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ABSTRACT

An object-oriented Robot Independent Programming Environment (RIPE) developed at Sandia National Laboratories is 
being used for rapid design and implementation of a variety of applications. A system architecture based on hierarchies 
of distributed multiprocessors provides the computing platform for a layered programming structure that models the 
application as a set of software objects. These objects are designed to support model-based automated planning and 
programming, real-time sensor-based activity, error handling, and robust communication. The object-oriented paradigm 
provides mechanisms such as inheritance and polymorphism which allow the implementation of the system to satisfy the 
goals of software reusability, extensibility, reliability, and portability. By designing a hierarchy of generic parent classes 
and device-specific subclasses which inherit the same interface, a Robot Independent Programming Language (RIPL) is 
realized. Work cell tasks demonstrating robotic cask handling operations for nuclear waste facifities are successfully 
implemented using this object-oriented software environment.

1. INTRODUCTION
This paper discusses the Robot Independent Programming Environment (RIPE) developed at Sandia National Laboratories. RIPE 
is an object-oriented approach to robot system software architectures. The primary accomplishment of this effort is a software 
environment which facilitates the rapid design and implementation of complex robot systems to support diverse research efforts and 
applications. RIPE allows robot system developers to concentrate on algorithm design and optimization, as well as testing and 
evaluation of new control, sensing, computing, and communications technologies without having to focus on overall system 
software development and integration. This is achieved by modeling the robot system as a set of software classes. As a result, RIPE 
hides device integration details and provides uniform interfaces to all objects in the system. A separation of concept from 
implementation characterizes RIPE’s software classes and provides software reusability, extensibility, reliability, and portability.

In the following sections, the problems associated with complex robot software systems (which we have experienced first hand) 
are reviewed, together with past approaches dealing with these problems. We then discuss the underlying object-oriented concepts 
and distributed computing architecture upon which RIPE is based. RIPE currently supports automatic motion planning and 
programming of robotic and machining devices based on models of the environment, sensor-based control, error handling, and 
robust communication. The RIPE architecture also supports development of advanced software concepts such as graphical 
interfaces for robot system control.

The detailed design of RIPE is then defined, followed by a discussion of two implementations involving robotic cask handling 
operations for nuclear waste facilities. These systems show how the class hierarchy, consisting of generic parent classes and device­
specific subclasses sharing the same interface, results in a Robot Independent Programming Language (RIPL). Finally, a brief 
discussion of future work is presented.

2. CURRENT APPROACHES TO ROBOT SOFTWARE
Sandia is currently developing robot systems for applications including hazardous material handling, automated assembly, and 
robotic edge finishing. Supporting this work are research laboratories investigating controls and optimization, telerobotics, grasping 
and dexterous manipulation, vision, tactile and proximity sensing, path planning and collision avoidance, oscillation damped 
movement, autonomous vehicles, flexible arms, and simulation. The diversity of Sandia’s robotics effort implies that the software 
environment must support a wide variety of requirements and devices. It also must serve users with different levels of expertise in 
robot system programming.

2.1 The Problems
As our robotics effort has developed we have experienced many of the problems common to robot programming:

• the inability of robot languages to handle integration of sensors into the motion control system
• the difficulty of extending application code to include new tasks or new devices
• the high expense of application programming
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• the small amotmt of code that is reusable for new systems
• the focus on manipulator-level rather than on task-level programming
• the management of system complexity
• the time consuming process of writing and debugging low-level (e.g. communication) software before beginning to test new

algorithms
• the need for real-time control of mechanical devices
• the necessity of implementing robust error handling and recovery code

It has been our experience that software development costs are a significant part of the overall intelligent robot system development 
costs. Finding solutions to robot software problems reduces these costs and thereby increases the viability of using intelligent robot 
systems in applications where it was once considered too costly.

2.2 Other Approaches to Solving the Problems
Various approaches have been used to try to solve these problems. Vendor supplied robot programming languages have been 
enhanced until they resemble general-purpose, high-level computer languages[15][ll]. However, applications written in these 
languages are specific to the vendor's robot and, therefore, are not portable.

One approach is to replace the robot control system with a new control system embedded within an existing operating system, 
written in a general purpose language, and using primitive functions included in a library[6][l]. Frequently the resulting system is 
not a viable option for industry work cells or research labs since it requires the replacement of the robot control system hardware.

A number of the more recent approaches [7][16][17]] use conventional programming languages to help solve the problems of 
system complexity, real-time constraints, sensor integration, and modeling. These approaches have the advantages gained by using 
a language which is reliable, well-supported, portable, and familiar. In addition, these approaches focus on the total work cell 
system rather than only on the robot. The drawback is that, to date, the software has often been single purpose and not easily 
extended to other sqjplications.

2.3 Approach for RIPE
RIPE was developed to support model-based automated planning and programming of robotic and machining devices, integration 
of sensor technologies, development of next generation robot system programming languages with graphical interfaces, error 
handling, and robust communication. It is built upon well-established software operating systems and programming languages. 
RIPE is an environment for complex system integration which stresses use of off-the-shelf hardware (e.g. commercial robots) where 
appropriate as well as providing support for advanced system development.

2.3.1 Computing Architecture
The RIPE computing architecture consists of a hierarchical multiprocessor approach which employs distributed general and special 
purpose processors. This architecture provides the computing power required by the RIPE software to control complex diverse 
subsystems in real-time while coordinating reliable communications between them. Advances in microprocessor technology allow 
general purpose processors to achieve the computing performance required by complex robot control algorithms while remaining 
compatible with a large base of existing software.

2.3.2 Object-Oriented Design
Robot systems perform actions on certain objects within a defined work space. The software controlling the robot system can be 

viewed as an operational model of the world in which the robot exists. Therefore, RIPE is organized around representations of the 
objects in the work space so that its structure reflects the physical structure of the system. Controlled complexity is achieved by 
creating, combining, and manipulating software objects instantiated from previously defined software classes to perform the 
specific tasks of the system.

Abstract data types, classes, and objects allow the designer to model the physical robotic work cell entities in RIPE by defining only 
their attributes, behavior, and interfaces. Examples of such entities include work pieces or parts with geometric attributes, devices 
(e.g. NC machines, fixtures, machine tools, tool changers, robots, grippers, other end effectors), and sensors for contact switches, 
force control, and vision. Since the software classes in RIPE are defined to represent the physical objects that are commonly found 
in a work cell, calls to member functions of these generic software classes become the general device independent language used 
to program the cell. This is achieved by applying polymorphism which enables objects of a generic parent class and objects of its 
device-specific subclasses to receive the same messages and respond to them appropriately. The device independent programming 
language in RIPE resulting from object-oriented design of robotic work cells is RIPL.

Separating robot system concepts from the actual RIPE implementation results in robot system software which is reusabl^ 
extensible, reliable, and portable. RIPE’s reusability is the basis for the design process. Extensibility is provided in RIPE by 
defining new software classes which in turn become part of the general work cell programming language. Use of inheritance to
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define subclasses which are extensions or restrictions of RIPE parent classes greatly lowers the cost and complexity of software 
development. System reliability is enhanced by reusing well-defined RIPE objects, and portability is realized because RIPE classes 
are tightly encapsulated and relatively independent of their environment

2.3.3 The Development Environment
Our development environment for RIPE has four primary layers: task-level programming, supervisory control, real-time control 
and device drivers. The choice of software at each layer is influenced by the primary requirements for modeling, sensing, and 
motion specification, as well as the widely acknowledged levels of robot software (task, manipulator, servo) [2,18]. In addition, 
there is a strong relationship between the architecture employed at each particular layer and robot performance requirements.

The first layer is synonymous to what is generally referred to as task-level programming. At this level, world modeling, planning, 
and simulation are performed. Currently, this layer is in the initial stages of definition in our architecture.

The second layer is the supervisory control layer implemented on a UNIX-based workstation. This layer contains the primary 
control programs which coordinate all devices and activities of the system. The C++ language [13] is used to implement the object- 
oriented work cell class hierarchies and the supervisory code which manipulates these classes. Because C-h- is a superset of C, a 
large existing base of C code is used, and all of the advantages of C programming are retained (portability, versatility, and systems 
programming facilities).

The third layer in the programming environment handles real-time control of devices for tasks such as force control. This layer 
consists of multiple VME-based 68000 family processors on a backplane network running the VxWorks operating system [19]. 
VxWorks was selected because of its real-time kernel, full-featured development and run-time environments, and its compatibility 
with UNIX. C-H- runs effectively in this environment, and therefore, the same software can be used both at the workstation level 
and the real-time control layer. An Ethernet-based local area network ties together the workstations and VME systems.

The bottom layer contains the device drivers for each subsystem in a work cell. Some device drivers are relatively simple and 
consist of interfacing class members to firmware for tasks such as controlling a bar code reader. Others are sophisticated 
programming environments, such as the CIMCORP XR100 gantry robot software system.

In the case of intelligent devices such as robot controllers, a monitor program located at the controller for the device is written 
in the robot programming language. This monitor establishes communication with an external host CPU, waits for a command from 
that host, carries out the command when one is received, and then waits for the next command. The monitor is treated as the part 
of a distributed robot object which resides on the robot controller. The messages that it understands and interprets are defined in 
the robot class and frequently have a one-to-one correspondence with the public member functions defined for the robot class.

3. DEFINITION OF ROBOT SYSTEMS IN RIPE
The design of RIPE is based not only on our goals of ease of use, expressiveness, extensibility, and reusability but also on 
compatibility with FAC-SIM [S], a simulation system developed at Sandia for the analysis of robot systems. The partitioning of a 
system into classes is fairly straightforward since most classes reflect the physical objects of the application. The software classes 
which do not represent physical objects are termed "virtual objects" and include CommunicationHandler, WorldModeler, 
ErrorHandler. TrajectoryGenerator and PathPlanner.

3.1 The Generic Objects
The class inheritance hierarchies in RIPE are designed to allow the programming of tasks using generic classes. Figures 1 and 2 
illustrate two example system hierarchies. In the Cask Head Work Cell, a Cincinnati Milacron robot performs leak detection and 
gas sampling operations on the head of a cask containing nuclear waste. In the Radiation Survey Work Cell, contamination surveys 
of the cask are performed by a CIMCORP gantry robot. The division of a robot system into the three basic classes of WorkPiece, 
Station and Device is derived from the concept that devices carry out actions on work pieces, and stations are locations in the work 
space for storing these devices or work pieces. The definition of the class hierarchy for WorkPiece and Station is specific to an 
application, but each work cell has several kinds of devices, e.g. robots, sensors, grippers, and other tools. All devices which carry 
out actions are derived from the parent class Device. Instead of, or in addition to a manipulator, a system might employ other devices 
such as an NC machine, a conveyor, a remotely controlled fork lift, or a mobile robot. These have the propjerty of being able to 
move or transport a work piece or a tool and thus, derive from the Transport class. Tool is the parent class of any object used by 
the robot to perform a task. Grabber has the attribute of being used to pick up work pieces or other tools. Grippers, hands, face 
plates, and hooks are instances of the Grabber class. A Sensor is a Tool which provides data for the performance of the task. 
Besides force sensors, vision systems, and proximity sensors, examples of the Sensor class would be a bar code reader used for 
identification of a work piece, a contact switch which verifies the presence of a tool in its station, or a gas sampling device. A tool, 
such as an air wrench, which is not an instance of the Grabber or Sensor class, derives directly from the Tool class.

Each subclass of Device which is also a generic parent class is highlighted in Figures 1 and 2. Although not shown in Figures 1 
and 2, virtual objects such as ErrorHandler and CommunicationHandler are also generic parent classes. The routines that define
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the user interface to a generic class, along with other attributes and routines common to all instances of that class, are defined at the 
generic parent level of the hierarchy.

Figure 3 shows the definition of the Robot class. The attributes are defined in the data structures such as current and home. The 
actions that are common to all robots are found in the definitions of the routines. The keyword virtual at the beginning of each 
function declaration indicates that the routine is to be defined by a device-specific subclass. All robots can be commanded to move, 
but the definition for executing a move is specific to a particular robot. Note the presence of default values for some parameters in 
the virtual routines, for example speed in the move, movejrel, and pathjnove declarations in Figure 3. Including optional 
parameters and default values provides flexibility in the subclass definition and in the application. For example, if the user wants to 
specify a speed during a move, he invokes the desired move routine with the speed parameter set If he does not set the speed 
parameter, the default speed, which is established earlier by a call to set_speed, is used.

3.2 Derived Objects for Specific Applications
Figures 1 and 2 show how objects in specific work cells are derived from their generic parent classes. The bottom level of the 
hierarchy enumerates the software representation of the physical objects in the work cell. The Cask Head Work Cell, as represented 
in Figure 1 for example, required programming of the CMRobot class as well as other types of subclasses representing the different 
devices and work pieces. The interface to CMRobot is already defined in parent class Robot. The interface serves as a kind of 
template so that the programming is a matter of "filling in the blanks." For example, the code for the move routine consists of 
translating the command into the format the Cincinnati Milacron controller expects and invoking the CommunicationHandler's 
routine sendjnsg.

If a subclass has more capabilities than the parent, the user interface to the subclass is the set of routines defined for the parent 
class plus additional ones defined in the subclass. The CMRobot class has been extended for research into oscillation-damped 
movement of a flexible beam. Routine flexbeamdamping uses the move_comply command and torque feedback to actively damp 
vibrations of a cantilevered beam. When only the routines specified in the generic parent class are used in programming an 
application, a different derived object representing a different physical device can be substituted, and the commands in the 
application code remain the same. These routines define the primitives for RIPL.

Figure 2 shows the derived objects for the Radiation Survey Work Cell. A comparison of the two work cells shows that the same 
set of generic classes can provide very different software object systems. The tasks performed in the application determine which 
class routines will be invoked in the supervisory code. Thus, changing the way the supervisor uses these class routines can result 
in the implementation of an entirely different task even though the class definitions remain unchanged.

4. APPLICATION OF RIPE
The Cask Head Work Cell and Radiation Survey Work Cell were constructed as part of the Advanced Handling Technologies 
Project (AHTP) at Sandia National Laboratories [4]. The AHTP includes efforts to automate cask handling operations at nuclear
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waste facilities. These work cell prototypes serve as proof-of-concept systems to demonstrate cask handling operations that might 
be performed robotically.

4.1 Cask Head Work Cell Example
The AHTP consists of several subprojects, one of which is the Cask Head Operations (CHO) project. The CHO project investigates 
robotic performance of cask head operations required before and after nuclear fuel bundle unloading. The Cask Head Work Cell 
was designed as a prototype system for cask head operations which include leak detection, gas sampling (port cover removal/ 
replacement and coupling/decoupling of the sampling apparatus at the port), and bolting and unbolting operations. Robust 
algorithms were required for mating the torque wrench to various bolt heads on a cask head mock-up using force feedback. The 
requirements for the work cell operations illustrate the application of the RIPE environment

One of the premises on which object-oriented design is based states that designers should avoid as long as possible describing 
and implementing the specific tasks of a system[9]. Rather, they should produce a high level design that defines only a set of classes 
which characterizes the behavior of the objects in the system. We followed this principle by designing and implementing the 
necessary Cask Head Work Cell classes, as discussed above, independent of any application to which they would be applied. As 
anticipated, implementation of the actual cask head operations was fast and straightforward. All that was required was to create 
and manipulate the work cell objects to perform the specific tasks of the system. Also, other applications of the work cell such as 
flexible beam oscillation damping research [12] were easily implemented because the classes had been designed completely 
independent of any particular work cell activity.

ROBOT CLASS DEFINITION
class Robot: public Transport
{ protected:

point home, current;
int current_coordinate_type,
double speed;
int cunent_speed_attribute,
double accel;
int current_accel_at tribute;

public:
// Abstract class so constructor is empty
Robot();
virtual ~Robot();
virtual int <nove(point loc, int motion_attributes, double speed=0.0); // Absolute move to loc.
virtual int movejreKpomt delta,int motion.attributes, double speed=0.0) ; // Move to a position delta away from current position.
virtual int move_homeQ; // Move to home (ready) position,
virtual void approach(po'ml loc, int axis, double dist); // Move to a position dist away from loc along axis.
virtual int depart(mt axis, int direction, double dist, double increment=0.0); // Move along the specified axis distance dist.
virtual int move_react(point loc. Sensor * FS_ptr); // Move to position loc under force control.
virtual int move_comply(pomt loc, int numincrs. Sensor1*' FS_ptr,double fin ax = F_MAX); // Move to position loc with compliance f.
virtual int pa/fc_move(path_point * p, int motion_attributes); // Move to each point in path p.
virtual int path_mo ve_re/(path_po int * p, int motion_attributes); // Move relative to each point in path p.
virtual void stopQ; // Cause the robot to stop.
virtual int set_speed(dovb\c s, int speed_attributes); // Set the robot member speed to s.
virtual double get_speed{ int speed_attributes); // Return the value of robot member speed.
virtual int open_gripper{); // Open the gripper
virtual int close_gripperQ; // Close the gripper
virtual int get_effector(T>c.vice. * t_ptr); // Move to station and pick up effector.
virtual int put_effector(Dcvice * t_ptr); // Stow end effector at station.
virtual intperform(mt task); // Execute a taught sequence
virtual void whereipoiiA cur_loc, int coordinate_type); // Set cur_loc to the Cartesian position of the robot.
virtual int report_statusQ;

};

// Print the current status of the robot

Figure 3
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4.1.1 Computing Environment
Figure 4 illustrates the computing architecture that is used to control the Cincinnati Milacron work cell doing cask head operations.
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The primary components include a Sun 3/60 workstation, a VME bus with two Force 68020 CPU’s, global memory, an 8-port serial 
I/O card, a Cincinnati Milacron series T3-786 robot, and a Lord force sensor. The computing elements, robot, and force sensor are 
all commercial subsystems. Special end effectors and grippers were designed and built at Sandia.

The distributed VME multiprocessors coordinated by the Sun workstation allow individual CPUs to control each subsystem in 
the work cell and provide support for continuous tasks, concurrency, synchronization, data sharing, communications, real-time 
control, and sensor-based activity. In addition, this architecture reflects the hierarchical layered approach to hardware which 
corresponds with the different levels of robot software (task, manipulator, servo). However, the design of RIPE allows the software 
to be mapped onto multiple layers of the hardware, depending upon the application. For example, the servo level normally resides 
at the robot controller, but whenever compliant motion is performed, some of the servo software functions are executed on the VME 
bus CPUs. Similarly, the manipulator level software may reside on either the robot controller, VME bus, or the Sun workstation. 
The task-level software will normally be at the workstation level. Finally, model-based control requires that knowledge about the 
work cell and its contents be distributed among the software objects that logically represent their physical counterparts, and these 
objects may reside at any level of the hardware.

4.1.2 Software
To perform cask head operations, four software tasks were required. All of the tasks are implemented in C++ and utilize the 
communication and device class libraries discussed above to perform their functions. A UNIX environment exists on the Sun 
workstation, and a VxWorks environment controls the VME hardware. Figure 4 shows how the tasks are distributed among the 
work cell CPUs for the Cask Head Operation task.

The first task allows the operator to interact with work cell devices. The current implementation uses SunView [14], but future 
interfaces will be built with a recently developed object-oriented package called Interviews [8]. The second task, which also resides 
on the Sun, serves as the work cell supervisor. It accepts commands from the operator through the first task and carries out these 
commands by initiating appropriate work cell actions (which may be performed by other hardware components).

The remaining two tasks reside on the VME bus CPUs. One task monitors the Lord force sensor (mounted on the wrist of the 
Cincinnati Milacron robot) and computes position updates to control robot movement whenever the torque wrench has to mate with 
a bolt The other task provides the communications to the robot controller, utilizing the DDCMP protocol [3]. Both tasks use a 
serial I/O card for message transmission to the force sensor and robot controller.
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Figure 5 illustrates the objects that are created by these tasks whenever they are executed. 'Hie work cell supervisor creates a 

LORDForceSensor object and a CMRobot object. These two objects are, in a sense, distributed over multiple environments. The 
way they are created (argument list specification) determines how they are distributed and how they communicate with the actual 
devices. In figure S the shaded boxes indicate the communication objects created by the device objects.

For example, if the force sensor were to be controlled directly from the Sun workstation, a LORDForceSensor object could be 
created with a parameter list that would cause the creation of a UnixSerial object for direct communication to the force sensor device 
through a Sun serial port. In our implementation for cask head operations, the LORDForceSensor object and CMRobot object are 
distributed across both the Sun workstation and a VME CPU due to the real-time requirements of force servo control. They 
communicate through UnixClient /VxServer objects over the Ethernet between the UNIX environment on the workstation and the 
VxWorks environment on the VME bus. The LORDForceSensor and CMRobot objects on the VME CPU, in turn, create VxSeriaX 
and VxDdcmp communications objects respectively which allow them to talk to the actual hardware in the work cell. To achieve 
the update rate necessary for force control, an additional VxDdcmp object is created on a second VME CPU to handle the low-level 
protocol and message transmission to the robot controller. The two distributed VxDdcmp objects communicate with each other over 
the VME bus through a VxSocket object

Finally, the LORDForceSensor object also creates a CmdStateTable object which reads a configuration file that defines the 
specific behavior of the Lord force sensor device. For example, using the CmdStateTable information, the LORDForceSensor 
object knows that it must send an ''OA<CR>" (Output ASCII) command to the force sensor in order to obtain ASCII readings of 
the current forces being sensed. By isolating device-specific attributes and commands into files that are managed by the 
CmdStateTable object, methods that control the device’s behavior are written generically and can reside in the parent Too/, Sensor. 
or ForceSensor classes rather than in the LORDForceSensor class. These methods therefore can be used by other types of force 
sensor classes derived from the parents (such as the JR3ForceSensor class) which have their own configuration fries.

Figure 7 illustrates one portion of code for the Force Control Task residing on the first VME CPU. It shows how the objects in 
the work cell are created and used to perform a simple bolting operation. Messages are salt to the LORDForceSensor and CMRobot 
objects to obtain force readings and initiate robot motion until the torque wrench is properly seated on a bolt.

4.2 Radiation Survey Work Cell Example
The Radiation Survey Work Cell was the first experimental system to be built for AHTP. Its initial application, the Robotic 
Radiation Survey and Analysis System (RRSAS), was completed in August 1987 [10], and included operations to locate a half 
scale cask mock-up in the work cell using stereo vision, identify cask contents by reading bar codes, and perform both non-contact 
and contact radiation surveys. Key technologies such as automatic motion planning and programming of the CIMCORP XR100 
gantry robot and force sensor integration to maintain constant force contact with the cask surface during contamination surveys are 
demonstrated by RRSAS. RRSAS was completed prior to the development of RIPE.

Some subsequent studies currently under development include the Impact Limiter Handling project and the Cask Tiedown project
[4]. These projects will investigate robotic removal, handling, and replacement of cask impact limiters and tiedowns. They also
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FORCE CONTROL CODE EXAMPLE SWIPE OPERATION CODE EXAMPLE

//Defines and includes for class definitions
int GRobot■swipejopemtion (Sensor* FSensor,

// Create server object for communication with host float inc)
{func ptr_testserver = tests erver;

p_func ptr_panicfunc - panicfunc ; int numincs;
VxServer MyServeifSERVER NUM, ptr testserver, ptr_panicfunc. int stat = 0;

TABLE_LEN, msg_table[0]);
stat = move_tiU_touch (FSensor);

int testserver(VxServer* TestServer) // Spawned by MyServer if (stat) retum(stat);
{

LORDForceSensor* TestSensor;
numincs = SWIPE_DIS / INC_M AG;
stat = make_swipe (FSensor, inc, numincs);

force* fptr; if (stat) retum(stat);
CMRobot* ptr robot; depart (FORCE_AXIS, BACK DIST,
point new_loc; BACKJNC);

returnto_pres wipe_location ();
// Create force sensor and robot objects clear_offsetsand_zero_alter 0;

TestSensor = new LORDForceSensor(”LORDStateTbr, 4, retum(stat);
19200, DEBUG.OFF); }

fptr = new force;
ptr_robot = new CMRobot("cm 1", 1401, DEB UG_OFF) ;

. int GRobot::move till touch (Sensor* FSensor)
// Wait for a command from the client {

len = TestServer->rece/ve msg (line, MAX SOCKET MSG+1, point loc;
LU_MONlTOR); int stat = 0;

// Initiate robot communication & configure sensor FSensor->desired_values[Y] = TOUCH_SET;
ptr Tobot->perform (WATT FOR B EGIN REMOTE): loc[X] = 0.0;

TestSensor->SSf bias (); loc[YJ = APPKO_lNC;
TestSensor->SOf outputjmode (BINARY_MODE); loc[Z] = 0.0;
table_entry = ptr_robot->fepo/t_ Varentry (HOST_ENTRY); loc[D] = 0.0; 

loc[E] = 0.0;
// Select a work cell activity loc[R] = 0.0;

switch(table_entry) stat = move_react (loc, FSensor); 
retum(stat);

// Feel for bolt with torque wrench until they mate }
case 1:
while (i < 22) {

new loc[ZJ =-0.150; new loc[R] = 0.0;
int GRobot: :make_swipe (Sensor* FSensor,printf("MOVE DOWN -0.150 INCHESSn");

ptr_robot->fnove_fe/ (new_loc); float inc, int numincs)
{TestSensor->/a/fe reading (fpti);

if (fptr->t_gain[Z] > -10.0) { point loc;
printf("SUCCESS IS TRUENn"); int stat = 0;
success = TRUE; break;

}
else {

FSensor->desired_values[X] = 0.0;
FSensor->desired_values[Y] = SWIPE_FORCE;

new loc[Z] = 0.150; FSensor-xiesired_values[Z] = 0.0;
printf("MOVE UP 0.150 INCHESVi"); FSensor->desired_values[D] = 0.0;
ptr robot->move re/(new loc); FSensor->desired_values[E] = 0.0;
new loc[Z] = 0.0; new loc[R] = -5.5 ; 
printf("ROTATE 5.5 DEGREESSn”);

FSensor->desired values[R] = 0.0; 
loc[SW_AXIS] = inc;

ptr Tobot->move re/(new loc); stat = movejcomply (loc, numincs, FSensor);
i++;

}
}

} // End this work cell activity

retum(stat);
}

Figure 7 Figure 8
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require technologies similar to those developed in RRSAS, including machine vision and force control. These new projects are 
being implemented in RIPE.

Although RRSAS was originally implemented in C from a function-oriented top-down design, its highly modular structure and 
generic functions for robot control made it possible to use some of the existing code for the member functions of the C++ gantry 
robot class (GRobot). Also, because the generic Robot class had already been defined and much had been learned during 
development of the CMRobot class, implementation of the GRobot class was fairly automatic. Similarly, the Radiation Survey 
Work Cell employs a JR3 force sensor rather than a Lord force sensor, so a JR3 ForceSensor class also had to be implemented. This 
again was facilitated by the existence of generic parent classes (Tool. Sensor, ForceSensor).

4.2.1 Computing Environment
Aside from the specialized subsystems required by RRSAS, the primary hardware components of the Radiation Survey Work Cell 
are the same as those found in the Cask Head Work Cell (Sun workstation, VME bus, robot, sensors). There is of course a different 
robot and a different force sensor, and the VME bus uses Heurikon 68020 CPUs rather than Force CPUs (transparent to the 
software). As stated earlier, this hierarchical distributed approach is our standard architecture which provides the power, 
compatibility, flexibility, and extensibility needed to implement complex work cell environments.

4.2.2 Software
The first application using RIPE in the Radiation Survey Work Cell performs force controlled movement of the robot arm for the 
random contact swipe survey. The original force servo control system in RRSAS consisted of a PDP/11 with an RT-11 environment 
[10]. This is replaced by a much more powerful VME based 68020 CPU and a VxWorks environment. The new swipe survey 
software (Swipe Server) is a C++ application which creates and manipulates a GRobot and JRSForceSensor object to monitor a JR3 
force sensor mounted on the wrist of the gantry robot and make real-time trajectory corrections to the robot arm. The corrections 
are based on the contact force detected between the robot’s end effector (swipe planchet) and the cask. The control structure 
maintains a 4.0 ± 1.0 pound normal contact force during the swiping motion.

Figure 6 illustrates the objects that are created by the Swipe Server. If this figure is compared with Figure 5, it can be seen that 
the object hierarchies are nearly identical. The primary differences reside at the communication and servo level, where additional 
state machine firmware is utilized on the VME serial I/O card to handle the JR3 packet protocol and to synchronize position updates 
with a special trajectory card in the robot controller. At the manipulator level, the interface is identical to that found in the Cask 
Head Work Cell application. Again, the objects behave according to how they are created. The work cell devices can be directly 
controlled by objects residing on the Sun workstation whenever there are no real-time requirements, or they can be controlled in 
real time by objects distributed across VME CPUs

Two additional comments can be made about the Swipe Server application. First, it illustrates the ability of our object-oriented 
environment to coexist with more traditional function-oriented environments. Rather than rewrite all of the RRSAS supervisory 
software, which is over 15,000 lines of C code, it was only necessary to replace a handful of modules which interfaced the supervisor 
to the PDP/11. The new modules create a UnixClient object which allows the RRSAS supervisor to communicate with the new 
VME-based Swipe Server through a VxServer object over the Ethernet Everything else in the supervisor remains unchanged. 
Second, the Swipe Server utilizes GRobot methods which illustrate an object-oriented implementation of a task-level capability that 
allows the supervisor to ask the robot to "swipe the surface of a designated work piece", in this case the cask. The code segments 
in Figure 8 show how the generic manipulator level methods of the GRobot class are pieced together to create this task-level 
function. Similar implementations could be used in other work cells with other robots to provide this highly useful capability.

5. Conclusions and Future Work
The two completed implementations demonstrate that the design of RIPE has resulted in modular, reusable, extensible, and portable 
robot system software, and therefore has increased software development productivity and reliability of robot applications. The 
layered object-oriented software environment reflects the physical system. This simplifies the work for robot software developers 
by allowing them to construct control software environments in much the same way that the hardware system developers integrate 
the actual physical devices into a working system. This in turn facilitates communication between hardware and software engineers 
during system integration. Systems can be implemented faster due to the reusability and portability of the software. Also, RIPE can 
be used on most commercially available computing equipment because the development is based on a standard language and off- 
the-shelf operating systems. RIPE's device hierarchy and its communication interfaces which are inherent to object-oriented 
programming contribute to the development of a standardized Robot Independent Programming Language (RIPL) which is used to 
program different intelligent robot systems.

The overloading of RIPE class constructors and the use of virtual functions provides for a very flexible system with an open- 
ended architecture having three levels of generic interfaces. An application normally will directly create objects representing 
specific devices and work pieces in the work cell, whereas the communication objects will be created internally, with the details of 
the message transmission hidden from the applications code. This provides generic interfaces that result in architecture
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independence. In other words, an implication can be modified to run either in a single CPU environment or a distributed 
environment simply by changing the way it creates its objects, and consequently the way it communicates with work cell devices.

The second level of generic interfaces exists at the device level. Because there are generic device classes for robots and sensors 
(Robot, Sensor, ForceSensor), whose attributes and member functions are inherited by specific robot and sensor classes (CMRobot, 
LORDForceSensor) derived from the generic classes, the application interface to a device will look the same no matter what device 
is used. In other words, if the Lord force sensor is replaced in the Cask Head Work Cell application by a JR3 force sensor, the 
application remains unchanged except for the way it creates its force sensor object (one line of code). This, in turn, leads to the third 
level of generic interfaces, the user level. Through inheritance and polymorphism, the same messages are sent to a CMRobot as are 
sent to a GRobot. Likewise, the same messages are sent to aLORDForceSensor as are sent to a JRSForceSensor. This is illustrated 
by our two different work cell examples.

As a result, RIPL begins to develop as a natural consequence of RIPE. The code sequence already discussed in Figure 7 contains 
member function calls such as receivejnsg for communications, perform and movejrel for robot control, and set_bios, 
set outputjnode, and take_rcoding for force sensor control. These calls, as well as the Robot declarations in Figure 3, form the 
basis for RIPL. Currently, RIPL is an intermediate manipulator level language, upon which a task-level language is being 
constructed. An example of this is the swipe command used in the Radiation Survey Work Cell.

We are currently enhancing the class hierarchies for the Radiation Survey Work Cell to perform new tasks such as mating a 
storage cask to a storage facility door, manipulating impact limiters, and securing tiedowns. In addition, we are implementing the 
RIPL primitives for GMF and PUMA robot classes which will be used in future glovebox and inspection applications. We 
acknowledge that RIPE and RIPL must be evolutionary to be successful.
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