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Laminated Beams - Deflection and 
Stress as a Function of Epoxy Shear Modulus 

J. Bialek 

Princeton Plasma Physics Laboratory 
Princeton University, Princeton, N. J. 08540 

ABSTRACT 

The large toroidal field coil deflections observed 

during the PLT power test are due to the poor shear 

behavior of the insulation material used between lay-

ers of copper. Standard techniques for analyzing such 

laminated structures do not account for this effect. 

This paper presents an analysis of laminated beams that 

.corrects this deficiency. The analysis explicitly 

models the mechanical behavior of each layer in a lam-

inated beam and hence avoids the pitfalls involved in 

any averaging technique. In particular, the shear 

modulus of the epoxy in a laminated beam (consisting 

of alternate layers of metal and epoxy) may span the 

entire range of values from zero to classical. Solu-

tion of the governing differential equations defines 

the stress, strain, and deflection for any point within 

a laminated beam. The paper summarizes these .govern= 

ing equations and also includes a parametric study of 

a simple laminated beam. 
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INTRODUCTION 

· The toroidal field coils in the Princeton Large Torus (PLT); 

Tokamak are subjected to a non uniform self generated mag·netic 

field. This results in a force distribution that causes each 

toroidal field coil to bend in its own plane. The deflections 

observed on the PLT toroidal field coils1 ' 2 are not in agree-

mE:mt with calculations based on standard composite beam theory. 

In fact, the observed deflections are three to eight times 

larger than composite beam theory predicts. This paper presents 

a solution that models deflection and stress in straight laminated 

beams. The beams analyzed have mechanical properties similar to 

the PLT toroidal field coils. 

The laminated beams that are considered in this paper are 

made of alternate layers of copper and epoxy. The unique mechqni-

cal behavior of these beams is due to the poor shear.behavior qf 

the epoxy layers. Experimental measurements 3 of effective shear 
! 

modulus for an epoxy layer give values for the shear modulus 

thirty (30) times smaller than expected. This of course effects 

the stiffness.-and stress distribution within a laminated beam. 

The goal of this work was to develop a model that describes 

the behavior of a laminated beam as the shear modulus of the 

epoxy va.ries from classical values (G - E I 2 ( l+V}} t.o 
epoxy epoxy 

zero~ 

The differential equations governing deflection and stress 

in each layer of a straight laminated beam are presented. Th~se 
; 

equations treat every layer of the beal(l explicitly and do not 

depend on any averaging of the beam's cross sectional properties. 
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Hence this analysis provides an explicit statement of deflection 

and stress throughout a laminated beam and avoids the pitfalls 

of all averaging procedures. ·The solution of these equations for 

the particular problem· of a simply supported uniformly loaded 

beam is also presented. Results are summarized for a parametric 

study of this problem and finally, the stiffness and stress dis~ 

tribution in a straight laminated beam having the same cross 

section as the PLT toroidal field coil is presented. 

ANALYSIS 

The displacement energy method is used to analyze this 

problem. First the total potential energy of the laminated 

beam is expressed in terms of the displacement of each layer 

of metal. Then, variational calculus is applied to the total 

potential energy expression to obtain the equations governing 

the displacement of every layer in the beam. These equations 

are the equations of static equilibrium and the stresses in 

the beam are obtained by taking derivatives of the displacement 

solution. The governing equations form a set of coupled ordinary 

differentiai equations and are solved by using the Ritz procedure. 

'l'he small computer program written to obtain numerical results 

is listed in Appendix 1. 

The total potential energy of a laminated beam (~*) is 

given by 

~* = E - V (la) 

' . 
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E = J [Em"~x)m + Gmy~zlm + Ee0~zle + Gey~z)e] dV (lb) 

volume 

lo
~ 

V = q(x)w(x)dx (lc) 

Where 

E = Strain energy in the laminated beam 

v =The potential energy of the applied load intensity "q". 

E = Youngs modulus in the metal 
m 

G = Shear modulus in the metal 
m 

Ge 

Exx>m 

Ezz)e 

Y xz>m 

Yxz>e 

Figure 1. 

= Youngs modulus in the epoxy 

= Shear modulus in the epoxy 

= XX component of strain in the 

= zz component of strain in the 

= Shear angle in the metal 

= Shear angle in the epoxy 

describes the coordinate system 

metal 

epoxy 

used 

·.······················· 
2 

in 

764772 
Fig. 1. Coordinate system for laminated beam. 

the problem. 
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,The Youngs moduli and shear moduli in Equation 1 are constants 

for the beam. The first and second terms in Equation 1 represent 

the axial bending and shearing behavior in each layer of metal. 

The third term models the lateral compression or tension in the 

epoxy bond and serves to transmit force in the z direction from 

layer to layer within the beam. The fourth term in Equation 1 

represents the shear behavior in the epoxy layers. G in this e 

term should be considered an effective shear modulus and indepen~ 

dent of E . This fourth term transmits shear between adjacent 
Q 

layers of metal. As G becomes smaller, greater shear deflection e 

in the epoxy bond is allowed, less shear exists between layers of 

metal, and the laminated beam becomes more flexible. 

I 

The strain terms in Equation 1 are defined in the usual 

manner. Within each metal layer the following relations are used: 

au ) . 

(a) ~ E ) . X 1 = ax XX 1 

(~) 

au > . au > . 

(b) ~ Yxz)i 
z 1 + 

X 1 = ax az 

where: 

i = index referring to layer number in laminated 

beam i = 1, 2, n (see Fig. 1.) • • • I 

Exx)i = XX strain component in .th 
1 metal layer 

Yxz)i = shear angle in .th 
1 metal layer Yxz) i = 2E xz)i 

u ) . = X component of deflectidn field .th 
metal layer X 1 l. 

u ) . ~· z component of deflection field .th 
metal layer z 1 1 
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The deflection field used in Equation 2a and 2b must be 

defined with care. If the deflection field is not simplified 

a system of partial differential equations will result. If 

the deflection field is too simple the equations of equilibrium 

will -not be satisfied. 4 After considerable study, a deflection 

field that represents a typical Timoshenko beam was selected 

and found to be adequate. This deflection field maintains the 

strength of materials assumption that plane sections remain Ptane 
Q 

but this is restricted to hold only within each layer of metal. 

The total cross section of the beam will deform from a plane to 

a series of ridges and ramps. The shear deflection (yi) in the 

deflection field is also worthy of note. Although this term is 

a very small part of the deflection in each layer of the beam, 

it couples the equations together. If this term was not included, 

-the equations would not satisfy static equilibrium. 4 Equation 3 

.summarizes the deflection field. 

u ) . - 0 y 1 

u ) . = w. (x) z 1 1 

(a) 

(b) (3) 

(c) 
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where: 

z = the value of the z coordinate within the ith layer 

measured from a coordinate system with the z = 0 value 

located at the·geometric center of the . th metal layer 1.. 

ui (x) = the x deflection of the center line of the 
.th metal l. 

layer 

wi (x) = the z deflection of the center line of the .th 
metal l. 

layer 

yi(x) =the shear deflection of the center line of the ith 

metal layer 

Hence the strains in the metal are: 

au du. 2 

Cxw2i - dyi) 
e:xx)i 

X :::::: l. 
= dx - z (a) ax dx 

au 
aTlx 

dw. (dwi _ yi) yxz)i 
z l. 

"" --+ = - = Y· {b) rlX d7. dx dx l. 

The 3n functions ui, wi, and yi (i = 1, 2, ... , n) are 

(~) 

the unknowns of this problem. The .first two terms in Equation 1 

are now explicitly defined. The remaining two terms in 

Equation 1 will be defined in terms of the deflection I.ield of 

the metal layers. By doing this, the layers of the beam are 

connected to each other, no new unknowns are introduced, the 

strain energy in the epoxy is described, and compatibility of 

the deflection fields is insured. 

.. 
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The lateral compressive or tensile strain in the epoxy 

layer i is defined by 

where 

£ } . zz ~ 

t. 
~ 

= 

= 

the zz strain 

(between metal 

the thickness 

(5} 

component· in the 
.th 

+ayer ~ epoxy 

laminates i and i+l} 

of the 
.th layer (i 1, 2, n-1} ~ epoxy = ..... ' 

The shear strain in the ith epoxy layer (between metal layers 

i and i+l} is defined by the following argument. 

Figure 2 describes the geometry of a typical epoxy layer in 

its deformed state. / 

f ·-
~ 

Ll -tT 
+ 
~ 

L 

dW· I 
(meta I) dX 

(epoxy) 

(metal) 

764772 
Fig. 2. Shear in epoxy bond . 
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The angle a is defined by 

01- 0 2 
a = 

t 

where 

h. (:: - yi) 51 
u 1 = i 2 

and 

h. 1. (dwi+l Yi+t) 02 u. 1 + 1+ 
= -2- -1+ dx 

* The angle a includes both the shear angle y ) and the· xz i 

average slope (a) of the epoxy layer 

i.e. * . -a=y ).+a xz ;L 

: The ·average ·slope of the ith epoxy layer is simply a 

weig·hted ·average of the slopes for the i th and (i+.l) st metal 

layers. 

-a = (
dw i+l 

+ hi+l <ix 
1 

(6) 

.. 

!. 

( 7) . 

( 8) 

( 9) 
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. th· '. 
where h:t is the thickness of the i metal Uiyer ·. 

Substitution of Eq. (9) into Eq. 18) yieldS 

where 

h.t . 
. 1 1 

hi+l ti 

(hi+ hi+l) 

i=l, 2, ... , n-1 

( 10) 

(a) 

( 11) 

(b) 
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Then the total poten tic:~).. energy of the laminated beam TI* is: 

"IT* 

.. .. . '·: 

f r(d:: )2 h~((wi) (d;xi )2 _ 
... 2 )J n Eb 

dy. d w. 
= -I h· + +. 2 .1 1 

i=l 
2 1 12 dx 2 dx dx2 . ..... 

Q, n Gbh . 2 I Q, n -1 E b 2 2 . -

I 
\' ~ y ;dx + I -~ (w1.+1 +wi- 2wi wi+l) ·dx + L. 2 1 . 1 ~t. 

; 0 i=l .. 0 1= 1 

Ge b [ 2 2 -- u. +u.+1 - 2u. 
2 t. ~ 1 1 

,. 1-

((
dw. )2 2 · 

. 1. + y. - 2 
·' d'X 1 

dw. 
1 

dx 
") 

.. 

y. 
1 

n 
I 

i=l 

2 + L. 
1 

q. w. dx 
1 1 

2 · dwi+l 
+ Y i+l - 2 dx 

dx 



where: 

b 

q. 
l. 

-ll-

= the uniform width of the laminated beam 

= the length of the beam 

= the lateral load (lbs/inl on the ith layer 

Taking variational derivatives of this expression with 

respect tow., u., and y
1
. gives the following differential 

l. l. 

equations and boundary conditions. These are the equations 

boundary conditions that are defined by the variational proce-

dure. The vertical line ~~ indicates evaluation at the limits 

·of integration. Those terms labeled "(b)" are the governing 

differential equations. 

2 
d u. 

l. 
- Ebhi --2-

dx 

Geb ( dwi~l dw. ) 
+: (l-oli) t u. -u. 1 +K. 1 d -K. ly. 1 +L. 1 d 1 -L. 1Y· i-1 l. J.- J.- X J.- J.- J.- X J.- l. 

+. (1-6 .) e u u K 1 .f.K -L. l. 
G b ( dw. dw.+l ) 

nJ. ~ i- i+l- i dx iyi J. dx +Li'Vi+l 
l. 

'- 0 

(13a) 

(13b) 
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Ebh~(d2w. dy.)dow. £ 1 1 1 1 
""T2 -.-2- - dx (i}{ 

0 dx 

3 ( 3 Ebh. d w. 
1 1 

~ dx 3 

2 

-~) 2 
ow. 

dx · 1 o 

GelJ (-(1-u. ) + 
~1 t. 1 1-

G.b (-+ (1-c5. ) e 
t. 1n 

1 

dui+l 
K. I<. 1.. - -

1 dx 1 1 

dw. 
1 

dx 

K.L.y. 
1
): . 

1 1 1-
ow. 

1 0 

(j2w. 
2 __ ._J. f 

L. 1 
dx

2 1-

2 
d w. 

K~ __ 1 + 

dx
2 1 

2 
d wi+1 

dx 
2 

- q. 
1 

+ 

= 

K~ 
1 

K.L. 
1 1 

0 

ow.. = 0 
1. 

0 

2 dy. 
1 

du. 1 . 1-
L. 1 -- + L. 1 dx dx 1-

dy. 
__ 1 + K. dx 1 

dyi+l ) dx 

1-

dy i-1) 
dx · 

du. 
1 

dx 

I 

... 

( 1'4a) 

(14b) 
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3 . 
Ebh. (dy. l. l. 
-:-r2" dx 

d2wi) R. 

2 oy. = o 
dx 1 

o 

Ebh~ 
l. 

-r2 

3 ( ::3i -
G b e 

+ (1-ol..l> t 
. 1 1.-

2 

+ Gbh.y. l. l. 

du. d w. 1 l. }.-
+ L. 1 dx + K. lL. 1 2 - K . lL. 1 · 1.- 1.- 1.- dx 1.- 1.-

dyi-1) 
dx 

2 dy. 2 d wi du. 
- K. ----1 + K ---- - K. ----1 

( 

2 

1. dx i · dx 2 1. dx 

2 
dui+l d wi+l 

+ K. d + K.L. 2 1 x 1 1 dx 

(lSa) 

(lSb) 

where o. . is the kronecker delta ( o. . = 1 for i=j, o .. =0 otherwise) 
l.J l.J l.J 

Equations 13a, 14a, and lSa are boundary conditions that must 

always be satisfied. These equations may be satisfied in many 

different ways. The physical meaning of the solution is dependent 

on how the boundary conditions are satisfied. This is similar to 

the situation in a homogeneous beam problem where the choice o~ end 
! 
' 

condition determines whether a beam is simply supported, built in, 

cantelevered, etc. 

Equations 13b, 14b, and lSb are solved by the Ritz technique. 

The particular physical problem considered in this paper is a uniformly 

loaded simply supported laminated beam. The approximating functions · 

appropriate for this problem are: 



n 
wi(x) = I 

j odd 

n 
u. (x) = I 1 j odd 

n 

I 
j odd 

a .. 
1J 

b .. 
1J 

c .. 
1J 

. -14-

j1Tx 
Sin -R,-

j1TX Cos -R,-

Cos j1Tx -R,-

(a) ~ 

(b) 

(c) 

These functions satisfy 13a, 14a, and 15a. However the 

. ( 16) 

constants a .. , b .. and c .. are not known and need· to be determ'ined. 
1J 1J 1J 

This is accomplished by substituting the Equations 16a, 16b, and 

16c into Equation 12 and solving for values of the a .. , b .. , and· 
1J 1J 

c. . that will minimize TI*. Aft·er evaluating the integrals in 
1]' 

Equation 12, the total potential energy of the laminated beam is 

expressed as a quadratic form in the a .. , b .. , and c. . . 'l'aking 
1J 1J 1J 

derivatives with respect to a .. , b .. , and c .. yields a set of 
lJ lJ lJ 

linear simultaneous algebraic equations in the a .. , b .. , and c ... 
1J 1J 1J 

After much algebraic manipulation the governing algebraic equations 

may be·written as follows: 

! ! 
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Ebh~ (' )3 l. J 7T 
aij - 12 T .cij 

E b Eeb 
+ ( 1- 01. 1 

} e (a . . -a . 
1 

. } + ( 1-o . } t (a . . a . + 1 . } 
ti-l l.J 1.- J 1.n i l.J- 1 J 

G b ( 2 _e_ L. 
t. 1 l.-1 1.- . 

2 ( jR,7T) a .. - L. 
1 l.J 1.-

= (j odd} 

for i = 1 1 2 1 ••• 1 n 

+ (l-o. 1 > 
l. . 

G b ·( . 
t .~ bij - bi-1 
l.-1 

- L. 1 1.-
G b ~ + ( 1-o . } te b

1
. J. - b

1
. +l l.n . 

l. 
a .. +K. c .. -L. 

l.J l. l.J l. 

for i = 1 1 2 , ••• , n 

(17} 

(jt7T) 

(18} 



Ebh~ 2 
12

1 (j;) 

(1-o .1) t e Lf-1 
G b ( 

I 1 i-1 

G b 
e 

2 
c .. - L. l 

1] 1-

a .. 
1J 
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+ Gbh. 
1 

c .. 
1] 

( j;) a +L b. l . -L. lb .. . . . 1 1] 1] 1- 1- J 1-

J ~- J_- 1-. + K : 1 L . 1 C . 1 1·) 

(1-o. > t. 
1 

- K2. c .. 
1] 1 · 1n 

K. L. 
1 1 

I 0 

for i = 1 , 2 , . • . , n 

After close investigation of Equations 17, 18, and 19 it is 

apparent that the index j is decoupled from the j-1 and the j+l 

terms. This means that the solution procedure for finding a .. ' 
~J 

b .. , and c .. (i=l, ... , n; j = 1, 3, 5, ... N) is a series of 
~J ~J 

small problems (a 3n x 3n set of algebraic equations) • In other 

words, the solution may be approximated to any degree of accuracy 

desired ·.by. solving the Equations 17, 18, and 19 repeatedly and 

making the value of N in Equations (16) as ·large as desired. 

Ex~erience to date indicates that four or five terms (j = 1, 3, 

5, 7) is adequate. 

( 19) 



,,, 

-1~-

PARAMETRIC STUDIES .,..· 

Numerical results obtained by solving equations 17, 18, and 

19 give deflections and stresses that are in good agreement with 

expectations. When the shear modulus of the epoxy is s~t equal 

to zero the laminated beam acts as if the layers were bending 

independently. When the shear modulus is set equal to the classical 

Ee/2{l+v} value the results agree with standard composite beam 

theory. In all of the following parametric studies the followi!ng 

items are kept constant. 

E {metal} = 16. X 10 6 psi 

G {metal} = 6. X 10 6 psi 

Ee {epoxy} = 1.0 X 10 6 psi 

The value of epoxy shear modulus is treated as a parameter 

in the following study. However, particular attention should he 

directed at the results for Ge = 10000. psi. 
. . 3 

Experimental work 

at Princeton indicates that the PLT toroidal field coils have an 

egoxy shear modulus near this value. 

Th~ parametric studies are based on a beam with dimensions 

and end conditions shown in Figure 3 . 

.... 1~:.....------- 200"------~~ 
764778 
Fig. 3. 
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The net loading intensity in all cases is 1.0 lb/in. The 

pa!ameters that were varied are the epoxy shear modulus (Ge) , 

the fraction of epoxy in the total cross section (R) , and the 

number of layers in the beam. In all cases, the total heigh_t 

of the beam has remained a constant 5 inches. This means that 

as the number of layers in the beam changes, the height of 

each metal layer and each epoxy layer changes. (All metal 

layers in a calculation have the same thickness.) Table 1 

contains a summary of the cross sections of all cases considered. 

F'igures 4, 5, and 6 illus·trate the relationships among 

epoxy shear modulus, fraction of epoxy, and number of laminates. 

In all cases the figure labeled B presents the details of the 

lower part of the figure labeled A. 

Figures 7, 8, and 9 illustrate dependence on shear modulus. 

Figure 10 illustrates that maximum deflection of a laminated: 

beam still varies linearly with t 4 . 

Figures 11 and 12 illustrate strain development across a 

laminated beam as shear modulus varies. As G approaches larger 
e 

values the strains approach classical results. 

Table 2, 3; and 4 contain the numerical data presented in 

Fiqures 4 to 12. Those readers interested in maximum strains. 

in ~poxy and copper can find the results summarized in Tables 

5, 6, and 7. These last tables present the maximum fiber strains, 

in the outermost surface of copper and the maximum shear strain 

in the epoxy layer closest to the neutral axis. 

The results presented so far have been for the beam illustrated 

in figure 3. This beam was assumed to have a regular pattern of 

laminates. The equations developed in this paper can also model 

·I 
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a straight beam made of laminates of different thicknesses. 

Figures 13 and 14 present the results for a straight laminated 

beam having the same cross section as the PLT toroidal field 

coil. This cross section was calculated to be 2.32 times more 

flexible in bending than a beam of solid copper having the same 

total build. 

CONCLUSIONS 

The equations presented here give a description of deflect~on 

and stress in straight laminated beams. The results obtained to 

date indicate that 

1. The greater the fraction of epoxy in a cross section the 

more flexible that cross section becomes. 

2. The lower the epoxy shear modulus the more flexible the 

cross section becomes. 

3. The stresses in typical laminated beams are rather in-

sensitive to the epoxy shear modulus. For values of the epoxy 

shear modulus greater than 10,000 psi the laminated beam is 
i. 

very similar to a solid beam of metal. However, once the shear 

modulus of the epoxy falls below some particular value the lam-

inated beam becomes radically weaker. This result was not 

intuitively expected. 
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1 IZZZC20 I). G~l'1t'1A (It) .. CZZZ (30 1). DGAI1D><C 1)). CZZZC40 1) .. STl C I):. 
2 ( Z Z Z ( 50 1 ) .. ~::; -·2 C 1 ) ) .. 1: Z Z Z ( 6 C 1 ) .. G f.: r··1t''f~ E: ·c 1 ) :·1 • 1: Z Z Z 1:7 0 1 ) • DUD >U 1 ) ) • 
3 CZZZ CE:O 1). D.JD><C l) ~~. CZZZ ;:SOl) .. [21. . .1(<2 ( 1)) .. CZZZ (!DO 1) .. D2UD>:2 ( 1)). 
4 ;:zz::: ( 1 !Dl) .. ···JC!I·l;: 1)) .. (ZZZ C 1201). \.I( 1)) .. C:ZZZ ( 1301). \:'8 ( 1)) 
PIE= 3.14!5~2654 

PEAD(5. lOO.EiD=lOOOl TITLE 
PEADIS. !02) Et'!.Gtt.E><.G>< 
PEHD 15 .. ltJ2) ~LEtL E: .• CEIHZ 
PEmtt5.101) t~.r·t IJf< .. KE'/l .• KEY2 .. IE~_IG 
r'3 = 3;f:t~ 
IF ( KE't'l .~r::. 0 ) GO TO 3 
TEST IF THE E:Eml HAS A Ut< IFORt·1 CP03S SECTIOt~ 

IF KE't' I .. EO. 0 CROSS SECT I on I::. Lit I I FORt"l 
IF KEY! .NE. 0 CROSS ~ECT!CIN ~~~IES 

CODE FOR UNI=ORM CROSS SECTION 
F:EAD(5.102/ H~.-TA 
DO 2 I = L ··J 
H ( I) = HA 
Tt: I) = TA 
T UD = 0. 
GO TO 5 
CODE FOR A '·l~P I ABLE CROSS SECTIOH 
DO 4 I = 1 .. ·1 
PEADC5.!D2) 1--f(l). TO) 
CCttH!t'UE 

REHD IH T-1E LOAI:t=tlG -:- IF KE\'2=(1 )E HAVE THE ~3t'~ME LOAD Ot-1 HLL LRYERS 
IF ( I<E'y'2 . t·E::. t:D GO TO 5£' 
READ(5.![12) OJ 
r~o ~~:::: I = 1. N 
~~~ ( I) = OJ 
I)T ·= N:t:C!J 
GO TO 70 
r'EADIS. 101) HLOAD 
DCI 6 I = L --1 
[I(I) = 0. 
CtT = 0. 
DO 7 I = !.~LOAD 
READC5 .. 103l J.OJ 
C!T = OT + QJ 
C!~.!) = OJ 

DEFINE THE A< AND AL ARRAYS 
HL = t•l-1 
DO :3 I = 1. ·lL 
IF' = I+l 
~~r:: ( I ) 
AL (! ·' 

H ( I ) ./2 . + H l: I ) :f'T ( 1 ) / ( H ( I ) +t1 ( I F' ) ) 
H ( IF') /·2 . + H ( IF') *Tt: I ) / ( 1- ( I ) +H ,. I P) ) 

PAGE 0001 
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FORTRAN 1 V .::; LEVEL 21 DATE ?6300 

f:I044 
t:n:145 
OU<-16 
OtJ47 
oo~1:~: 
oo~-=:· 
IJtJ':oC' 
OD5t 
oos::: 
,Jo:.:: 

005"~ 
0055 
005t; 
1][1':.? 

005::: 
,_)1):.9 

0060 
CaJ61 
t]062: 

81)63: 
0064 

- o~~)6~! 

1)066 
uo:;: 
006::: 
0069 

0070 
1"1071 
007:? 
l~tCJ(:::; 

0074 

0•~175 
,: .:e f.. 
i-iC1?? 

0("1?:::: 
c~o:-'9 

''' I, ,,,,. 

c 

ocr 
Ul...• 

c 

9 
c 

c 

c 

c 

- - - - - - - - - ·- - - - - - - - - - - - - - - - - - - - - - -
SET UP ALL EQJATIONS 

TITLE PRitH 1 HL 
PRit'IT 11 L 
PFWH 112 .. 
PF: ItH 113 .. 
PPHH 114 
DO BE:: I = 
PR I~n 115 .. 
CotHI~lUE 

t~.n, IJK 
ALEt·l .·B .. CEtH2: 
Eft. Gn. E><. G>< 

PP IHT 116 .. 
DO 2D JJ = 

Ltl 
l..C!(I) 

OT 
Lt·l 

.DO 9 I = 1. 120 
AfiS ( I :• = 0. 
DO 9 J = 1, 120 
A(LJ:r =0. 

A J = ~ JJ- 1 ) :t:2 + 1 
PJ1 AJ*PIE/ALEN 
PJ2 PJ H:PJ 1 
PJ3 =· PJ2*PJ 1 
PJ4 = PJ3*P.J1 

DO 15 I = L N 
ll !·-1 
IP i +1 
I 1 i. I -1) *3 + 
I2 11 + 1 
!3 1 1 + 2' 

.. H(I),T(l) 

IF C l • EC!. N ) GO TO 10 
SOME TERt·1'3 THAT APPEAR F~~EC!UENTL Y IN THE EQUATIONS ARE 
CA 1 Et··H:B*-H ( I) *-H ( I) *H ( I j /12. 
CA2 = E~··l*B*H (I) 
EA 1 = E><*B/T( f) 
G~"!l = G><*B/T ( I) 
IF ( I . G T. 1 ) GO TO HJ 

C SET UP THE EC!UATIONS FOR THE FIPST LAYER 
c 

c 

c 
c 
c 

A ( L 1) 
A(1 .. 2J 
A (I. 3:0 

ACL4) 
A (I . ':•) 

. ~·: ~~·J. .. 6) 
At·i<::; ( t) 

A 2 . • 1 
A .-, .-, 

.::. .:::. 
H 2 ~ 

.• .:1 

CA1:t:P.J4 + EAl + GR1:t:AIC(1):*AKC1)*F'..T2 
-GA1:l:AK( 1)*PJ1 
-CA1*P..13- GAl*AK(1)*AKCl)*PJ1 

-EA1 + GAl*AK(1)*ALCl)*PJ2 
GA 1 t:Af< ( 1) *PJ 1 

-GAl*~KCl)~ALCll*P..Ti 
<1 •• t :1~! ( l :• ./ i.. H J *P I ·:: ) 

-G 1 *r~f< ( 1 ) *F'J I 
CA *F'.J 2 + GA 1 
I~H ;t.:f·H.:: ( 1 ) 

· . 

I 
tv ..... 
I 



FORTPA~ IV G LEVEL 21 DATE 763[1[1 

00~:5 
;:10:~:~; . 
0 f)~::~: 
c~~~t::::.-=-: 

OOB:? 
()0~:(1 

(t0~1! 

('1()::;.:_· 

009:: 
CnJ9.c; 
009':· 
\]1]9t. 

0097 
~.-109i::: 

U09~~ 

IJ 1 En] 
0 1•=1! 
O!C2 

0103 

0 !O.c: 
0105 
01 E16 

01 t)? 
0 ux:: 
Dl :]9 
0110 

0 Ill 
8112 
0113 . 

0 11.:..1 
0115 
•J 1 1 6 

Lil 1; 
.~1 1 1 ::: 
0119 
lj 12(:1-

I~ 

c 

c 
10 

c 

AC2,4) 
1::H~:·.s) 

f·f (:? .. 6) 
l:ltt:; ( 2) 

~f (3 .. 3) 

~l ( 3' 4:1 
H(3 .. 5) 
~·~c::: .. £.) 
i:ltt:; ( 3) 
GO TO 15 

-GA 1 >I~Al ( 1) *F'J 1 
-Gf:~ 1 
I::; A l > 1~AL ( 1 :' 
0. 

-CR1*F'J3- GA1*AKC1)*~K{l)*F'Jt 
G A 1 >i:A :< C 1 ) 
UiJ:'l<PJ2 + Gt'HB:t<H(1) + G~l>-:AUU*AKC1) 

-GA1*AKC1:*AL:1)*PJ1 
-GA 1 :q:w c 1 ::· 
I::;H !=,H~I< ( 1) >-:AL ( l) 
D. 

SOME MORE USE~ULL CONSTANTS ~R~ 
EA2 = E>:>t:E:/TI I U 
GA2 = G:,<>t:E:/'T(J~) 

IF C I .EQ. N ) GO TO 14 

C SET UP THE EQUATIONS FOR THE MID~LE LAYERS 
c 

c 

c 

c 

r 
c 
r· 

A (I 1.. I 1-3) = -EA2 -:- GA2>H~K (JLH:A_ ( :L:::~LT2 
ACI1 .. 11-2) = -GA2*ALCIU*PJ1 
H ( I 1, I 1-:) =-GA2:t:.Af:; ( I L) *AL ( I L) >t:P J 1 

ACJ1.J1) = [q1*F'J4 + EA2 + EA1 + GA2*ALCIL)*ALCILl*PJ2 + 
GA 1 :y:lf< ( I) w~K ( I) >WJ2 

ACI! .. II+!:· ;::;A2WHL..(!L:.::-*F'.J1 - GAH:A[(j *PJl. 
A( I 1.. I 1+2:• = -CAJ:,ioF'.J3 - GA2t:AL( !_):*AL( U>t:PJ1 
A C I L I 1 +2) = -CAl >t:F'J3 - GA2*AU L) *AU L.) *F'J 1 -GA t:+:AI(( I) o\CAK C I) ic='J 1 

A ( I 1. I 1 + 3) =-E A 1 + G A 1 >':A K ( I ) *A L ( I ) *F' J 2 
ACI!.If+4) = GAI*AK(!)~PJ1 
A( I!.. I1+5) = -GA1-*AKCP*AlCI)*PJ1 
A t,l !::;; ( I 1 ) = 4 . ·+:0 ( I ) / c A J >l<P I E ) 

A( 12 .. I 1-2:) 
ACI2 .. I1-2) 
ACI2.I1-I) 

GA2*AK (I L >t:P J 1 
-GA2 
-GAZ*AI< ( I L) 

A( !2. I 1) = G::'!Z*AU lU*PJl - GAl:l:=JfcCD*F.J1 
A(J2 .. I1+1) CA2~tPJ2 + GA2 + GPl 
~-~ ( I2 .. I 1+2) -GA2:t:AL ( IU + GA 1)J:A< (:) 
• 

AI: I2 .. I 1+3 -GA2*AL( I) * PJ1 
ACI2 .. !1+4 -=-GA2 
A( I2 .. I 1+'.:· G82>H~L( I) 
~dE ( I 2) = 0 . 

PAGE 00[13 
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FORTRAN IV~ LEVEL 21 t·lAIH DATE ?6300 ll/32/11 

0 I:? I 
01.?:? 
t! I ~:"3 

0125 
0 L:.·.; 

0127 
012::: 
0129 
1:1130 
0131 

C· 13:2 
0133 
0134 

0135 
0136 
0137 
013:::: 

0139 
0 140 
0141 

0142 
0143 
(1144 
0145. 

01.:16 
Ct147 
C1 i ,;):::: 

0149 
oj 1 S;J 
0151 
0~5:2 
,-, 1 C"'7 
_; ..l -'··-· 

0154 
r~ 1 :;~, 
c 15;.:. 
(.!] :.? 

c 

c 

c 

ACI3.II­
A ( I3 .. I 1-
ACI3 .. I1-

-GA2*AKCIL)*ALCILl*PJl 
GA2><AL ( I L) 
Ct=:t2>(~1K ( I U *AL C I U 

AC I3_. I l) -CAl>t:PJ3 -GA2:,t:AL( ILH:AL( IUwPJl 
-GA I *AI< (I) *AK (I) *PJ 1 

ACI3 .. I1+1l = -GA2:t:ALCIU + GAiaq~l((l) 
AC·I3, I1+2) = CAI*PJ2 + Gl'l*EPt<H(I) + GA2>1<(iLCIU*AL<IU 

l + GA 1 *AI< C 1) *AI< ( I) 

A C I 3 .. I" I + 3 ) = - G A 1 '''r:H< C !) ;J:F,L ( I ) *P J I 
AC I3 .. I 1+4) = -GA1>t<AKC!) 
AC I3 .. I 1+5) = GAI*AI(( l)*t=:tl C I) 
AHSCI3) = 0. 
GO TO 15 

C EQUATIONS FOR THE LAST L~YER 
c 
14 

c 

c 
c 
c 

c 

c 
c 
c 

c 

15 
c 
c 
c 

ACILII-3) -EA2 + GA2*~K(IU*ALCIUlWJ2 
AC I L I 1-2) = -GA2*ALC ILH:PJl 
f4CIL Il-l) = -GA2:t:Af<CIU:t:AL(IU*PJI 

ACILII) = CAI*PJ4 + EA2 + GA2*ALCILH<AUIU:t:P.J2 
ACIL I1+1) = GA2*ALCIU*FJI 
ACIL 11+2) = -CA1*PJ3- I~A2* AUIU*AUIU*PJI 
AHSCI1) = 4.:HHI)/CAJ:t:PIE) 

A C I 2 .• 'I 1 - 3 ) 
ACI2 .. 11-2:.' 
AU2 .. Il-1) 

GA2a:AK C I L H<F J I 
-GA2' 
-GA2*AK C IU 

A C I 2, I 1) = GA2*AL ( I U *P J I 
ACI2, Il+l) CA2li:PJ2 +GAl 
r::,c I2. I 1+2) -GA2>t<ALC IU 
AilS( I2) ~ 0. 

ACI3 .. I1-3l 
ACI3 .. I1-2) 
ACI3 .. Il-l) 

-GA2*AKCILl*ALCILl*PJ1 
GP.2>t:AL C I L) 
GA2*AK(ILl*ALCILl 

A ( I3 .. I 1) =-CA I*PJ3 - GA2>rAL( IU >Hll ( ILH:PJ 1 
ACI3 .. I1+1) = -GA::: *ALCIU 
AC!3. I1+2) ·=.CA1*P.J2 + Gr*B*H(I) + GA2*ALClll*ALCILl 
AHSC !3) = 0. 
Cl~'lTIHUE 

MATP I>< COt1PLETE NOW PRI~T MATRIX IF DEBUG REQUEST HAS BEEN MADE 

IF C IBUG .ED. 0 :' GO ·TI) 160 
VD 16 I =! . 1-13 
"'F:JHT 119 .. !.I.AtJ•:;ci) 
?RJNT !20. ;~(l.J).J=l.~3) 

PAGE 1380.::1 
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FORT~AN IV G LEVEL 21 

016! 
0 [1:::::: 
1=1] f.:; 
Cl.l t. ._; 
'.~1 It. 5 
01 t.t.. 
u 1 t:.:-' 
0 tr~.:.::: 

0 u:.::. 

01?1] 
1~1! 71 
Cit?:::: 
01?3 
0 17-l 
C·I?S 
0176 
()I ?7 
017::: 
0179 
018C 
01:31 

(: L:::: 
t_l l ::: ..:f 

0185 
o 1t::s 
Ctl ::::;: 
0 I:::::: 

0191 
0192 
1).19?; . 
019.:\ 
I) 1;5 
"' 1 :::. t. 
;_') 1::07 

.··,- . .:.:.. ._ .. _ 
::.:r! 
.:.:· ~~=.~' 
::i~l ~; 

:.?(i-~ 
:::;~1=-:. 

16 

,~ 

17 
2[1 
c 
c 
c 

21 

22 

24 
r 

c 

c 

26 

CO':lT 1 t·tUE 
!='F.'lll' 12i 

CALL SOLVE ( A.ANS.N3.KEY ) 

IF ( K~Y .NE. 0 l GO TO 1000 
DO 17 I = I. H 
!J = (]-1):1::3 + 1 
P = II+ 1 
!3 = I 1 + 2 
A!J(I.JJ) = AH~3(!1: 
81J(I.JJl= ANSCI2) 
CIJ(I.JJ)= ANS(!3) 
COHTINUE 

DO 21 1 = L H 
PPIHT 130. T 
PPI~IT 13l.(ALT(I..J:.J=L·M) 
COHTit·IUE 
DO 22 I = 1 .. t·t 
PRIHT 132. I 
PP ItH 13 1.. ( E:! J ( I.. J). .J = L I'D 
COHTINUE 
DCI 24 I = 1. H 
PP IHT 133 .. I 
PF~ l tH 13 I . ( C I J ( I. J) . J = 1 .. tT' 
C:OHTI t1UE 

: ( 1) = -CEr·ITZ + H ( 1) ,....2. 
[1[1 25 J = 2. H 
z ( J ) = z ( J- I ) + T ( [ ) + ( '-j ( J ) +L: ( J- ·_ ) ) /2 : 

IF ( DABS(Z(J)) .LT. l.DE-6 ) Z.C: = 0. 
COtHit·tUE 
DUll = I Jl< 
><DEL = ALHVDU!l 
><I•D = -><DEL 
]JI( = ]JI( + 1 

DC· 40 I I = 1.. I JK 
DC 26 I = 1. 40 
i_,J(I) = 0. 
1_1([) = 0. 
GAf··1f·1A ( I) = [. 
GAf'lf'lAB ( I) = 0. 
DGAf"lD>( ( I) = [!. 

It!~D>< ( I) = 0. 
DI>JD><( I) = 0. 
D2UD><2 (I :.1 = F1 · 

"D2IjJD><2 (I) ·~iJ: 
f··IOfl( I) = 0 . 
\:'E: CI) = 0. 
\.I(I) =D. 
TOTt·1ot'i = 0. 

I 
IV 
~ 

I 



FORTF:At~ IV G LEVEL 21 DATE 763EtB 1 l/32/11 

02Et6 
020(' 
020::: 
f:J209 
0210 
0211 
021::: 
021:: 
021L 
021': 
021t: 
0217 
L.121::: 
f.l21S 
Ct22C 
0.221 
C122:::: 
0222' 
022.:..: 
0225 
()226 
0227 
Et22B 
0229 
0230 

f3231 
0232 
0233 
E123~ 
0235 
0236 

0237 
0238 
0239 
1)2~\El 

024! 
02.:::~2 
fJ243. 
0244 
8245 

0246 .· 
(124;-' 
02,·~::: 

0249 
0251] 

0252 
0253 
02':·4 
025~~ 
0256 
0257' 
(12:.:::: 

27 . 

28 

30 

31 

40 

1000 
lf2H) 
H31 
102 

TOTVM = 0. 
TO T'v'E: = 0 . . 
><f1D = ~<DD + ><DEL 
DO 2:3 I = 1, l'l 
DO 27 J = L t1 
AAJ U<l*2 + 1 
ARG AAJxPIE*XDD/ALEN 
SSS =JSIIi(ARGl 
CCC =JCO::;(ARGl . 
ARG = AAJ:':P I E/ALEN 
L.J( I) = L,l C I) + A IJ ( L J) :t: SSS 
'-' ( D = U (f) + E: IJ C L J) *CCC 
G~Hlt"lA(]) = GAt"t~·tfH!) + CIJC LJl*CCC 
DWDXCil = DWDXCil + ARG*AtJCl.Jl*CCC 
Ili_iD><Ol = DUD><CD -·ARG:tBIJCLJ) * SSS 
DGAt"lDXCI) = DGAt"lDXCil - ARG*CIJCI.J) B SSS 
D21.,JD><2 C I) = D21.,JD><2 ( I l - ARG>t<HRG*A I J C I .. J) * SSS 
D2UDX2CI) = D2UDX2Cil - ARG*ARG*E:IJCI.J) *CCC 
S T 1 ( I ~ = [IUD>< ( I l + H ( I ) :t· ( D 21.,11'1 ><2 ( I l - D G A t·ID X ( I ) ) /2 • 
ST2CI.n = DUDX(J)- HCI)*(D21.,J!:I><2Cil-DGAr·JDX(J))/2, 
A I = I 
Z 1 = Z: ( I ) - H ( I ) /2 . 
Z2 = Z: C ]) + H ( 1I) /2. 
ZAVG = CZI+Z2)/2. 
r·tor·t (I) =Er'·N:E:* ( DUDX C I) *ZA\:'G:tc.H C I) - ( D2LJD:x2 (I)-DGAt1DX C I)) *H (I)* 

1 HCI)*H(J) /12.) 
TOT1"11Jr'1 = TOH1Dr·1 + 1·101'·1 C I) 
VCI) =GAMMA(!) * GM * 8 * HCI) 
TOTVt"l = TOTVM + VCI) 
IF C I .EQ. I ) GO TO 28 
!L = ~-1 
GAt'lhAB C I) = CU C IU -U (]) -AK ( IU *CDI.LID><( IU-GAt·TMA ( IU) -AL< IU * 

1 CDWDX(l)-GAt"lMACI)))/TCIL) 
\lB ( I) = -GAt1J·1AB C I) *GX*B :f:T C I L) 
TO T'v'E: = TC! T\:'8 + 'v'E: ( I ) 
COIHINUE 
R\:' = OT *ALEH:t:( 1.-2. *XDD/ALnD /2. 
Fn-101·1 = QT * P.LE~l*O<DD-XDD:t:XDfVALEH) /2. 
\:'TOT = TO T\IM + TO TVB . 
PP HH 14~~1.. XDD 
DO 30 I = 1. H 
PP I NT 142. I.. l.J C I) , U ( I) , GAt1t"1A C Il , Dl.ciD}<~ ( ]) .. DUD>< C I) , DGAMDX(!) , D2WDX2 ( !) 

1 , D2UDX2 C I) , ST 1 ( ]) , ST2 C I) , GAMnAB ( ]) 
CDHTIHUE 
PF.: IHT 141 
DO 3 1 I = 1 , N 
PRI~IT 143. r·JOt"lCILVCILVBCl) 
COHTII-IUE 
P~. I HT 144. _R~10~1. TOTI"1Dr'1 
F'R I HT 145. RV.. VTOT. TOTVM, TOT\IE: 
COHTIHUE 
GO TO 1 
CALL E>OT 
FOPJ·JAT ( 20A4) 
FORr···JAT( I 0 I 5) 
F0Pt1AT(4F2f~t. 0) 

PAGE 0006 
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FORTRR~ IY G LEVEL 21 ll/32/ll 

025~~ 103 
02i;C 1 10 
(.12.:. ! 1 1 1 
C2t:.2 1 12 

0263 1 13 

0254 1 14 

0265 1 15 
0266 1 16 
1::267 1 1 9 
026::: 121)• 
0269 1"' <... 1 

02?0 130 
027 I 13 1 
0272 132 
02?3 133 
u.2?4 14[1 

02?5 141 
0276 142 
f]27? 143 
02?::: 144 
0279 145 

02t:O 

/ 

FOPt"lATC I2.F25.~3) 
FOPr·JAT- ( 1 H 1 .... ·>"20><. 20A4) 
FOF::r·ltHC"/113>-:. "1·1 = ·· .. 13 .. El><.. ··r-1 ·· 15 .. 10><.' IJK =··, 15) 

F'JRr·lAT(./lf:l>: .. LEHGTH o.=- B:::r-H·lC!tK-lES = ··_.F15.2. 
1 /IOX,'WIDT~ OF BEAM CINC-lESl = ',F 5.2. 
2 /IOX,'POSITIOH OF NEUTR~L AXIS = • Fl5.2l 

FDRr·JAT-C /10>-: .. ··Er·l =".D16.8 .. /H:J>c··::;r·1 =".D16.::: .. /1D><.·"E>< =',)16.8. 
1/lOX.'GX ='~D16.8l 

FOF.:r·JAT( // ID> : .. CROSS ~:;ECT IOH DESC::;: I PT I Otl .. /1 0)<:. 'LA'(ER tJO .• , 2><. 'LO'f:ID 
1DIHG IHTEit:.tT'Y' CLBS>HL" .. S>< .. ··H(!)",20><.··Tc1)··) 
FORMATC10X. I6.3D20.8) 
FORMATCSX.'~ET LOAD =· .D20.8) 
FORI·lfH (/5>< ... r;:[li_,_! = ... I 5. . mt:; ('. 13 ... ) = · .. , DcO. 8 
FORMAT( IX.ED20.8 
F 0 R MAT ( 1 >< . . - - - - - - - - - - - - - - - - - - - - - - - -
1----- ----------- - -') 

FOF-:r·JAT(/113><.."AIJ I =·".I5") 
FORMAT( IOX.5D20.8 ) 
FORt"lAT (/ 10><."" B IJ = ' • I 5 ) 
FORt·lAT C/1 O><.. ·· C IJ = •. I 5 ) 
FDRt·lAT(/10><.. ">< = ··_.Fl6.3 ... ···"S><.. l.cl U GAt"111A DI.,.JDX 

1 DUD~< DGA~·lD>< D2L,ID><2 D2UD><2 ST 1 ST2 
2 GAr·U""lAB. ) 

FORI1ATC12X.'t·101""Hl",!O><."V- rr.D><."v'- B·") 
FORt"lATC 1><. I2 .. 11F10.6 ) 
FORMATC10X.FI0.2.5X.F10.2.5X.F10.2 ) 
FDRr·lAT ( I>: .. ' ~-mlEtH SHOULD = ... F 10. 2. 5><.. "110ME~H ='. F 10. 2 ) 
FOF.t·1AT ( 1>< .• ·• ~l-lEAR ~;HOUU• ·· , F 1[1. 2 .. 5>:. ··SHEAR = ' , F 10. 2. 5 -<. 

1· = (' .. F!0.2 .. ·· + ·, F10.2. ' )"/) 
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C15 
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20 
c 

SUBROUTINE SOLVECA.ANS.N.KEYl 
REAU:::: fH 120 .. 12€1). At·lS ( 1 ;' .. C 
Nf"11 = N - ! 
I<E'r' .= 0 
I"1Q lE1 IR = 1. Ni·t1 
C= AC JR. IR) 
IF ( C .ED'. 0.0) GO TO 200 
DUf"l = DABS (C) 

IF ( IoUt·l .LT. 1.0E-10 PRitH 400. IR 
PR ItH 300.. IR .. C 
PR HH 30 1 . (A ( I R. I C) .. I C = 1. t·D 
IFW1 = IF-: + 1 
PRINT 301. ( ACIRPl. ICLIC = l.H) 
IF-:P2 = IR + 2 
PR IHT 301. C fH IRP2. JC) .. IC = 1.. H) 
PRINT 301. ANSCIRl.AHSCI~P1l.ANSCIRP2) 
DO 9 I = IRP1 • H 
II- ( A( I.. IPl .ED. 0. t;O TO 9 
C = A ( I. I R ) /A ( I R • I R ) 
ACL!R) = 0. 
DO 8 J = IRP L H 
A ( I. J: = fH I. J) - [lf(A ( I R ,J) 
AHS ( I: = AH:3 ( I) - C*AHS ( I R) 
CONTitlUE 
PRIHT 301. CACIR.I().J[ = L ~~) 
PRINT 301.. ( ACIRPLIC) .. IC=L~n 
PR IIH 30 L CA (IRP2 .• ICL IC= 1.. t·D 
PRIHT 301. ANSCIRl.ANSCIRP1l.ANSCIRP2l 
COtHit·WE 
DO 15 I = L H 
PRINT 500. I.ANS(I) 
PRIIH 3E1l .. (ACI .. .J) .. J=l.Nl 
COt··JTit-lUE 
PF:HH 301. CAH::;CIC).JC = Ltn 
~1I·IS O·D = r=lt·lS Ct·:) / A ( ~L N) 
DO 20 I = 2 .. H 
IR = tH1 - I 
C = At·lS ( IR) 
IRP 1 = IP + 1 
DO 18 J = IRPLN 
C = C- ACIR.Jl*ANSCJ) 
ANSCJR) = C/ RCIR. JR) 
F'RIIH 301. ( AH::;(JC).JC=LN) 
GO TO 9000 

200 KEY = IF.: 
PR I ~lT 40 1. KE\' 
PR IHT 301. CAt·lS (I(). IC= L ~D 

9000 RETURN 
300 FiRMATC//l0X.I10.10X.D2B.8 
30 1 FDR~1AT ( 1>:. 5D20.::: ) 
400 FOR~1AT(//1D><. "I_,JfiF.:Hit·lG - DIAGQNAL TERI'l ot~ ROW'. IS.' IS SMALLER THAN 

lAH l.EJE-1131 ") 
40 1 FORr1AT ( /.-0: O><. '***** S I tli:;ULAR MATR I>< - D I AGO HAL TERM IS ZERO'. 11:::1X .. 

1 I 5 ) 
500 FORMAT(/JOX. IS. 10X.D20.8 
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i 
I 
! 

! 

' -

nh + (n-1)t = H 

H - 5 inch 

_, 

R = (n-1)t 
H 

R = 0.05 

n h (ih) t (in) 

2 2.375 0.25 

3 1. 583333 0.125 

4 1.1875 0.083333 

5 0.95 0.0625 

'6 0.791666 0.05 

8 0.59375 0.035714 

12 0.3958333 0.0227272 

20 o. 237_5 0.01315789 

30 0.158333 0.00862C689 

TABLE 1 

R = 0.10 

h (in) t (in) 

2.25 0.5 

1.5 0.25 

1.125 0.166666 

0.9 0.125 

0.75 0.10 

0.5625 0.07142857 

0.375 0.04545454 

0.225 0.0263157 . 
0.15 0.017241379 

R = 0.15 

H (in) t (in) 

2.125 0.75 

1.416666 0.375 

1.0625 0.25 

0.85 0.1875 

0.7083333 0.15 

0.53125 0.107142857 

0.35416666 0.068181818 

0.2125 0.03947368 

0.1465517 0.025862069 

I 
N 
\0 
I 



n+ 2 
G-t-

375000. 0.125488 

100000. 0.126306 

10000. 0.136154 

1000. 0.216330 

100. 0.452480 

50. 0.507046 

10. 0.565747 

TABLE 2. 

Max Deflection vs. G and n e 

3 4 5 

0.127656 0.128725 0.129366 

0.128295 0.129299 0.129906 
: 

0.136096 0.136319 0.136523 

0.209402 0.204369 0.2:)1387 

0.63€164 0.709579 0.736914 

0.839725 1.047946 1.153260 

1.173679 1.850724 2.5)0332 

(def1~ction in inches) 

6 8 

0.129794 o·.130330 

0.130314 0.130827 

0.136686 0.136918 

0.199484 0.197234 

0.746631 0.7492~4 

1.226186 1.280850 

3.070120 3.927623 

12 

0.130867 

0.131343 

0.137179 

0.195144 

0.742575 

1.303911 

4.822034 

.. 
v 

R = 0. 05 

20 30 

0.131298 0.131515 

0.131759 0.131968 

0.137408 0.137528 

0.193593 0.192858 

0.732034 0.725423 

1.300135 1.291920 

5.359399 5.504592 

I 
w 
0 
I 



' 

n+ 2 
G-1-

375000· 0.125897 

100000· 0.127509 

10000· 0.146675 

1000. 0.285919 

100. 0.574668 

so. 0.624237 

10· 0.672494 

.ti 

TABLE 3. R = 0.10 

Max Deflectiqn vs. Ge and n (deflection in inches) 

3 4 5 6 8 12 20 30 

0.130462 0.132686 0.134019 0.134911 0.136029 0.137154 0.13~060 0.138515 

0.131714 0.133812 0.135083 0.135936 0.137012 0.138099 0.138976 0.139418 

0.146943 0.147571 0.148090 0.148492 0.149053 0.149675 0.150214 0.150497 

0.284303 0.278109 0.273811 0.270914 0.267378 0.264017 0.261489 0.260284 

0.911902 1.104365 1.203787 1.255214 1. 297155 1.312042 1.306132 1.298246 

1.137125 1.548667 1.832610 2.018578 2.219217 2.352114 2.394436 2.394517 

1.437954 2.366305 3.353189 4.316438 5.992962 8.169.095 9.856207 ~0.437098 

.I 
w 
1-' 
I 



n+ 2 
G4-

375000. 0.126432 

100000. 0.128849 

10000. 0.1568)5 

1000. 0.349154 

100. 0.696153 

50. 0.749723 

10. 0.800331 

TABLE 4. R = 0.15 
Max. deflection vs. Ge a~d n (deflection in inches) 

3 4 5 6 8 12 20 30 

0.133669 0.137150 (·.139238 0.140637 0.142395 0.144168 0.145599 0.133568 

0.135507 0.138808 (.]<10808 0.142153 0.143E:52 0.145573 0.146967 0.134843 

0.157803 0.159033 (.]59987 0.160709 0.161":;04 0.162796 0.163737 0.150475 

0.354363 0.348477 (.3<13720 0.340369 0.336195 0.332189 0.329173 0.304777 

1.155737 1.453212 1.624639 1.722160 1. 812~·94 1.859371 1.865118 1.748101 

1.410151 1.988111 L:.421609 2.726462 3.082:098 3.348554 3.456865 3.269109 

1. 726827 2.880548 4.1-19118 5.434599 7.800255 ll-1.167997 4.096046 ~4.299311 

I 
w 
N 
I 



n 2 
G 

0.000075 
.. 

375000. 

0.000076 

0.000075 

100,000.0 

0.000282 

0.000077 

10000. 

0.002668 

0.000092 

1000. 

0.020385 

0 •. 000139 

100. 

0.070400 

0.000150 

50. 

0.081890 

0.000162 

10. 
0.094242 

TABLE 5. 

Maximum tensile and shear strains 

Applied moment ~ 5000. in lbs. 

Applied shear = 100. lbs • 

. 
3 4 5 6 

0.000076 0.000077 0.000077 0.000078 

0.000067 0.000075 0.000072 0.000075 

0.000076 0.000077 0.000077 0.000078 

0.000250 0.000282 0.000271 0. 000283. 

0.000077 0.000078 0.000078 0.00-078 

0.002483 0.002777 0.002683 0.002799 

.0.000087 0.000085 0.000084 0.000084 

0.021719 0.025298 0.025089 0.026339 

0.000148 0.000143 0.000138 0.000133 

0.125477 0.167338 0.185013 0.200591 

0.000179 0.000183 0.000179 0.000174 

0.174158 0.233592 0.301711 0.337269 
; 

. 0. 000228 0.000276 0.000307 0.000325 

0.253808 0.452708 0.651362 0.835059 
' 

Key 

Tensile (copper) 

Shear (epoxy) 

8 12 20 

0.000078 0.000078 0.000079 

0.000076 0.000076 0.000076 

0.000078 0.000078 0.000070 

0. 00.0283 0. 0.00283 0.000284 

0.000078 0.000079 0.000079 

0.002898 0.002817 0.002823 

0.000084 0.000084 0.000084 

0.026748 0.027071 0.027262 

0.000128 0.000125 0.000123 

0.215236 0.228324 0.237119 

0.000167 0.000159 0.000155 

0.376825 0.413188 0.438898 

0.000337 0.000329 0.000310 

1.128399 1.476938 1.761533 

R = 0. 05-

30 

0.000079 

0.000076 

0.000079 

0.000284 

0.000070 

'" 

o. 0028:26· 

0. 000084". : 

0.027334 
' --· 

0. 000122- ~-,. 
'·.t. ·. 

' 

0.240554,~ 
.. 

.. 

0. 000154 ,: . -

: ' -
...... -··. 

0. 44963"8·;;:'_ 

0.000302 

1. 895361 .. 

I 
w 
w 
I 



n 

G 

375000. 

100000. 

10000. 

1000. 

100. 

50. 

10. 

2 

0.000075 

0.000075 

0.000075 

0.000279 

0.000079 

0.002577 

0.000105 

0.017837 

0.000163 

0.048541 

0.000173 

0.053793 

TABLE 6. 

Maximum tensile and shea~ strains 

Applied moment = 5000. in. # 
Applied shear = 100. i 

3 4 5 6 

O.OC0078 0.000079 0.000080 0.000081 

0.000066 0.000075 O.OJ0072 0.000075 

0.000078 0.000079 0.0)0080 0.000081 

0.000247 0.000210 0.000269 0.000280 

0.000080 0.000081 0.000081 0.000082 

0.002398 0.002723 c. (·02642 0.002760 

0.000097 0.000094 O.C00093 0.000093 

0.020241 0.023819 0.023948 0.025219 

0.000186 0.000187 0.000181 0.000176 

0.096736 0.136526 0.1=8287 0.174895 

0.000219 0.000236 0.0(0239 0.000236 

0.123889 0.192793 0.24~618 9.280679 

0.000182 0.000262 0.000328 0.0{0378 0.000414 

0.058903 0.160104 0.293950 0.441490 0.590683 

key 

Tensile (copper) 

Shear (epoxy) 

8 12 

0.000081 0.000082 

0.000075 0.000075 

0.000081 0.000082 

0.000281 01000282 

0.000082 0.000083 

0.002i76 0.002791 

O.OOOC92 0.000092 

).025807 0.026297 

•). 000168 0.000161 

I) .1929.19 0.209522 

0.000227 0.000215 

0.3279:62 0.313377 

•1. 000452 0.000463 

0.861168 1.241119 

R = 0.10 

20 30 

9.000082 0.000083 

0.000076 0.000076 

0.000083 0.000083 

0.000283 0.000284 

0.000083 0.000084 

0.002803 0.002808 

0.000092 0.000093 

0.026602 0.026721 

0.000159 0.000158 

0.221292 0.226198 

0.000208 0.000206 

0.406742 0.421496 

0.000440 0.000424 

1.595153 1.770150 

I 
w 
"'" I 



h 

G 

375000. 

100000. 

10000. 

1000. 

100. 

so. 

10. 

TABLE 7. 

Maximum tensile and shear strains 

Applied moment = 5000. in lbs. 

Applied shear = 100. lbs 

2 3 4 5 6 

0.000075 0.000080 0.000082 0.000083 0.000084 

0.000074 0.000065 O.OC0074 0.000071 0.000074 

0.000076 0.000080 O.OC0082 0.000083 0.000084 

0.000275 0.000245 0.000276 0.000266 0.000278 

0.000080 0.000082 0.000084 0.000085 0.000086 

0.002517 0.002357 0.002680 0.002608 0.002727 

-.0. 000116 0.000107 0.000103 0.000101 0.000101 

0.016652 0.019422 0.022914 0.023218 0.022547 

0.000184 0.000217 0.000221 0.000216 0.000210 

0.041488 0.085109 0.12:2584 o.i45359 0.162240 

0.000195 0.000252 0.000279 0.000287 0.000285 

·o.o45310 0.105772 0.167908 . -'o. 216627 0.254807 

0.000205 0.000296 0.000273 0.000437 0.000484 

0.048924 0.131462 0.242337 0.368427 0.500079 

key 

Tensile (copper) 

Shear (epoxy) 

8 12 

0.000085 0.000086 

0.000075 0.000075 

0.000085 0.000086 

0.000280 0.000281 

0.000086 0.000087 

0.002749 0.002770 

0.000101 0.000101 

0.025159 0.025747 

0.000200 0.000192 

0.181603 0.199737 

0.000276 0.000260 

0.304734 0.354211 

0.000541 0.000569 

0.750871 1.131278 

R = 0.15 

20 30 

0.000087 0.000082 

0.000075 0.000073 

0.000087 0.000082 

0.000282 0.000275 

0.000088 0.000083 

0.002786 0.002713 

0.000101 0.000096 

0.026128 0.025494 

0.000189 0~000180 

0.212907 0.211611 

0.000251 0.000238 

0.391196 0.395030 

0.000544 0.000499 

1.513544 1.650736 
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w 
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Fig. 12. Tensile strain in a six layer beam (R = 0.10). 
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Fig. 13. Tensile strain vs. layer in the PLT cross section. 
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Fig. 14. Shear strain vs. layer in the PLT cross section. 
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