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agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
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Hybrid Intelligent Perception System:
Intelligent Perception through 

Combining Artificial Neural Networks 
and an Expert System

C. W. Glover and Philip F.Spelt 
Center for Engineering Systems Advanced Research 

Building 6025, Mail Stop 6364 
Oak Ridge National Laboratory 

Post Office Box 2008 
Oak Ridge, Tennessee 37831-6364

This paper presents a report of work-in-progress on a project to combine 
Artificial Neural Networks (ANNs) and Expert Systems (ESs) into a hybrid, self­
improving pattern recognition system. The purpose of this project is to explore 
methods of combining multiple classifiers into a Hybrid Intelligent Perception 
(HIP) System. The central research issue to be addressed for a multiclassifier 
hybrid system is whether such a system can perform better than the two 
classifiers taken by themselves. ANNs and ESs have different strengths and 
weaknesses, which are being exploited in this project in such a way that they 
are complementary to each other: Strengths in one system make up for weaknesses 
in the other, and vice versa. There is presently considerable interest in the 
AI community in ways to exploit the strengths of these methodologies to produce 
an intelligent system which is more robust and flexible than one using either 
technology alone. Perception, which involves both data-driven (bottom-up) and 
concept-driven (top-down) processing, is a process which seems especially well- 
suited to displaying the capabilities of such a hybrid system. This work has 
been funded for the past six months by an Oak Ridge National Laboratory seed 
grant, and most of the system components are operating in both the PC and the 
hypercube computer environments. Here we report on the efforts to develop the 
low-level ANNs and a graphic representation of their knowledge, and discuss ways 
of using an ES to integrate and supervise the entire system.

INTRODUCTION

This paper describes research on a hybrid neural network and rule-based 
pattern recognition system which is capable of self-modification or learning. 
Our hybrid system exploits the complementary strengths and weaknesses of 
artificial neural networks (ANNs) and expert systems (ESs), or rule-based (RB) 
systems. This combination is expected to produce a pattern classification 
system which performs better than either classifier by itself. In addition, the 
hybrid system is capable of self-modification through a feedback loop between 
the ANNs and the ES. This feedback loop allows an ANN to be automatically 
trained by the ES, while the ES can also modify the models in its knowledge base 
from information supplied by the ANNs.

One strength of an ES is that general problem solving strategies can be 
built into the system (Michalski, Carbonell and Mitchell, 1983). This allows 
for complex control structures, which are often based on heuristics, to be 
easily incorporated. In contrast, it is very difficult to build general problem 
solving strategies based on complex control structures, especially those



utilizing heuristics, from ANNs. A second strength of an ES is its ability to 
provide an explanation (a decision trace) of the steps leading to its 
conclusions, a capacity clearly not possible with ANNs. On the other hand, an 
important weakness of an ES is its inability to convert sensor data into 
symbolic information -- the transformation between the two representations must 
be known a priori and be explicitly incorporated into the system. An ANN learns 
the transformation through the training process.

Perhaps the most important complementarity between ANN and RB systems is 
constraint satisfaction. RB systems employ what Smolensky called "hard 
constraints", whereas ANNs use "soft constraints" (Smolensky, 1988). The ES's 
hard constraints are provided by a set of rules which describe an aspect of the 
environment, the conditions of which must be met exactly in order for the rule 
base to recognize a match between the environmental events and its a priori 
model(s). Thus, in a traditional ES, a control panel as shown in the middle of 
Figure la might be described as a "large rectangular black blob", with a set of 
white blobs contained within and arranged according to a certain specified 
configuration. Failure to meet these specifications could occur for two 
reasons: the vision system fails to detect all the small white blobs, thus one 
hard constraint is not met and the MATCH fails; on the other hand, noise in the 
vision system could create extra white blobs within the black one, again causing 
the MATCH to fail. Specifically, an ES which recognizes the central panel in 
Figure la would fail to recognize the same panel in Figures lb and 1c because 
the lower white circles are missing from the description. This is a strength if 
the two examples really belong to different categories, but a weakness should 
the extra white blobs be due to vision system noise. Thus, an ES's hard 
constraint satisfaction is not very fault tolerant, which is both a strength and 
a weakness.

On the other hand, an ANN's fault tolerant, soft constraint satisfaction 
produces a different outcome to the same panel identification problem. In an 
ANN trained to recognize the control panel on the left in Figure la, the 
representation of the control panel would consist of a fixed length feature 
vector, with each vector component representing a different geometrical moment 
distribution of black and white pixels around a suitably chosen set of axes. 
The training set then is a set of feature vectors representing both positive and 
negative panel examples. After suitable training, a feature vector for another 
panel presentation to the vision system is sent to the ANN. The output from the 
ANN is a number representing a similarity measure between the extracted feature 
vector and the feature vector of the panel the ANN was trained to identify. If 
the ANN's output value is above some threshold value, then a MATCH condition is 
returned. Generally, a threshold value is chosen such that a MATCH condition 
is returned in the presence of noisy input vectors. With a suitably chosen 
threshold value, the ANN MATCHes the control panel on the left in Figure lb and 
1c with the control panel it was trained to identify from Figure la. This soft 
constraint satisfaction makes the ANN fault tolerant. Just as with the ES's 
hard constraint satisfaction, the ANN soft constraint satisfaction can be 
perceived as both a strength and weakness: the ANN may classify these two panel 
examples as the same, when actually the additional white blobs (buttons) at the 
bottom require it to be placed in a different category.



It is clear that the strengths and weaknesses of the ES's hard constraint 
satisfaction are complementary to those of the soft constraint satisfaction of 
an ANN. By exploiting the complementary strengths and weaknesses of ESs and 
ANNs, the hybrid system is an attempt to build a more robust pattern classifier 
than either an ES or ANNs acting alone. The next section is an overview of the 
salient features of the hybrid system. There follows a detailed discussion of 
the current implementation of the hybrid system as it applies to a machine 
vision problem. Finally, a report on the current status of the hybrid system is 
presented, along with an indication of future work.

HYBRID SYSTEM OVERVIEW

In general, the hybrid perception system architecture is a hierarchical 
layering of pattern classifiers. Figure 2 presents a generic hybrid system 
architecture. Information from a sensor or some other system enters from the 
left, where it is processed by a hierarchical layering of low-level pattern 
classifiers. These classifiers extract features or attributes from the data for 
use in the higher level classifiers. Any suitable pattern classification 
algorithm can be used for the low-level pattern classifiers. Our hybrid system 
uses ANNs for these classifiers.

For the system to function in its hybrid mode, the ES is given an a priori 
set of models of certain expected environmental states, conditions, or objects, 
together with any heuristics needed to cope with the task. These models can be 
stored in the knowledge base in a variety of representations. One of the goals 
of the ES is to determine whether certain expected environmental events are 
present in the current data stream. The first job of the RB classifier system 
is to assimilate the feature set from the low-level classifiers into the same 
representation that is used for the models. The ES then uses a suitably chosen 
metric of the similarity between assimilated and model representations to decide 
whether a match exists. If a match is found, then the ES invokes a routine to 
automatically create and train a new high-level ANN pattern classifier from the 
appropriate low-level feature data. The purpose of the new high-level pattern 
classifier is to recognize this model state when it is present in future data 
streams. A different high-level classifier is created for each model state 
found by the RB system.

Both the high-level classifiers and the RB system receive all subsequent 
low-level feature vector data streams, and each provides an estimate of whether 
a certain model state exists in the data stream. If the two classifiers (the 
high-level ANN and the ES) agree -- the event either is or is not there -- the 
hybrid system needs only to report the outcome. It is when the high-level ANN 
and the ES disagree that the strengths of the hybrid system are exploited. 
Because the RB system must compile fragments of information to determine whether 
a specific environmental state exists, one can be reasonably sure that one of 
the model states is present in the data when an ES yields a MATCH condition. On 
the other hand, the high-level classifier (ANN) will yield a MATCH when only 
some fraction of the input data overlaps with training data. Thus, the decision 
outcome of the two high-level classifiers may be different. The tradeoff 
between the hard constraint satisfaction of the ES and soft constraint 
satisfaction of the high-level ANN classifier provides the basis for exploiting 
the strengths of both types of classifiers and minimizing the weaknesses. The



resolution of the disagreement is the unique contribution of the hybrid system, 
as will be described in the section on our implementation. Clearly, the 
disagreement must be resolved, and the methodology for doing so is both the 
primary contribution of a hybrid system and the focus of our research on this 
system.

HYBRID SYSTEM IMPLEMENTATION

The first, proof-of-principle, version of the hybrid system is being built 
to process vision data from a mobile robot. This section illustrates the 
current hybrid system's information flow and decisions process using a specific 
example. There are many other problems, in other research domains, where the 
current hybrid system also can be used. The problem addressed by this 
particular implementation of the hybrid system can be explained from Figure 1 as 
follows: A mobile robot is to find and identify specific types of control
panels located anywhere in a building (see Figure la). The hybrid system's RB 
contains a priori knowledge of each control panel type, in the form of a 
qualitative symbolic model. Pre-processed visual data from the robot's CCD 
camera are presented to both the low-level ANN classifiers and the RB system. 
Once a panel is identified, the RB system automatically creates and trains a 
high-level ANN to recognize the control panel from the current data stream. As 
the robot moves closer to the control panels (see Figures lb and 1c) new 
features may emerge which were not known a priori. In this event, the hybrid 
system must learn the new features and update its models and categorization 
scheme.

Our implementation of a hybrid system to solve the problem just described 
is shown in Figure 3. For the first image processing, the robot camera's 
gray-level image is passed to a set of preprocessing routines for feature 
extraction: the gray-level image is converted to a binary image, and a
component labelling operation is performed in which all connected black or whitg 
regions ("blobs") are detected and assigned unique integer values as labels. 
Then certain blob features are extracted: the centroid and area, the size and 
coordinates of a bounding box, and the Zernike moments. Zernike moments are 
used because they are scale, translation, and rotation invariant representations 
of the standard moments (Teague, 1987). The routines that perform these feature 
extraction operations are completely parallel algorithms running on a hypercube 
computer (Jones, Mann and Simpson, 1988).

Ruck (1987) has used Zernike moments extracted from Doppler-Shift RADAR 
data as input to previously trained nearest-neighbor (Duda and Hart, 1973) and 
backpropagation ANNs (Rumelhart and McClelland, 1986). Using these Zernike 
moments, Ruck showed that the backpropagation algorithm provides better 
discrimination among the examples to classify tanks, jeeps, and trucks. Based 
on this result, a backpropagation ANN algorithm is used as a low-level 
classifier to classify the shape of each blob in an image as a circle, ellipse, 
square, rectangle, triangle, or unknown. Each blob's Zernike moments, as

Simply put, connected regions are blobs in an image, and 
each blob in the image is counted. A blob's label is its 
number in the count.



components in an ANN input vector, are passed to low-level ANNs for shape 
classification. The resulting blob shape classification is concatenated with 
the blob's other features (color, centroid, area, bounding box size) into a blob 
attribute vector. (Details of this procedure can be found in Glover, Silliman, 
and Walker, in preparation).

The attribute vector of every blob in the initial scene image is passed to 
the ES, where the vectors are integrated into the same type of representation as 
the a priori models of the control panels. In this implementation, directed 
graphs represent both the control panel models and the assimilated blob 
information from the image. A directed graph is constructed for each blob whose 
bounding box encloses other blobs. The directed graph structure was chosen 
because it is invariant under scale changes and translation. Construction of a 
directed graph is a multistep process: For each blob located in the interior of 
a bounding blob, a graph node is located at the blob's centroid coordinates. A 
line is then drawn through all nodes that are collinear to within some 
tolerance, which defines, e.g., the jth level in the graph structure with d^ 
nodes on that level. Once all the levels of a graph have been established, the 
connections between nodes on the jth level and those on the j - 1 level are 
obtained by dropping a perpendicular ray from each node on the jth level and 
rotating the ray counterclockwise until it intersects a node on the j - 1 level. 
Connections between nodes on the jth and the j + 1 levels are obtained by 
erecting a perpendicular ray from the node on the jth level and rotating the ray 
clockwise until it intersects a node on the j + 1 level. The model graphs have 
been constructed in a similar manner and stored in the ES's knowledge base.

An entire image may generate a set of directed graphs, G = (G^ | i S' N), 
where N is the number of graphs extracted fi^om an image. Each image graph G^ 
myst th^n be compared with each model graph G ^ in the set of M model graphs,
G = {G |< | k £ M), in order to determine if a MATCH condition exists. The ES 
must extract a similarity measure between each G< and G |<, for all i, k pairs. 
The hybrid system's RB uses a similarity metric^that is equal to the number of 
transformations needed to transform Gi into G u . This number is found by 
counting the number of levels and the number^or nodes per level that must be 
added to G^ in order to transform it into G\. Rao and Glover (1989) have 
developed a nontrivial extension of Hirschberg's string matching algorithm 
(Hirschberg, 1975) for 2-dimensional planar graphs. The Rao and Glover 
algorithm finds the number of levels 1 and the maximum number of nodes per level 
d by which G^ and G ^ differ; i.e. G^ - G ^ = (l,d).

A MATCH condition is returned by the ES if G^ - G\ = (1 ,d) ^ (1',d') and 
the similarity metric 1' + d', where (l',d') are thresholds initially 
determined by the user. A MISMATCH condition will be returned if these criteria 
are not sati|fied, and the RB system will consider the next pair of graphs from 
sets G and G . An exact match ^between G^ and G |< would yield (l,d) = (0,0). An 
exact match between Gj and G ^ also requires that each G^ node's attribute 
vector match the corresponding G ^ node's attribute vector.

For each MATCH condition returned from the initial image, the ES 
automatically creates and trains a high-level ANN to recognize the matched 
control panel using the Zernike moments extracted from the image. Parametric 
studies (Glover and Walker, in preparation) have shown that the following set of



heuristics facilitates the automatic training of an ANN backpropagation 
algorithm: First, the ES creates a backpropagation ANN of a predetermined size. 
Then the matched blob's Zernike moment vector is added, as a positive example, 
to a predetermined list of Zernike moment vectors which serve as negative 
examples. The ES monitors the convergence rate during ANN training. ~ If the 
convergence rate drops below some threshold value while the ANN's global error 
is still above an acceptable level, then the ES adjusts the step size and/or the 
momentum parameters in the backpropagation learning rule. If this still does 
not lead to convergence, then it is assumed that the ANN is stuck in a local 
minimum. In this case, the ES resets the learning parameters, changes the ANN 
initial weight values, and restarts the ANN training procedure just described. 
If this fails to yield an acceptable convergence rate and global error value, 
the ES then adds more hidden layer nodes to reduce the number of local minima 
and restarts the entire ANN training procedure. Thus far, these heuristic 
training procedures have always produced a convergent ANN.

Once a high-level ANN has been trained for a recognized environmental 
event, the hybrid system is ready to accept the next image, and the image 
processing proceeds as before. This processing of additional images is now 
synchronized with the high-level ANN processing. Simultaneously with the low- 
level ANN processing just described, the high-level ANN receives as input each 
image blob's Zernike moment vector and produces a similarity measure as its 
output. This value is sent to the decision module in the ES along with the 
output information from the low-level ANN processing.

Three decision outcomes are possible once any trained high-level ANNs 
exist: MATCH, RB-MATCH, and ANN-MATCH. The decision module in the RB returns a 
MATCH condition if the ES similarity measure satisfies its matching criteria, 
and the high-level ANN's output is above some predetermined threshold. If this 
is the case, the ES adds the Zernike moment vector extracted from the current 
image to the training set of the high-level ANN, as a positive example; but no 
high-level ANN training occurs. The decision module in the ES returns a 
RB-MATCH condition if the ES similarity measure satisfies its matching criteria, 
while the high-level ANN's output is below some predetermined threshold. This 
situation produces the first example of self-modification in the hybrid system: 
In this situation, the ES adds, as a positive example, the Zernike moment vector 
extracted from the current image to the training set of the high-level ANN, and 
trains the high-level ANN with the modified training set. The ES does not 
initialize the ANN weights, but uses the old weights as starting values. It has 
been found that convergence is always obtained with only a few iterations 
through the training set (Glover and Walker, in preparation).

The ES's decision algorithm returns a ANN-MATCH condition, if the ES 
similarity measure does not satisfy its matching criteria, but the high-level 
ANN's output is above some predetermined threshold. In this case, the ES adds 
the Zernike moment vector extracted from the current image to the training set 
of the high-level ANN as a positive example. However, no ANN training occurs. 
Since the. RB system did not produce a match and the high-level ANN did, 
indications are that new features have emerged which are not present in the 
model. In this case, the ES creates a temporary model graph from the graph 
extracted from the image and adds it to the ES's knowledge base. If the 
temporary model graph is verified in subsequent images it will replace the old



model graph; otherwise it will be deleted.

Again, one of the main research issues with the hybrid system is whether it 
is capable of unsupervised learning without destroying its knowledge base. 
Initially, this research will focus on the choices of the threshold values used 
for the matching conditions, and the strategy used to update the knowledge base. 
Investigation of this research issue is in progress.

SUMMARY AND FUTURE DIRECTIONS

This paper describes a hybrid neural network and rule-based pattern 
recognition system capable of self-modification or learning. The central 
research issue to be addressed for a self-modifying multiclassifier hybrid 
system is whether such a system can perform better than either of the two 
classifiers taken by themselves. The complementary strengths and weaknesses of 
ES and ANN classifiers served as the motivation for building the hybrid system. 
Self-modification of the hybrid system is achieved through a novel feedback loop 
between the ES and the high-level ANN. This feedback loop allows the hybrid 
system to exploit the ES's hard constraint and the ANN's soft constraint 
matching capabilities. New information about objects in a scene can be gleaned 
from the various combinations of RB and ANN matching outcomes. Both the ES and 
ANN can learn form this new information, which could not be inferred by a system 
employing only one type of classifier.

The major thrust of research is to measure the hybrid system's performance 
on a variety of sensor driven problems, where each problem is designed to 
systematically explore the hybrid system's operating limits. A secondary 
research issue focuses on the implementation of the hybrid system in parallel 
form on a hypercube computer architecture. The hypercube architecture will be 
decomposed into many smaller sub-hypercubes where each component of the hybrid 
system will be executed on the sub-hypercubes. Synchronized communications 
between the sub-hypercubes will insure that the information needed by each 
hybrid system component will arrive at the appropriate time. Each hybrid system 
component currently runs in modular form on the nodes of a hypercube computer. 
The implementation of a general control structure to insure synchronized 
communications is being developed.

Future hybrid system research will proceed in two areas. The first 
initiative is directed toward multiple sensor integration. The hybrid system 
will be interfaced with multiple sensors with the data from each sensor being 
processed by a suitably chosen hierarchy of low-level classifiers. The 
integration of the sensor information then will be done in symbolic form by the 
ES. Subsequently, high-level classifiers will be created to process multiple 
sensor data. The second initiative is directed toward incorporating more 
disparate types of high-level classifiers into the hybrid system architecture. 
All types of classifier have their own sets of strengths and weaknesses. By 
having several different types of classifiers trained to recognize the same 
pattern sets, the ES decision module will be provided with several different 
similarity measures. The ES can exploit the different classifiers' strengths 
and weaknesses to accomplish more robust and precise classification.
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Fig. 1. Binary image of two control panels taken by a mobile 
robot from three progressively closer positions.



Low-Level 
Classifier Hierarchy

Sensor
Data

Feature
Vectors

Feedbac
Loop

Decision Strategy

Similarity Measure

Knowledge
Base

Models

Update
Knowledge

Base

Assimilate 
Feature 

Vectors into 
Model Rep.

Supervise 
Training of 
High-Level 
Classifiers

High-Level
Classifiers

Fig. 2. Schematic diagram of a generic hybrid perception system.
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Figure 3. Detailed diagram of the hybrid perception system.


