown in Appendix C.

3.2 Case 2: Reverse Mode for the Whole Loop

In order to expand the scope of the compile-time reverse mode, the special structure of the
torsion problem is important Defining

ty = —hyx * (Vvr — v) £ *2 + hxy * (vu — v) * %2




FQUAD = 0.0

DO G$I3 = 1,G$P$
G$FQUAD(G$I$) = 0.0d0

END DO

DO 99998 J = 0,EY
DO 99999 I = 0,EX
K = WX+ (J-1) « I

= 0.
0o
0

< < <

R =
U =
IF (

0

compute new contribution to sum

0
0o

I1.GE.1 .AEKD. J.GE.1) THEN

V = X(K)

EED IF

IF (I.LT.EX .AND. J.GT.O) THEN
VR = X(K+1)

END IF

IF (I.GT.0 .AND. J.LT.NY) THEN
VU = X(K+NX)

END IF

c fquad = fquad + hyx * (vr - v) #& 2 + hxy s (vu - v) #»» 2

[

¢ reverse mode computation for computing derivatives of
¢ x(k), x(k+1), x(k+nx). We know that the deriv. of fquad_new

[ with respect to fquad_old is 1.
c
D$0 = VR - V
D$4 = VU - Vv
FQUAD = FQUAD + HYX#D$0%#+2 + HXY#*D$4#%2

-2#HXY*D$4 - 24HYX*D$0

VUBAR = 2¢HXY»D$4

VRBAR = 2sHYX#D$0

XKBAR = 0.0

XK1BAR = 0.0

XKEXBAR = 0.0

IF (I.GE.1 .AND. J.GE.1) XKBAR = VBAR

IF (I.LT.NX .AND. J.GT.0) XKiBAR = VRBAR
IF (I.GT.O .AND. J.LT.NY) XKEXBAR = VUBAR

[

¢ Chain Rule to update derivatives of f~uad w.r.t. x

DO PP = 1,G$P$
G$FQUAD(PP) = GSFQUAD(PP) + XKBAR*G$X(PP,K) +

+
+
END DO
99999 CONTIRUE
20 COBTIRUE

99998 CONTINUE

XK1BAR#GSX(PP,K+1) +
XKNXBAR*G$X(PP,K+¥X)

Figure 4: Reverse Mode for Basic Block in LOOP1
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to be the value computed in loop iteration k to upgrade fquad, we can express

(nx+1)(ny+1)

fquad = Z ty. (3)

k=1

Since v, vu, and vr are defined ‘u terms of z(k+1), x(k+nx), and x(k), ty is a function of these
values, that is,

tx = tr(x(k + 1), x(k + nx), x(k)).

Since no entry of x is overwritten in any of the loop iterations, ty and t; do not depend on
each other for k # 1, and we can compute the sum (3) in any order. In compiler terms, there are no
loop-carried dependencies and this loop is a parallel loop.

Remember that the reverse mode implicitly assumes that we are able to trace the values computed
during some computation in the reverse order. Ilence, a loop that is not parallel would require us
to sar-. some intermediate values. However, for a parallel loop, it is sufficient simply to generate
the rZverse mode code for the locp body. But this is exactly what we already did in the preceding
section, where we computed

Oty 0tg Oty
Ox(k+1)" dx(k)' dx(k+nx)

Now, since t] and tg do not depend on each other for 1 # k, the associativity of addition allows us
to compute

dfquad 9tj_y + 9tj_nx + 0t
ax(j) ~ 9x(3) = ax(3)  9x(j)

in a piecemeal fashion, as each of the iterations j, j — 1, and j — nx contributes to 2fquad . The

9X%(])
resu. np code is shown in Figure 5. The xbar vector contains d—f—%lxlég- and components k+1, k, and
k+nx . updated in iteration k. After the loop, we apply the chain rule to compute
dfquad
Viquad = 3 - Vx.
x

This matrix-vector multiplication is performed using the BLAS routine DGEMV [13].
To summarize, we exploited the fact that

e loop iterations do not depend on each other, and
¢ the result of each loop enters into the dependent variable (fquad) in an additive fashion.

1lis allowed us to generate reverse mode code for the whole loop by simply generating reverse mode
ccde for the loop body, and the forward mode propagation of the global derivatives could be moved
ou'side of the loop.

Compared with the code in the previous section, we now have a multiplication of an gép x (nx+1)
{ny+1) matrix by a vector outside the loop instead of (nx+1) (ny+1) multiplications of an g$p x4
matrix by a vector multiplication inside a loop that is executed (nx+1) (ny+1) times, requiring
roughly one-fourth the number of operations. Applying this technique to the whole subroutine
resu ts in the code shown in Apnendix D.

3.3 Case 3: The Full Reverse Mode

So far we exploited only the particular structure of the code in LOOP1. LOOP2, and LOOP3.
On ihe other hand, f(x) is the sum of the contributions computed in LOOP1, LOOP2, LOOP3,
and, in addition to being parallel loops themselves, these loops do not depend on each other. So,
instead of computing



FQUAD = 0.0
DO G$I$ = 1,G$P$
G$FQUAD(G$1I$) = 0.0d0
END DO
DO I = 1,XBARSIiZE
XBAR(I) = 0.0
END DO
DO 99998 J = 0,BY
D0 99999 I = 0,NX
K = BXe (J-1) + I
V=0.0
VR = 0.0
VU = 0.0
IF (I.GE.1 .AND. J.GE.1) V = X(K)
IF (I.LT.NX .AND. J.GT.0) VR u= X(K+1)
IF (I.GT.O .AED. J.LT.NY) VU = X(K+NX)

c fquad = fquad + hyx * (vr - v) #* 2 + hxy ¢ (vu - v) *+ 2
D$O = VR - V
D$4 = VU - v

FQUAD = FQUAD + HYX#D$0##2 4+ HXY#D$4%#2

VBAR = -2¢HXY*D$4 -~ 2sHYX*D$0

VUBAR = 2¢HXYsD$4

VRBAR = 2s#HYX#D$0

IF (I.GE.1 .AED. J.GE.1) XBAR(K) = XBAR(K) + VBAR

IF (I.LT.NX .AND. J.GT.0) XBAR(K+1) = XBAR(K+1) + VRBAR

IF (1.GT.O .AND. J.LT.NY) XBAR(K+BX) = XBAR(K+NX) + VUBAR
99999 CONTINUE

20 CONTIRUE
99998 CONTINUE

xbar is the vector of partial derivatives of the contribution
to fquad with respect to x. Since fquad was zero before this
loop, the derivative d$fquad = g$x & xbar.

00 o0 060

CALL DGEHV(’n’,GSPS.XBARS!ZE,l.OdO,GSX.LDG$X,XBAR,l.1.0dO.GQFQUAD,
+ 1)

Figur> 5; Reverse Mode for the Whole Loop
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iy

xbar(i:n) = 0;
/% Update xbar in LOOP1 #/
d$fquad = g¥x * xbar

xbar(i:n) = 0;
/+ Update xbar in LOOP2 %/
d$fquad = d$fquad + g$x * xbar

xbar(i:n) = 0;
/* Update xbar in LODP2 */
d$fquad = d$fquad + g$x * xbar

we could simply keep on updating xbar in LOOP1, LOOP2, and LOOP3 and perform compute
dfquad = gx * xbar once at the end. This is possible since none of these loops updates the vector
x, and hence g$x remains unchanged. But we can go even further: Since in the forward mode, g$x is
initialized to the identity, we can eliminate the final multiplication g$fquad = g¥x * xbar and simply
assign return xbar. In this fashion, we have generated adjoint code for the whole subroutine, and
the code for computing the gradient does not contain any vector operations.

It is important to note that we were able to do the full implementation of the reverse mode
because

e each of the three loops is a parallel loop,
e the three loops do not depend on each other,

o the contribution computed inside each loop enters in the final result in an additive fashion,
and

o the results of each of the three loops are added to achieve the final result.

The resulting reverse mode code for the torsion problem is shown in Appendix E. While we did not
decrease the storage requirement any further compared with the preceding section, we saved another
three loops of size g$p nx ny, and the run time of this program no longer depends on g$p.

4 Exploring Partial Separability

As was mentioned in the introduction, the torsion problem is a partially separable function
f:R™ = R, in that it can be expressed as

nd
f(2) =3 fil=).
i=1

This structure can also be used advantageously in computing the (usually dense) gradient V f of f
(sce [9]). Assume that the code for computation of f looks as follows:

subroutine f(n,x,fval)
integer n
real x(n), fval, temp
fval = 0

call f1(n,x,temp)
fval = fval + temp

......

call fnb(n,x,temp)

11
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fval = fval + temp
return
end

If we submit £ to ADIFOR, it generates
subroutine g$fn(n,x,g$x,1dg$x,fval,gdfval ,ldgé$fval).

To compute V f, the first (and only) row of the Jacobian of f, we set g8p= n and initialize g$x to

a n x n identity matrix. Hence, in current ADIFOR, the cost of computing V f is of the order of n
times the function evaluation.

As an alternative, we realize that with f : R® — R"® defined as
fi
9= :
fhb
we have the identities
f(z) = eTg(z), and hence Vf(z) = eT J,,

where e is the vector of all ones, and J, is the Jacobian of g. However, if most of the component
functions f; depend only on a few parameters z;, the Jacobian of g is sparse, and this fact can be
exploited advantageously.

The idea is best understood with an example. Assume that we have a function

N
f2
F=| fa |:zeR'—~yeR®
fa
fs
whose Jacobian J has the following structure (symbols denote nonzeros, and zeros are not shown):
O
O <
J = A <
A O
A O

That is, the function f| depends only on z, f» depends only on £, and z4, and so on. The key idea in
computing sparse Jacobians is 1o identify so-called structurally orthogonal columns j; of J (see [10]),
that is, columns whose inner product is always zero, independent of the numerical values of their
nonzero entries. In our example, columns 1 and 2 zre structurally orthogonal, and so are columns
3 and 4. This means that the set of functions that depend nontrivially on z,, namely {f), f2}, and
the sct of functions that depend nontrivially on 25, namely { fa, f4, fs}, are disjoint. Because of the
graph-coloring approaches that are used to reveal this structure, one usually associates a “color”
with every set of structurally orthogonal columns.

To exploit this sparsity structure, we recall that ADIFOR, (ignoring transposes) computes J - S,
where S is a matrix with g$p columns. For our example, setting S = I4,4 will give us J at roughly
four times the cost of evaluating f, but if we exploit the structural orthogonality and set

QD OO e
— OO
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the running time for the ADIFOR code is roughly halved. The ADIFOR-generated code remains
unchanged.

This idea can readily be applied to the torsion problem. By storing the contribution of iteration
k to fquad in the k-th clement of separate vectors FQ, FQQ, and FP (for the LOOP1, LOOP2, and
LOOP3, respectively), the derivative of fquad is the sum of the row sums of the Jacobians of FQ,
FQQ, and FP.

For example, the code for the loop corresponding to FQ is

SUBROUTINE TORFCN1(N,X,X,F,NX,NY,HX,HY,FORCE,FQ)
C .. Scalar Arguments ..

DOUBLE PRECISION F,FORCE,HX,HY

INTEGER N,NX,NY

C ..
c .. Array Arguments ..
DOUBLE PRECISION FQ(#),X(N)
C v
c .. Local Scalars ..
DOUBLE PRECISION FQUAD,HXY,HYX,V,VR,VU
INTEGER FQK,I,J,K
c ..
HXY = HX/HY
HYX = HY/HX
FQUAD = 0.0
DO 20 J = O,NY
DO 10 I = O,NX
K= NX* (J-1) + I
V=0.0
VR = 0.0
YU = 0.0
IF (I.GE.1 .AND. J.GE.1) THEN
v = X(K)
END IF
IF (I.L.T.NX .AND. J.GT.0) THEN
VR = X(K+1)
END IF
IF (I.GT.0 .AND. J.LT.NY) THEN
VU = X(K+NX)
END IF
FQK = (J* (NX+1)) + I + 1
FQ(FQK) = HYX* (VR-V)##2 + HXY#* (VU-V)##2
10 CONTINUE
20 CONTINUE

END

The only change (compared with the corresponding code fragment in Appendix A) is that we replaced
the accumulation of fquad by an assignment to FQ. Subroutines torfcn2 and torfcn3 to compute
FQQ and FP, respectively, are generated in the same fashion. For these codes, ADIFOR then generates
the derivative codes shown in Appendix F.

For n = 40, the structures of %F%J‘ and g—%,%g are shown in Figure 6, and .df_xl?_ is diagonal. The
Jacobian for FQ and FQQ can be grouped into three sets of structurally orthogonal columns, in-
dependent of the size of the problem. And in the case of the function FP, the Jacobian can be
compressed into only one column.

Exploiting this structure, we can now initialize the gradient vector as follows:
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* * *

Lo d *+ +
+* ++ +
+* +* +
+ +H * +
+ 123 + +
+ +* +* +
+ o+ (2 +
+ + ++ +
+ ”» +* +
++ + +
+ ++ ++ +
+ - +“+ +
+ 4+ +H* +
+ ++ +* +
+ ++ 4 +
+ ++ + +
+ +H ++ +
+ " *+
+ ++ Lad
+ +* +
+ + ++
+ + -
+ +* ++
+ + +
+ +H +H
4+ Lad -
+ fad +
+ *
+ ++
+ 4+
+ +*
mei?l -+ +* a0

Figure 6: Sparsity Structures of Component Jacobians

kR kR Rk Rk Rk dokok o ok ok ool ok ok o oo o ok o o ok ok ok e ko o ok ko Kok K

*» find sparsity pattern and compute compressed Jacobian pattern *
B T T T T

CALL SPARSITY(N,X,F,NX,NY,HX,HY, INDROWQ, INDCOLQ,NNZQ, INDROWQQ,
+ INDCOLQQ, NNZQQ)

DO I = 1,NNZQ
INDROWQS(I) = INDROWQ(I)
INDCOLQS(I) = INDCOLQ(I)
INDROWQQS(I) = INDROWQQ(I)
INDCOLQQS(I) = INDCOLQQ(I)
END DO

CALL DSM((NY+1)* (NX+1),N,NNZQ,INDROWQ, INDCOLQ,NGRPQ,MAXGRPQ,
+ MINGRPQ, INFO,IPNTRQ, JPNTRQ, IWA,LIWA)

CALL DSM((NX+1)» (NY+1),N,NNZQQ,INDROWQQ, INDCOLQQ,NGRPQQ,
+ MAXGRPQQ,MINGRPQQ,INFO, IPNTRQQ, JPNTRQQ,IWA,LIWA)

o e o o o o o o o oot e e ool ok o o o oo o o ok ok ok ok ok

* compute Jacobians for the individual loops =
e Y TP

----- calc g$FQ
DOI = {,N
DO J = 1,MAXGRPQ
G$X(J,I) =0
END DO
G$X(NGRPQ(I),I) = 1.0
END DO ‘
CALL REVOA(MAXGRPQ,N,X,G$X,PMAX,F,NX,NY,HX,HY,FORCE,FQ,
+ G$FQ,MAXCOLOR)
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Cmmmmm——— calc g$FQQ
DO I =1,N
DU J = 1,MAXGRPQQ
G6$X(J,I) = 0
END DO
GS$X(NGRPQQ(I),I) = 1.0
END DO
CALL REVOB(MAXGRPQQ,N,X,G$X,PMAX,F,NX,NY,HX,HY,FORCE,FQQ,
+ G$FQQ,MAXCOLOR)

[ calc G$FP
C =====- ngrpfp =1 as Jacobian is diagonal
MAXGRPFP = 1
DO I = 1,N
G$X(1,I) = 1.0
END DO
CALL REVOC (MAXGRPFP,N,X,G$X,PMAX,F,NX,NY,HX ,HY,FORCE,FP,
+ G$FP,MAXCOLOR)

* e T T P TP P T
* Assemble final gradient value =
* T T TP R e T

*

DO I =1,N
SPARSEGF(I) = 0.0e0
END DO

D0 I = 1,NNZQ
ROW = INDROWQS(I)
COL = INDCOLQS(I)
SPARSEGF(COL) = SPARSEGF(COL) +

+ 0.25+G3$FQ(NGRPQ(COL) ,ROW)
END DO

DO I = 1,NNZQQ
RO® = INDROWQQS(I)
COL = INDCOLQQS(I)
SPARSEGF(COL) = SPARSEGF(COL) +

+ 0.25«G3$FQQ(NGRPQQ(COL) ,ROW)
END DO

TEMP = -FORCE*HX=*HY
DO K = 1,N

SPARSEGF(K) = SPARSEGF(K) + TEMP*G$FP(1,K)
END DO

After we have initialized some arrays determining the sparsity pattern of the Jacobian, we call the
MINPACK subroutine DSM [9] to determine the proper coloring for the Jacobians of FQ and FQQ.
ilaving thus determined NGRPQ(i), the “color” of column i and MAXGRPQ, the number of colors for
the Jacobian of FQ, we initialize g$x and calls revOa (a renamed version of the ADIFOR-generated
subroutine for torfcni1) to compute the compressed Jacobian of FQ. The same idea is applied to
compute g$FQQ and g$FP. Lastly, the derivative values of the subfunctions are all added into a
sparse vector, without ever expanding the compressed component Jacobians, as shown below. For
the Jacobian of FQ, the index arrays INDROWQS and INDCOLQS indicate the row and column index of

13
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nonzero entries, and the NGRPQ array indicates the group (corresponding to one particular color) of a
certain column. The Jacobian of FQQ is dealt with accordingly. The uncompression of the Jacobian
of FQ is trivial, since it was diagonal — we just add the i-th diagonal entry (properly scaled) to the
i-th entry of the gradient accumulation vector SPARSEGF. The MINPACK documentation contains
details on the particular data structures used to represent the sparse derivative matrices.

We note that we could of course apply the idea of the “basic block reverse mode” 1o generate
improved derivative code for torfcni, etc. This code is shown in Appendix Gi. We would expect
much less spectacular savings in this case, since the length of the derivative objects was not more
than three for our sparse Jacobians (whereas it was n when we did not exploit partial separability).

5 Experimental Results

We tested the performance of our various derivative codes on a Sun Sparcstation iPX with 48
Mbytes of memory and an IBM RS6000/550 with 128 Mbytes of memory. We computed gradients
for n = 10 % 10,20 % 20, ..., 100 % 100. For the alternatives described in Sections 2, 3.1, and 3.2, we
computed gradients in slices of 10 elements (i.e., the gradient was computed by calling the derivative
code [n/10] times). Figure 7 shows the ratio of the run time of a gradient to a function evaluation
obtained for these derivative codes. As expected, the run time is linear in n, but the slope decreases
as we expand the scope of the reverse mode.

In Figure 8 we show the ratio of the run time of a gradient to a function evaluation obtained
by the full reverse mode (Section 3.3) and by exploiting the partial separability of the torsion
problem. These graphs also show the run time of the handcoded derivative subroutine supplied in
the MINPACK-2 test suite. We see that by exploiting partial separability, we can achieve very good
performance for computing the gradient of the torsion problem. This is particularly noteworthy as
we do not need to know anything more about the structure of the problem than that it is partially
separable. In contrast. intimate knowledge of the code is required to develop the full reverse mode
and the handcoded versions.
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APPENDICES: Code Listings for the Torsion Problem

A Minpack-2 Code for the Torsion Problem
SUBROUTINE TORFCN(N,X,F,NX,NY,HX,HY,FORCE)

c This subroutine computes the function of the torsion problem.
c The spacing parameters hx and hy are for a rectangle with

c nx points on the x-axis and ny points on the y-axis

C .. Scalar Arguments ..

DOUBLE PRECISION F,FORCE,RHX,HY
INTEGER N,NX,NY

C .. Array Arguments ..
DOUBLE PRECISION X(N)

C .. Local Scalars ..
DOUBLE PRECISION FLIN,FQUAD,HXY,HYX,V,VD,VL,VR,VU
INTEGER I,7J,K

HXY
HYX

HX/HY
HY/HX

c Computation of the quadratic part of the function.

c LOOP1:

FQUAD = 0.0
DO 20 J = O ,NY
DO 10 I = O,NX
K = NX» (J-1) + I
V=20.0
VR = 0.0
VU = 0.0
IF (I.GE.1 .AND. J.GE.1) V = X(K)
IF (I.LT.NX .AND. J.GT.0) VR = X(K+1)
IF (I.GT.O0 .AND. J.LT.NY) VU = X(K+NX)
FQUAD = FQUAD + HYX» (VR-V)#*%2 + HXY* (VU-V)*%2
10 CONTINUE
20 CONTINUE
[
c LOOP2:
c
. D040 J = 1,NY + 1
- DO 301 =1,NX+ 1
K = NX* (J-1) + I

V=0.0
VL = 0.0
VD = 0.0
E IF (I.LE.NX .AND. J.LE.NY) V = X(K)
i} IF (I.GT.1 .AND. J.LE.NY) VL = X(K-1)
IF (I.LE.NX .AND. J.GT.1) VD = X(K-NX)

FQUAD = FQUAD + HYX# (VL-V)#*x2 + HXY* (VD-V)*#2

B 19
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30 CONTINUE
40 CONTINUE

c Computation of the linear part of the function.
¢ LOOP 3:
FLIN = 0.0

DO 50 K = 1 ,NX*NY
FLIN = FLIN + X(K)
50 CONTINUE
F = 0.25+%FQUAD - FORCE*HX*HY*FLIN

END

20
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B Current ADIFOR Code for Torsion Problem

SUBROUTINE REVO(G$P$,N,X,G$X,LDGSX,F,G$F,LDGSF,NX,NY,HX,HY ,FORCE)

2 o o o 0 o ok o o o ok ok o ok o ol ok o oo oo o ok ool oK 3 ok ok ok sk ko ok o ok sk ok ok ok ok ok

*

* generated by current ADIFOR for computing gradient of
* torsion problem. x independent, f dependent.

*

00 o e ok o ook e ek ok ok b o ok ok o o ok o o o o o a8 o ok o ok ok o o ol ok ok ok oK ka3l o 30k 26 o o o 3K o ol ok e ok ok o ok ok

O o000 aoan

(!

ADIFOR: runtime gradient index
ADIFOR: translation time gradient index
ADIFOR: gradient iteration index

o o o ok RO ok

This subroutine computes the function of the torsion problem.

e o o o ok ok ok ok ke

The spacing parameters hx and hy are for a rectangle with
nx points on the x-axis and ny points on the y-axis

ADIFOR: gradient declarations
. Parameters ..

INTEGER G$PMAXS$

PARAMETER (G$PMAX$=4900)

.+ Scalar Arguments ..
DOUBLE PRECISION F,FORCE,HX,HY
INTEGER G$P$,LDGSF,LDGSX,N,NX,NY

. Array Arguments ..
DOUBLE PRECISION G$F(LDG$F),GS$X(LDGSX,N) ,X(N)

. Local Scalars ..
DOUBLE PRECISION D$0,D$4,FLIN,FQUAD,HXY,HYX,V,VD,VL,VR,VU
INTEGER G$I1$,I,J,K

. Local Arrays ..

DOUBLE PRECISION GSFLIN(G$PMAX$) ,G$FQUAD(G$PMAXS) ,G$V (GIPMAXS),

+ GSVD(G$PMAX$) ,G$VL (GEPMAXS) ,GSVR (GSPMAXS) ,
+ GSVU(GSPMAXS)

IF (G$P$.GT.GEPMAXS) THEN
PRINT x,’Parameter g8p is greater than g$pmax.’
sTop ,
END IF
HXY = HX/HY
HYX = HY/HX
Computation of the quadratic part of the function.
FQUAD = 0.0
DO G$I$ = 1,G$P$
G$FQUAD(G$I$) = 0.0d0
END DO
DO 99998 J = O,NY
DO 99999 I = 0,NX
K= NX« (J-1) + I
V=20.0
DO G$I$ = 1,G8P$

[
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G$V(GN$) = 0.0d0
END DO
VR = 0.0
DO G$I$ = 1,G3P$
G$VR(GS$I$) = 0.0d0
END DO
VU = 0.0
DO G$I$ = 1,G$P$
G$VU(GS$I$) = 0.0d0
END DO
IF (I.GE.1 .AND. J.GE.1) THEN
c v = x(k)
DO G$I$ = 1,G$P$
G3$V(GS$IP) = G$X(G$I$,K)
END DO
vV = X(K)
END IF
IF (I.LT.NX .AND. J.GT.0) THEN
c vr = x(k + 1)
DO G$I$ = 1,G$P$
GSVR(GSIS$) = GSX(GSIS,K+1)
END DO
VR = X(K+1)
END IF
IF (I.GT.O .AND. J.LT.NY) THEN
C vu = x(k + nx)
DO G$I$ = 1,G$P$
G3VU(GSIS$) = G$X(GSIS,K+NX)

END DO
VU = X(K+NX)
END IF
c fquad = fquad + hyx * (vr - v) #* 2 + hxy & (vu - v) #s 2
D$0 = VR - V
D$4 = VU - V

DO G$I$ = 1,G3P$
GSFQUAD(GS$IS$) = GSFQUAD(G3I$) + HYX#2#D$0#GSVR(G$IS$) +

+ ’ (- (HXY#2%D$4)- (HYX#2¢D$0) )=
+ GHV(GEIS) + HXY#2xD$4+GSVU(GSIS)
END DO
FQUAD = FQUAD + HYX*D$0#*2 + HXY*D$4%x»2
10 CONTINUE

99999 CONTINUE
20 CONTINUE
99998 CONTINUE
DD 99996 J = 1,NY + 1
DO 99997 I = 1,NX + 1
K= NX« (J-1) + 1
V=20.0
DO G$I$ = 1,G$P$
G3V(G$I$) = 0.0d0
END DO
VL = 0.0
DO G$I$ = 1,G$P$
G$VL(GS$I$) = 0.0d0
END DO
VD = 0.0
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DO G$I$ = 1,G$P$
G3VD(G$I$) = 0.0d0
END DO
IF (I.LE.NX .AND. J.LE.NY) THEN
c v = x(k)
DO G$I$ = 1,G3P$
G3V(GEIS®) = GIX(GSIS$.X)

END DO
vV = X(K)
END IF
IF (I.GT.1 .AND. J.LE.NY) THEN
c vl = x(k - 1)

DO G$I$ = 1,G3P$
G$VL(GS$I3) = GSX(GS$IS,K-1)

END DO
VL = X(K-1)
END [F
IF (I.LE.NX .AND. J.5T.1) THEN
c vd = x(k - nx)

DO G3$I¥ = 1,G3P$
G$VD(GSI$) = GIX(GS$IS,K-NX)

END DO
VD = X(K-NX)
END IF
c fquad = fquad + hyx ¢ (vl -~ v) ## 2 + hxy ¢ (vd - v) *= 2
D$0 = VL - V
D$4 = VD - V

DO G$I$ = 1,G3PS
G$FQUAD(GSIS®) = GSFQUAD(GSI$) + HYX#2eD$0#GSVL(GSIS) +

+ (-~ (HXY#24D$4)- (HYX222D$0))*
+ GSV(GSIS) + HXY=2¢D$4¢GSVD(C3i$)
END DO
FQUAD = FQUAD + HYX#D$0#%2 + HXY+D$4es2
30 CONTINUE
99997 CONTINUE
40 CONTINUE
99996 CONTINUE
c Computation of the linear part of the function.
FLIN = 0.0

DO G$I$ = 1,G$PS
GSFLIN(GS$IS$) = 0.0d0
END DO
DO 99995 K = 1,NXsNY
c flin = flin + x(k)
DG G$I$ = 1,G$P$
GSFLIN(GSI$) = GIFLIN(G3I$) + GIX(GS$I$,K)
END DO
FLIN = FLIN + X(K)
50 CONTINUE
99995 CONTINUE
C f = 0.25 = fquad - force * hx » hy # flin
DO G$I$ = 1,G$P3
GSF(GSI$) = 0.25#GSFQUAD(GSIS) - (FORCEsHXs»HY)*GSFLIN(GS$I$)
END DO
F = 0.25#FQUAD - FORCEsHX#}iY#FLIN
END

23



C Reverse Mode for Basic Blocks

SUBROUTINE REV1(G$P$,N,X,G$X,LDG$X,F,G$F,LDGS$F ,NX,NY,HX, HY, FORCE)

AP RRRERR KRR RER R KRRk R kR kg ko ok Rk K

*

* reverse mode at basic block level

*

ERRREREE SRR ER ARk R AR Rk R R kxR ERE

oo aoaoagaaogagaoaa

aQ

ADIFOR: runtime gradient index
ADIFOR: translation time gradient index
ADIFOR: gradient iteration index

ERERR R RRE
This subroutine computes the function of the torsion problen.
BedRrERRES

The spacing parameters hx and hy are for a rectangle with
nx points on the x-axis and ny points on the y-axis

ADIFOR: gradient declarations
. Parameters ..

INTEGER GS$PMAXS$

PARAMETER (G$PMAX$=10000)

. Scalar Arguments ..
DOUBLE PRECISION F,FORCE,HX,HY
INTEGER G$P$,LDGS$F,LDG$X,N,NX NY

.. Array Arguments ..
DOUBLE PRECISION G$F(LDG$F),G$X(LDGSX,N),X(N)

.. Local Scalars

DOUBLE PRECISION D$0,D$4,FLIN,FLINBAR,FQUAD,HXY,HYX,V,VBAR,VD,
+ VDBAR,VL,VLBAR,VR,VRBAR,VU,VUBAR,XK1BAR,XKBAR,
+ XKNXBAR

INTEGER G$1%,1,J,K,PP

.. Local Arrays ..
DOUBLE PRECISION GSFLIN(G$PMAXS$) ,G3FQUAD(GSPMAXS)

IF (G$P$.GT.G$PMAXS) THEN
PRINT #,’Parameter g$p is greater than g$pmax.’
STOP
END IF
HXY = HX/HY
HYX = HY/HX
Computation of the quadratic part of the function.
FQUAD = 0.0
DO G3$I$ = 1,G3P$
G$FQUAD(GS$IS$) = 0.0d0
END DO
DO 99998 J = O,NY
DO 99999 I = 0,NX
K =N+ (J-1) + 1

compute new contribution to sum
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V=20.0

VR = 0.0

VU =0.0

IF (I.GE.1 .AND. J.GE.1) THEN
vV = X(K)

END IF

IF (I.LT.NX .AND. J.GT.O0) THEN
VR = X(K+1)

END IF

IF (I.GT.O .AND. J.LT.NY) THEN
VU = X(K+NX)

END IF

c fquad = fquad + hyx * (vr - v) ## 2 + hxy & (vu - v) #s 2

c
¢ reverse mode computation for computing derivatives of
¢ x(k), x(k+1), x(k+nx). We know that the deriv. of fquad_new

c with respect to fquad_old is 1.
c

D$0 = VR - Vv

D$4 = VU - Vv

FQUAD = FQUAD + HYX#D$0#%2 + HXY#D$4s2
VBAR = -2#HXY«D$4 - 2«HYX*D$0

VUBAR = 2«HXY=D$4

VRBAR = 2#HYX«D$0

XKBAR = 0.0

XK1BAR = 0.0

XKNXBAR = 0.0

IF (I.GE.1 .AND. J.GE.1) XKBAR = VBAR

IF (I.LT.NX .AND. J.GT.0) XK1BAR = VRBAR
IF (I.GT.O0 .AND. J.LT.NY) XKNXBAR = VUBAR

c
¢ Chain Rule to update derivatives of fquad w.r.t. x
c
DO PP = 1,G3P$
GSFQUAD(PP) = GSFQUAD(PP) + XKBAR#G$X(PP,K) +
+ XK1BAR*G$X(PP,K+1) +
+ XKNXBAR*GSX (PP ,K+NX)
END DO

99999 CONTINUE
20 CONTINUE
99998 CONTINUE

DD 99996 J = 1,NY + 1
DO 99997 I = 1,NX + 1
K = NX*» (J-1) + I

V=20.0

VL = 0.0

VD = 0.0

IF (I.LE.NX .AND. J.LE.NY) V = X(K)

IF (I.GT.1 .AND. J.LE.NY) VL = X(K-1)
IF (I.LE.NX .AND. J.GT.1) VD = X(K-NX)
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c fquad = fquad + hyx * (vl -~ v) %2 2 + hxy » (vd - v) *% 2

D$0 = VL ~ Vv

D$4 = VD - v

FQUAD = FQUAD + HYX*D$0%%2 + HXY#D$4#»2
VBAR = -2xHXY#D$4 - 2#HYX*D$0

VDBAR = 2sHXY#D$4

VLBAR = 2xHYX*D$0

XKBAR = 0.0

XK1BAR = 0.0

XKNXBAR = 0.0

IF (I.LE.NX .AND. J.LE.NY) XKBAR = VBAR
IF (I.GT.1 .AND. J.LE.NY) XK1BAR = VLBAR
IF (I.LE.NX .AND. J.GT.1) XKNXBAR = VDBAR

DO PP = 1,G$P$
G$FQUAD(PP) = G$FQUAD(PP) + XKBARG$X(PP,K) +
+ XK1BAR#G$X (PP,K-1) +
+ XKNXBAR*G$X (PP ,K-NX)
END DO
99997 CONTINUE
99996 CONTINUE

c Computation of the linear part of the function.
FLIN = 0.0
DO G$I$ = 1,G3P$
G$FLIN(G$I$) = 0.0d0
END DO
DO 99995 K = 1,NX«NY
cm g3flin(k) = g$flin(k) + 1
FLINBAR = 1.0
DD I = 1,G$PS
GSFLIN(I) = GSFLIN(I) + FLINBAR¢G$X(I,K)
END DO
FLIN = FLIN + X(K)
99995 CONTINUE
c f = 0.25 » fquad - force * hx * hy » flin
DO G$I$ = 1,G$P$
G$F(GSI$) = 0.25#G$FQUAD(GSI$) - (FORCE«HXHY)*GS$FLIN(GSIS)
END DO
F = 0.255FQUAD - FORCE#HXsHY#FLIN
END
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D Reverse Mode for Loop Bodies

SUBROUTINE REV2(G$P$,N,X,G$X,LDG$X,F,G$F,LDGSF,NX,NY,HX,HY ,FORCE,
+ XBAR, XBARSIZE)

o o ok o o o o o ok o o ok ok ok R Rk

*

* reverse mode at individual loop level

*

o 2 e o o oo o o e o oo ok ROk

aaoaocaoaagaoaooaoaoaan

«

ADIFOR: runtime gradient index
ADIFOR: translation time gradient index
ADIFOR: gradient iteration index

Ak ok Ok kK

This subroutine computes the function of the torsion problenm.
SROEEERR A

The spacing parameters hx and hy are for a rectangle with

nx points on the x-axis and ny points on the y-axis

ADIFOR: gradient declarations

. Parameters
INTEGER G$PMAXS$
PARAMETER (G$PMAX$=10000)

.. Scalar Arguments ..
DOUBLE PRECISICGN F,FORCE,HX,HY
INTEGER G$P$,LDG$F,LDG$X,N,NX,NY,XBARSIZE

. Array Arguments ..
DOUBLE PRECISION G$F(LDGS$F),G$X(LDG$X,N) ,X(N) ,XBAR(*)

. Local Scalars ..
DOUBLE PRECISION D$0,D$4,FLIN,FLINBAR,FQUAD,HXY,HYX,V,VBAR,VD,
+ VDBAR,VL,VLBAR, VR, VRBAR, VU,VUBAR
INTEGER G$1$,I1,J,K

. Local Arrays ..
DOUBLE FRECISION G$FLIN(G$PMAXS$) ,G$FQUAD(GSPMAXS)

. External Subroutines ..
EXTERNAL DGEMV

IF (G$P$.GT.G3$PMAX$) THEN
PRINT #,’Parameter gdp is greater than g$pmax.’
STOP
END IF
HXY = HX/RY
HYX = HY/HX
Computation of the quadratic part of the function.
FQUAD = 0.0
DO G$I$ = 1,G3P$
G$FQUAD(GS$I$) = 0.0d0
END DO
DO I = 1,XBARSIZE
XBAR(I) = 0.0
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END DO
DO 99998 J = O,NY
DO 99999 I = 0,NX
K = NX* (J-1) + 1
V=0.0
VR = 0.0
VU =10.0
IF (I.GE.1 .AND. J.GE.1) V = X(K)
IF (I.LT.NX .AND. J.GT.0) VR = X(K+1)
IF (I.GT.0 .AND. J.LT.NY) VU = X(K+NX)

c fquad = fquad + hyx * (vr - v) *x 2 + hxy & (vu - v) %% 2
D$0 = VR - v
D$4 = VU - Vv

FQUAD = FQUAD + HYX#D$0#*»2 + HXY*D$4##2
VBAR = -2%HXY#D$4 - 2%HYX%D$0
VUBAR = 2xHXY*D$4
VRBAR = 2#HYX*D30
IF (I.GE.1 ,AND. J.GE.1) XBAR(K) = XBAR(X) + VBAR
IF (I.LT.NX .AND. J.GT.0) XBAR(K+1) = XBAR(K+1) + VRBAR
IF (I.GT.0 .AND. J.LT.NY) XBAR(K+NX) = XBAR(K+NX) + VUBAR
99999 CONTINUE
20 CONTINUE
99998 CONTINUE
c
xbar is the vector of partial derivatives of the contribution
to fquad with respect to x. Since fquad was zero before this
loop, the derivative d$fquad = g$x * xbar.

O 0 o0

CALL DGEHV(’n’,G$P$,XBARSIZE.1.0d0,G$X.LDG$X,XBAR,1,1.0dO,GSFQUAD,
+ 1)

DO I = 1,XBARSIZE
XBAR(I) = 0.0
END DO

DO 99996 J = 1,NY + 1
DO 99997 I = 1 ,NX + 1
K =N« (J-1) + 1
V=0.0
VL = 0.0
VD = 0.0
IF (I.LE.NX .AND. J.LE.NY) V = X(K)
IF (I.GT.1 .AND. J.LE.NY) VL = X(K-1)
IF (I.LE.NX .AND. J.GT.1) VD = X(K-NX)
c fquad = fquad + hyx & (v1 - v) %% 2 + hxy & (vd - v) %% 2
D30 = VL - v
D$4 = VD - v
FQUAD = FQUAD + HYX#*D$0%#2 + HXY*D$4#2
VBAR = -2+HXY#D$4 - 2«HYX«D$0
VDBAR = 2sHXY+D$4
VLBAR = 2«HYX*D30
IF (I.LE.NX .AND. J.LE.NY) XBAR(K) = XBAR(X) + VBAR
IF (I.GT.1 .AND. J.LE.NY) XBAR(K-1) = XBAR(K-1) + VLBAR
IF (I.LE.NX .AND. J.GT.1, XBAR(K-NX) = XBAR(K-NX) + VDBAR
99997 CONTINUE
99996 CONTINUE

f
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c
¢ xbar is the vector of partial derivatives of the contribution
¢ to fquad with respect to x. Since fquad vas already initialized
c before this loop, the derivative d$fquad = d$fquad + g$x * xbar.
c
CALL DGEMV(’n’,G$P$,XBARSIZE,1.0d0,G$X,LDG$X,XBAR,1,1.0d0,G$FQUAD,
+ 1

c Computation of the linear part of the function.
FLIN = 0.0
DO G$I$ = 1,G$PS$
GSFLIN(G$I$) = 0.0d0
END DO
DO I = 1,XBARSIZE
XBAR(I) = 0.0
END DO

DO 99995 K = 1,NX*NY
c g$flin(k) = g$flin(k) + 1
FLINBAR = 1.0
XBAR(K) = XBAR(K) + FLINBAR
FLIN = FLIN + X(K)
99995 CONTINUE

c again, d$fquad = d$fquad + g$x * xbar.
c
CALL DGEMV(’n’,G$P$,XBARSIZE,1.0d0,G$X,LDG$X,XBAR,1,1.0d0,G$FLIN,
+ 1)
C f = 0.25 * fquad - force * hx * hy * flin

DO G$I$ = 1,G3P$
GSF(GSI$) = 0.25#GSFQUAD(GSI$) - (FORCE#HX#HY)*GSFLIN(GSIS)
END DO
F = 0.25%FQUAD - FORCE*HX«HY*FLIN
END
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E Reverse Mode for the Whole Program
SUBROUTINE REV3(N,X,F,NX,NY,HX,HY,FORCE, XBAR, XBARSIZE)

ADIFOR: runtime gradient index
ADIFOR: translation time gradient index

LR £ 23T L

This subroutine computes the function of the torsion problem.
SRERR AR

The spacing parameters hx and hy are for a rectangle with

nx points on the x-axis and ny points ca the y-axis

aaogacaoaoaoagaaagaa

ADIFOR: gradient declarations

C .. Scalar Arguments ..
DOUBLE PRECISION F,FORCE,HX,HY
INTEGER N,NX,NY,XBARSIZE

c .. Array Arguments ..
DOUBLE PRECISION X(N),XBAR(%)

C .. Local Scalars .

DOUBLE PRECISION D$0,D$4,FLIN,FLINBAR, FQUAD,HXY,HYX,T,V,VBAR,VD,
+ VDBAR,VL,VLBAK,VR,VRBAR, VU, VUBAR

INTEGER I,J,K

HXY = HX/HY
HYX = HY/HX
c Computation of the quadratic part of the function.
FQUAD = 0.0
DO I = 1,XBARSIZE
XBAR(I) = 0.0
END DO
DO 99998 J = O,NY
DO 99999 I = 0,NX
K = NXx (J-1) + I
vV=20.0
VR = 0.0
VU = 0.0
IF (I.GE.1 .AND. J.GE.1) V = X(K)
IF (I.LT.NX .AND. J.GT.0) VR = X(K+1)
IF (I.GT.O0 .AND. J.LT.NY) VU = X(K+NX)
c fquad = fquad + hyx * (vr - v) #* 2 + hxy * (vu - v) *=x 2
D$0 = VR - V
D$4 = VU - V
FQUAD = FQUAD + HYX#D30*%2 + HXY#D$4#»2
VBAR = -2#HXY*D$4 - 2«HYX=D$0
VUBAR = 2xHXY*D$4
VRBAR = 2#HYX%*D$0
IF (I.GE.1 .AND. J.GE.1) ZBAR(K) = XBAR(K) + VBAR
IF (I.LT.NX .AND. J.GT.0) XBAR(K+1) = XBAR(K+1) + VRBAR
IF (I.GT.0 .AND. J.LT.NY) XBAR(K+NX) = XBAR(K+NX) + VUBAR
99999 CONTINUE
99998 CONTINUE

DO 99996 J = 1 ,NY + 1
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DO 99997 I = 1,NX + 1
K =NXx (J-1) + I
V=0.0
VL = 0.0
VD = 0.0
IF (I.LE.NX .AND. J.LE.NY) V = X(K)
IF (I.GT.1 .AND. J.LE.NY) VL = X(K-1)
IF (I.LE.NX .AND. J.GT.1) \D = X(K-NX)

c fquad = fquad + hyx * (vl - v) #% 2 + hxy # (vd - v) #* 2
D$0 = VL - V
D$4 = VD ~ V

FQUAD = FQUAD + HYX#D$O#%2 + HXY#D$4##2
VBAR = -2#HXY#*D$4 - 2xHYX*D$0
VDBAR = 2xHXY=*D$4
VLBAR = 2#HYX*D$0
IF (I.LE.NX .AND. J.LE.NY) XBAR(K) = XBAR(K) + VBAR
IF (I.GT.1 .AND. J.LE.NY) XBAR(K-1) = XBAR(K-1) + VLBAR
IF (I.LE.NX .AND. J.GT.1) XBAR(X-NX) = XBAR(K-NX) + VDBAR
99997 CONTINUE
99996 CONTINUE
c Computation of the linear part of the function.
FLIN = 0.0
T = - (FORCE*HX+HY)
cm all the flinbar(k)’s are equal to 1.0
FLINBAR = 1.0
DO 99995 K = 1,NX*NY
XBAR(K) = (0.25+XBAR(K)) + (T*FLINBAR)
FLIN = FLIN + X(K)
99995 CONTINUE
F = 0.25#FQUAD - FORCE+HX«HY*FLIN
END
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F Derivative Code for Component Functions

SUBROUTINE REVOA(G$P$,N,X,G$X,LDG$X,F,NX,NY HX,HY,FORCE,FQ,G$FQ,

+ LDG$FQ)
Rk KRR
* derivative of first loop -- current ADIFOR
ok kKK
C
c Formal fq is active.
c Formal x is active.
C
C
C . Parameters
INTEGER G$PMAXS
PARAMETER (G$PMAX$=100)
C ..
c .. Scalar Arguments ..
DOUBLE PRECISION F,FORCE,HX,HY
INTEGER G$P$,LDG3FQ,LDGSX,N,NX,NY
C ..
c .. Array Arguments ..
DOUBLE PRECISION FQ(»),G$FQ(LDG$FQ,*),G$X(LDG$X,N),X(N)
c ..
C .. Local Scalars ..
DOUBLE PRECISION D$0,D$0BAR,D$3,D$3BAR,FQUAD,HXY,HYX,V,VR,VU
INTEGER FQK,G3$I$,I1,J,K
c .
c .. Local Arrays ..
DOUBLE PRECISION G$V(G$PMAX$),G$VR(GSPMAXS) ,GSVU(GSPMAXS)
C -
IF (G$P$.GT.G$PMAXS) THEN
PRINT *,’Parameter gp is greater than g$pmax.’
STOP
END IF
HXY = HX/HY
HYX = HY/HX
c Computation of the quadratic part of the function.
FQUAD = 0.C
DO 99998 J = 0,NY
DO 99999 I = 0,NX
K = NX»x (J-1) + 1
V=20.0
DO 99990 G$I$ = 1,G$P$
G3V(GS$IS) = 0.0d0
99990 CONTINUE
VR = 0.0
DO 99989 G3I$ = 1,G3P$
GSVR(GS$I$) = 0.0d0
99989 CONTINUE
VU = 0.0
DO 99988 G$I$ = 1,G$P$
G$VU(GS$I$) = 0.040
99988 CONTINUE
IF (I.GE.1 .AND. J.GE.1) THEN
c v = x(k)

DO 99937 G$I1%$ = 1,G$P$
GSV(GSIP) = GSX(GS$IS,K)
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99987

99986

99985

+
+
99984

10
99999
20

CONTINUE
V = X(K)
END IF
IF (I.LT.NX .AND. J.GT.0) THEN
vr = x(k + 1)
DO 99986 G3I$ = 1,G$P$
GSVR(GSIP) = GSX(CSIS$,K+1)
CONTINUE
VR = X(K+1)
END IF
IF (I.GT.0 .AND. J.LT.NY) THEN
vu = x(k + nx)
DO 99985 G$I$ = 1,G$P$
GSVU(GSII$) = GIX(GSI$,K+NX)
CONTINUE
VU = X(K+NX)
END IF
fquad = fquad + hyx*(vr-v)*#2 + hxy*(vu-v)**2
FQK = (J* (NX+1)) + I + 1

£q(fqk) = hyx * (vr - v) *% 2 + hxy * (vu - v) *x 2

D$0 = VR - V
D$3 = VU - Vv
D$3BAR = HXY* (2#D$3)
D$OBAR = HYX* (2#D$0)
DO 99984 G$I$ = 1,G3$P$
G3FQ(GSI$,FQK) = DSOBAR*GSVR(GSIS) +
(~-D$3BAR+ (-D$OBAR) )*G$V(G$I$) +

D$3BAR«GEVU(GS$IS)
CONTINUE
FQ(FQK) = HYX#D$0#%2 + HXY#D$3#»2
CONTINUE
CONTINUE
CONTINUE

99998 CONTINUE

END
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SUBROUTINE REVOB(G$P$,N,X,G3X,LDGS$X,F,NX,NY,HX,HY,FORCE, FQQ,G$FQQ,

LDG$FQQ)

R T
* derivs for second loop , current ADIFOR

It
C

c Formal fqq is active.
C Formal x is active.

C

C

C . Parameters .

Q

99990

99989

99988

99987

INTEGER G$PMAXS
PARAMETER (G$PMAX$=100)

. Scalar Arguments ..
DOUBLE PRECISION F,FORCE,HX,HY
INTEGER G$P$,LDG$FQQ,LDG$X,N,NX,NY

.. Array Arguments ..
DOUBLE PRECISION FQQ(*),GSFQQ(LDGS$FQQ,=*),G$X(LDGSX,N) ,X(N)

.. Local Scalars ..
DOUBLE PRECISION D$0,D$0BAR,D$3,D$3BAR,HXY,HYX,V,VD,VL
INTEGER FQK,G$I1$,1,J,K

. Local Arrays ..
DOUBLE PRECISION G$V(G$PMAX$),GS$VD(G$PMAXS) ,GSVL (GSPMAXS)

IF (G$P$.GT.G$PMAX$) THEN
PRINT #,’Parameter g$p is greater than g$pmax.’
STOP

END IF

HXY = HX/HY

HYX = HY/HX

DO 99998 J = 1,NY + 1

DO 99999 I = 1 ,NX + 1
K = NXx (J-1) +
V=0.0
DO 99990 G$I$ = 1,G$P$
G$V(GS$IS$) = 0.0d0
CONTINUE
VL = 0.0

DO 99989 G$I$ = 1,G3$P$
G3VL(G$I$) = 0.0d0
CONTINUE
VD = 0.0
DO 99988 G3$I$ = 1,G3$P$
G3VD(G$I$) = 0.0dO
CONTINUE
IF (I.LE.NX .AND. J.LE.NY) THEN
v = x(k)
DO 99987 G$I%$ = 1,G3$P$
G$V(G3I3%) = GSX(GSIS,K)
CONTINUE
V= XK
END IF
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99986

99985

99984

30
99999
40
99998

IF (I.GT.1 .AND. J.LE.NY) THEN
vl = x(k - 1)
DO 99986 G$I$ = 1,G3PS
GSVL(G3I$) = GSX(G$IS,K-1)

CONTINUE
VL = X(K-1)
END IF

IF (I.LE.NX .AND. J.GT.1) THEN
vd = x(k - nx)
DO 99985 G$I$ = 1,G$P$
GSVD(GSIS) = GIX(GSIS,K-NX)
CONTINUE
VD = X(K-NX)
END IF
m fquad = fquad + hyx*(vl-v)**2 + hxy*(vd-v)**2
FOQK = ((J~1)* (NX+1)) + I
£fqq(fqk) = hyx * (vl - v) #* 2 + hxy * (vd - v) *% 2
D$0 = VL - V
D$3 = VD - V
D$3BAR = HXY#* (2%D33)
D$OBAR = HYX* (2=D$0)
DO 99984 G3I$ = 1,G3P$
GSFQQ(GS$I3,FQK) = DSOBAR*GSVL(GSIS) +
(-D$3BAR+ (-D$OBAR))*GS$V(GIIS) +

D$3BAR*G3VD(GSI$)
CONTINUE
FQQ(FQK) = HYX*D$O*#2 + HXY*D$3%%?2
CONTINUE
CONTINUE
CONTINUE
CONTINUE
END
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SUBROUTINE REV1C(G$P$,N,X,G$X,LDG$X,F,NX,NY,HX ,HY ,FORCE, FP,RGFP,
+ LDGS$FP)
AR R

* third loop, basic block reverse mode
kR Rk

c .. Scalar Arguments ..
DOUBLE PRECISION F,FORCE,HX,HY
INTEGER G$P$,LDG$FP,LDGSX,N,NX,NY

C .
C .. Array Arguments ..
DOUBLE PRECISION FP(#*),G$X(LDGS$X,*) ,RGFP (LDG$FP,*),X(N)
c ..
C .. Local Scalars ..
DOUBLE PRECISION FPBAR,HXY,HYX
INTEGER I,K
C .
HXY = HX/HY
HYX = HY/HX

[g]

Computation of the linear part of the function.

DO SO K = 1,NXsNY
FPBAR = 1.0
RGFP(1,K) = 0.0
DO I = 1,G3P$

RGFP(I,K) = RGFP(I,K) + FPBAR*G3$X(I,K)
END DO
FP(K) = X(X)
50 CONTINUE

END
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G Enhanced Derivative Code for Component Functions

SUBROUTINE REV1A(G$P$,N,X,G$X,LDGSX,F,NX,NY HX ,HY ,FORCE,FQ,RGFQ,
+ LDGS$FQ)

RARXRERERE

= first loop contribution, basic block reverse mode

EEEXERERY
c
c ADIFOR: runtime gradient index
C ADIFOR: translation time gradient index
c ADIFOR: gradient iteration index
c
c The spacing parameters hx and hy are for a rectangle with
C nx points on the x-axis and ny points on the y-axis
c
c ADIFOR: gradient declarations
C . Parameters .

INTEGER GSPMAXS

PARAMETER (G$PMAX$=4900)
c ..
c .. Scalar Arguments ..

DOUBLE PRECISION F,FORCE,HX,HY

INTEGER G#P$,LDG$FQ,LDGSX,N,NX ,NY
c ..
c .. Array Arguments .

DOUBLE PRECISION FQ(s),G$X(LDGSX,N),RGFQ(LDGSFQ,#*),X(N)
c .
c .. Local Scalars ..

DOUBLE PRECISION D$0,D$4,FQUAD,HXY,HYX,V,VBAR,VR,VRBAR,VU,VUBAR,

+ XK1BAR, XKBAR, XKNXBAR

INTEGER FQK,I,J.K,PP
c ..

IF (G$P$.GT.G3PMAX3) THEN

PRINT =, 'Parameter g$p .s greater than glpmax.’
STOP

END IF

HXY = HX/HY

HYX = HY/HX
< Computation of the quadratic part of the function.a
c the following 1is not needed
c do g3%i%$ = 1, g$p3
c do j= 1, ((nx+1)s{(ny+1))
< rgfQ(g3is%,j) = 0.0V
c enddo
c enddo

FQUAD = 0.0

DO 20 J = O,NY
DO 10 I = O,NX

K = NXe (J-1) +
V=20.0
VR = 0.0
VU = 0.0
IF (I.GE.1 .AND. J.GE.1) V = X(K)
IF (I.LT.NX .AND. J.GT.0) VR = X(K+1)
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IF (I.GT.0 .AND. J.LT.NY) VU = X(K+NX)
FQK = (Je (NX+1)) + I + 1

FQ(FQK) = HYX® (VR-V)##2 + HXY* (VU-V)*%2
D30 = VR - V

D$4 = VU - V

FQ(FQK) = HYX*«D$0##2 + HXY=D$4s#2

VBAR = -2+HXY*D3$4 - 2#HYX#D$0

VUBAR = 2sHXY=*D$4

VRBAR = 2sHYX*D$0

XKBAR = 0.0

XK1BAR = 0.0

XKNXBAR = 0.0

IF (I.GE.1 .AND. J.GE.1) XKBAR = VBAR

IF (I.LT.NX .AND. J.GT.0) XK1BAR = VRBAR
IF (I.GT.0 .AND. J.LT.NY) XKNXBAR = VUBAR

DO PP = 1,GEPS
RGFQ(PP,FQK) = XKBARsG3X(PP,K) + XK1BAR*G$X(PP,K+1) +
+ XKNXBAR*G3X (PP ,K+NX)
END DO
10 CONTINUE
20 CONTINUE
END
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SUBROUTINE REV1B(G$P$,N,X,G$X,LDG$X,F,NX,NY ,HX, ,HY,FORCE, FQQ,RGFQQ,
+ LDG$FQQ)

Rk kR Rk s

* gecond loop, basic block reverse mode
SRRk EEer®

ADIFOR: runtime gradient index
ADIFOR: translation time gradient index
ADIFOR: gradient iteration index

The spacing parameters hx and hy are for a rectangle with
nx points on the x-axis and ny points on the y-axis

OO oaaaaan

ADIFOR: gradient declarations

C .. Parameters ..
INTEGER G$PMAX$
PARAMETER (G$PMAX$=4300)

C .. Scalar Arguments ..
DOUBLE PRECISION F,FORCE,HX,HY
INTEGER G$P$,LDG$FQQ,LDGSX,N,NX,NY

c .. Array Arguments ..
DOUBLE PRECISION FQQ(*),G$X(LDG$X,N),RGFQQ(LDGS$FQQ, ) ,X(N)

C .. Local Scalars ..

DOUBLE PRECISION D$0,D%$4,FQUAD,HXY,HYX,V,VBAR,VD,VDBAR,VL,VLBAR,
+ XK1BAR,XKBAR, XKNXBAR

INTEGER FQK,I,J,K,PP

IF (G$P$.GT.GIPMAXS) THEN
PRINT *,’Parameter g$p is greater than g$pmax.’
STOP

END IF

HXY = HX/HY

HYX = HY/HX

Computation of the quadratic part of the function.
the following is NOT needed
do g3i%$ = 1, g$p$
do j= 1, ((nx+1)*(ny+1))
rgfQQ(g$is,j) = 0.0d0
enddo
enddo
FQUAD = ¢.0
DO 40 J = 1,NY + 1
DO 30 I = 1,KX + 1
K = NX» (J-1) + I
V=0.0
VL = 0.0
VD = 0.0
IF (I.LE.NX .AND. J.LE.NY) V = X(K)
IF (I.GT.1 .AND. J.LE.NY) VL = X(K-1)
IF (I.LE.NX .AND. J.GT.1) VD = X(K-NX)
cm fquad = fquad + hyxs(vl-v)**2 + hxys(vd-v)s*2

a o o o o000
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FORK = ((J-1)= (NX+1)) + I

FQQ(FQK) = HYX# (VL-V)#%2 + HXY* (VD-V)#s2
D$0 = VL - V

D$4 = VD - V

FQQ(FQK) = HYX*D$0##2 + HXYsD$4ss2

VBAR = -2sHXY*D$4 - 2s+HYX*D$0

VLBAR = 2sHYXsD$0

VDBAR = 2%HXYsD$4

XKBAR = 0.0

XK1BAR = 0.0

XKNXBAR = 0.0

IF (I.LE.NX .AND. J.LE.NY) XKBAR = VBAR
IF (1.GT.1 .AND. J.LE.NY) XK1BAR = VLBAR
IF (I.LE.NX .AND. J.GT.1) XXNRXBAR = VDBAR

DO PP = 1,G3$P$
RGFQQ(PP,FQK) = XKBAR«G$X(PP,K) + XK1BAR#G$X(PP,K-1) +
+ XKNXBAR*G$X(PP,K-NX)
END DO

30 CONTINUE
40 CONTINUE
END



SUBROUTINE REV1C(G$P$,N,X,G$X,LDG$X,F,NX,NY,HX ,HY,FORCE,FP,RGFP,
+ LDG$FP)

Ty P

* third loop, basic block reverse mode

P P T Y

c .. Scalar Arguments ..
DOUBLE PRECISION F,FORCE,HX,HY
INTEGER G$P$,LDGS$FP,LDGSX,N,NX,NY

C ..
C .. Array Arguments
DOUBLE PRECISION FP(»),G$X(LDG3$X,#) ,RGFP(LDG$FP,*),X(N)
C .
C .. Local Scalars ..
DOUBLE PRECISION FPBAR,HXY,HYX
INTEGER I,K
C ..
HXY = HX/HY
HYX = HY/HX

¢ Computation of the linear part of the function.

DO 50 K = 1,NX*NY
FPBAR = 1.0
RGFP(1,K) = 0.0
DO I = 1,G$P$

RGFP(I,K) = RGFP(I,K) + FPBAR*G$X(I,K)
END DO
FP(X) = X(K)
50 CONTINUE

END
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