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ABSTRACT

The large toroidal field coil deflections observed
during the PLT éower test are due to the poor shear
behavior of the insulation material used between lay-
ers of copper. Standard techniques for analyzing such
laminated structures do not account for this effect.
This paper presents an analysis of laminated beams that
corrects this deficiency. The analysis explicitly
models the mechanical behavior of each layer in a lam-
inated beam and hence avoids the pitfalls involved in
any averaging technique. In particular, the shear
modulus of the epoxy in a laminated beam (consisting
of alternate layers of metal and epoxy) may span the
entire range of values from zero to classical. Solu-
tion of the governing differential equations defines
the stress, strain, and deflection for any point within
a laminated beam. The paper summarizes these .govern-
ing equations and also includes a parametric study of

a simple laminated beam.



INTRODUCTION

" The toroidal field coils in the Princeton Large Torus (PLT»
Tokamak are subjected to a non uniform self generated maqnetic
field. This results in a force distribution that causes each
toroidal field coil to bend in its own plane. The deflections

'" are not in agree-

observed on the PLT toroidal field coils®
ment with calculations based on standard composite beam theory. -
.In fact, the observed deflections are three to eight times

larger than composite beam theory predicts. This paper presents

a solution that models deflection and stress in straight laminated
beams. The beams analyzed have mechanical properties similar to
the PLT toroidal field coils.

The laminated beams that are considered in this paper are
made of alternate layers of copper and epoxy. The unique mechani—
cal behaviorvof these beams is due to the poor shear,behavio; of
the epoxy layers. ’Experimental measurements3 of effective shear
modulus fof an epoxy layer give values for the shear modulug
thifty (36) times smaller than expected. This of course effects
the étiffnéss'and stress distribution within a laminated beam.

The goal of this work was to develop a model that describes
the behavior of a laminated beam as the shear modulus of the
epoxy varies from classical values (G = E / 2(1+V)) to

epoxy epoxy
zZero.

The differential equations governing deflection and stress
in each layer of a straight laminated beam are presented. These
equations treat every layer of the bean explicitly and do not

depend on any averaging of the beam's cross sectional properties.



Hence this analysis provides an explicit statement of deflection
and stress throughout a laminated beam and avoids the pitfalls

of all averaging procedures. "The solution of these equations for
the particular problem of a simply supported uniformly loaded
beém is also presented. Results are summarized for a parametric
study of this problem and finally, the stiffness and streés dis-
tribution in a straight laminated beam having the same cross

section as the PLT toroidal field coil is presented.

ANALYSIS

The displacement energy method is used to analyze this
problem. First the total potential energy of the laminated
beam is expressed in terms of the displacement of each layer
of metal. Then, variational calculus is épplied to the total
potential energy expression to obtain the equations governing
the displacement of every layer in the beam. These equations
arehthe equations of static equilibrium and the stresses in
the beam are obtained by taking derivatives of the displacement
solution. The governing equations form a set of coupled ordinary
differential equations and are solved by using the Ritz procedure.
Ihe:small computer program wriﬁten to obtain numerical results
is listed in Appendix 1.

The total potential energy of a laminated beam (7m*) is

given by

m* = E -V (la)



L)

E = [Emegx)m + Gmy)z:z)m + Eeegz)e + Gngz)e av  (1b)
- volume
2 .
vV = J g (x)w(x)dx (1c)
o
Where
| E = Strain energy in the laminated beam
| v = The potential energy of the applied load intensity "g".
E = Youngs modulus in the metal
G, = Shear modulus in the metal
Eeo = Youngs modulus in the epoxy
Gel = Shear modulus in the epoxy
exx)m = xx component of strain in the metal
ezz)e = zz component of strain in the epoxy
sz)m = Shear angle in the metal
sz)e = Shear angle in the epoxy

Figure 1. describes the coordinate system used in the problem.

o
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Fig. 1. Coordinate system for laminated beam.



_The Youngs moduli and shear moduli in Equation 1 are constants
for the beam. The first and second terms in Equation 1 represehtc
the axial bending and shearing behavior in each layer of metal.
The third term models the lateral compression or tension in the
epoxy bond and serves to transmit force in the z direction from
layef to la?er within the beam( The fourth term in Equation 1
represents the shear behavior in the epoxy layers. Ge in this
term should be considered an effective shear modulus and indepen-
dent of Ee' This fourth term transmits shear between adjacent ;
.1ayers of metal. As Ge becomes smaller, greater shear deflection
in the epoxy bond is éllowed, less shear exists between layers of
metal, and the laminated beam becomes more flexible.

The strain terms in Equation 1 are defined in the usual

manner. Within each metal layer the following relations are used:

aUk)i
= a
Exx)i 9X ( )
\ (2)
) U ).
O DR S < (b)
Xz 1 90X 9z -
where:
i = index referring to layer number in laminated
beam i=1, 2, ..., n (see Fig. 1.)
Exx)i = 1xx strain component in ith metal layer
. .th
. = shear angl =
sz)l a ngle in i metal layer sz)i ZEXZ)i
UX)i = X component of deflectidh field ith metal layer
Uz)i = 2z component of deflection field ith metal layer



The deflection field used in Equation 2a and 2b must be
defined with care. If the deflection field is not simplified.
a system of partial differential equations will result. If
the deflécfion fiéld is too simple the eéﬁations of equilibrium
will not be satisfied.4 After considerable study, a deflection
field that represents a typical Timoshenko beam was selected
and found to be adequate. This deflection field maintains the
strength of materials assumption that plane sections remain plane
but this is rest;icted to hoid only within each layer of metai.
The total cross section of the beam will deform froﬁ a plane to
a series of ridges and ramps. The shear deflection (yi) in the
deflection field is also worthy of note. Although this term is
a very small part of the deflection in each layer of the beam, .
it couples the equations together. If this term was not included,

-the equations would not satisfy static equilibrium.4 Equation 3

summarizes the deflection field.

Gl = 46 - z|l—3— - v, (%) (a)

c
1]
o

SR | () ) )

U)., = w, (x) . o (C))



where:
oz = the value of the z coordinate within the ith layer
measured from a coordinate system with the z = 0 value
located at the geometric center of the ith metal layer
ui(x) = the x deflection of the center line of the ith metal
layer
:wi(x) = the z deflection of the center line of the it? metal
layer ot
'Yi(x) = the shear deflection of the center liné of the ith
i metal layer
Hence the strains in the metal are:
3 du, a’w.  dy.
e, ) T e = = - 2 F -
xx’ i 3% dx (dx dx) (a)‘
(4)
Y., =—a—U—z+5”"=(—i-wl_(& Y)=Y
Xz 1 AX 97 Poh'e Ax 1 1 (b))
The 3n functions ui’ wi’ and Y; (=1, 2, ..., n) are

the unknowns of this problem. The first two terms in Equation 1
are now explicitly defined. The remaining two terms in
Equation 1 will be defined in terms of the deflection lield of *
the metal layers. By doing this, the layers of ﬁhe beam are
connected to each other, no new unknowns are introduced, the

strain energy in the epoxy is described, and compatibility of

the deflection fields 1s insured.
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The lateral compressive or tensile strain in the epoxy

layer i 1is defined by

W, —W, , ‘

where
" . th
Ezz)i = the zz strain component in the i epoxy layer
(between metal laminates i and i+l)
ti = the thickness of the ith epoxy layer (i =1, 2, ..., n-1)

The shear strain in the ith epoxy layer (between metal layers
i and i+l) is defined by the following argument.
Figure 2 describes the geometry of a typical epoxy layer in

_its deformed state. g

T oW

£ |(metal) dX —t» y;
! X
= (epoxy)
tr

= | (metal) —> Uj,, .

|

o 764772
Fig. 2. Shear in epoxy bond.



' The angle o is defined by

where

and ' , >

. , , *
The angle o includes both the shear angle sz)i and the

average slope () of the epoxy laver

: The average slope of the"ith epoxy layer is simply a

th t

weighted -average of the slopes for the i and (iﬁ*.l)s metal

layers.

= _ . dw 4 _ . B w1 _y 1
hlax T Vi it1 \ 7ax T Yi+1/| TR *m

i+1)

(6)

(7).

(8)

-

(9)



Substitution of Eq. (9) into Eq. (8) yields

dw.
v, =L fu, -u, ., -K (——i- - L
Ywzli T8 | Y%+l T \ax " Vi i

where

where hy is the thicknéss of the ithumefél layer.

dw
dx

i+1

(a)

(b)

hi: ht;
K., = - + '
i~ (h; +h;, )
i=1, 2, ..., n-1
L= Pig1 | hivl &
i 2 (hi-Phi+l)

»

(10)

(11)
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Then the total potential energy

3 2. Sy
T V 1 (d—ui)z P bl avg\2_ dry dwy
L2 ax it 7)t\ax/) "% 3
o i=] 1 dx X dx de
» ‘n Gbh, 4n-1EDb L
+-J D S L I L omer Wiy tWp T AWy Wiy ) 0x
;o 1=l o 1i=1 i
2 n-1 G dw. 2 © dw.,
_ e bl 2. 2 _ 2 ( Wi _ i
+ J ,Z - €% T lia 2u; ug .4 *tK \ ax) Y5~ 2 3x
o 1=1 S L .
L 12 dw )2, 2 awgy
i ax i+l ax - Yi+l
v Wiyl | :
- 2uiKi T + 2uiKiYi - 2u.L < + ZuiLiYi+l
£ 2u 0Ky e - 205085 Y 0Dy a7 2% kiTie
dw. dw. dw, dw. -
+ 2K.L, —— i+l _ g _ 1 _ i+l ,
KL, 3x ax 2K, Ly g Yis1 - 2KiDiYy —ax T 2KibiviYia

of the laminated beam 7* is:

ax

(12)



(3]

where:
| b = the uniform width of the laminated beam
L = the length of the beam
a = the lateral load (lbs/in) on the ith layer

Taking variational derivatives of this expression with

respect to W Uy and Yi gives the following differential

equations and boundary conditions. These are the equations

thét describe the behavior of a laminated beam. 1In the following

1
six expressions those terms labeled "(a)" are the natural

boundary conditions that are defined by the variational proce-

dure. The vertical line é indicates evaluation at the limits

"of integration. Those terms labeled " (b)" are the governing

differential equations.

} dui 2
Ebh; —= Su; - 0 © (13a)
dzu.

- Ebh, 21

: dx

G b dw, . dw,
- e _ i-1 _ 1

foW=0) g (ui Bi-1 ¥R Tax TKiYic1t Dol a Li—lYi)

D f1- e . _ i _ ; - -
=8 ) T, (ui Bivl TRy PR L T +LiYi+1) 0 (13b)
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3.2 3 2
Ebhy (d Wi dy; ) déw;|¢ Ebh; (d’w, d yi) .
12 d*z ax ax |, 12 a3 Ol i
1-6..) Ceb 1.2 iz— - L. .u
P | ikl & 1Yi T biaa¥ia
dw L
+ L. ,u. + K. .L. i-1. L.vy. ) ow
i-1"1i i-17i-1 dx i'i-1 i o
G b dw .
e 2 i 2
+ (1_61 ) 0 ki ax Kiyl Kiqi
2
KUyt Ry g 7°

gph3 [adw. a3y, E
1 I 1)+ 2 (w.-w, ) (1-6
12 dx4 dx3 ti_l i "i-1
2
G b a%w.
e 2 i
+ (1=8..) ' = LY =
il tl—l i-1 dxz
2
. du_i L d Wiq
i-1 dx i-1 Ti-1 2
dx
Sy 2
G b d w.
- & |- g2 i .
Pl éin) t. Ki 2 * K
i dx
2
du. dw.
_ i+l o - i+l
K, I KiLj >t KL
dx

2 R -
Li-1 & * Li-1
< av;_ 1
i-1 Ti-1 dx -
in dui
dx i dx
dy;q
dx
/

(14a)

(14b)
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i ‘ (le dzwi) g Lsa)
12 dx dx2 1,
Ebh) (d%w,  a’y,
121 - 3 + Gbh, v,
dx dx
G b d a%w du
+ (1-6..) —= 1.2 —Y—1+L2 i i-1
il t, 4 ©Ti-1 dx i-1 de i-1 dx
i
i
d a%w dy :
+ L i L izl L, , ——1
: i-1 dx i-17i-1 a 2 i-17i-1 dx
: X
G b dy a%w du,
+ (1-6, ) & |- &% X + &2 L. g =
in ti i dx i dx2 i dx
du. ,: d2w dy
i+l i+l i+l _
K ax o t KLy 2 KLy —ax =0 (15b)
dx
where dij is the kronecker delta (Gij = 1 for i=j, Gij=0Aotherwise)

Equations 13a, 1l4a, and l5a are boundary conditions that must
always be satisfied. These equations may be satisfied in many
different ways. Thé physiéal meaning of the solution is dependent
on how the boundary conditions are satisfied. This is similar to
the situation in a homogeneous beam problem where the choice oﬁ end
condition determines whether a beam is simply supported, built;in,
cantelevered, etc.

Equations 135, 14b, and 15b are solved by the Ritz technique.

The particular physical problem considered in this paper is a uniformly

loaded simply supported laminated beam. The approximating functions

appropriate for this problem are:



n . ‘
_ . imx | \
W, (x) ; gdd ajy Sin = o (a)\
2 jx ‘ | ’
ui(x) = ; gdd bij 'Cos - . ; (b) > -(16)
o jn#
Y. (x) = c.. Cos == (c)
17§ 0aa I * )

These functions satisfy 13a, l4a, and 15a. However the

constants a, ., bij and c,; are not known and need to be determined.

This is accomplished by substitutipg the Equations l6a, 16b, and
l6c into Equation 12 and solving for Qalues of the aij, bij’ and’
ci.lthat will minimize w*. After evaluating the integrals in

‘Equation 12, the total potential energy of the laminated beam is

expressed as a quadratic form in the aij’ bij’ and Cij' Taking

derivatives with respect to aij’ bij’ and c1.j v¥ields a set of

linear simultaneous algebraic equations in the aij, biﬁ’ and cij.
After much algebraic manipulation the governing algebraic”équatidns

may be written as follows:
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3 3
Ebhi T 4 N ) Ebhi im 3
12 L ij 12 [ ij
E b Ee .
1-6,1) — (a,.-a )+ (1-6, ) — (@.. a, 5 )
+ il’ t. ij 13 n’ t. ij-"1i+1 jJ
i-1 1 A
G b 2
- e 2 (3w -p% (i - im
+ ail) ti 4 Lia1 ( l) ij Lia1 ( 2) ij Li-a ( 2) bl—l j
jm
+ Ll-l ( L ) le
2
L LS
Ki-1 D1 ( z) #i-13 7 Ti-17i-1 ( z) €ij
G b 2
- e g% (3™ -g2 (3T - jm jm
+ (1=641) t; Ky (!L) 233 K (Z)clj Kl(l) l]+Kl(_Q,_ bi:+1j
jm\2 jm
tRiL; (T) i1 5 KiLi (_2—) €ij = 9 37 (3 odd)
for i =1, 2, ..., n | (17)
. \2
Ebh.-(J—“) b
i 2 ij
Geb A jm
+ (1-6. - BN i - T
( 11), tr g blj Py j+K1—1 (JL ) Ai-1 5 Ki-1 Ci-1 j tLi (T) ij
Geb S
L c + (1-6, - . . - AL - am
i-1 7ij ( in) ti ij b1+l J Kl( [} ) al] + Ky clj Ly (IL ) qi+1 Jj
+ L; ci j) =0 for i =1, 2, , (18)
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3 3
Ebh; .2 Ebh’ . \3
1 (37 - 1 (L . C. .
12 (77) i3 T 712 ( 7] 2ij * OPRy Ciy
G b
e (12 -2 11) b -L, , b
(l—§il) tl—l Ll—l clj Ll—l ( 2 a13-+L1—l i-1 j i-1 713

for i=1, 2, ..., n (19)

After close investigation of Equations 17, 18, and 19 it is
apparent that the index j is decoupled from the j-1 and the j+1

terms. This means that the solution procedure for finding a; sy

J
bij’ and cij (i=1, ..., n; 3 =1, 3, 5, ... N) is a series of.
small problems (a 3n x 3n set of algebraic equations). 1In other'
words, the solution may be approximated to any degree of accuracy
desired by solving the Equations 17, 18, and 19 repeatedly and
making the value of N in Equations (16) as ‘large as desired.
Expe;ieqce to date indicates that four or five terms (j =1, 3,

-

5, 7) is adequdte.
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PARAMETRIC STUDIES

Numerical resulﬁs obtained by solving equétions 17, 18, and
19 give deflections and stresses that are in'good agfeement with
expectations. When the shear modulus of the epoxy is set equal
to zero the laminated beam acts as if the layers were bending ‘
independently. When the shear modulus is set equal to the classical
Ee/2(1+v) value the results agree with standard composite beam

theory. 1In all of the following parametric studies the following

items are kept constant.

E (metal) = 16. x lO6 psi
G (metal) = 6. x 106 psi
Ee (epoxy) = 1.0 x 106‘psi

The value of epoxy shear modulus is treated és a pafameter
in the following study. However, particular attention should be
directed at the results for Ge = 10000. psi. Experimentai Work3
at Princeton indicates that the PLT toroidal field coils have ah
epoxy shear modulus near this value.

The parametric studies are based o6n a beam with dimensions

and end conditions shown in Figure 3.

i1

- N

N — 200 —>|

764778
Fig. 3.
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The net loading intensity in all cases is 1.0 1lb/in. The
parameters that were varied are the epoxy shear modulus (Ge),
the fractién.of epoxy in the total cross section (R), and the
numbér ofAlayers in the beam. In all cases, the tqtal height
of the.beam has remained a constant 5 inches. This meahs that
~as the number of layers in the beam changes, the height of
each.me;al layer and each epoxy layer changes. (A1l metal
layers in a calculation have the same thickness.) Table 1
contains a sﬁmmary bf the cross sections of all cases considered.

Figures 4, 5, and 6 illustrate the relationships among
epoxy shear modulus, fraction of epoxy, and number of laminates.
In all cases the figure labeled B presents the details of the
lower part of the figure labeled A.

Figﬁres ?,48, and 9 illustrate dependence on ghear modulus.

Figure 10 illustrates that maximum deflection of a laminated
beam still varies linearly with 14.

| Figﬁres 11 and 12 illustrate strain development across a

laminated beam as ;hear modulus varies. As Ge approaches larger
values the strains approach classical results.

Table 2, 3; and 4 contain the numerical data presented in
Figures 4 to 12. Those readers interested in maximum straiqs

in epoxy and copper can find the results summarized in Tables

5, 6, and 7. These last tables present the maximum fiber strains,
in the outermoét surface of copper and the maximum shear strain
in the epoxy layer closest to the neutral axis.

The results presented so far have been for the beam illustrated
in Figure 3. This beam was assumed to have a regular pattern of

laminates. The equations developed in this paper can also model
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a straight beam made of laminates of different thicknesses.
Figures 13 and 14 present the results for a straight laminated
beam having the same cross section as the PLT toroidal field
coil. This cross section was calculated to be 2.32 times more
flexible in bending than a beam of solid copper having the same

total build.

CONCLUSIONS
The equétions presented here give a description of deflectilon’
and stress in straight laminated beams. The results obtained to
date indicate that
l. The greaﬁer the fraction of epoxy in a cross section the
more flexible that cross section becomes. |
2. The lower the epoxy shear modulus the more flexible the-
cross section becomes.
| 3. The stresses in typical laminated beaﬁs are réther in-
sensitive to the epoxy shear modulus. For values of the epoxy;
shéar modulus greater than 10,000 psi the laminated beam is
very similar to a solid beam of metal. However, once the shear
moaulus of thevepoxy falls below some particﬁlar value £he lam-
inated beam becomes radically weaker. This result was not

intuitively expected.
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C SOME TERMS THAT AFPEAR FREQUENTLY IN THE EQUATIONS ARE
CAI EM#EH C T (T (10712, .

EH*E*Hlll

1m

T: T+ I
— a0

i n nn

IF ¢ G0 7O 18
C . .
C SET UP THE EQUATIONS FOR THE FIRST LAYER
C
havs ACL. 1) = CHIRPIA + EAL + GAIHAK L) #GK (11wP ]2
£aTE ACLL2) = —GHISAKC L #PTL
GATT BC1.3Y = -CRIwPIZ - hHlinflJfﬁVl1J+Pr1
C
AT, d) = -EAL + GALIAK L AL (1LyaPJ2
ACLLS) = GADRAK O #RPT]
CE®LEY = -GHD CLawALC1YwP T
AHSOLY = o 40t i TP I20
C
C
C

—bH14H"1J4PFI

_"[Z_.



FORTEAN 1V G LEVEL £ = IH DATE = 76308 (1722711 PAGE 20A3

C :
= —GRAL TP I
= =31
= SR IEAL LD
= 0.
C
N
(¥
= ~CALHPIZ - GALIHAK (LI REK (L3P T Y
= GRI#ACCL
= CRIaPIZ + GMBRHCOLY + GI LAk D #AK L)
C

“BAIRAK (L2 HAL LD P 1
-A 4
[ERECETAgY ]_ 1 \Hl_| 17
5

Lﬂ Wwononon

C CSOME_MORE USEFULL COMSTANTS ¢RI

GO TO 14

SET UP THE EQUATIOHS FOR THE MIDILE EAYERS

Lo Ry N

ACTL.11-3
AL 11-2)
BT, T1-10

: - GAZKAK {ILY#A_CILIHPIZ
AZHAL (TP 1

a1
a0
B

[t
Co

C
01as3 AT Ity = 141+PT4 + BERZ + EAL + CRZHEL CILY AL CIL)*PJ2 +
1 GHIsAR L) g LI
gios ACTL.T1+10 = R e W GHliHL'I'iPTl
0105 ACTL. T1+2 = : BERE IS (IR
[ 1EE ACTL.T1+2Y = —IHI*FI“ - GRZHHELCI DAL T IR 4RI ~GRLIRAK T 4RI (¥ T

ACTL, I
ACI1.T
ACTLLT
AMS (T L

1+43) =-EA1 + GALAK (I)*AL (1) #FI2
f+43 GAIHAK CTa=PI1
1
]

+5 —GAlAAKCTIRAL (T wP I
= AT CATRP RS

fact o o )
—n e

[l X
RSN R N |

H
S

Al1l11 ACIZ2.11-3) = GAZHAK(IL:¥PJ1
9112 ACTZ.TI-20 = -GAZ2
011z ACIZ2.01-10 = —GRZHAK (IL)

C

p— bt

AZH#ALCILIHPI L ~ GALKRIKETInFT]
P12 + GRZ + eI
=GAZAALCILY + GAIHASCI)

[yl

TR B N
I
—
IO SN N ]
— —t —
———
+ =
| —

1
(]

)
—t
RN
<
)
1
[yl

]

ALCTY s PO

DRt

C -

W e

¢
e
[

[

Xz

)

= [~ 1~ t
— e e
8]

"

[acy)

I



FORTRAN IV =

a1zl
0123
123

o
I3

0D [
—_— . e b
o4 ol O
I )il

Do o f 1) 1)

(xR

G

face]

bl
-

O N |
— I

a14z
Bl43
“1—'~r

B1as,

H1as
R a7

1.3

0149
J1E0
1S
nsz
BarIR B ol
AR

LEVEL

[or XN aw]

oo

[ aw N ew ety
wn

1

21

ACIZ, 11-3)
ACTZ. T 1=
ACIZ.T1-10

ACIZ.T1)
_I.JH ] *H}\

= —CHI*FJ3

~ K

MATN DARTE = 7&Z6E

—bHEwHLfIL)mHLfIL)mPJI
PJI1

1Ak

ACIZ. T1+1) = -GAZKALCILY + GALTHAK (D)

ACT3. T1+20

+ GALHAK

ACIZ. T1+3
ACIZ.T1+4
RIS T1+5
AMS (T30 =
GG T 19

EQUATIONS

ACTLL.T1-3)
ACIL.I1-23

Aeit.I1-1
ACIL. 11D

ACTL,T1+1
ACTL.T1+2
AMSCILY =

ATz, 1)

ATTZ, T1+10
AOI2. T1+2]

RHSC12) =

ACIZ.
ACTS.
.

HOT A,
ACI3. 11
ACTZ.TI
ACTZ. T
HHDFI?t
CEHTIMUE

MATE I COMP

IF © IBUG
16 1

CRINT 113
PRINT 1Z2E

= CADRRIZ + GM#EAHUT) + GAZ2®AL CILX®AL CIL)
CIawA Ty

o= —GATAEK CTaEL (TP
Y= —GRIKRAKCD

o= GARIHRAKCTIRAL (1)

@

FOR THE LAST LFYER

-EAZ + GAZ#EKCILY#AL (ILY#PJZ
~GaZ#Aal CILy#PJ1
~GAZRAK CTLI#AL ¢ IL) #P T 1

nounou

) .

= CAIXPI4 + ERZ + GAZKAL CILI*AL CIL)KRPI2
)= GRZwAL CILIwF.I

3= =CALKPIZ — EAZ% ALCIL AL CILART )
4. Q0D (RIHPIED

GR2*AK CTLI#FT1
-EAE
~GRZHAK CIL)

mounon

AL CIL P
PT? + GA1

2
) C

L

[{]
non Gl
e

BAZHAEK T T #AL CIL)

=-CALAFPIZ = GAZHAL CIL)#AL T 1LY #P 1

v o= -GAZ AL CIL)

) = CALEPIZ + GPEHHCT) + SAZHAL (1LY *AL (IL)
E]

1172271

LETE =~ NOW FRINT MATRIX IF DERUG REQUEST HAS BEEM MATE

JEGL B o GDCTO 156
=143
o TOTLANSCLD
PN =L D S B



FORTEAN 1Y G LEVEL 2! ‘ MATH DATE = Fe3MM 11732718 FAGE apRos
15 COTIMUE

PEINT 121

ERFSIN 166 CALL SOLYE ¢ ALAMS.MZIKEY )

D1E! IF
QIR Do

GO TO 186

-

-

p—

f o] [} —
N -

=N

I3 TINg —

nivn ) pox 21 I=1,H
1171 PRINT 1328, 1T ’
Gi1vz FRIMT 131, CRIICILT. . IJ=1.M
N ) 21 COETIMUE
017 : DO 22 T = 1.H
LIFS FRINT 132, 1
D7 FEINT 131. ¢ BIJCI. DY, J=1,M)
50 e 22 COMTIMUE
Ve 24 1 = 1. H
17 FRIMT 133.1
R RGN PRINT 1321, (ClJCI.Jd).J=t.M2
1= 24 COMTINUE
C

e Z01y = -CEMTZ + H{1) /2

g Doy 25 J = 2.H .

W SeJy = ZXI-1) + TClY + ¢ HCI3+8(T-"031/2.
C

185 IF ¢ DABSCZ(Jyy LT, 1.BE-6 ¥ 2472 = @&,

B1as 25 COHTIMUE

n1as Dt = 1TJE

#DEL = ALEM-DUM
WD -=DEL
1K = 1JK + 1

) DK pC Ry 1wl
—
1
(Aot IS
o

[ 4m
DL Z&
WCEy =
ucry =
GEMMACT )
(

v pem pr e pb bt ot ot pa

3 bt et
H

—
=)

LIS A

)

n

o

KR AR R Y R S RN

’IL

ST L Ll ) —

——
C g [ T
=S non

po= s -~
yo=0,
E]
.
26 .
5.
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FORTFAN IV G LEVEL 2t ’ MATIKk DATE = 7R3E0 11732711 PAGE PARAS
R266 TOTVM = B,
R2AaT TOTVE = @, .
B2 AhD = ¥DD 4+ XDEL
B2Es DO 28 1 = 1.H
B21E pa z2v J = 1.M
n211 AAJ = (J-1%2 + 1
D21z ARG = AAJ-PIEXXDD/ALEN
B21z S55 =D2SIMNUARG)
A21< CCC =JCOSiRRG) .
B2y ARG = AARIRPIEZALEN
B21e WCIY = WCEY + AlJ(i.]J) * 855
R} el 2Oy = DY + BIJCI.Jy%CCC
21E GRMMACTY = GAMMECTY + CLJCL. J)*CCC

LD (T DLIDXCTY + ARGHATI (1. J)#CLC

LN = DUDXCIY - ARGABIJ(I,J) % 359

DGAMD = DEAMDKCL) - ARGHCIJ(I, Jr % SSS

L2LIDy = D2UDX2 (D) - ARGHARGHHIICILJI) # SSS
27 D2UDX2 (13 = D2UDK2(1) - ARGRARGHEII(I.J) * CCC

= DUDX(I) + HOT)#(D2LDX2 (1) -DEAMDXCI) 1 /2,
ST20Is = DBUDXCTY = HOD s (DZDHEZ (D) -DRAMOIX (I ) ~2,

=
21 = Z2(1) - H(1)» 2,
’ = Z(1Y 4+ H(DY 2.
= (21+Z221.72.
FMOMCTY =EM#ER(DUDRKC D) #ZANVEHHC LY — (D2UDX2 (1) -DGAMDXCIY IRH ¢ I %
1 HOTiskHO1Y <1209
TOATHOM = TOTMOM + MDOMCTD
MOD) o= GAMMACTY % G ok B ok HODD
TOTYM = TOTYM + (1)
IF C L JEQ. 1 > GO TO 282
IL = I-1
GAMMAB (I = (DCIL -UCTY —aKOILI (DD I -GAMMACIL)) —-ALCIL) *
1 (DRIDXT DY =GAMMACTI D 2 TCIL)
VB = -GAMMABCII#GXHE *TCIL)
TOTVE = TATYE + VB
28 COMTIMUE
RY = QT *ALEMxk( 1, -2, %XDD/ALEM) ~2,

RMOM = QT =% BLENXCKDD-XDD&XDD/ALEN) /2.
YTOAT = TOTYM + TOTVB ' ‘

PREIMT 14@. XDD

po 3@ I = t. M

FRINT 142, 1.WCD) ,UCD) L GAMMACT) A DD Ty DUDSC D) . DGAMDXC 1) . D2WDX2 (1)
1 . D2UDRZCI).STIC(I),ST2¢CI) . GAMMAR (T -

ik 3@ CONTIHUE
@ PRINT 141

o DO 24 1 =1 . N

iz . PRINT 143, MOM(I), V(D) ,VB(DD

B 31 CONTINUE

i PAINT 144,  RMOM, TOTMOM -
8252 PRINT 145, RY. VTOT. TOTVM. TOTWE

6253 49 COMTIHUE -

TELE GO TO |

B: 1980 CALL EXIT

. 183 FORMAT(20A4)

fi 131 FORMAT(1815)

n2es 182 FORMAT (dF 2a. @2

_SZ_



FORTRAN 1Y G LEVEL 21 MA T DATE = Fezae 11722741 PAGE AnRA7

ez FORMATCIZ,FZ5.8)
1@ FUPHHT'IHI CS2EL, 28R4
111 OREMAT C 18 Moo= 2 0120 18K.'M = - 15, TIJK =7, 13)
112 ORMAT (o185, " LENGTH 0F BEHH(INC%E_A = .Flf.:,
Ax, “WIDTE OF BEAM CIMCHES) = ”,FJJ.E,
2 S1e, ’PUEITIDH ﬂF MEUTRAL AXIS = *. F15.2)
BEE3 113 FORMAT . T EM SO16. 8. /18X, "5M =" D163, /18K, "ExX =",216.8.,
17185, "G5 DIE ]
R2sd 114 FORMAT .~ 185: 3 JEETIHH FEQFDIPTIHH LS1EELTLAYER NOUT, 2x. "LORD

1DIMG IHTEH-LT1
FORMAT (1@
FORMRT (S
FORMST (.~

BSAIH: . THOID "L 28 T(I' 3

I5.202R.8 3

l'-ET LHHD =" L0203 )
: TOAMSOTLIEST) = CLDZA.8 )

—— s
[ R
— 0T AN

FORMAT 8 :
FORMATOLN. S = = = = = = = = = = = — = - & - = — - - & -~ -~
l __________________ !:I

n2vA 13/ FORMAT (- 18%. A1, =15 )

0271 131 FORMAT( Az

B27 e 32 FORMAT (/11 )

B2av3 133 FORMET (/1§ =

g2v4 14@ FORMAT (18 3, I | GAMMA DLIDX
1 DUD. D22 ST1 ST2

2 GAMMAEB "
141 FHEHHT(l X,‘NHM R 15 R Vo R B - B"
142 FORMATCIH, I3 LIFLIB.E
143 FDRMQT(IBK,FIB.Z,SH,FIE.2 q FIG 1
144 FORMAT (1. 'PfHEHT SHOULD =".F1@.2,5:, " "MOMENT =",F18.2 )
145 FORMABTC 1%, ’UHEHE HHHLD = ,Fiu 2 CW,’EHEQE =7, Fl@ _,54,

1 = (", Fl1@.2. + 7., Fig.2. - 1A

EMD o

_9Z_



FORTRSN IV G LEVEL 21 SOLVE DATE

1]
=

€264 11732711 . FAGE gant

(ala]ap! SUBROUTINE SOLVE(A.ANS.H.KEY)
ara2 FEAL®S  ACI29. 1280 /NS00 .12

Brya MMI = N - 1

afalaks KEY = &8

HORS ] D 18 IR = 1, Nl

Pa[S]STS C= AlIR, IR

apey . IF ¢ C .El. 8.8 ) GO TO 28A

Boas DUM = DAES(C)

oREs IF C UM LT, 1.8E-18 ) PRINT 408, IR
FRIMT 2@8. IR.C

PRINT 201, (ACIR.ICY. IC=1,H)

aEa1A IRF1 = IR + |

PRINT 281, ¢ RUIRPL,IC)LIC = 1.H)

aatl IRF2 = IR + 2

Dy}

)
(]

C PRIMT 281, ( ACIRP2.I0).IC = (.M}
. C PRINT 281, ANS IR .ANSCIRP1Y,ANSCIRP2)
Ba12 pe % I = IRPI ., H
] I IF C ROILIRY JEQ. B, 3 G0 TO 9
0o 1 C =R IR ZACIR, IRD
Ba1s ACILIRY = @,
aa e g J=IRFL. H
a0 e ACTLID = ACLLTY - CACIR.J)
a1 AMSCI. = AMSCI) - CkAMSCIRD
g ) CONTIHUE
C PRIMNT 31, (ARCIR,IC),IC = 1, M)
C PRINT 2@t. ¢ ACIRPL.IC).IC=1,H)
[ PRINT 381, (ACIRP2.IC). IC=1.H)
C PRINT 21, AMS(IR).ANSCIRFII.ANSTIRPZ)
gR2a 1a COMTIMUE
C Do o1s I = 1.H
C FEINT SE6.  [.AMSCD)
C FRINT Z@1. (ACT..J).J=1,H)
C15 COMTIHUE
C FRIMT 301 (AMSCIC) . IC = 1,4

AMS(HY = ANS(MY ~ ACNLHD
ooz I = 2.H
IR = M+1 = 1
C = AMS(IR)
» IRFL = IR + 1
g 18 J = IRPI1.N
13 C=0C - ATIR, JIkANS (D)
T 28 ANSCIR) = Lo BCIR.IRD
C PRIMT 301,  ( AHSCIC) . IC=1.H)
GO TO 908

=
=
J
¥}

& 289 KEY = IR
(3] PRINT 481, KEY

5] PRINT 381.(ANSCICY. IC=1.M)
5[5 S@BB  RETURH

il 368 FERMAT(/7:18%, 116, 18%.D26.8 )
3] 3@l FORMAT (1:.5D23.8 3

OBsE 464 FORMAT (.
’ 1AH 1.8E-1
HazEy 491 FORMAT (77 23X, "ok STHEULAR MATRIX - DIAGOMAL TERM IS ZERO’ . 18X,
1 500
568 FURMAT (10, IS, 18X, D2B. 5 )
END

o TLRREMING - DIAGONAL TERM ON ROWZ, IS.° IS SMALLER THAN
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TABLE 1

nh + (n-1)t = H R = iﬁﬁéli-
H = 5 inch
R = 0.05 R = 0.10 R = 0.15
n h (ih) t (in) h (in) t (in) H (in) t (in)
2 2.375 0.25 2.25 0.5 2.125 0.75
3 1.583333 0.125 1.5 0.25 1.416666 0.375
| 4 1.1875 0.083333 1.125 0.166666 1.0625 0.25
| 5 0.95 0.0625 0.9 0.125 0.85 0.1875
6 0.791666 0.05 0.75 0.10 0.7083333 1 0.15
8 0.59375 0.035714 0.5625 | 0.07142857 0.53125 0.107142857
12 0.3958333 0.0227272 0.375 0.04545454 0.35416666 0.068181818
20 0.2375 0.01315789 0.225 0.0263157 0.2125 0.03947368
30 0.158333 0.00862C689 0.15 0.017241379 0.1465517 0.025862069




TABLE 2. R = 0.05
Max Deflection vs. Ge and n (deflectionAin inches)
S 2 3 4 5 6 8 12 20 30
G¥

375000. 0.125488 {0.127656 {0.128725 .129366 | 0.129794 0.130330 {0.130867 | 0.131298 |0.131515
100000.y0.126306 | 0.12&295 | D0.129299 129906 | 0.130314 |0.130827 |0.131343 |0.131759 |0.131968
10000.{0.136154 | 0.136096 |0.136319 .136523 0.136686 | 0.136918 |0.137179 |0.137408 |0.137528
1000.{ 0.216330 | 0.209402 { 0.204369 .231387 | 0.199484 |1 0.197234 [0.195144 | 0.193593 |0.192858
100.| 0.452480 | 0.63€164 | 0.709579 .736914 [ 0.746631 [ 0.749244 {0.742575 | 0.732034 |0.725423
50.10.507046 | 0.83%725 |1.047%46 .153260 [{1.226186 |1.280850 |1.303911 |1.300135 }1.291920
10./0.565747 {1.173679 |1.850724 520332 [3.070120 |3.927623 [4.822034 |5.359399 {5.504592

r

_08—
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TABLE 3. R =
Max Deflection vs. Ge and n (deflection in inches)
n> 2 3 4 5 6 8 12 20 30

G+
375000-/0.125897 [0.130462 [0.132686 |0.134019 {0.134911 .136029 (0.137154 .138060 [0.138515
160000.[0.127509 |0.131714 |0.133812 .135083 |0.135936 .137012 {0.138099 |(0.138976 [0.139418
10000.[0.146675 |0.146943 |0.147571 .148090 }0.148492 .149053 }0.149675 .150214 (0.150497
1000.}10.285919 |[0.284303 |0.278109 .273811 |0.270914 .267378 |0.264017 261489 0.260284
100.10.574668 [0.911902 {1.104365 .203787 |1.255214 .297155 |[1.312042 .306132 |1.298246
50.]0.624237 |1.137125 |1.548667 .832610 |2.018578 .219217 [2.352114 .394436 |2.394517
10.|0.672494 |1.437954 |2.366305 .353189 |4.316438 .992962 |8.169095 .856207 }0.437098

-.'[E_



TABLE 4. R = 0.15
Max. deflection vs. G, and n (deflection in inches)
n- 2 3 4 5 6 8 12 20 30
G,
375000. | 0.126432 | 0.133669 .137150 | C.139238 | 0.140637 [ 0.142295 [ 0.144168 [ 0.145599 | 0.133568
100000. | 0.128849 | 0.135507 .138808 | (.140808 | 0.142153 {0.143&52 {0.145573 (0.146967 | 0.134843
10000. } 0.156825 | 0.157803 .159033 |{ C.159987 | 0.160709 | 0.161704 | 0.162796 | 0.163737 [0.150475
1000. | 0.349154 | 0.354363 .348477 | C.=43720 | 0.340369 | 0.336195 |0.332189 |0.329173 |0.304777
100. | 0.696153 | 1.155737 .453212 11.€24639 {1.722160 |1.812%94 {1.859371 {1.865118 |1.748101
50. 1 0.749723 ) 1.410151 .988111 | 2.421609 | 2.726462 | 3.082598 | 3.348554 |3.456865 |3.269109
10. {0.800331 | 1.726827 .880548 | 4.149118 | 5.434599 7.800255'Pl.167997 14.096046 F4.2993ll

(¥4
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TABLE 5. Key R = 0.05
Maximum tensile and shear strains Tensile (copper)
Applied moment = 5000. in lbs. Shear (epoxy)
Applied shear = 100. 1lbs.
n 2 3 4 5 6 8 12 20 30
G o i -
| 0.000075 | 0.000076 | 0.000077 | 0.000077 | 0.000078 | 0.000078 | 0.000078 | 0.000079 |0.000079
375000. | .
0.000076 | 0.000067 | 0.000075 | 0.000072 | 0.000075 | 0.000076 |{ 0.000076 | 0.000076 | 0.000076
0.000075 | 0.000076 | 0.000077 | 0.000077 | 0.000078 | 0.000078 | 0.000078 | 0.000070 | 0.000079
100,000.0
0.000282 | 0.000250 | 0.000282 | 0.000271 | 0.000283 | 0.000283 | 0.000283 |0.000284 |0.000284
0.000077 | 0.000077 | 0.000078 | 0.000078 | 0.00-078 | 0.000078 | 0.000079 | 0.000079 [0.000070
10000. | e
0.002668 | 0.002483 | 0.002777 | 0.002683 |0.002799 |0.002898 |0.002817 |0.002823 |0.002826"
0.000092 | 0.000087 0.000085 | 0.000084 | 0.000084 0.000084 | 0.000084 | 0.000084 0.000094”
1000. . S
0.020385 | 0.021719 | 0.025298 | 0.025089 |0.026339 [0.026748 | 0.027071 | 0.027262 |0.027334
0.000139 |0.000148 | 0.000143 {0.000138 | 0.000133 | 0.000128 | 0.000125 |0.000123 0.000I2%;av§
100. | , S
0.070400 }0.125477 |0.167338 | 0.185013 | 0.200591 |0.215236 |0.228324 |0.237119 0.240554'57;
0.000150 {0.000179 {0.000183 |0.000179 {0.000174 | 0.000167 |0.000159 {0.000155 0.000154 59-‘
50. _3?;
0.081890 {0.174158 |0.233592 |0.301711 |0.337269 |0.376825 |0.413188 |0.438898 0.44963955 -
0.000162 |0.000228 |0.000276 |0.000307 |0.000325 {0.000337 |0.000329 0.000310 0.000302: |
10. | o
0.094242 | 0.253808 |0.452708 |0.651362 | 0.835059 1.128399 |1.476938 [ 1.761533 1.895361

_EE_



Maximum tensile and sheaxr strains Tensile (copper)
Applied moment = 5000. in # Shear (epoxy)
Applied shear = 100. #
n 2 3 4 5 6 8 12 20 30
G 0.000075 |0.0C0078 |0.000079 |0.000080 |0.000081 j0.000081 _0.000082 9.000082 (0.000083
375000.
0.000075 |0.000066 J0.000075 [0.020072 |0.000075 |0.000075 |0.000075 10.000076 10.000076
0.000075 |0.000078 |0.000079 |0.0120080 |0.000081 |0.000081 (0.000082 |0.000083 {(0.000083
100000.
0.000279 {0.000247 {0.000210 |0G.0D0269 10.000280 |(0.000281 |01000282 {0.000283 (0.000284
0.000079 |0.000080 |0.000081 (C.0Q00081 [0.000082 JO.000082 (0.000083 |j0.000083 }0.000084
10000. :
0.002577 10.002398 (0.002723 |C.C02642 |0.002760 |0.002%76 ]0.002791 J0.002803 ]0.002808
0.000105 |0.002097 ]0.000094 (0.CO00093 (0.000093 |0.000C92 |0.000092 |0.000092 |0.000093
1000. .
0.017837 10.020241 (0.023819 |(0.023948 ]0.025219 |)1.025807 |0.026297 ]0.026602 |0.026721
0.000163 |0.000186 |0.000187 {(0.000181 j0.000176 [{D.000168 {0.000161 |0.000159 {0.000158
100. |
0.048541 (0.096736 [0.136526 |0.15&287 |0.174895 |0.192919 |0.209522 (0.221292 |0.226198
0.000173 §0.000219 |0.000236 |0.0€0239 [(0.000236 |0.000227 [0.000215 {0.000208 |0.000206
50.
0.053793 10.123889 j0.192793 |0.242618 |9.280679 |0.327962 }0.313377 |0.406742 10.421496
0.000182 J0.000262 |0.000328 |0.0C0378 |0.000414 |0.000452 |0.000463 [0.000440 |0.000424
10. |
0.058903 [0.1606104 |0.293950 |0.441490 |0.590683 |0.861168 }1.241119 |1.595153 |1.770150




TABLE 7. key R = 0.15
Maximum tensile and shear strains Tensile (copper)
Applied moment = 5000. in 1lbs. Shear (epoxy)
Applied shear = 100. 1bs
h 2 3 4 5 6 8 12 20 30
G 0.000075 | 0.000080 .000082 | 0.000083 .000084 | 0.000085 | 0.000086 .000087 | 0.000082
375000.
0.000074 | 0.000065 .0C0074 { 0.000071 .000074 | 0.000075 | 0.000075 .000075 [ 0.000073
0.000076 | 0.000080 .0C0082 | 0.000083 .000084 | 0.000085 | 0.000086 .000087 | 0.000082
100000. e
0.000275 | 0.000245 .000276 { 0.000266 .000278 | 0.000280 | 0.000281 .000282 { 0.000275
0.000080 | 0.000082 .000084 | 0.000085 .000086 | 0.000086 | 0.000087 .000088 | 0.000083
10000. ' o
0.002517 | 0.002357 .002680 | 0.002608 .002727 | 0.002749 | 0.002770 .002786 | 0.002713
.0.000116 0.000107 .000103 | 0.000101 .000101 | 0.000101 | 0.000101 .000101 | 0.000096
1000. _
0.016652 | 0.019422 .022914 | 0.023218 .022547 ) 0.025159 | 0.025747 .026128 | 0.025494
0.000184 | 0.000217 .000221 | 0.000216 .000210 { 0.000200 | 0.000192 .000189 { 0.000180
100. '
0.041488 | 0.085109 .122584 | 0.145359 .162240 | 0.181603 | 0.199737 .212907 | 0.211611
0.000195 | 0.000252 .000279 | 0.000287 .000285 | 0.000276 | 0.000260 .000251 |1 0.000238
50.
'0.045310 | 0.105772 .167908 170.216627 .254807 | 0.304734 | 0.354211 .391196 | 0.395030
0.000205 | 0.000296 .000273 | 0.000437 .000484 | 0.000541 | 0.000569 .000544 | 0.000499
10.
0.048924 | 0.131462 .242337 |1 0.368427 .500079 [ 0.750871 | 1.131278 .513544 { 1.650736
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