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COMPUTERS AND PHYSICS

Digital computers are machines that can be programmed to perform logical and

arithmetical operations. Contemporary digital computers are ‘universal,’ in the sense

that a program that runs on one computer can, if properly compiled, run on any other

computer that has access to enough memory space and time. AI~Yone universal computer

can simulate the operation of any other; and the set of tasks that any such machine can

perform is common to all universal machines,

Many classical systems, ranging from cellular automata to hard-sphere gases, have

been ~lluwn to be capahl~ ~f universal computation (Wolfram 1985; Toffoli 1982, 1977;

Nlinsky 1967; Omohundro 1984; Moore 1990, 1991). Since Bennett’s discovery that

computation can be carried out in a non-dissipative fashion, a number of Hamiltonian

quantum-mechanical systems have been proposed whose time-evolutions over discrete

inki vals are equivalent to those of spec:fic univcrsa) computers (Bennett 1973,1982;

Benioff 1980, 1982, 1986; Feynman 1W2,1W5,1986; Deutsch 1985, 1989).

The first quantum-rnechan! cal treatment ,~f computers was given by Benioff, who

exhibited a Hamiltonian system with a basis whoqe rnmnbere corresponded to the logical

states of a Turing machine, and whose unitao; m transformed those basis states

at integer timcw into the states correspcmdl I L logical successors ( Benioff 1980,

1982). In order to mak~ the I{amiltonian Iota!, i,: ~h,c semw ti,~t its structure dcpcndod

only on the part of the computation being ,wrfornltd at, that time, 13enioff found it
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necessary to make i.he the Hamiltonian timeAependent. Feynman discovered a way to

make the computational Hamiltonian both local and time–independent by incorporating

the direction of computation in the initial condition. In Feynman’s quantum computer,

the program is a carefully prepared wave packet that propagates through different coln-

putational states; at any time, the computation is in ti superposition of a number of

computational states (F’eynman 19S5, 19/36), Deutsch presented a quantum computer

that exploits the possibility of existing in a superposition of computational states to

perform tasks that a classical computer cannot, such as generating purely random num-

bers, and carrying out superpositions of computations as a method of parallel processing

(Deutsch 1985). Further examinations of the properties of quantum computers, includ-

ing their behavior in the presence of noise, were carried out by Zurek and Peres (Zurek

1984; Peres 1985).

In this paper,

possess a common

we show that

form for their

such computers, Ly

quantum dynamics.

virtue of their common function,

TURING MACHINES AND QUANTUM MECHANICS

The original model for a rl!gital computer is the Turing machine (Turing 1936).

Turing’s intent was to model in rudimentary fashion the way in which a mathematician

does math, b,y writing equations and symbols on sheets of paper, and by examining

and altering previously written actuations and symbols. In its simplest form, a Turing

machine consists of a ‘head,’ that can be in one of a finite number of states, and that can

read and write on a ‘tape,’ that is divided up into squares rach one of which contains one

of a finite number of symbols. The head is initially located at scm~e sqllare of the tape,

and at the next tin]e step, as a function of its internal state aIId the symbol on tlic square

that it is reading, it writes a new symbol on that square, changes its internal state, and

either stays where it is or moves one sq~lare to the left or right, Turing showed that,

despite their simplicity, such machines could perform a wide variety of matlm-natical Mid

logical tuks. In addition, he exhibited ‘1’uring n~achincs that wrr~ universal in the scnsu

that they could be programmed to ~inmlate the action of any other Turing machine.

Such universal machines nwd haw no IImre than R slnall n(lrnbt=r of tape Nylnbols and

Imad states.

At any step in h computation, tile statr of il ‘[’uring machirw can he charactrrizml

by a word of finite hwgth in tlw tapt’ alphitlj(’t sprrifyillg the contents of the nonbln[lk

squarw on thr tapt’, an illtrogm giving t!lr lmsil ion of tlw Iwafl on lhr thp(’, and a finitr,
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discrete label identifying the internal state of the head. ‘l’he corrlputational states of a

universal Turing machine or digital computer make up a discrete, countably infinite set.

The dynamics of the machine are deterministic on that set, and are discrete in time.

Ii onc labels the set of integers that determine the computational state of a universal

digital computer at a particular time as b, then the computer’s state at the nc~t time

step is a function of b: b’ = T(b). The quantum computers discussed by Benioff have

computational states that are pure states, lb), corresponding to the computational states

b. These quantum computers each possess a unitary time evolution {Tover discrete time

intervals At, such that UIL)= e’4fb)l T(b)), where C’$(b)is an arbitrary phase, and T specifies

the computational dynamics of some universal computer.

Deutsch’s computer is capable in addition of performing a rotation of the spin-like

variable that corresponds to a single bit by an angle that is an irrational fraction of 27r.

‘[’his single additional operation allows the computer to perform tasks beyond those of

which a classical digital computer is capable, including constructing random numbers

from ,rieasurements on quantum-mechanical superpositions, and constructing arbitrary

unitary transiornlalions on finite-dilnensional IIiltx=rt spaces. The above description i~~-

plies to those states of Deutsch’s computer tl]at behave like conventional computational

states.

To be realizable by the sort of p~lre statr quantum computrr described above, the

computational dynalnics T must be a onr to onc function, si[lcc for a unitaly operator

[1, Ulb) = CIlb’) illlplics lb) = lb’): that is, each corilputational state b rnllst have not only a

unique ilnage, T(b), but a unique prcimagfm, T-’(b), hnnett has shown that there exist

universal cmnputers with a one-to -one co[]lputatiolla] dynami~.s, Although most logic~l

operatiol]s, sllch M addition, or taking tllv ,INI~ of two kits, have outputs that are not

one-to--one functions of their inputs, thww olmatiolis may be ellhdclml in me- to one

ful]ctions, and extra r(!gistrvw n]ay lW slll)])li(v ‘ 10 rc(’or(l tllv il)formation tl]at is Ilot

nwdml for the logical operation of tl)r c(~lllplltrr, I)l]t lllat rmlst be rt’cordml in or(icr

to make ti]at iogicai opt=raticm onc to 0110. As IIotfmi i)y IJall{iaucr, a computer whosr

computational dynalllic~ are many to x)I](’, sIicil /\Ycllrrcnt (iigitai computerw, must h

dissilmtivr (I,a[l(imlt’r I!)(;1).

2. [) IA(:ONAl. illI:i)l{ l; S1;N’i’A’I’ION 01; (:ohll) ll’I’/\’i’loNAi,” i; Vol,(l’1’10N oi)i*;l{A’l’Ol{S
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U for a universal pllre-state (Illfintunl colnputrr. Since a universal computer has a

countably infinite number of comp~ltationa] states, the Hilbert space spanned by the

{lb)) is infinite dimensional. Theie is no g[larantec, then, that [J is diagonalizable. Our

first result is to show that U is itl fact diagonalizable, and to exhibit the form of its

diagonal representation. Any systcrn whose discrete time unitary evolution operator h:~

the same diagonal representation w that for some universal ,]uantum computer, itself

has a basis with respect to which its behavior is that of a universal computer.

If a computer with a onett~-one dyn(~n~ics T starts computing in a particular state,

then it either returns to that state, or never returns. Silnilarly, if one applies the operator

u repeatedly to a computational state lb), two things may happen. First, one may find

that Umlb) = ei@l~),for sornc intrger m arid phase d. Second, one may find that lb)

never returns Lo itself for any numhc’r of iterations of II, Tile span of the set {fr’’l~)) is an

Invariant .subspacc ‘Hh under [1: [J’~b= ‘~b. [II the first case above, this invariant subspace

has dimension m; in tile second, it is illlillite dimensional. To diagonalize U, we need

only diagonalize it on the set of invariant subspaces grncrated by all such computational

states 16).

Consicftv first the case for which f~’’’[h)= r’”lh). We have ~Jmlti) = e’~lti) (or w]y

ldJ)~ fib. ‘t’h~:eigt)nvalll(}s of [1 OH this ill~ilrialll SIIINPW’ are ~11 V1-th r~~t~ of f’~: there

are In of tllf%e roots, the k th of which is oh = r’~2’k+*)i’”. ‘[’he eigenvertm corresponding

to the eigenvalue (tk IS I(ik) = I/m ~~!-jl’ ntJ~I’)l~). ‘1’lw (Imnmlposition of the co[nputa-

tional states within the illvitriallt Suhsl)acr ‘Hb ill tvrlns of eigenstatea of (J k giV(’11 by

U) lb) = l/fi ~~=;l (kjlftk) ‘l’he casr, @= O, is WICIIknown (Schwinger 1970; Ilcrliof~ lWW,

1982,1!)86; I%rm 1!)85) III this fi[lit.v (Iii]]tvlsiollal invariant subspacc, the ~neigtmvalum

ore distributed al (IqIIal i[lt.mvals itro(lll(! III(I u[litcirc]c i[~ the ron~plrx plane, wl(i tllr

computational eigenstntcs are IIniforlli slllj{’r[)(jsit,i~)t]~of the ci,genvectors.
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The eigenstates of [f are discrete Fourier transforms of the computational states, [.[m[~),

and the computation] states are continuous Fourier transforms of the cigenstates, the

analogue of plane waves for the particle in the box.

The unitary ,Jperator [1 that induces the computational dynamics is diagonalizable,

and has both a discrete spectrunl that corresponds to computations that cycle after a

finite number of steps, and a continuous spectrum corresponding to computations that

never repeat.. A universal computer must be capable of computations that never repeat,

(for example, colll]tillg from 1 to m), but need not necessarily be capable of engaging

in computations that cycle (for example, a universal computer could possess a clock

register that continues to count upward after computation halts). For quantum univsr-

sal computers, the discrt~te part of the spectrum is optional, but the continuous part is

mandatory, In a(ldition, each universai computer is capable of a countable infinity of

non-overlapping, llorl-cyclic computations; the continuous part of the spectrum there-

fore has a countabl~ infinity of orthogonal sectors each with eigcmvalues Cio : a ● [o, ?fij.

The above (Ieconlpmition applies not only to quantum computers such as those of

13enioff, that perform the same logical tasks as classical computers, hut also to quantum

computers of the sort proposed by Dcutsch, that arc able to rotate the spin--like vari-

nbles corres.;]onding to single bits by an irratiuntil a[nmlnt, and that can thereby perform

actions, such as trlle ran(lom nurllb{’r g(vlcratiml, that are forbicld~m to classical com-

puters. ‘1hat is, for stlch colnl}utcrs thmc mists solne suh::et of complltatlicmal states,

{Ir)), SIIJ:!: that (.IIc) = ~1ItIl) + y21fq), wherr 1~1)and Ibz) are complltationid states that

~liffer frwrri rarhotl)m t)nly by the vP.lII(mof a singlr bit, 17112+ly212= I, and sin-1 (1711)/Zmis

irrational. In tht’ r,~sr of a cornl)utc: in which all cyclmr arr infinite, so that (c1//’’’lr)= 0

for all m, ]c), the (Im-mnposition given shove for the states in an infinite cycle [Jmlr) still

holds, 161)and Ihz) crm always be st~lvctml L(IINSuniform dm-ml~positions of eigenvector~,

~llbjcct to the constraint that they tidd IIp to I;Ic) as abow. I)eutsch’s ro[nputt?rs can

t!volvr into sdpcrpoxitions of binarily Iahrllcd stfitm+, l~ut the hillary Iabrls of the statrs

of lhwtw”h’s colllplltcr ((.orrc~l][)ll(lillg, wk,v,to t+f~llfigllraltiol]sof a w-t of Si)ill S hlorrg pre-

(If’tmn]ill(d ax(w) IN)Iollgm corrmpoll(i to tllv irltfrgm Ia}wlv of tll~ colllltably infinite set

of (Goltl[)lltiitiollltl”::latw. ‘[’11(’{li~gollal ffn’111of tile ti[m’ (’vollltiorl o;wrmtor rmnniris tlw

~mw FMfor it l)llr[’ sti~l(’ (Illiilltlllll (v)llll)l!t.(’r I,l)ht r(~alivxw~“orlv(’lltiollnl”one to one (Iigitni

t’[~llll}lltiltit)l)s.
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Hamiltonian, whose interactions were local. For the computers described above, the

unitary evolution is time–independent, and the discretetime interactions are local, o[lly

involving a few bits at each computational step. The treatment given abo~’e says nothing,

however, about what happens in between the discrete iustants in time at which the

computer is in computational states. In fact, as pointed out by Benioff, at in-between

times such a computer can be in a superposition of all logical states in a computational

cycle. Feynman’s solution to this problem was to define a Harniltonian, H = u + ut.

corresponding to a unitary time evolution operator over an inter~ral t of ei~’ = : + iHt -

H2t2[2- ..,. Such a compu!er, prepared initially in a computational state of U, will evol~’e

at time t into a superposition of all computational states in the same cycle. As noted

above, if the initial state of the system is prepared in the proper wave packet, the action

of ci”’ on that state, corresponding to a superposition of actions of U and Ut operating

on the state different number of time.~, tends to propagate the computation forward.

To perform a computation on such a computer, one starts the computer out in a wave

pac?et centered at the beginning of ,the computation, then waits a sllitable amount of

time, and makes a nu-nsurement on the IIalt bit of the computer done. If the result

O( this measurement is that the Halt hit is one, i.e,, the computer has halted, then one

makes a measu~ .ment 01) the output r(’gister to ex~ract the. result of the computation.

Since u is local and til~le-illdepel~de[~t, so is H, and t~le eigenvectors of u and H are the

same. For Fcynrnan’s computer, the spectrum of H can be derived by first finding the

spectrllm of the Corresponding f./, M above. al]d then taking it.~ l:”~jection onto the real

axis.

:], (’ON(.:[,[JSION

We have reviewmf the quantum computers I)roposed by [Jenioff, Dcutsch, a[ld tl’eyn-

rnrm, and shown that under the prolm circlllnstanr-cs, their time evolutiol] (qjmalt)rs all

possess the same diagonal for[nn
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