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Hybrid Intelligent Perception System:
Intelligent Perception through
Combining Artificial Neural Networks
and an Expert System

C. W. Glover and Philip F.Spelt
Center for Engineering Systems Advanced Research
Building 6025, Mail Stop 6364
Oak Ridge National Laboratory
Post Office Box 2008
Oak Ridge, Tennessee 37831-6364

This paper presents a report of work-in-progress on a project to combine
Artificial Neural Networks (ANNs) and Expert Systems (ESs) into a hybrid, self-
improving pattern recognition system. The purpose of this project is to explore
methods of combining multiple classifiers into a Hybrid Intelligent Perception
(HIP) System. The central research issue to be addressed for a multiclassifier
hybrid system 1is whether such a system can perform better than the two
classifiers taken by themselves. ANNs and ESs have different strengths and
weaknesses, which are being exploited in this project in such a way that they
are complementary to each other: Strengths in one system make up for weaknesses
in the other, and vice versa. There is presently considerable interest in the
Al community in ways to exploit the strengths of these methodologies to produce
an intelligent system which is more robust and flexible than one using either
technology alone. Perception, which involves both data-driven (bottom-up) and
concept-driven (top-down) processing, is a process which seems especially well-
suited to displaying the capabilities of such a hybrid system. This work has
been funded for the past six months by an Oak Ridge National Laboratory seed
grant, and most of the system components are operating in both the PC and the
hypercube computer environments. Here we report on the efforts to develop the
low-level ANNs and a graphic representation of their knowledge, and discuss ways
of using an ES to integrate and supervise the entire system.

INTRODUCTION

This paper describes research on a hybrid neural network and rule-based
pattern recognition system which is capable of self-modification or learning.
Our hybrid system exploits the complementary strengths and weaknesses of
artificial neural networks (ANNs) and expert systems (ESs), or rule-based (RB)
systems.  This combination is expected to produce a pattern classification
system which performs better than either classifier by itself. In addition, the
hybrid system is capable of self-modification through a feedback loop between
the ANNs and the ES. This feedback loop allows an ANN to be automatically
trained by the ES, while the ES can also modify the models in its knowledge base
from information supplied by the ANNs.

One strength of an ES is that general problem solving strategies can be
built into the system (Michalski, Carbonell and Mitchell, 1983). This allows
for complex control structures, which are often based on heuristics, to be
easily incorporated. In contrast, it is very difficult to build general problem
solving strategies based on complex control structures, especially those




utilizing heuristics, from ANNs. A second strength of an ES is its ability to
provide an explanation (a decision trace) of the steps leading to its
conclusions, a capacity clearly not possible with ANNs. On the other hand, an
important weakness of an ES is its inability to convert sensor data into
symbolic information -- the transformation between the two representations must
be known a priori and be explicitly incorporated into the system. An ANN learns
the transformation through the training process.

Perhaps the most important complementarity between ANN and RB systems is
constraint satisfaction. RB systems employ what Smolensky called "hard
constraints”, whereas ANNs use "soft constraints" (Smolensky, 1988). The ES’s
hard constraints are provided by a set of rules which describe an aspect of the
environment, the conditions of which must be met exactly in order for the rule
base to recognize a match between the environmental events and its a priori
model(s). Thus, in a traditional ES, a control panel as shown in the middle of
Figure la might be described as a "large rectangular black blob", with a set of
white blobs contained within and arranged according to a certain specified
configuration. Failure to meet these specifications could occur for two
reasons: the vision system fails to detect all the small white blobs, thus one
hard constraint is not met and the MATCH fails; on the other hand, noise in the
vision system could create extra white blobs within the black one, again causing
the MATCH to fail. Specifically, an ES which recognizes the central panel in
Figure la would fail to recognize the same panel in Figures 1b and lc because
the lower white circles are missing from the description. This is a strength if
the two examples really belong to different categories, but a weakness should
the extra white blobs be due to vision system noise. Thus, an ES’s hard
constEaint satisfaction is not very fault tolerant, which is both a strength and
a weakness.

On the other hand, an ANN’s fault tolerant, soft constraint satisfaction
produces a different outcome to the same panel identification problem. In an
ANN trained to recognize the control panel on the left in Figure la, the
representation of the control panel would consist of a fixed length feature
vector, with each vector component representing a different geometrical moment
distribution of black and white pixels around a suitably chosen set of axes.
The training set then is a set of feature vectors representing both positive and
negative panel examples. After suitable training, a feature vector for another
panel presentation to the vision system is sent to the ANN. The output from the
ANN is a number representing a similarity measure between the extracted feature
vector and the feature vector of the panel the ANN was trained to identify. If
the ANN’s output value is above some threshold value, then a MATCH condition is
returned. Generally, a threshold value is chosen such that a MATCH condition
is returned in the presence of noisy input vectors. With a suitably chosen
threshold value, the ANN MATCHes the control panel on the left in Figure 1b and
Ic with the control panel it was trained to identify from Figure la. This soft
constraint satisfaction makes the ANN fault tolerant. Just as with the ES’s
hard constraint satisfaction, the ANN soft constraint satisfaction can be
perceived as both a strength and weakness: the ANN may classify these two panel
examples as the same, when actually the additional white blobs (buttons) at the
bottom require it to be placed in a different category.




It is clear that the strengths and weaknesses of the ES’s hard constraint
satisfaction are complementary to those of the soft constraint satisfaction of
an ANN. By exploiting the complementary strengths and weaknesses of ESs and
ANNs, the hybrid system is an attempt to build a more robust pattern classifier
than either an ES or ANNs acting alone. The next section is an overview of the
salient features of the hybrid system. There follows a detailed discussion of
the current implementation of the hybrid system as it applies to a machine
vision problem. Finally, a report on the current status of the hybrid system is
presented, along with an indication of future work.

HYBRID SYSTEM OVERVIEW

In general, the hybrid perception system architecture is a hierarchical
layering of pattern classifiers. Figure 2 presents a generic hybrid system
architecture. Information from a sensor or some other system enters from the
left, where it is processed by a hierarchical layering of Tlow-level pattern
classifiers. These classifiers extract features or attributes from the data for
use in the higher level classifiers. Any suitable pattern classification
algorithm can be used for the low-level pattern classifiers. Our hybrid system
uses ANNs for these classifiers.

For the system to function in its hybrid mode, the ES is given an a priori
set of models of certain expected environmental states, conditions, or objects,
together with any heuristics needed to cope with the task. These models can be
stored in the knowledge base in a variety of representations. One of the goals
of the ES is to determine whether certain expected environmental events are
present in the current data stream. The first job of the RB classifier system
is to assimilate the feature set from the low-level classifiers into the same
representation that is used for the models. The ES then uses a suitably chosen
metric of the similarity between assimilated and model representations to decide
whether a match exists. If a match is found, then the ES invokes a routine to
automatically create and train a new high-level ANN pattern classifier from the
appropriate low-level feature data. The purpose of the new high-level pattern
classifier is to recognize this model state when it is present in future data
streams. A different high-level classifier is created for each model state
found by the RB system.

Both the high-level classifiers and the RB system receive all subsequent
low-level feature vector data streams, and each provides an estimate of whether
a certain model state exists in the data stream. If the two classifiers (the
high-level ANN and the ES) agree -- the event either is or is not there -- the
hybrid system needs only to report the outcome. It is when the high-level ANN
and the ES disagree that the strengths of the hybrid system are exploited.
Because the RB system must compile fragments of information to determine whether
a specific environmental state exists, one can be reasonably sure that one of
the model states is present in the data when an ES yields a MATCH condition. On
the other hand, the high-level classifier (ANN) will yield a MATCH when only
some fraction of the input data overlaps with training data. Thus, the decision
outcome of the two high-level classifiers may be different. The tradeoff
between the hard constraint satisfaction of the ES and soft constraint
satisfaction of the high-level ANN classifier provides the basis for exploiting
the strengths of both types of classifiers and minimizing the weaknesses. The



resolution of the disagreement is the unique contribution of the hybrid system,
as will be described in the section on our implementation. Clearly, the
disagreement must be resolved, and the methodology for doing so is both the
primary contribution of a hybrid system and the focus of our research on this
system. i

HYBRID SYSTEM IMPLEMENTATION

The first, proof-of-principle, version of the hybrid system is being built
to process vision data from a mobile robot. This section illustrates the
current hybrid system’s information flow and decisions process using a specific
example. There are many other problems, in other research domains, where the
current hybrid system also can be used. The problem addressed by this
particular implementation of the hybrid system can be explained from Figure 1 as
follows: A mobile robot is to find and identify specific types of control
panels located anywhere in a building (see Figure la). The hybrid system’s RB
contains a priori knowledge of each control panel type, in the form of a
qualitative symbolic model. Pre-processed visual data from the robot’s CCD
camera are presented to both the low-level ANN classifiers and the RB system.
Once a panel is identified, the RB system automatically creates and trains a
high-level ANN to recognize the control panel from the current data stream. As
the robot moves closer to the control panels (see Figures 1lb and 1c) new
features may emerge which were not known a priori. In this event, the hybrid
syitem must learn the new features and update its models and categorization
scheme.

Our implementation of a hybrid system to solve the problem just described
is shown in Figure 3. For the first image processing, the robot camera’s
gray-level image is passed to a set of preprocessing routines for feature
extraction: the gray-level image is converted to a binary image, and a
component labelling operation is performed in which all connected black or whit
regions ("blobs") are detected and assigned unique integer values as labels.
Then certain blob features are extracted: the centroid and area, the size and
coordinates of a bounding box, and the Zernike moments. Zernike moments are
used because they are scale, translation, and rotation invariant representations
of the standard moments (Teague, 1987). The routines that perform these feature
extraction operations are completely parallel algorithms running on a hypercube
computer (Jones, Mann and Simpson, 1988).

Ruck (1987) has used Zernike moments extracted from Doppler-Shift RADAR
data as input to previously trained nearest-neighbor (Duda and Hart, 1973) and
backpropagation ANNs (Rumelhart and McClelland, 1986). Using these Zernike
moments, Ruck showed that the backpropagation algorithm provides better
discrimination among the examples to classify tanks, jeeps, and trucks. Based
on this result, a backpropagation ANN algorithm 1is used as a low-level
classifier to classify the shape of each blob in an image as a circle, ellipse,
square, rectangle, triangle, or unknown. Each blob’s Zernike moments, as

Simply put, connected regions are blobs in an image, and
each blob in the image is counted. A blob’s label is its
number in the count.




components in an ANN input vector, are passed to low-level ANNs for shape
classification. The resulting blob shape classification is concatenated with
the blob’s other features (color, centroid, area, bounding box size) into a blob
attribute vector. (Details of this procedure can be found in Glover, Silliman,
and Walker, in preparation). i

The attribute vector of every blob in the initial scene image is passed to
the ES, where the vectors are integrated into the same type of representation as
the a priori models of the control panels. In this implementation, directed
graphs represent both the control panel models and the assimilated blob
information from the image. A directed graph is constructed for each blob whose
bounding box encloses other blobs. The directed graph structure was chosen
because it is invariant under scale changes and translation. Construction of a
directed graph is a multistep process: For each blob located in the interior of
a bounding blob, a graph node is located at the blob’s centroid coordinates. A
line is then drawn through all nodes that are collinear to within some
tolerance, which defines, e.g., the jth level in the graph structure with dj
nodes on that level. Once all the levels of a graph have been established, the
connections between nodes on the jth level and those on the j - 1 level are
obtained by dropping a perpendicular ray from each node on the jth level and
rotating the ray counterclockwise until it intersects a node on the j - 1 level.
Connections between nodes on the jth and the j + 1 1levels are obtained by
erecting a perpendicular ray from the node on the jth level and rotating the ray
clockwise until it intersects a node on the j + 1 level. The model graphs have
been constructed in a similar manner and stored in the ES’s knowledge base.

An entire image may generate a set of directed graphs, G = (G; | i€ N},

where N is the number of graphs extracted from an image. Each image graph Gj
myst then be compared with each model graph Gy in the set of M model graphs,
G = {G | k € M}, in order to determine if a MATCH cquition exists. The ES
must extract a similarity measure between each Gj and G, for all i, k pairs.
The hybrid system’s RB uses a similarity metriq*{hat is equal to the number of
transformations needed to transform Gi into G . This number is found by
counting the number of levels and the number*p#<nodes per level that must be
added to Gj in order to transform it into G'g. Rao and Glover (1989) have
developed a nontrivial extension of Hirschberg’s string matching algorithm
(Hirschberg, 1975) for 2-dimensional planar graphs. The Rao and Glover
algorithm finds the*number of levels 1 ang the maximum number of nodes per level
d by which Gj and G i differ; i.e. G; - G = (1,d).

A MATCH condition is returned by the ES if G; - G*k = (1,d) = (1',d") and
the similarity metric < 1’ + d’, where (1’/,d’) are thresholds initially
determined by the user. A MISMATCH condition will be returned if these criteria
are not satisfied, and the RB system will consider the next pair of graphs from
sets G and G'. An exact match between G; and Gy would yield (1,d) = (0,0). An
exact match between Gj and Gy also requires that each Gj node’s attribute
vector match the corresponding G g node’s attribute vector.

For each MATCH condition vreturned from the initial image, the ES
automatically creates and trains a high-level ANN to recognize the matched
control panel using the Zernike moments extracted from the image. Parametric
studies (Glover and Walker, in preparation) have shown that the following set of




heuristics facilitates the automatic training of an ANN backpropagation
algorithm: First, the ES creates a backpropagation ANN of a predetermined size.
Then the matched blob’s Zernike moment vector is added, as a positive example,
to a predetermined 1ist of Zernike moment vectors which serve as negative
examples. The ES monitors the convergence rate during ANN training. If the
convergence rate drops below some threshold value while the ANN’s global error
is still above an acceptable level, then the ES adjusts the step size and/or the
momentum parameters in the backpropagation learning rule. If this still does
not lead to convergence, then it is assumed that the ANN is stuck in a local
minimum. In this case, the ES resets the learning parameters, changes the ANN
initial weight values, and restarts the ANN training procedure just described.
If this fails to yield an acceptable convergence rate and global error value,
the ES then adds more hidden layer nodes to reduce the number of local minima
and restarts the entire ANN training procedure. Thus far, these heuristic
training procedures have always produced a convergent ANN.

Once a high-level ANN has been trained for a recognized environmental
event, the hybrid system is ready to accept the next image, and the image
processing proceeds as before. This processing of additional images is now
synchronized with the high-level ANN processing. Simultaneously with the low-
level ANN processing just described, the high-level ANN receives as input each
image blob’s Zernike moment vector and produces a similarity measure as its
output. This value is sent to the decision module in the ES along with the
output information from the low-level ANN processing.

Three decision outcomes are possible once any trained high-level ANNs
exist: MATCH, RB-MATCH, and ANN-MATCH. The decision module in the RB returns a
MATCH condition if the ES similarity measure satisfies its matching criteria,
and the high-level ANN’s output is above some predetermined threshold. If this
is the case, the ES adds the Zernike moment vector extracted from the current
image to the training set of the high-level ANN, as a positive example; but no
high-level ANN training occurs. The decision module in the ES returns a
RB-MATCH condition if the ES similarity measure satisfies its matching criteria,
while the high-level ANN’s output is below some predetermined threshold. This
situation produces the first example of self-modification in the hybrid system:
In this situation, the ES adds, as a positive example, the Zernike moment vector
extracted from the current image to the training set of the high-level ANN, and
trains the high-level ANN with the modified training set. The ES does not
initialize the ANN weights, but uses the old weights as starting values. It has
been found that convergence is always obtained with only a few iterations
through the training set (Glover and Walker, in preparation).

The ES’s decision algorithm returns a ANN-MATCH condition, if the ES
similarity measure does not satisfy its matching criteria, but the high-Tevel
ANN’s output is above some predetermined threshold. In this case, the ES adds
the Zernike moment vector extracted from the current image to the training set
of the high-level ANN as a positive example. However, no ANN training occurs.
Since the. RB system did not produce a match and the high-level ANN did,
indications are that new features have emerged which are not present in the
model. In this case, the ES creates a temporary model graph from the graph
extracted from the image and adds it to the ES’s knowledge base. If the
temporary model graph is verified in subsequent images it will replace the old



model graph; otherwise it will be deleted.

Again, one of the main research issues with the hybrid system is whether it
is capable of unsupervised learning without destroying its knowledge base.
Initially, this research will focus on the choices of the threshold values used
for the matching conditions, and the strategy used to update the knowledge base.
Investigation of this research issue is in progress.

SUMMARY AND FUTURE DIRECTIONS

This paper describes a hybrid neural network and rule-based pattern
recognition system capable of self-modification or learning. The central
research issue to be addressed for a self-modifying multiclassifier hybrid
system is whether such a system can perform better than either of the two
classifiers taken by themselves. The complementary strengths and weaknesses of
ES and ANN classifiers served as the motivation for building the hybrid system.
Self-modification of the hybrid system is achieved through a novel feedback loop
between the ES and the high-level ANN. This feedback loop allows the hybrid
system to exploit the ES’s hard constraint and the ANN’s soft constraint
matching capabilities. New information about objects in a scene can be gleaned
from the various combinations of RB and ANN matching outcomes. Both the ES and
ANN can learn form this new information, which could not be inferred by a system
employing only one type of classifier.

The major thrust of research is to measure the hybrid system’s performance
on a variety of sensor driven problems, where each problem is designed to
systematically explore the hybrid system’s operating limits. A secondary
research issue focuses on the implementation of the hybrid system in parallel
form on a hypercube computer architecture. The hypercube architecture will be
decomposed into many smaller sub-hypercubes where each component of the hybrid
system will be executed on the sub-hypercubes. Synchronized communications
between the sub-hypercubes will insure that the information needed by each
hybrid system component will arrive at the appropriate time. Each hybrid system
component currently runs in modular form on the nodes of a hypercube computer.
The implementation of a general control structure to insure synchronized
communications is being developed.

Future hybrid system research will proceed in two areas. The first
initiative is directed toward multiple sensor integration. The hybrid system
will be interfaced with multiple sensors with the data from each sensor being
processed by a suitably chosen hierarchy of 1low-level classifiers. The
integration of the sensor information then will be done in symbolic form by the
ES. Subsequently, high-level classifiers will be created to process multiple
sensor data. The second initiative is directed toward incorporating more
disparate types of high-level classifiers into the hybrid system architecture.
A1l types of classifier have their own sets of strengths and weaknesses. By
having several different types of classifiers trained to recognize the same
pattern sets, the ES decision module will be provided with several different
similarity measures. The ES can exploit the different classifiers’ strengths
and weaknesses to accomplish more robust and precise classification.
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(1a) (1b)
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Fig. 1. Binary image of two control panels taken by a mobile
robot from three progressively closer positions.
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