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Lower Hybrid Parametric Instabilities -

Nonuniform Pump Waves and Tokamak Applications

R.L. Berger, Liu Chen, P.K. Kaw, and F.W. Perkins

Plasma Physics Laboratory, Princeton University

Princeton, N.J. 08540

ABSTRACT

‘Electrostatic lower hybrid "

pump'' waves are often laugched
into tokamak plasmas by structures (e.g. waveguides) whose
dimensions are considerably smaller than characteristic plasma
sizes. - Such waves propagate in well-defined resonance cones and
give rise to parametric instabilities driven by electron E x B
velocities. The finite size of the resonance cone regi;n
determines the threshold for both convective quasimode decay
instabilities and absolute instabilities. The excitation of
absolute instabilities depends on whether a travelling or standing
wave pump model is used; travelling wave pumps require the daughter
waves to have a definite frequency shift. Altogether, parametric
instabilities driven byAE X EAvelocities occur for threshold fields
éignificaﬁtly below the threshold for filameﬁtation instabilities
driven by pondermotive forces. Applications to tokamak heating
show that nonlinear effects set in when a certain power-per-wave-—
launching port is exceeded. For sufficiently high powers, these
instabilities will occur in the low-density edge region of a
tokamak. They are characterized by a daughter wave frequency 10%

below the pump wave frequency - in agreement with experimental

observations.



I. INTRODUCTION

One ofhthe principal approaches to radio-frequéncy heating of
tokamak devices is the use of lower hybrid radiation introduced
by phased waveguide arrays,l By the term lower hybrid radiation,
we mean waves which are principally electrostatic and which have
a frequency at or above the local lower hybrid frequency. These
waves obey the dispersion relation given in Eq. (7)::helow.

The power leve;s sufficient to heat tokamaks greatly excocd
the uniform;medium parametric instability thresholdwsuggesting
the importance of nonlincar effects. 1Indeed, experimental

’

results have shown that parametric decay instabilities occur
and that a .correlation exists between the presence::of parametric
instabilities and ion heating. The observed thresholds, however,
are well abé&e those predicted by uniform medium theory.

Lower hybrid radiation heating of tokamaks therefore raises
important questions in nonlinear wave-plasma interaéfions:
will the nonlinear heating be so strong as to deposit the energy
in only the surface layers? Can nonlinear heating be entirely
avoided so that only liﬁear‘absorption processes take place?
Will nonlinear processes heat electrons or ions? Hdw'will tokamak
geometries differ from the uniform medium calculations? And
most importantly, how will all these processes scale as tokamak
devices becéme larger and hotter?

This péper attempts to answer the question of how tokamak
geometry affects the linear theory of lower hybrid parametric

-6

instabilities.4 The key feature of tokamak heating schemes is

that the monochromatic "pump" radiation is introduced through

\7



phased-waveguide arrays whose dimensions are considerably smaller
than the characteristic'plasma sizes (see Fig. 1). The lower
hybrid radiation emanating from these arrays propagates in well-
defined resonance cones. Consequently, the most important spatial
nonuniformities are those associated with the spatial variation

of the pump intensity. As a specific example, consider a wave-
launching grill that has a dimension AO/Z ~ 15 cm along the
magnetic fiéid. Then Egs. (10) and (ll)‘below show that the

resonance cone has a radial extent of

, 1/2
A 1/2 4 |
o (Zm o _
Ar - 2‘(M) (wz 1) - lem
: LH

which is much smaller than the minor radius of typical tokamak
devices. '

The principal goal of this paper is to investigate the
linear theory of lower hybrid parametric instabilities via a
model consisting of a nonuniform pump wave propagating in a
resonance cone in an otherwise uniform plasma. The effects of
density gradients, magnetic shear, etc., will be discussed in the
final section. We shall consider two instability modes:
convective decay into lower hybrid waves via quasimodes and four-
wave absolute instabilities. Decay into two lower hybrid modes
does not play an important role in tokamak heating. Also, the
most unstable modes will have frequency shifts much larger than
the ion—cyclbtron frequency so that a variety of cyclotron

instabilities can he ignored. A second goal is to compare the

threshold for exciting parametric instabilities driven by electron
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&E xlg\velocily with that of the filamentation instability
recently proﬁosed by Morales and Lee7 as an explanatioﬁ for the
experimental‘observations of .Gekelman and'Stenzel.8 ‘The symmetry
assumed in tbe Morales-Lee paper suppresses any nonlinear effects
due to electron’E\x‘E\velocities. In the theory of Tower hybrid
parametric instabilities by :contrast, EAX Eﬂvelocities are by
far the most dominant couéling term. |

Porkolab4 has presented :a general ‘discussion ofﬁlower hybrid

waves in a nonuniform media. This paper employs thc same

general concepts, but includes group velncity propagéfion both

transverse to and along the magnetic field for the pﬁrpose of
determining which waves have ‘the maximum growth. 'Itlis necessary
to maximize éhe spatial amplification over all possible daughter
wave frequencies and wave numbers to find which instabilities
actually exist.

The travelling wave nature of the pump has impoftant
consequences for absolute instabilities. The review article by
Nishikawa and Liu9 showed that ‘a travelling wave pump produces
instabilities with a finite frequency shift from thevpump. This
means that one of the two high-frequency daughter waves is no
longer resonépt, so that the purely growing mode evolves into a
convective quasimode. Nishikawa and Liu did not trea£ a spatially
localized travelling wave pump.

our model is presented in Sec. II. Section III 'discusses
absolute four-wave instabilities, while Sec. IV addresses
convective quasimode decay pro¢esses. The paper conqiﬁdes with

a discussion of tokamak applic¢ations.



II. MODEL AND EQUATIONS

Our éfarting point is a model of a uniform plasma with a
straight magnetic field in the z—direction, and containing
monochromatic lower hybrid pump radiation propagating in a
resonance cone in the x-z plane. The plasma is composed of
electrons at temperature Te and ions of charge Z and mass M
at a temperature Ti' The peak energy density of the pump
radiation satisfies the inequality E2/81rnTe << 1 so that ;adiation
pressure forces are negligible. As Eq. (75) below demonstrates,
this restriction is consistent with the power levels required to
heat tokamak research devices and reactors. While the pump
wave propagates solely in the x-z plane,lgjgg\coupling will be
important ohly if the daughter waves have a compoﬁent of their
wave vector in the y-direction. We take this y-dependence to be
sinusoidal - a simplification justified by the fact that the
spatial inhomogenity of pump fields in tokamaks is much weaker
in the y-direction than in the x~-direction.

A cold plasma, electrostatic model will be employed to
describe both the pump and daughter lower hybrid waves.
According tp this model, the electron and ion velocities are

governed by the equations

at o.i TR at Ve mV||¢ ' (1)
L= (v ¢ x z)c a
Vie T B * e ar Lt (2)



Next, we introduce what amounts to a two time scale linearization

of (1) and (2). This is accomplished by letting
E+§?+ ('Y+‘YL) 58t+Y ’ (3)

where 3/3t operates only on the rapidly varying, purgly oscillatory
time dependence Of,Xi' ¢, etc. The physical interprgpation is
that vy represents the growth rate of the instabilityswhi]e Y, is
the linear damping decrement given in Eq. (9 ). Because the
damping decrement depends on wavenumber, our tacit assumption of
a constant decrement is not rigorous, but introduces.no serious
errors.

The denéity continuity equations complete our fqndamental

set of equatibns:

(Tﬁ * Y)“i.e N ’Z'(nli,e)' - (4)

Let us now specialize to the case of absolute instabilities
which will require a full wave treatment; geometric optics will
sutfice for cbnvective quasimodes. The nonlinear coﬁbling
between low-féequency density fluctuations and the daughter
lower hybrid waves arises from the term on the right-hand side of
(4) involving:the pump wave’\flsv\x B velocity of the electrons.

~A

Only terms first order in nonlinear coupling and ? will be retained.



Equations (1-4) can be combined so as to produce an equation
governing lower hybrid daughter waves. This is accomplished
by operating on (4) with operator (3) and utilizing (1), (2),
2

. . 2 .
Poisson's equation, the relatlonshlp,32/8t = -w  valid for any

small amplitude wave, and the linearized operator inversion

(—w2+2Y-;E)-l =—i2(1+2—‘2‘%) : - (5)
w w
The resulting equation is
2 2 2 2
w (x)i U.)e
(1+ €. P)VZ_Lq)-sz”(p , (6)
Qe w w
2 2 2
= 2 w._ . w
_ 27 3 [“pe pi o 2.] _ 29 peL), z
"‘w’z’"éf["'z et o7 et Tae LG 2) e X
w W w
: e
where ¢0 is the potential of the pump wave and wge L denotes the
14

fluctuations in plasma frequency associated with the low-
frequency wave.

Looking forward to the next section, our treatment of
quasimode decay processes will employ a geometrical optics model
for daughter wave propagation. When the small terms on the
right-hand side of (6) are ignored, the familiar geometrical

optics dispersion relation is recovered



/), (8)

and

2 _
“oi T T M

The damping decrement comes from straightforward kinetic theory

_ 2 1/2

_ v~ wLH w M M w 2 2

Yo =7 e \ T Z(T) Kk, ©XP(-Mw"/2k,T;) (9)
k 2T, i +
2 2 2
T 1/2 v w W =W

i m W 2 2 e “pe LH
o (ET_) X exp (-mw /2k” Te) t = ( > + 3 )

e e I Q%+w w

e pe

where Ve is the electron-ion collision frequency.

The next step is to rescale the z variable according to the

relation .
?'.‘1/2 w2 1/2
z = ‘('ZrTm) ("29_ - l) ’ : (10)
“LH

where Wy is the angular frequency of the pump wave. . The two
daughter waves will have frequencies of w # W s with w being the

frequency of: the low-frequency mode (wo >> w). Equation (6)



becomes I
2 2 2 w2 Vn
2 9 - v 3%¢ LH 9 L )
vy - b = + —— e (V¢ x z
At 322 2 _ 2 ) 822 Q (wz_wz )Bt O
N i ‘%" “LH
2
- 2 w
2Y 09 3 LH 2
+_zﬁ[—z+ 22 Vx]“’ (11)
w 9z w —w
lo) o LH

where, in the nonlinear and damping terms, we can safely ignore

the difference between the daughter and pump wave frequencies.
Figure 2 introduces the coordinate transformation which

will greatly simplify the algebraic tasks ahead. 'In terms of

the new variables.

g = r N = —— , Y =Y, (12)

In addition, we note that the lowest order solution is obtained
by setting the left-hand side equal to zero. Since the last
term in (11) is small, we can replace ¢ to first approximation

by its lowest order solution. Equation (11) becomes

(2 . 32)¢=:L(1_1)Z¢ Py (22
3&dn W) 2 _ on 9E 2 2. 5¢ | 3n 5
.ay (WO 1) mLH(wo 1) A
an .
1 3 1 L P 3
Y V7 u. i) %€ 0 9y (a_n * ﬁ) (i (13)
h i
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where we have defined the nondimensional frequencies w ==wo/wLH ’

w==w/wLH . As Fig. 2 makes clear, the pump wave depends only
on ¢ when dissipation processes are ignored.
What is the proper solution of (13) that corresponds to

the pump wave propagating energy in the positive ﬁ-direction?

Ignoring thg last, nonlinear term on the right-hand side of (13),

one finds that ' .

oo a(p — 1 = ) 3

= —-E = 2_TT i(k) exp(—lkn) exp[l(kE + wkt)]dk ’ (14)
where

2
Yk [ Yo
A = J—( ) << 1 ’
k 2w
]s woﬂl

k
have the samé~sign. The condition that £ be real imﬁlies

must be positive. This condition demands that k and w, [see (7)1

*
F(-k) =2 (k).
A simple expression for a propagating pump can be obtained

when the attenuation Ay is negligible One then finds

“ E(§)i exp (lot)
, : ag'} = E(g)coswot
J E-E'+ie

-p i dg! E(E]) sinw t = E, cosw_t +E sinw-t (15)
T T g-¢! o ~ 71 o} 2 o
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with the relation

E., = E(§) = £ (k) exp(ikg)dk (16)

1
1 27

- 00

10,11 The point that Eg. (15)

in agreement with previous results.
makes is that a propagating pump wave must contain both coswot
and sinwot components. Equation (15) provides the relation be-
tween these components corresponding to energy propagation in

the positive n-direction. Figure 3 portrays the function El

and E_, associated with a split waveguide launcher:

2
1 0 <E <2 (17)
El=
-1 -£ < E <0
2 2
Lo (=4 £2 > 22 (18)
m 2
E. = 2 '
2 1 22-¢2 2 2
= fn (=) £° < ¢
g‘-

The E2 function provides finite wave amplitudes outside of the"

geometrically defined resonance cone. The logarithmic diver-

gences in E, stem from the discontinuities in E At the

1°

plasma boundary, the E., function associated with the positive-z

2

resonance cone precisely cancels the E, function associated with

2
the negative-z resonance cone, while the corresponding El func-
tions add to give the electric field impressed by the waveguide

launcher.
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Our interest in pump prdpagation is to provide'a correct
description of the environment in which instabilities occur.
Indeed, the frequency shifts for absolute instabilitigs are
different for travelling-wave and standing-wave pumbs. More
extensive discussions of pump propagation can be found in papers
devoted to the subject.lo’ll

The zero-order description for the daughter waves is
obtained by heglecting the right-hand side of (13) %ith the

result

1 : . k
¢ = 5 {¢l(€l exp[i(qn - 3g & + ky - (wy + m)t)J | (19)

l

2

+ 9, (8) exp[i( gn - g_

q £ + ky + (wo - w)t)] + c.c.

The slow i-dependence of ¢l and ¢2 will be determined from
the nonline;r coupling equations.

Let us» now turn our atténtion to the law-frequency
equations. We shall assume that electrons achieve a hydrostatic
balance along the magnetic field, but we will retain kinetic
effects for the ions because the frequency w of the low-frequency
mode will turn out to be non-zero and, in fact, much larger than
the ion-cyclotron frequency pérmitting us to negleq# the magnetic

field in the ion dynamics.
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The hydrostatic balance equation for the equations is

vy YV >

nce / . Y (20)
502 SIS REAATE - |

= - + v
Tev” nL ne H ¢L

and the < > brackets denote a time average

with the time T selected to be long compared to the high-
frequency daughter wave periods but short compared to the period
of the low-frequency fluctuations. As a result, boundary terms

can be neglected in integrations by parts and one obtains

nce ¢ = -
| < Wb x 2 a—>_ TV By *+ eV o - (21)

I hks 7 , . i}
nL n exy[Te 2BT w < (V,¢ x 3\/\) ,Z\.L 3t>} ’ . (22)
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where the .potential ¢ includes both pump ¢o and daughter wave
$ contributions, ¢ = 5-+¢o . *A further simplificaticén of (22)
results because ¢o depends only on £ and not on y. Algebraic

manipulations lead to the linearized expression

ed. . - : ..
_ L e o . - .
L T n( T o << By Uo(g’t)’>) ' (23)
e o' e
‘where
. ‘ 36
* o ~ A ’A
Uo(git) B :% [UO(E)'HXP(inL)K+=Uo(Q) exP(_intﬂ:iB;o‘gfvax

. N (24)

Substituting (19) into .(23), one’finds that

iek UL e K2 E+k -wt)] + c.c
(¢lUO+Q2UO) exp[léqn—-ia Ky w .C.

w T
o e

e
n

(25)

The low-frequency ion dysamics is taken to be governed by

the nonmagnetic Vlasov equatiton

N ) .
G _ 2& e O .. - (26)

Q
¢

d

o

[y

yielding an .ion density fluctuation

Co_ i L W, - (27)
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where
2
p=qg+ (k7/2q)

is the magnitude of the daughter wave vector and wi==w(w/p§i).
Here W(s) =1 + sZ(s) where Z(s) is the plasma dispersion function.
Combining (23-27) with the quasineutrality condition, one obtains

the low-frequency density perturbation

W, 2

= 1ke * i . _ E_ . -}
B { 4one (¢1U04-¢2Uo) [(Ti/ZTe)'+Wi] exp[i(gn 79 £ +ky mt)]-fc.c)

L
n
(28)
Our derivation of the equations governing lower hybrid
parametric instabilities in a bounded pump is now complete.
Equations (13), (19), and (28) form a coupled set of equations

which are linear in the amplitude of the daughter waves and

quadratic in the pump amplitude.
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III. ABSOLUTE INSTABILITIES

The question posed in this section is: Can an absolute
four-wave instability be generated by a pump wave spatially
well defined by the resonance cone and propagating energy in the
n-direction? Sincé our model will only generate daughter waves
when the daughters have a finite y-component of propagation,
the group velocity of the daughter waves will not be parallel
to that of pump. Consequently, the daughter waves wiil propa-
gate out of the resonance cone region and we must look for
solutions with outward energy propagation.

The equations governing absolute instabilities come from
the combination of (13), (19), and (28) which generaﬁég coupled

equations.for”the two daughter lower hybrid waves.

‘ 8¢l wo(w4-i§) k2 2
2iqg 5E = > (q + —z—q-) d)l (29)
(W - Dwpy '
2 2 ,2
L mty S R
42T [W; + (T;/2T_)] (WCZ) - 1)
and
3¢ w_ (w+1iy) 2 2
; 2 __ _o g+ X
Zlq—a_g_— ( 2—1)(.0 (“;‘q+2q)¢2
Yo LH (30)
2 2 2
M Wy (0,05 + ¢10,17)

4ZTe[Wi-+(Ti/ZTé)] (wg-l)
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Lr

Still further algebraic manipulations utilizing the sub-

stitutions
|2

‘ 4 MkzwiIUO L dg .
¢, = ¥, (2) exp {({/' > )]
| 8ZqT [W, + (T;/2T,) (wo - 1)]

2 2
Mk W, |U_|7 £ dz

4
¢, = -iy,(c) exp [(1/ )
o 82qT (W, + (T,/2T_) (w - 1)]

E =1zt

reduce these equations to

oy
1 2
S = A vy + a0ty
3y *
2 _ 2
T e T 2!

with the definitions

w (y - iw)pl A2q2 + k2
(wO ) LH 29
2 2
. McE_pl | W, k2
2 4B2ZTe(Wc2)_l) T + (T3 72T )T 592 4+ k2
{
2 02
U% = -(E; + iE,)
a(bo Eo ‘
- _sg.; - REI - iEz) exp(iqot) + c.c.]

(31)

(32)

(33)

(34)

(35)

(36)

(37)
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and El’ E2 are given in (17) - (18). The boundary conditions on
(33) are th5£ ¥, ¥, vanish as lz| » =

What eépression (35) says is that the threshold field re-
quired for absolute instabilities will decrease as the product
pf is increased. On the other hand, the wavenumber p cannot be
indefinitely increased without incurring heavy electron-Landau.

/2

. . . 1/2.
damping. Therefore, in the region Wy > wLH(l-FTi/Te) where
electron—Landau'dampinq dominantes oaver inn-Tandaun damping, ono

is§ motivated to write p in terms of v

o 1/2
Ve = (w/klp(m/Te) . (38)

using the W.K.B. dispersion relation (7). This yields:

) = 2 1/2 , (39)
pt = (_ﬂ/Ve) (mc /Te) (2L/X )

@ ¢

XO denoting the vacuum wavelength associated with the pump fre-

quency w, .. Hence 1in the electron-Landau damping region, we find

o
rethy) = hpp = 3 (DY) () 2 ew vy (2t
e e 2q
(40)
K 2 1/2 1/2.
Im(hy) = A, = - & Yo om(’s me?)" (2L ) (2q2 4k
1 I g wi-1)22 v2\2Te Te ! - \VAo/\ g2
. WO . e e q (41)
2_2 . 1/2

i

AL = e o (mcz) ('2L)( Vi )( k? ) (42)
2 4BZZTe(w§-1)Ve Te Aol \ Wy + (/2T )\ 502 (2 )
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with Xi = w/pGi denoting the argument of the W, function. For
most practical circumstances, the length L of the phased wave-
guide array will be approximately L = AO/Z (see Fig. 1).

Formulas (40)-(42) permit us to reach some helpful conclu-
sions. First, a value Ve ¥~ 4 is sufficiently large so that damp-
ing can be ignored. Conversely, when Ve takes on values Ve < 4,
the plasma wave damping becomes severe and instabilities will not
( arise. Thus, with good accuracy, one can use Ve = 4 to compute
the threshold fields via (42). Our second conclusion is that for

moderate values of Xi.s 1, the phase shift ImA, can achieve signi-

1

ficant values (ImAl—»n), especially when 2q2 <k2 . This corre-

sponds to daughter wave propagation close to propagation direction
for the pump. Consequently, A2 will be almost real. Third, be-
cause mc2/Te >> 1, A2 can achieve significant values for
czEgM/BZZTe.s 1 Vindicating our weak coupling theory. The factors

involving kz, q2 pertain to the orientation of the daughter wave

vector in the plane perpendicular to the magnetic field. From the

definition
Lo _ = 2 2
sin = (ky/k;) = (2 V2kg)/ (2g° +k") , (43)
one can show that
2 ‘ 2
l-cos¢ _ 2q . l+cos¢p _ k (44
2 2 2 ! 2 2 2 * (44)
. k™ + 2q k +2qg

Clearly for only moderately small values of ¢, one can make the

phase shift. A large, while hardly affecting the threshold field

11’

via A2 . ;
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i
The upshot of this discussion is that one is led to consider
a simplified version of (33), .in which spatial damping is ignored

(A1R= 0):

3 _ 2 . o
3z 8 = A, U exp( 21AlIC)b v
, (45)
3b _ %2 . -
5z = A2U exp ( +21AlIC)a
with the boqgﬁary conditions,
4 , a0, b const. (16a)
-© , a=»+canst., h 0 (16b)
and the definitions
= 3 = -1 C . ‘ 47
vy a exp(lAlIC) rob, b exp( lAlI ) (47)
'While the exact relationship between the eigenvalues Al
and A2 depends on the computational solutions reportéd below,
it is quite instructive to solve the model problem
5 exp (-2mig) g <1
U4 = { (48)
30 'S > 1

which simulates a traveling wave pump by its monotonic progression

in phase. Tﬁe solution which .obeys boundary condition (46a) is

- 4 2.1/2
a =expl-i( A +m)c] si:n{(c-l)[A;+7‘AlI+n) ],./ }

while boundary condition (46b) generates the eigenvalue equation
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2]1/2

tan{Z.[A§+ (AlI+1r)2]l/2} = i“@* (Ay +m) AT U

A solution is A =T A,=7/4 .

1 2
Neighboring solutions can be found by a perturbation ap-

proach. Defining

A, =im + 8A

1 l,A2=Tr/4+(§A y

obtains the relationship

I | (51)

The physical consequences of (51) is that small complex
corrections to A2 [(c.q.(35)] will not suppress absolute insta-
bilities. The argument proceeds as follows: The real parts of
6Al can be made zero (the threshold condition) by appropriate ad-
justment of Ei [c.f.(35)] while any imaginary contributions to A2
due to the finite argument of Wi can be balanced by the appro-
priate frequency shift in (34).

Figure 4 shows the results of computational solutions using
the correct form for U, i.e.(17), (18), and (36). The role of
ion dynamics is represented by the phase angle 6 defined according

to

A2==|A2| exp(i0). (52)

The computational results bring out a key point. Over a good
range of phase angles, -1< 6 <1 , there are only small variations
in the magnitude of A2 . Consequently, the threshold condition

is well represented by using Wi = 1 in (35).'
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Absolute instabilities characteristicaiiy have small

frequency shifts. One can recast (41) to read o |

. 2 1/2 :
A w -1 T A 2 '
w =2 ( H) 5V, (—Ze) (21?") e e
o) m o S\ me* 29 +k '

Numerically;:Eq. (54) yeilds w/wO ~ (0.5—1)-.~l0_l for typical

tokamak parameters, justifying our assumption that wh>->w>>8'2i

One can now check a posteriori that radiation pressure

effects are small by recasting (42) into the form

172

2
parametric instabilities dominate over the self-focusing

where A, = W74 was used.  Except at very low densities,

instabilities of Morales and}Lee.7
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IV. CONVECTIVE QUASIMODE INSTABILITIES
Convective decay instabilities can occur in the lower hybrid
frecquency regime via nonlinear damping on the electrons or ions.

The uniform medium growth rates have been discussed exhaustively

by Porkolab.s The goal of this section is to compute the spatial

amplification, and maximize.it over all possible wavevectors and
frequencies of the daughter waves. Thé principal limitation of
convective amplification is propagation of daughter wave energy
away from the localized pump. This process always occurs,
because as we shall show below, the group velocity of the
daughter wave can never be precisely parallel to the pump. In
our model, ‘we shall assume that the pump wavelength greatly
exceeds the wavelength of the daughter waves. This is justified
by two arguments: First, we shall show that the shortest

wavelength daughter waves undergo the largest amplification,

hence any difference wavenumber'L&lj£ol 1s well approximated
daught : - ~ . is s ’
by the daughter wavenumber Ikl,fol ~|ky| (This stems from

the fact that the shortest wavelengths have the lowest group

velocity.) Secondly, in contrast to the purely growing mode,

feedback of energy plays no role in an amplification process

so that gradual phase variations in the pump are unimportant.
Figure 5 sketches the geometry appropriate to the gquasimode

decay process. The standard theory for amplification gives

r ’ )
Yg&l Wg s Wy

A= |. A dg ' (54)
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where y is the uniform medium growth rate and kl, wy denote
: !
the wavevector and frequency of the daughter wave. )

The group velocity of lower hybrid waves can be calculated

in a straighﬁforward manner from dispersion relation (7). The

results are

u‘)’g - 2 w 2

—w k .
- LH = - LH & '
Vgz = ko P lge w2 (55)

Uéing (55), we can find directly that

- 2 2 2 12
Vg1t Wgo X X wy Tupy [0, T epy |
VBE = - ot - > - CO0S ¢ (56)
L -
V2 LXgoI /271711 W] T oWy
where cos ¢ = kxl/kJ_l decscribes the orientation of the

daughter wave number in the EA - plane. Porkolab's'paper5
presents a general formulation for the grawth rate nf lower

hybrid parametric instabilities. Casting his Eg. (15) into

our notation and ignoring the anti-Stokes term, one obtains

2 ‘
- { 3¢ CZEO‘ 2 Xj (@) [+ x_(w)]
celw + o ) =_lY (37—) = - 3 2 k'Im -
© 1 4B w £ (w)
0
whére w = wl.— mo, and we have assumed that the dispersion
relation
. wpe' ,m;eklf m;i kf
e(k,ml)—l+9_2— 5 2 T 2—2=0
e wy k Wy k
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is satisfied for the daughter lower hybrid wave. One then obtains
! c2E2 M w2 ®
- ) LH'1 . 2 57
Y=Yty = 7 sin ¢ (57)
8B ZT w
e o
2 2
( (k“D_ + W )W 2T /T, )
Im 5 5
kKD + W_ + ZT W./T.
e e e i’ 71

where W is related to the plasma dispersion function Z via W=1+z2

The subscripts specify the arguments of W:

my, - w 1/2 W, — w_ 4 1/2 .
§ _ 1 o M . — 1 o m .
CWy o= w[ k, _(2Ti) ] P Wy W[ K (ZTe) } - (58)

In the development below, we shall ignore the linear
damping, Yo, except to note that it becomes very strong when
the phase velocities become comparable to the thermal velocities,

effectively preventing instabilities for low phase velocities.

Combining (54) - (58), one obtains
2
/3 con(g)M k_l.w]z_
A = - T —— dg 5% . (59)
B zT w_ (w; - 1)
L e o 1
g
o 2 2
( ; 251nl% ) . ((k Dy + W )T ZW. /T,
m
(w_=1)/(w5-1) - cos¢ 2 2
o 1 k pe + we + .ZTeWi/Ti
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Equation (59) shows that the dependence of the amplification on

the daughter.wavevector orientation ¢ and mag.nitude"kll
I

1s separable. Hence one can maximize (59) over ¢ to obtain:

‘ 2.2 2 1/2 |
1 J ¢ “E_ (£) ) ky [we - 1) /2 _ (wi - Wy 1/2y,2

max A = -[-—— —_— di ; 1 1
(2/2 B2 2 (w2 - 1)37/2 2
: ‘E e 1 o)
(60)
(k%p? + W )ZW.T /T.
Im ‘e e 1 e’ 71
2.2 ] , o
kK DQ + we + Alewi/li
The angle ¢ which gives maximum amplification is given by
R SR e
cos¢ = 5 177 - (61)
h (wl - 1)

and, as a rule, cos¢ has the value =0.5 for maximum amplification.
Physically, the angular optimization represents a tradeoff

(¢ =~ 0°).

between maximizing Y(¢ > 90°) and minimizing VgE
2 : ' .

Next, let us relate EO to the imput power from a waveguide

port. 'The dimensions of the waveguide port are taken to be L

in the direction along the magnetic field and 3Ao/4 in the

y-direction, Ao being the vacuum wavelength associated with W,

wave,

5 2 2
U = (EO/~81T) [1+ (wye/0e)1 (62)
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with the group velocity, etc., one computes the relation
between the power-per-port P and the value of Eg in one of the

two resonance cones which eminate from the port to be

PouL 3Ba) v
4 o

r :
5 (=) (63)

go,x a’
where a/r is a cylindrical focussing factor appropriate to
tokamaks, and

2 _ ..3/2
(wo - 1) g 172

- < om
Vgo,x - n_ w2 (M) : (64)

Here n, denotes the parallel phase velocity generated by the

phased waveguide array. Finally, one can use (10) to relate L.
to L E
1 Zm1/2 5 1/2
L, == L(—M—) ( -1 , (65)
/'2‘ O

combine (60) - (65), use (7) tu relale ky, to klll; and obtain

A = nz(P/PO) A(wo,wl) ‘ . (66)
where
2 3/2
_ 3 wge B2 r ZTe)
Py = 5(1 * QeZ) 2 (_)(T v (67)



-28-

3 2 1 '
(Worwy) = 1) w1 v B (68)
‘ O wl: e
’-(k2D2+W )ZWT /T, ‘ ”
B = Im ) e e = 1 (69)
k“D7+w +2T W./T.
e e e 1 h A

and

1/2 .
vV o= (wl,klp(m,T )

Formula (66) has been cast sn as to he most uccful in the
low density région near the edge of the plasma when W wl >>wLH
Here the principal damping of daughter waves is via eiectron-
Landau damping and one must require that Ve be sufficiently
large to avoid serious damping. A direct calculation of the

linear spatial damping e_S suffered by the daughtcr wave

combines (13), (56), (61), and (65) into the result

1/2 2_ . 172, 2 ..3/2 2 ;v2 5
o YLLE o 3/2 WEE (wb 1) (wl 1) Ve exp ( e/.) (70)
STV T3 T w (wi-w2)l/2 v
g& e oo™ }
where

L = AO/Z
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~was employed to estimate the size of the waveguide launching
structure (Fig. 1). Evidently, Ve > 4 assures negligible
spatial damping, while for v, < 4, the damping is appreciable.
Consequently, the amplification can be estimated with good
accuracy by using Ve = 4 in formula (68).

In the low-density region near the edge of a tokamak, the
local lower hybrid frequency ié quite'low so that Wy, Wy >>“&Jf
The principal low-frequency coupling is then via ion sound
waves and éhe maximum of the coupling function B occurs when

kZ(ZT + 3T.)
2 1 e i

(w - w ) ~ - (70)
. O M

The actual maximum value of B depends strongly on the effective
temperature ratio ZTe/Ti .  When ZTe/Ti < 3.5, the real part of
the denominator of (69) never vanishes and true ion-acoustic

waves do not exist. 1In this regime, the maximum value of B
depends strongly on temperature ratio as Fig. 6 shows. In the
opposite case ZTe/Ti > 3.5, the maximum value of B is determinéd
by the electron-Landau damping contribution to We, which can

é

be expressed as

1/2

: 1/2/0 -w 1/ 3T.
W l4i | °© 1) c1+i (D) 14+ - U
e - 2T k 2 ZT 2 }/2
e | e (wy-1

In this limit, one finds that

'3)1/2 (wi - 1l/2

1/2
(1 + 3Ti/ZTe)

. (72)-
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The frequency shift w, - w; may be computed using (71), (68),

and dispersion relation (7). The result is
s

wy 3T. 172 Wy i Wr g 3T.l/2

w - w, = =1 + —L : ~ 1+ -==] w;>>w .
o 1 v 2T (02— 1172 v ZT 1 LH
1~ “LH © ©
(73)

For the modesiwith maximum amplification, one takes Vg ® 4

and finds that the frequency shift is a good fraction of the
local lower hyhrid frequency.

Figures(%)and(B)present the results of a computational
evaluation of (68) maximized over wave number for fixed W rwy e
The linear damping decrements, which we dropped follpwing (57),
were reinstated to obtain a maximum. As Figs.(7) and (8) show,

’

the maximum amplification occurs for Vo v 4 and cosd ~ .5, in
agreement with our values for Ve and cos¢ . When wdfis large,

the combination of (66), (68), and (72) leads to

5

1/2 cos¢m

P 2
max A =n — (=) - ’ (74)
w z Py "y (1 o+ 37./27 )2

e 1 [0

where cos¢m is the value of Eg. (61) at maximum amplification.
Let us estimate that instabilities will occur when max A > 6.
This condition implies that there is a threshold powef Pth for

convective instabilities to occur in the low density regions

9(ﬁ42)l/2ve 1+-3Ti) ) 52 (ZTe) i
° > Pen T nzcos¢m ( o (75)
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) _2.(1 s X (%) (76)
—

:B -Te , 10 cm_3)
50kG 100eV n,

where 2 and A are the atomic number and mass of the plasma ion.

Evidently, instabilities will break out first where the quantity

3/2n—1

(Z/A)l/ZTe o

(r/a) has a minimum value.

In hiéher density regions, the lower hybrid frequency begins
to become éomparable with the pump frequency, and Fig. (8) shows
that the tﬁreshold power decreases because A becomes larger than
its asymptotic value.

Speqial consideration must be given to the case where the
daughter wave frequency is close to the lower hybrid frequency
and aﬁ apparent divergence occurs in (68). As is well known,

linear mode conversion processes constrain the daughter wave

frequency to be a finite amount above the lower hybrid

frequency

- 1/2 :
wi- 1> /§(Ti/zm)l/2(k]|l/wl) = /3 (2,721 ) 7 (/v (77)

Furthermore, it is clear that the inequality klll > kIIO
= nzwo/c must hold in order that waves be localized within

the resonance cone of the pump. This leads to
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_ § 2.1/2 3
w, 1> /3 nzwo('l‘i/mc ) ~ 0.1 ) (78)

and removes the apparent divergence. Consequently, our plots

contain entY¥ies only for Worwy > 1.1

It is instructive to employ the relationship between the °
pump electric field and the incident power (62) - (64) to
transform the threshold criterion for absolute modeédin low
density regions (wo >> 1) into

3/2

31, | v T, 2 szt (w2-1) 2
- 2 el i,ry B e W )
P> py = () ( ) (2 + zme)w 2 () =) (79)

Z w_ . w
pi o

with |A given by Fig. (4). A comparison with fhe:corresponding

51
formula (75) for quasimode decay instabilities points out that,
the threshold for a5solute modes is compnarahle tn nr less
than the threshold for decay instabhilities, but dcpcnds on the
frequonoy W |

Overall, the key feature which a spatially localized pump
produces is;éhat the low phase velocity daughter waves undergo
the largest'éonvective amplitication by dint of their low yroup
velocity. Only linear damping processes prevent ver; small phase
velocities and correspondingly large amplifications. Low-
phase velocity waves have lafge wavenumbers and generate a

substantial frequency shift between the pump and daughter lower

hybrid waves [see (73)].
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V. TOKAMAK APPLICATIONS

Efficient heating of tokamak plasmas has become one of
the key objectives of controlled fusion reserach. Out of Fhe
variety of heating schemes proposed, only lower hybrid heating
offers the dual advantages of an established technology for
power generation and a barticulariy simple waveguide method for
introducing power into ﬁhe plasma. But experimental attempts?"3
to heat plasmas via lower hybrid radiation have raised serious
guestions concerning whether nonlinearyprocesses absorb the
energy at the plasma periphery. The principal application of
this paper is to show how to avoid nonlinear absorption mechanisms.

A companion paper addresses the question of the nonlinear satura-

tion of lower hybrid instabilities and the consequent nonlinear

' absorption of the pump wave, which will be serious for large tokamaks.
Our most significant conclusion pertains to the threshold
for parametric instabilities in the low density periphery
where tﬂe frequency is several times the local lower hybrid
frequency. Threshold formulas (76) and (79) show that the
threshold is in the regime of current tokamak experiﬁents, and
that nonlinear effects can be suppressed by high toroidal field,
low-density and high-electron temperatures. Furthermore, if
ZTe/Ti < 3.5, the frequency dependence shown in Figs. (6-8) and
in (79) predicts that the threshold power increases linearly with
applied frequency. When ZTe/Ti > 3.5, ion-acoustic waves exist
and there is no explicit frequency dependence of the'threshdld

as (74) makes clear.
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It is difficult to apply our results to real tokemaks
because not much is known regarding the temperature and density
profiles in the periphery of actual devices, and partially
ionized impurities also serve to reduce the threshold field. But
the threshola conditions do predict that an increase 4n electron
temperature generated by nonlinear heating will guench parametric
'instabilities; High-power, lower hybrid radiation may suppress
severe absorp;ion near the surface of a tokamak merely by raising
the electron.temperature by a modest amount of nonlinear absorption.

T'he most‘straighfforWard,way to eliminate nonlinear effects
Is Lu introduce the requisite power through a number of wave-
guide ports, thereby reducing the peak electric field in the
resonance coee aseociated with a particular waveguide. No mutuel
coupling occurs between resonance cones because of thée strong
spatial attenuationof the daughter waves due to their low-phase
velocity.

What about other methods to suppress parametric instabilities?

P
o]

Convective decay instabilities will not be contralled by a finite
bandwidth of the pump wave unless this bandwidth is as large as
the characteristic frequency shifts (73) - typically 10% of the
pump frequency. The stabilization of absolute instaﬁilities can
be effected by smaller bandwidths‘comparable to the f;equency
shifts of the daughter waves (53) - perhaps 5% of fhe"pump
frequency. High toroidai fields are doubly beneficial; not only
do they increase the threshold field for parametric instabilities,
but also the energy confinement improves thereby reduc1ng the

power required for heating.
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Although instabilities may be eliminated near the plasma
periphery, Figs. (6-8) clearly indicate that thg threshold for
parametric;instabilities falls by one or two orders of magnitude
as the lower hybrid layer is approached. Hence, nonlinear
absorption will probably attenuate the pump wave before it
reaches the linear mode conversion surfaces.

Our secénd key result concerns the fate of the energy
transferred té the daughter waves. These waves rapidly propagate
out of theéresonance cone region where they are no longer unstable
and are absorbed by Landau damping with electrons of energy roughly
8Te playing the principal role. Since the frequency shift
of the daughter wave remains a small (but not completely negligible)
fraction of the pump frequency, and since quasimode coupling
conserves plasmon number, most of the energy transferred out of
the pump wave goes to the lower hybrid daughter wave. One
concludes that nonlinear lower hybrid heating will proceed via
the formatién of an energetic tail in the parailel velocity
distribution. Two recent experiments corraborate this ex-
pectationz'lz.

If the formation of parallel velocity tails serves to
increase the fraction of the plasma current carried by runaway
electrons, lower hybrid heating could cause a reduction in the
Ohmic heating of a tokamak. Such an effect would clearly be
observed on the loop voltage record. Since runaways are to be
avoided, the pump lower hybrid radiation would best be a
travelling:wéve propagating in a direction opposite to that of
runaway electrons (i.e. propagating with the plasma current).
The parallel velocity tail formed by the linear damping of the

pump wave would then consist of anti-runaways and would increase

the Ohmic heating.
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Experiments have also shown the formation of enérgetic ion
tails, raising the question: When is ion heating expected?
The answer is that nonlinear ion heatlng can occur in two ways.
First, ion-~Landau damping provides part of the dissipation in
quasimodes, and the energy associated with the quasimode can be
transferred to partially to ions. The remainder of Ene quasimode
energy goes to electrons. Indeed, according to the model of this
paper, if ZTe/Ti > 3.5, then the quasimode dissipation is
dominantly electron-Landau damping and very little enefgy is
transferred to the ions. However, the plasma in the$8ntsiﬁe
fegions of e#tokamak is not a single species plasma,: but is
composed of Qartially ionized impurities plus hydrogen or
deuterium. Impurities lower the sound speed so thatyiandau
damping by the hydrogen isotopes becomes important, and hydrogen
can be energized directly. Concomitantly, there will:be little
direct heating of impurity ions because their velocities
are less than that of hydrogen. Nonlinear ion heating also occurs when
the daughter wave frequency w, satisfies w; < QLH(l¥Ti/ZTé)l/2 and
the pr1nc1pal damplng process changes from electron to ion-Landau
damping. Again, a muitiple species plasma will diffe; from our
simple model. Hence, we conclude that nonlinear absorption near
the linear mede conversion surface will heat the lightest ions.

Our model of a spatially localized pump leads difectly to
the prediction that the frequency shift [Fig. 8 and T?3)] is

about 10% of the pump frequency in agreement with experimental

results.3



_37?u
Next, let us briefly argue that decay into th lower hybrid

modes will not play an important role. The paper by Ott13 compares

the threshold for quasimode decays versus that for decay into

two lower hybrid modes. Transferring his Eg. (l13a) into our nota-

tion, one obtains

T
Pquasimédes n ( 'e)l/2 2L "1 (L) << 1 (80)
D ~ A 2 \Y !
decay mc ow, -1 ‘e

where Wy is the frequency of the daughter decay wave, and the
convective démping decrement was estimated as v -~ V9||/L' The
principal reason why decay into two lower hybrid modes fails to be
important is that it depends on the finite wavelength of the pump.
In the nonlinear saturation of growihg short wavelength daughter
waves, the decay into two othér waves could well play an

important role.

Paramet:ic instabilities can also occur for very large phase
velocity waves which can transit several times around the torus
before damging. Equation (73) points out that such instabilities
will be characterized by a very small fréquency shift. When
translated into energy, this means that essentially all the
energy transferred out of the pump appears in the daughter wave,
so that a true absorption process has not taken place. On the
other hand, the daughter wave vector will be directed principally
in the short azimuthal direction, so that the daughter wave

propagates much more slowly to the center, and may even return

to the outside due to the magnetic shear effects.
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As an estimate for the threshold of high phase velocity
waves, let us set the growth rate (57) equal to the collisional
) . 2 '
damping rate ‘and take Eo to be the average electric field in the

torus.

2

[ e 2
1 + —J%—) 4w Rrv = P
. gr

E2

_© (

87 Q
e

The threshold condition then becomes P > PO with

i

2 -
2 . -
p = (B_\(E Vﬁf 1 ?Te3/2 [Ve?TR 2ﬂa\(wo 1
o} w2 a 2 n, M ‘ 7 )‘O) 2
pi c Yo
2 2 2 2
w w_ =1 w
ey e ) e )
92.+w 2 w2 Q2 (81)
e pec o e
2 1/2 2 2 2 2 2 _
_ (2Tr)2 B e®Rrreni (g_’/ (wo l)(l+ wpe) ( “pe + Yo 1)
3 N ‘M_) 2 JZlNgz, Tt T2
e o o e e “pe o

where (72) has been used.

Equation (81) has been written to facilitate comparison
with (75). For present-day tokamaks, one can estimate that
the factor in[:]brackets in much less than unity so that the
threshold for high-phase velocity waves is much lower than
convective quasimodes in the peripheral region. CaSting

(81) into practical units, one obtains the threshold condition
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1/2 2 '
z
P > P_ = (100 kilowatts)(looev) ( = )(fi) ﬁL-( ; )(K
Q v

T ‘50kG 2
- € z o
(82)
wgi 2 wgz wi-jl
'(1+ Qz)(Q2+ 7 * 2)
e e wpe Yo

where ZnA =~ 20 was used. Evidently high-phase velocity waves be-
come unstable at quite low powers. On the other hand, high-phase
velocity instabilities are not a major obstacle to tokamak heating
because the nonlinear coupling rates are of the order of Fhe
collision frequency. Hence, the effective collision frequency
for the pump wave caused by the instabilities will also be of the
order of tge collision frequency and not important in the absorp-
tion of thé pump wave. Experimental results on the ATC Tokamak
show instabilities slightly below the pump frequency as (82)
pfedicts.

Another possibly important effect remains to be investigated:
scattering of lower hybrid radiation by drift-wave irreqularities
in the plasma periphery. The lower hybrid dispersion relation

can be written as

l B.M W
k05 = 0, (33) 7z (83)

which shows that k_,_pi < 1 for typical tokamak discharges. Hence,
lower hybrid waves could scatter off of drift wave turbulence.
Since drift waves generally have a much longer parallel wave-

length than lower hybrid waves, and a very much lower frequency,
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the scatterihg process will simply result in a reorientation of
the perpendicular wave vector. With frequent scattg;ing, the
lower hybrid waves will penetrate a- tokamak only by ; diffusive
random walk process. »

The attenuation length caused by scattering can be computed

by starting with Eq. (11l) rewritten as

n 1 2 .
2 2 . Yo 1 ,l(y\ 20ooko )
(2o k2) g0 = =i 52— ke (k% 2) b + 2 Lo, .
. P D A k 2 aT !
© ron Q 1 (WO - l ) n AN\Q wLH (wo - l ) T ,:‘ES\

(84)
This equatiéﬁ gives the evolution with time T (we used =-iw+Y+3/3T)

of the amplitude ¢k' scattered from the incident wave ¢k by the dc
PN ~0
density fluctuation Ny v (k''=k' -kg). Since kif:=0 , we con-

sider wave vector components only in the two dimensions trans-

C 2
verse to the magnetic field. Defining k' ==k§-+2kodk , one can

obtain the equation

)

o) 0 n

&' oW LH kK

PENEAA AT 18 —_— = =2 1 5

0T * 1ok ok, ¢k' 29, sind ¢ko (85)
AN 1 YN

o 2 )
where 51n6—gi Q&)XEQ/kO . 5

This equatioﬁican be treated via the usual perturbation methods

of guantum mechanics to obtain the scattering frequency Vg-

’ : Ve 2\
v 1 ¢k. 2 TT2 3}’_‘_ wﬁH \’.lAn(A]'(v\ )'v:../ (86)
EDD 'cbk l2=‘2_ko‘(aw) Q.2 —
A0 .

k! . "
T

faaal

"
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Next, we will approximate the power spectral density in k -
space <|An4k")l2> by (An)z/ﬂki ~ <|An(k")|2> - a formula
which assumes that most of the naturally occurring density fluc-

tuations have wave numbers ~ ko. With the help of (55), one ob-

tains the characteristic distance for attenuation by scattering

2_1y% 2 2 572 2

- Q _ _ -
_ Vgr 2 (w_-1) i n2 . A (M)l/z (we-1) Q] 2
S Vg T < K 2~ 2 ‘zm ~—n__ — ~Z >
S ) kowo U)LH (An) m VA wo (An)

(87)

This scattering length is generally long in the tenuous periphery
of the plasma (assuming An/n -~ 10—2), but can become short in the
high-density regions because of the strong scaling with density

—5/2 for fixed An/n). Scattering, then, plays a negli-

(Es o n
gible role in lower hybrid heating.

Magnetic shear will influence the propagation of long-wave-
length daughter waves which transit many times around the torus.
But since we have argued following Eg. (82), that such waves
will not constitute an important absorption process, magnetic
shear will be neglected.

Overall, our assessment is that parametric instabilities
place an important limit on the power-per-port that a lower
hybrid heating scheme can employ [c.f. (70)]. The experience of
present—déy tokamaks will most likely be quite relevant to fusion
reactors, because they too must have low-temperature, low-density
regions on:the outside. Paramétric instabilities may be avoided

by high toroidal field and many separate wave-launching ports.

Also, launching the electromagnetic whistler mode, instead of the
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slow. electrostatic wave as assuméd in this work, may well lead
to superior heating. The whistler has a higher perpendicular

group velocity, thereby lowering the pump electric field. Fur-
thermore, it is a global mode and does not possess a resonance

cone structure.
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762202

Fig. 1(a). Sketch of two element phased array waveguide
coupler in a tokamak. The electric field vectors are out of
phase. L is the total length along the magnetic field. (b)
Sketch of resonance cone propagation in minor radius r and
distance along the magnetic field z.
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Fig. 2. The resonance cone lies at 45° in terms of the
scaled variable z [see Eq. (14)]. The £,n coordinate system is
defined by (16). ‘
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Fig. 3. The electric field amplitudes E, and E
corresponding to the cosw _t and sinw_t componénts reSpectively
[see Eq. (17, 18)]. Thes8 amplitudeg model the resonance cone
fielcs generated by the waveguide coupler in Fig. 1.
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Fig. 4. Results of computational solutions for the
eigenvalue pair (A.,|A.|) of Egs. (43), (52) in terms of tho
parameter which is rclfted to ion Landau damping dissipation
via (42). As |g| - /2, solutions to (45) cease to exist.
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Fig. 5. Geometry of the quasimode amplification process. .-
The pump wave propagates in the well-defined resonance (whose
angle with respect to the B_ - direction is greatly exaggerated).
The component of the daughtér wave group velocity in the x-z
plane is sketched. [See (56) for the precise formula]. L is
the dimension of the waveguide launcher along the magnetic field.
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Fig. 6. The maximum value of B as a function of the
eideband frequency in unilts of the lower hybrid frequency, w i
for electron to ion temperature ratios T = 1 (the lower curve) %
and T = 6 (the upper curve). ‘
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Fig. 7. The values of V. = wl/kl v (upper curves) and

V., = /k,v. (lower curve) as a functloneof the pump frequency

ndrmalized %o the lower hybrid frequency for values of electron

to ion temperature ratio T = 1,3,6. Here v_(v,) 1s the electron
; . e "1

(ion) thermal velocity.
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Fig. 8. The logarithm of the amplification factor A
given in Eq. (68) maximized with respect to w, as a function of ‘
w for electron to ion temperature ratios T ="1,3,6 (upper curve).
TRe relative frequency o /w, and cos¢_ defined in Eqg. (61)
that correspond to maximufl a& lificati®n as a function of w
for values of T = 1,3,6. . - °©





