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REVIEW OF QUANTUM COMPUTATION

Seth Lloyd
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and Center for Nonli-ear Studies
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Los Alamos, New M ‘zico 87545

COMPUTERS AND PHYSICS

Digital computers are machines that can be programmed to perform logical and
arithmetical operations. Contemporary digital computers are ‘universal,” in the sense
that a program that runs on one computer can, if properly compiled, run on any other
computer that has access to enough memory space and time. Any one universal computer
can simulate the operation of any other; and the set of tasks that any such machine can
perform is common to all universal machines.

Many classical systems, ranging from cellular automata to hard-sphere gases, have
heen shown to be capabic of universal computation (Wolfram 1985; Toffoli 1982, 1977;
Minsky 1967, Omohundro 1984; Moore 1990, 1991). Since Bennett's discovery that
computation can be carried out in a non-dissipative fashion, a number of Hamiltonian
quantum-mechanical systems have been proposed whose time-evolutions over discrete
inicivals are equivalent to those of specific universal computers (Bennett 1973,1982;
Benioff 1980, 1982, 1986; Feynman 1982,1925,1986; Deutsch 1985, 1989).

The first quantum-mechanical treatment of computers was given: by Benioff, who
exhibited a Hamiltonian system with a basis whose membere corresponded to the logical
states of a Turing machine, and whose unita "-m transformed those basis states
at integer times into the states correspondi ¢ logical successors (Benioff 1980,
1982). In order to make the Hamiltonian local, 1 ke sense tiat its structure depended

only on the part of the computation being performed at that time, Benioff found it
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necessary to make the the Hamiltonian time-dependent. Feynman discovered a way to
make the computational Hamiltonian both local and time-independent by incorporating
the direction of computation in the initial condition. In Feynman’s quantum computer,
the program is a carefully prepared wave packet that propagates through different comn-
putational states; at any time, the computation is in a superposition of a number of
comnputational states (Fevnman 1985, 1986). Deutsch presented a quantum computer
that exploits the possibility of existing in a superposition of computational states to
perform tasks that a classical computer cannot, such as generating purely random num-
bers, and carrying out superpositions of computations as a method of parallel processing
(Deutsch 1985). Further exarinations of ihe properties of quanturn computers, includ-

ing their behavior in the presence of noise, were carried out by Zurek and Peres (Zurek
1984; Peres 1985).

In this paper, we show that such computers, by virtue of their common function,

possess a common form for their quantum dynamics.

TURING MACHINES AND QUANTUM MECHANICS

The original model for a digital computer is the Turing machine (Turing 1936).
Turing’s intent was to medel in rudimentary fashion the way in which a mathematician
does math, by writing equations and symbols on sheets of paper, and by examining
and altering previously written equations and symbols. In its simplest form, a Turing
machine consists of a ‘head,’ that can be in one of a finite number of states, and that can
read and write on a ‘tape,’ that is divided up into squares each one of which contains one
of a finite number of symbols. The head is initially located at some square of the tape,
and at the next time step, as a function of its internal state and the symbol on the square
that it is reading, it writes a new symbol on that square, changes its internal state, and
cither stays where it is or moves one square to the left or right. Turing showed that,
despite their simplicity, such machines could perform a wide variety of mathematical and
logical tasks. In addition, he exhibited Turing machines that were universal in the sense
that they could be programmed to simulate the action of any other Turing machine.
Such universal machines need have no more than a small number of tape symbols and

head states.

At any step in a computation, tie state of a Turing machine can be characterized
by a word of finite length in the tape alphabet specifying the contents of the nonblank

squares on the tape, an integer giving the position of the head on the tape, and a finite,
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discrete label identifying the internal state of the head. The computational states of a
universal Turing machipre or digital computer make up a discrete, countably infinite set.

The dynamics of the machine are deterministic on that set, and are discrete in time.

[i one labels the set of integers that determine the computational state of a universal
digital computer at a particular time as b, then the computer’s state at the next time
step is a function of b: & = T(b). The quantum computers discussed by Benioff have
computational states that are pure states, |b), corresponding to the computational states
b. These quantum computers each possess a unitary time evolution U/ over discrete time
intervals At, such that Ulb) = ¢'*®|T(b)), where ¢'#®) is an arbitrary phase, and T specifies

the computational dynamics of some universal computer.

Deutsch’s computer is capable in addition of performing a rotation of the spin-like
variable that corresponds to a single bit by an angle that is an irrational fraction of 2.
"This single additional operation allows the computer to perform tasks beyond those of
which a classical digital computer is capable, including constructing random numbers
from .neasurements on quantum-mechanical superpositions, and constructing arbitrary
unitary transformations on finite-dimensional Hilbert spaces. The above description ap-
plies to those states of Deutsch’s computer that behave like conventional computationai

states.

To be realizable by the sort of pure state quantum computer described above, the
computational dynamics T must be a one -to one function, since for a unitary operator
U, Ulb) = U6’y implies [b) = |b*): that is, each computational state b must have not only a
unique image, T(b), but a unique preimage, T-'(6). Bennett has shown that there exist
universal comnputers with a one-to-one computational dynamics. Although most logical
operations, such as addition, or taking the AND of two Lits, have outputs that are not
one-to-one functions of their inputs, these operations may be embedded in one-to-one
functions, and extra registers may be supplied to record the information that is not
needed for the logical operation of the computer, but that must be recorded in order
to make that logical operation one to one. As noted by Landauer, a computer whose
computational dynamics are many to-one, such as current digital computers, must be

dissipative (Landauer 1961).

2. DIAGONAL REPRESENTATION OF COMPUTATIONAL EVOLUTION OPERATORS

Our inmediate goal is to characterize the form of the unitary evolution operator

3



U for a universal pure-state ¢uantum computer. Since a universal computer has a
countably infinite number of computational states, the Hilbert space spanned by the
{|¢)} is infinite dimensional. Theie is no guarantee, then, that U is diagonalizable. OQur
first result is to show thac U/ is in fact diagonalizable, and to exhibit the form of its
diagonal representation. Any system whose discrete time unitary evolution operator has
the same diagonal representation as that for some universal quantum computer, itself

has a basis with respect to which its behavior is that of a universal computer.

If a computer with a one-to-one dynamics T starts computing in a particular state,
then it either returns to that state, or never returns. Suinilarly, if one applies the operator
U repeatedly to a computational state |4), two things may happen. First, one may find
that U™b) = e'¢)b), for some integer m and phase ¢. Second, one may find that |b)
never returns to itsell for any number of iterations of U, The span of the set {{/"|b)} is an
invariant subspace M, under /: /M, = H,. In the first case above, this invariant subspace
has dimension m; in the second, it is infiuite dimensional. To diagonalize U, we need
only diagonalize it on the set of invariant subspaces generated by all such computational
states |b).

Consider first the case for which U™b) = e@)b). We have U™|y) = e|y) for any
[v) € Hy. The eigenvalues of U on this invariant subspace are all m-th roots of ¢'¢; there
are m of these roots, the k-th of which is ay = ¢?*¥+8)/m_ The eigenvector corresponding
to the eigenvalue ay is |ag) = 1/Vm 325 a1 [b). The decormposition of the computa-
tional states within the invariany subspace M, in terms of eigenstates of U is given by
Vb = 1//m 0 ad o). The case, ¢ = 0, is well known (Schwinger 1970; Benioff 1980,
1982,1986; Peres 1985) In this finite dimensional invariant subspace, the m eigenvalues
are distributed at equal intervals around the unit circle in the complex plane, and the

computational eigenstates are uniform superpositions of the eigenvectors.

Now consider the case in which Hy is infinite dimensional, spanned by the set {1775)],
where m can be any integer. By analogue with the finite dimensional case, we can detine

— 0

cigenstates |a) = Y20, emtermby. These states are eigenvectors of U with eigenvalue
', but they are not normalizable within the Hilbert space ;. This situation is common
in quantum mechanics: for example, in the case of the particle in a box, the position
cigenstates lie outside of the Hilbert space spanned by the energy cigenstates, and require
delta function normalization. ‘The non normalizability of the cigenstates of 17 iy not a
hindrance i decomposing the computational states in terma of these cigenstates: we

have U™B) = 1/Vir [" e la), and the states o) ave normalized so that (a]o’) = 8o - a’).



The eigenstates of U/ are discrete Fourier transforms of the computational states, /™ (b),
and the computational states are continuous Fourier transforms of the cigenstates, the

analogue of plane waves for the particle in the box.

The unitary operator U that induces the computational dynamics is diagonalizable,
and has both a discrete spectrum that corresponds to computations that cycle after a
finite number of steps, and a continuous spectrum corresponding to computations that
never repeal. A universal computer must be capable of computations that never repeat,
(for example, counting from 1 to ), but need not necessarily be capable of engaging
in cornputations that cycle (for example, a universal computer could possess a clock
register that continues to count upward after computation halts). For quantum univar-
sal computers, the discrete part of the spectrum is optional, but the continuous part is
mandatory. In addition, each universal computer is capable of a countable infinity of
non-overlapping, non-cyclic computations; the continuous part of the spectrum theve-

fore has a countable infinity of orthogonal sectors each with eigenvalues e'“ : a € [0, 21].

The abcve decomposition applies not only to quantum computers such as those of
Benioff, that perform the same logical tasks as classical computers, but also to quantum
computers of the sort proposed by Deutsch, that are able to rotate the spin-like vari-
ables corresponding to single bits by an irratiunal amnount, and that can thereby perform
actions, such as true random number generation, that are forbidden to classical com-
puters. ‘Lhat is, for such computers there exists some subset of computational states,
{(I)}, such that U]e) = 7,16,) + v2/b2), where |b;) and |b3) are computational states that
differ from cachother only by the value of a single bit, [y + 1721? = 1, and sin=!(|y,])/2r is
irrational. In the case of a computer in which all cycles are infinite, so that (c|l/™|c) =0
for all m, |c), the decomposition given above for the states in an infinite cycle U™]c) still
holds. |8,) and |b;) can always be selected to be uniform decompositions of eigenvectors,
subject to the constraint that they add up to 7|} as above. Deutsch’s computers can
evolve into superpositions of binarily labelled states, but the binary labels of the states
of Deutsch'’s computer (corresponding, say, to configurations of a set of spins along pre-
determined axes) no longer correspond to the integer labels of the countably infinite set
of computational states, The diagonal form of the time evolution operator remains the
same as for a pure state quantam computer that realizes conventional one-to one digitai

computations.

Feynman's computer has a vnitary time evolution of a form slightly different from

that just given, Feynman was interested in creating a compuoter with a time independent,
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Hamiltonian, whose interactions were local. For the computers described above, the
unitary evolution is time-independent, and the discrete-time interactions are local, only
involving a few bits at each computational step. The treatment given above says nothing,
however, about what happens in between the discrete instants in time at which the
computer is in computational states. In fact, as pointed out by Benioff, at in-between
times such a computer can be in a superposition of all logical states in a computational
cycle. Feynman’s solution to this problem was to define a Hamiltonian, # = U + U!'.
corresponding to a unitary time evolution operator over an interval ¢ of e!f/* = { + iHt ~
H?t?/2—~ ... Such a comput‘er, prepared initially in a computational state of U, will evolve
at time t into a superposition of all computational states in the same cycle. As noted
above, if the initial state of the system is prepared in the proper wave packet, the action
of ¢'f'* on that state, corresponding to a superposition of actions of U and U' operating
on the state different number of timey, tends to propagate the computation forward.
To perform: a computation on such a computer, one starts the computer out in a wave
packet centered at the beginning of the computation, then waits a suitable amount of
time, and makes a measurement on the I{alt bit of the computer alone. If the result
of this measurement is that the Halt bit is one, i.e., the computer has halted, then one
makes a measu, ‘ment un the output register to exvract the result of the computation.
Since U is local and time-independent, so is #, and tiie eigenvectors of U and H are the
same. For Feynman's computer, the spectrum of # can be derived by first finding the
spectrum of the corresponding t/, as above, and then taking it< |.r>jection onto the real

axis.

3. CONCLUSION

We have reviewed the quantum computers proposed by Benioff, Deutsch, and Feyn-
man, and shown that under the proper circuinstances, their time evolution operators all

possesy the same diagonal form.
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