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ABSTRACT

A new non-pa;ametric method is describec¢ for analyzing failure
data. The approach used is to model the logarithm cf the failure-
rate process as a linear dynamic system with observations. This
formulation permits the underlying failure-rate process to be
corrupted by noise from various sources. In addition, the observa-
tions of the process are functions of simple non-parametric faiiure-
rate estimates which are assumed to be noisy. The Kalman filter

equations are used to provide the estimates and future forecasts.

An example is provided.
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1. INTRODUCTION

The failure-rate function, or hazard function, is of fundamen-
tal importance in both the theory and applications of reliability.
Numerous parametric and non-parametric methods have been proposed
for estimating the failure-rate function based on failure daca.
Parametric methods assume that the failure data arise from a
specified distribution, but with unknown parameters which must be
estimated from the data. A large portion of the book by Mann,
Schafer, and Singpurwalle [14] is devoted to a discussion of such
techniques. ©On the other hand, non-parametric methods do not
require a distributional assumption. Barlow and Van Zwet [3]
summarize and compare several non-parametric estimators ror mono-
tone failure-rate functions. Grenander [9) also discusses several
non-parametric methods. Additional references may be found in [3].

As Singpurwalla [24] points out, a basic disadvantage of both
approcaches is the inflexibility due to the assumed model and lack
- of a theory for forecasting. Further, we cannot account for con-
tamination of the failure-rate cstimates from such sources as
periodicities due to inspection, data recording or reporting errors,
or maintenunce policy effects. 1In an effort to account for such
contamination and to provide a theory for forecasting, Castellino
and Singpurwalla [7] and Singpurwalla [24] have presented new and
novel approaches for ecstimating and forecasting failure-rate
functions. In their approach, they think of the time-ordered
sequence of certain non-parametric estimates of the failure-rate
function as being generated by a time series process. The esti-

mated failure-rate function is thus a stochastic process wiich
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they refer to as the failure-rate process. An appropriate Box-
Jenkins time series model is then fitted to either the process
itself [7], or a simple functional of the process [24]. The
fitted model 7s then used to provide the required failure-rate
estimates and forecasts. The approach is frece of any assumptions
regarding the failure distribution or the parametric form of its
failure-rate function.

In this paper, we likewise consider the probiem of estimating
a failure-rate function, and then use Kalman Filtering techniques
to forecast its future values based on failure and withdrawal data
up to some point in time. The approach used is to consider a
simple functional of the true failure-rate function which satisfies
a certain linear random differential equation, referred to as the
state equation. The unknown value of the specified functional of
the true failure-rate function at any time is referred to as the
state of the system (or system state Or state) at the time.
Consequently, a general parametric form for the failure-rate function
will be assumed in order to identify and fit the state equation.
However, this equation does include a random error (noise) component
tc account for errors in identifying cnd fitting the state equation.
Likewise, this error accounts for the obvious fact that any such
mathematical model is at best an imperfect representaticn of
reality. A second equation is adjoined to the state equation in
order to relate the state of the system at any time to a simple
non-parametric estimate of the state at that time. This equation
is referred to as the observation equation. This equati.n also
includes a random error component to account for the statistical

error associated with the non-parametric estimate., The set of
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both equations is referred to as a linear dynamic system with
observations. Once the system has been identified (Section 3),
the unknown parameters are then estimated from the failure data
(Section 4). The Kalman filter equations (Section 2) are then
used to generate minimum mean square error estimates and forecasts
of the systern state,which are then transformed to the required
failure-rate estimates and forecasts. An expository introduction
to the use of the Kalman filter in reliability is given by
Breipohl [5].

" The idea of using the Kalman filter in time series forecast-
ing is not new. McWhorter 16}, and McWhorter et. al. [17], [18]
have all considered the use cf the Kalman filter for forecasting
certain economic time series in which structural regression models
with randomly varying time-dependent coefficients are used.

Belsley and Kuh [4] and Rosenberg [22] also discuss some of the
theoretical research relating to the use of the Kalman filter in
time series forecasting. McWhorter [16] empirically compared the
performance of the Kalman filter and the BEA macroeconometric
forecastinyg models [10] for five quarterly economic time series.
Narasimham et. al. [20] have also compared the predictive perform-
ance of the BEA model with certain Box-Jenkins models. Kamat and
Cox [12] also discuss the use of the Kalman filter in time series
forecasting. Also, Duncan and Horn [8] examine linear dynamic
estimation from & regression viewpoint,

The manner in which the Xalman filter is used here is entirely
different from its previous use in forecasting economic time series.
Regression models with randomly varying time-dependent coefficients

are not used in estimating and forecasting the failure-rate function.
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Rather, a comnletely different approach is taken,as discussed in
detail in Section 3.

The Kalman filter method proposed here has advantages, as well
as disadvantages, over the Box-Jenkins approach taken by Castellino
and Singpurwalla. First, let us consider some of the advantages.
One important advantage is that the failure-rate function can be
estimated at any point in time and it is not necessary to consider
equispaced time points. Ip certain instances,the necessity for
con;idering equispaced time points may make inefficient use of the
failure data (see Section 5).

A secc..d advantage concerns model identification. To illustrate
this, suppose that the failure data for the device in question have
been obtained over periods of time in which different classes of
underlying failure rodes generate the observed failure data. For
example, suppose that failure data are obtained during both the
infant mortality and wear out regions of the useful life of the
device. In such a case,it is reasonable to assume that either com-
pletely different modeis or the same model but with different
parameters are likely to be required for the different regions.
Since the standard Box-Jenkins models are non-dynamical, one is led
to adaptive estimation or to consider the use uf different models.
Further, perhaps the environment in which the failure data have
bteen obtained changes over time due to such things as changing
policies regarding withdrawals, changing data recording policies,
changing environmental test conditions, etc. This may also yield a
situation in which a single non-dynamical model is inappropriate.

On the other hand, the Kalman filtcr model is dynamical in nature

AL

and the parameters of the model may be' time-varying. This advantage
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is also illustra* 'd in Section 5.

A third advantage is that random model identification and
fitting errors are more or less distinct and separate from the
random statistical error accompanying the non-parametric failure-
rate estimates. As illustrated in Section 5, this property may
be used for controlling the extent to which the Kalman zstimates
are "smoothed" versions of the rather jagged non parametric
estimates. This is further discussed in Section 5.

A fourth advantage is that the Kalman estimation and forecast
errur variances are conveniently computed in applying the Kalman
filter equations. Consequently, probability iimits can be readily
and efrficiently computed for the true failure-rate function and
its forecasted values.

There is one major disadvantage in the Kalman filter approach
as compared to the Box-Jenkins approach of Castellino and
Singpurwalla. Briefly, the entire procedure is less non-parametric.
Although there is no assumption regarding the failure distribution,
the random error components in the state and observation equations
will be assumed to follow specified distributions. The justifica-
tion for these will be considered in Section 3. The proposed
procedure may be thought of as lying somewhere between a completely
non-parametric and a completely parametric approach.

A birief introduction to linear dynamic estimation «will be
presented in the next section. Failure-rate estimation witihin the
framework of lineuir dynamic estimation will be considered in

Section 3. Section 4 discusses procedures for fit+*ing the rroposed
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model to the data. A real-data example application will be

presented in Section 5.
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2, LINEAR DYNAMIC ESTIMATION

Linear dynamic estimation concerns the estimation of a phys-
ical process from observations of the process which may be corrupted
by random "noise." The physical process is considered to be a
random process which is linear in the state of the process.

As ploneers in this area, Wiener [26] and Kolmogorov [13]
pPresented the basic theoretical solution to the problem of esti-
mating the random process. The end result of their work was the
specification of a weighting function for the optimal physically
realizable estimator as the solution of 2 complicated integral
equation. This estimator subsequently became known as the Wiener-
Kolmogorov or Wiener filter. The details may be found in numerous
modern textbooks on statistical control, communication, or infor-
mation theory.

The practical problem of solving the integral equation of
Wiener represented an additional dJegree of difficulty in applying
the Wiener filter. Kalman [11] anl] Bucy and Kalman [6] recognized
this shortcoming and proposed that the solution should be an algo-
rithm which provides the numcerical estimate from numerical obser-
vations with the aid of a digital computer. They converted the
integral equation of Wiener into « non-linear differen<ial equation
which could be efficiently solved. Their basic method became known
as the Kalman-Bucy or Kalman filter.

The mathematical statement of the general dynamic estimation

problem will now be given. Consider the random linear differential



equation (the state cquation) given by

dx(t) ~ A(t) x(t) + UCL) (1)
where x(t) is an rxl vector which represents thke state of the
system at time t, A(t) is a specified time-varying rxr matrix of
coefficients, and U(t) is a rxl vector-valued Wiener process
representing the state error driving the system. From the Wiener
process assumption it follows that E[U(¢)] = @ and E[ﬁ(t)UT(t')]
= K(t)s(t - t'), where K(t) is a specified nonncgative definite
matrix function of t and 6(t - t') is the Dirac delta function.

It is easily shown that the function given by

t
x(t) = 0(t,ty jIx(t; ) + f ®(t,A)U() dA (2>
' tia

satisfies (1) for initial condition x(ti_l), where ¢(t,ti_1)

satisfies the differential equation

ae(t,t; ;)

—— = A(R)O(,t; ) (3)

with initial condition ¢(ti_1,fi_1) = I. If we now define

t.
L
u(t;_4) = f $(t, U ar (4)
i-1 ts 4
1-

then the discretizcd counterpart of (1) can be written as

. x(tg) = O(ty,t; ()x(t; 4) +ult; ) ()



where {ti} is a specified sequence of time points, From the
Wiener process assumption on U(t) it follows that {u(ti)} is a
sequence >f Gaussian random r-vectors with E[u(ti)] = f and

T . ‘ .
E[?(ti)u (tj)] GijQ(ti), where GiJ is the Kronecker delta function.
Thus,{u(ti)} is a sequence of independent Gaursian random vectors

with mean f# and time-dependent covariance matrix

t.
Q(t;) = j[ T oee kel o . (6)

i-1
It is observed that the state equation in (5) is basically an
autoregressive model with time-varying coefficients and non-
stationary Gaussian white noise shock process,

Now consider the discrete-time linear olbservation equation

given by

y(ts) = Bt )x(t;) + v(ty) (7

vhere y(ti) is a px1 vector of observations, H(ti) is a specified
pPXr matrix relating x(ti) to y(ti), and {v(ti)} is a sequence of
Gaussian random p-vectors with E[v(ti)] = f and E[ﬁ(ti)vT(tj)J

= Gin(ti). Thus {v(ti)} is also a non-stationary Gaussian whito
noise process known as the cbservation error within the system.

Suppose we further assume that u(ti) is independent of v(tj) for
211 i and j. Equations (5) and (7) together are referred to as a

linear (discrete-time) dynamic system with observations. The

TIAL

problem is to estimate x(ti) from the available sequence of obser-

vations y(tl), ceey y(ti) and to forecast x(tm), where tm > t,.
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Under the assumptions outlined above, as well as the assump-

tion that #(ti,ti_lj, H(ti)' Q(ti), and R(ti) are known for time

points tys oo ti’ the Kalman filter equations are known to provide

the minimum mean square error estimate of x(ti). The Kalman
estimates are also known to be MVU estimates as well, The details
may be found ir most modern texthooks on control theory such as

o
Astrom [2]. The Kalman filter equations are given by

2. o5 + P (npeT s r ) - H.X (8)
i~ ™ i SRS B S ‘i Yi i*i

p. = 7. - B.uT(p.nT + &, ) H.F (9)
i % Pi 0 Py \MiPity i i'i

X3 %,i-1 X (10)

P, = & P o] + Q (11)
i® % i-1 Pi-1 %4141 Y Qa1 o

for i = 1, 2, ...,where for convenience in notatior we have let
Xy F x(ti), Y; S y(ti), °i,i-1 = w(ti,ti_l), and so forth. Here
ii is the minimum mean square estimate of X4 and Pi is the co-
variance matrix of the estimation error (ii - X:). In a similar

i
way, ;i is the minimum mean square estimate of xi.given the
observatiors Yir »+o0 Yioq» and Fi is its estimation error
covariance matrix. The initial state estimate io and its error
covariance matrix P0 are also required to start the filtering
process. Note thut ii is recursively computed and depends only
upon ii-l and Y- Further note that Pi docs not depend upon the

observations,provided that ¢, H, Q, R, and P, are known. In

practice, however, some or all of thesc quantities are unknown and

LASL-STDA-CTriCtAL
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must be esti...~ed from the available data, This will be considered

in Section 4. The matrix ¢, . ; is sometimes called the state
’ .1
., . . .o = T =47 .
transition matrix aud the matrix PiHi (HiPiHi + Ri) is often

referred to as the gain matriz (or gain) of the Kalman filter.
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3. FAILURE-RATE PROCESSES AS LINEAR DYNAMIC SYSTEMS

Let h(t), the true failure-rate at time t, represent the
state of the system at time t. Consider a lifetest experiment in
which n items are initiually placed on test and in which r € n fail-
ures are recorded as they occur at times 0 = T0 < T1 < T2<---< Tr'
Let Zi denote “he total time on test between the (i - 1)st and
the ith failure. 1In the case of either censored or truncated
testing and no progressive withdrawals, we have that Zy = nTl,
Z, = (n - 1)(T2 - Tl), seey L5 0® (n - i+ 1)(Ti - Ti-l)' cees
Zr = (n -1 + 1)(Tr - Tr-l)' In the case of progressive with-
drawals, Zi is calculated by appealing directly to the definition

of total time on test. The MLE, ﬁ(t), is a step function, constant

between observations, and is given by

ey =z;d 1, <t<T, i1, ., T . (12)
Unfortunately, the asymptotic variance of ﬁ(t) depends upon h(t)
[3] and this violates the conditions of (7). Since thc logarithmic
transformation is the appropriate variance stabilizing transfor-
mation, we consider the use of &nh(t) here.

Correspondingly, we now consider the state equation for the
logarithm of the failure-rate function, €nh(t). Suppose that we
definc the state equation corresponding to a univariate version

of (1) as

b-1 t
dénh(t) _ | abt ~ + cd &nd + e/t | pupce) + U(t) (13)
dt atb + cdt + clat + £ i

oA OFGCal
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Here A(t) of (1) represents the expression in brackets, where

a, b, ¢, d, e and f arc parameters of the expression, Motivation
for this choice of A(t) is based on the following., Consider the
deterministic counterpart of (13) obtained by ignoring U(t), the
random error process driving the system. A solution to this

deterministic equation is given by

Loh(t) = at® + ca® + e fnt + £ (14)
from which
h(t) = exp [atb + cd™ + elnt + f] . (15)

Equations (14) and (15) will be referred to as the nominal system
model for the log failure-rate and failure-rate process,
respectively,.

Several important parametric failure-rate functions are
special cases cf (15). The constant failure-rate (exponential)
model h(t) = A is obtained by letting a = £n A, b=c=dme=f = 0.

The linearly increasing (Rayleigh) model h(t) =at, a > 0, is

1. The polvnomial

obtained by setting a = €na, b=c=f = 0, and e
(Weibull) and exponential (extreme value) failure-rate models are
likewise easily shown to be special cases of (15). Also, the first-
order autoregressive log failure-rate model for equally spaced

time peoints, €nh(t + 1) = afnh(t), is obtained by letting ¢ = «,
a=e=f = 0. It is noted here that higher-order autoregressive

models can be obtained by considering a suitably dimensi9ncd

vector state variable consisting of an appropriate number of lags

in the log failure-rate function. Lach of the models and their
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combinations discussed above is, of course, assumed to be con-
taminated by Gaussian random noise input to the system as in (13).
Thus yan actual log failure-rate process in practice is assumed

to depart from the nominal system model in (14) depending upon

the magnitude of the parameters in the assumed Wiener noise process
contaminating (or corrupting) the system. The system state
equation in (13) thus appears to be sufficiently flexible for use
in many practical applications. It is also noted here that any
assumed periodicities in the log failure-rate process could be

accounted for by adding appropriate periodic terms to the

. nominal system model (14). Without such terms, it is impossible

to forecast periodic behavior of the log failure-rate process
when using the Kzlman filter approach presented here. However,
if there are periodicities in the MLE given in (12) as a result
of peribdically contaminated data, these will also likely be
present to some extent in the Kalman filter estimates, even
though (14) is used without adding periodic terms. The basis for
this statement will be illustrated in Section 5.

The discrete-time version of (13) as ~iven in (5) becomes

t.
atf +cd o+ el’.nti + f

t
atp + cd -1

ll!h(ti) = Znh(ti-1)+ u(ti_l)l (16)

+ elnti_1 + f

where O(ti.ti_l) is obtained by solving (3) and is the exprcssioni

given in brackets. Now ¢(ti.ti_1) may be thought of as the time-

_Sal

dependent cocfficient which maps the expected log failure-rate at time

ame -
T oo

as. ¢
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t;_ ; intc the expccted log failure-rate at time t,. The additive
Gaussian error u(ti-l) in (16) accounts for potential modeling
errors as well as other centaminants which are likely to perturb
the nominal log failure-rate process model. The assumption of
additive Gaussian error in (16) is equivalent to an assumed
multiplicative log-Gaussian noise component in the failure-rate
system model corresponding to (16). It is argued that a positively
skewed distribution, such as the Jog-Gaussian, is appropriate for
a multiplicative error in which the mapped nominal system state
is more often expected to underestimate the true system state.
That is, underestimation of the true failure-rate is perhaps more
frequent than overestimation based on the assumed system model.

Now let us consider the observation equation (7) in a form

tentatively given by

tnh(ty) = Leh(t;) + v(ty) (17)

where t; = Ti' i=1,2, ..., r, and ﬁ(-) is the MLE given in
(12). For the case of testing without progressive withdrawals,
let us determine the mean and variance of lnﬁ(ti) in order to find
the mean and variance of the obsgrvntion €eTToT v(ti). It is well-
known that, if x is an exponentially distributed random variable
with mean ¥, then E[2€nx] = £nuw - vy and V[8n x] = ﬂ2/6, where Y is
Euler's constant. Watson and Leadbetter [25] state that if

Xyy «+e» X, are iid failurc time random variables then ‘

(n - i+ ?)[H(T;) - H(Ti_l)] are independent and exponentially

distributcd with mecan 1, where H(x) is the intecgrated failure-rate

-

function corresponding to x. It then follows by use of the Mecan

gt 1

~
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Value Theorem that H(Ti) - H(Ti_l) = h(E)ITi - Ti-1] for some

such that T; ; < £ < T;. From this it is easily shown that

E[lnﬁ(t)] = fnh(t) + v + O[h'tt ] (18)

and

2 :
v[enhee)] = T o o[" ( :] : (19)

Assuming the failure-rate function h(t) to be reasonably smooth,
the terms of O[h’ (t)/h(t)] can be neglectedgthus yielding
E[Zn‘l\m(t)] = fnh(t) + Y and V[Zn‘ﬁ(t)] +* 1r2/6. Thus,we redefine the

observation equation (17) for use here as
] ~ ®
&nh (ti) H Znh(tl) -y = lnh(ti) + v (ti) , (20)
®
wherc now v (ti) is approximately normally distributed with mean

0 and variance ﬂ2/6. Upon comparing (20) to (7),it is observad

that H(t;) = 1 and R(t;) = R = nlss.

L EIDA OFECiAL
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4, MODEL FITTING AND PARAMETER ESTIMATION

We now discuss the procedures to be used in fitting the
linear dynamic system with observations to a given set of failure
data. We begin by considering the nominal system nodel given in
(14) which is used in calculating ¢(ti, ti_l) in (16). Since all
of the parameters a,b,...,f appearing in (14) will not likely be
known a priori, a procedure for estimating these from the failure
data is needed. We currently propose using nonlinear ordinary
least squares (OLS) to estimate the unknown parameters in (14)
according to the following scheme. Suppose that N & r failures
have been observed up to the present time, where N is large
relative to the number of parameters a,b,...,f to be estimated.
These N observations will be used to identify the nominal system

model in (14). Consider the sum of sauares function given by

N 2
b T,
S(a,b,...,f) = E [Znh*(Ti) - aT; + cd 1se lnTi + f]
i=1

N T- 2
- Z!:— nz, -Y-aTib+ cd !+ e inT, + f] » (21)

i=1

where v = 0.5772157 -+- is Euler's constant. Use the techniques
of constrained nonlinear least squares estimation to find the
values of the parameters a,b,...,f which minimize S. These are
the OLS estimates of a,b,...,f and will be labeled ;.%....,E.
These estimates arce then usec in computing 3(ti, ti-l)' where the

OLS estimates replace the unknown parameters.

ERDA_OFfFICrAL
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Several aspects regarding this procedure should be mentioned.
First, in many practical applications some of the parameters a,
b,...,f are either likely to be known, or can be assumed to be
known, a priori. For example, if the failurec-rate process is
justifiably believed to be basically a contaminated Weibull
process, then b, ¢, and f can be set equal to zero and the general
six-parameter nonlinear OLS problem reduces to a simple two-
parcmeter linear OLS problem. Generally, it is unlikely that the
full six-parameter model will be required.

Secondly, the form of @(ti, ti-l) in (16) is such that a
high degree of accuracy for 5,5,...,? is unnecessary. That is,
slight changes in 5,6,...,? have relacively small effect on
3(ti, ti-l) and thus somewhat '""rough" estimates will usually be
sufficient. In fact, due to the flexibility of a six-parameter
model, different lower order subsets of these six parameters can
scmetimes be used to calculate a(ti, ti-l) values which do not
have a significant effect on the estimates generated by the Kalman
filter equations. This will be illustrated in the neat section.

Thirdly, each of the terms appearing in (14) may be loosely
interpreted as follows. The term (atb) in (14) may be loosely
thought of as accounting for exponential t2ndencies in the failure-
rate process. The terms (cdt) and (e fnt) loosely account for
autodependent and polynomial behavior, respectively, in the model.

Finally, the paramcter f in (24) looscly acts as a scale
parameter in the nominal failure-rate process model. Taken to-
gether, these terms can account for dissimilar process tendencies

such as may occur during the infant mortality and wear-out regions

ASL.ECDADFRIC.,
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of useful life of a device, This will also be illustrated in the
next section,

Now consider estimation of the initial state lnh(to), initial
state error variance PO' and state error variance Qi' For con-
venience we shall assume that the state error variance Qi is
constant over time and consider estimating the coinmon value
Qi £ Q. Thus,the additive error contaminating the log failure-
rate ~tate equation (16) is assumed to be a stationary white noise
Gaussian process with mean O and variance Q. For convenience we
shall also set P0 equal to Q, since the long-range performance of
the K- - 'an filter is known to be rather insensitive to initial
starting conditions.

Numerous estimation procedures have been proposed for
estimating the state error variance and initial ¢ ate of a linear
dynamic system with observations. Pearson [21] provides an
extensive bibliography and gives an excellent survey of available
methods. Shellenbarger {23] and Abramson [1] develop maximum
likelihood estimators of bot). the state and observation error
covariance matrices. Mehra [19] also deve ops estimators of both
error covariance matrices based on the use of residuals.

We consider estimators for Q and E[bzh(to)] based on the
method of moments. By repeated use of (16)’it is easily shown

*®
that the distribution of bzhi, conditional on the initial state

luho, has mean and variance given by

. .
[-:[tnhi ltnho] = Yo tho (22)
and
., .
vieun  itnny = 00« %, (23)

\SL.EdDA DAL
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respectively, where we have defined

3-k
LA I I iak,jek-10 110 20 s kom0, 1, oy, -1, (24)

Sl
]
[

2 .
o, = :E: vhoo1, i=2,3, ..., (25)

ard

0, =1 . (26)

Now, by use of .ne fact that E(X) = ZT[E(X|Y)] and V(X) = V[E(X|Y)]

+ E[v(X]Y)],we find that

N N
. DILINEL G DIRNG 27)
im=1 i=]1
and
N N
-DIRILUNEEDD (°i * \Pgi)/x « il 28
i=1 i=1

"
Define the first two sample moments of the scquence{lnhi, i=1,...,N}

as
N
= :E; (29)
and
N 2
}E: (Cnl\ - u ) : (30)

[
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—
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Equating (27) to (29) and (28) to (30) and solving for E[tho]

and Q yields the moment estimators given by

) N N N
E[l'”‘oJ = Nay /Z Yoi * ZM;/Z Yoi (31)
i=1 i=1

i=1

and

Q- N(uz - nz/o) /i (91 ‘ "’ozi) : (32)

i=]

Two things should be pointed out here. First, since the nominal
system model (14) is fitted to the data by means of OLS as in (21),
E[i:;:] will be identically equal to the value of (14), in which
the appropriate OLS estimates have been inserted, at the initial
time t,- Thusythe initial Kalman filter estimate required to
start the filter is the initial nominal system estimate. If
setting t = ty = 0 in (14) yi2lds a value of -=, i.e., if e # 0,
then an initial time ty should be selected such that 0 < ty < Tl'
Secondly, it may happen that 6 < 0, in which case an arbitrary
nonnegative value must be seiected for Q. It is roted here that
the above estimates are considerably simpler to compute than
corresponding maximum likelihood =stimates which cannot be obtained
in closed form.
a N -

Once o(ti, ti-i)' E[thol, and Q have been obtained the

Kalman filter equaticns can be applied. The Kalman filter

equations (8)-(11) now become

EeDA OFF'\TI1AL
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tah, = tnh, + 6P (nh. - tah.)/(67; + x°)
i i jl&nhy - tahgJ/(6P; + = (33)

- _z P 2
P, = Pi - 6P, /(u P+ 'n) (34)
nhy = &; 5.9 hy, (35)
P, = 82, P, . +Q i 36
i i,i-1 "i-1 Q. i=1,2, ..., N (36)
N

where.bago z E[bthO] and P0 E a are used as initial starting
values. Recall that the subscript i derotes the ith observed

failure time T;. Kalman fiiter estimates of the log failure-rate

function are thus calculated at each of the observed failure times.

Future forecasts of the log failure-rate functior at any time

t > ty are calculated by means cf
th(t) = o(t,ty) by (37)

and the variance associated with the forecast error is estimated

to be
P(t) = 8%(e, )Py + Q. (38)

L

ASL-EKDA-COFFICIAL



-23-

5, AN EXAMPLE APPLICATION

We shall illustrate the Kalran filter procedure by the
following example taken from NAILSC Report ILS 04-21-72.
Castellino and Singpurwalla [7] used this same example.
Singpurwalla [24] also considers this same example and Table 1 of
that paper gives the failure and withdrawal times (in hours) for
an A/C generator. A total of 55 failures were reported ranging
from a minimum of 1.0 hour to a maximum of 1097,3 hours. However,
only 53 generators failed at distinctly different times, since
two generators failed at 3.0 hours and two generators failed at
252.8 hours.

Singpurwalla observed periodicity at lag 7 in the sequence
of MLE's computed from (12) at 24-hour equispaced time points.
This pericdicity was the result of a weekly inspection policy
wherein items soon expected to fail were withdrawn from the test.
Castellino and Singpurwalla [7] fitted a Box-Jenkins ARIMA model
of the form (1,0,0) x (2,1,0), + 00 directly to the MLE's of the
failure-rate function. By use of this model,they were able to
satisfa~torily estimate and forecast the failure-rate function.
Their estimates and forecasts preserved the periodicities in the
data.

For simplicity and convenience, we shall deliberately igncre
the periodic contaninants in the data and proceed directly to fit
the gencral lincar dynamic model prescrted in Sections 3 and 4.
However, we are wcll awarc that there is ample evidence that
periodic-type terms should be included in the noriinal sy.item

model (14).
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Upon examining the plot of (Ti' lnh;), i=1, ..., 53, it wus
tentatively decided that parameters e and b in the nominal system
model (14) could be set equal to 0 and 1, respectively. The
resulting OLS curves fitted to the data {(Ti,lnh;), i=1,2,..., 53}
tended to confirm this choice. The remaining parameters a, c, d,
and f were estimated by use of the software program ZOSLSQS* using
the method due to Marquardt [15]. The OLS estimates of these
parameters were found to be a = 1,09117, & = 2.61270, d = 0.83065
and £ = -7.53429. Thus,the nominal sysvem model for the log

fuilure-rate function was taken to be

ah(t) = 1.09113¢ + 2.61270(0.83065)t - 7.53429 . (39)

Both the input observation data Znﬁ(Ti) as well as the nominal
system model (39) are plotted in Figure 1. It is observed

that the apparent rapid decrease in the input data occurring
during the brief infant mortality or break-in period is captured
in the nominal model. It is further observed that the generators
tend to begin wearing out somctime after the break-in period as
evidenced by the increasing trend of the input data over time.
The nominal model cuaptures this increasing trend and is nearly
linear during this region. Also, the chance-failure region is
nominally cstimated to be of fairly short duration, Finally, the
input data marked with an astcrisk (*) in Figure 1 represents the

data used by Castellino and Singpurwalla [7] and Singpurwalla [24]

* . .
Internal nonlinecar OLS program available at the Los Alamos
Scientific Laboratory, lLos Alamos, New Mexico.
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when considering 24:hour equispaced time intervals, It is clearly
apparent that this particular subset of input data is nonrepre-
sentative of all the data. Consequently, it must be remembered
that failure-rate estimates and forecasts based oa this subsat
should be interpreted only at 24-hour intervals ind not at
arbitrary points in time. On the other hand, fhe Kalman filter
procedure effectively uses all of the input data, thus providing a
composite view of the entire failure-rate function,

| Moment estimates of E[Enho] and Q were computed to be -4.92
and -0.00055, respectively. Since a is negative, we shkall arbi-
trarily set 6 equal to several nonnegative values and observe the
corresponding performance of the filter. The Kalman filter
estimates given by (33) are plotted in Figure 1. For these
estimates, Q was taken to be 0.02. It is observed that the Kalman
estimates ave significantly smoother than the input MLE's and
effectively represeny a compromise between the input data and
nominal system model. The Kalman estimates are observed to account
nicely for the log failure-rate function during the break-in as
well as the wear-out regions. In Figure 1 we have also plotted
the Kalman estimates forecasted ahecad at each observed failure to
the time of the next failure. These estimates are given in (35)
and illustrate the short-range forecasting ahility of the Kalman
filter procedure. These short-range forecasts are observed to be
in goud agrecement with the Kalman estimates themselves.

The same cstimates are plotted in Figure 2 except that now

6 » 2,0, In this casceyless smoothing occurs and the ragged nature

<A

of the input data is largely preserved in the Kalman estimates.

A Walll
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This situation corresponds to somewhat imprecise knowledge or the
nominal system mnodel. It is interesting to observe that the Kalman
estimates seem to be in phase with the input data. Periodicities
in the input data are also likely to be preserved.
Figure 3 consiaers the case where 6 = 0.001, This corre-
sponds to precise system knowledge. It is observed that the
Kalman estimates nearly coincide with the nominal system model
and are extremely smooth relative to the input data. In the case
where a = Po = 0, the Kalman estimates reduce to the nominal system
estimates and no state noise is assumed to be driving the system.
In Figure 4 we have plotted the antilogs of corresponding
estimates in Figure 1. This graph illustrates the Kalman filter's
performance in estimating the failure-rate function. The perfornm-
ance appears to be satisfactory, and is analogous to Figure 1.
Figure 5 presents a plot of the Kaiman estimates and fore-
casts of the failure-rate function for 6 = 0.02. The estimates
are plotted up to time Tgg = 1097.3 hours and the forecasts are
given at 25-hour equispaced time intervals beginning with t = 1100
hours through t = 1700 hours. The forecasts were obtained by
taking the antilog of (37). As pointed out in Section 3, perio-
dicities cannot be forecast without the use of suitable periodic
terms in the nominal system model. 1In Figure 5 we have
~1so plotted approximate 95 percent probability limits for the
underlying failure-rate function. At the observed failurc times
up to 1097.3 hours, the limits were ccmputed according to

exp[btﬁi ¥ 1.96 /F}]. The 95 percent limits on the failure-rate

forecasts werc computced from cxp[ﬂnﬁ(t) + 1.96 j%(t)], wvhere a

e T
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lnH(t) and F(t) are given in (37) and (38).

In Figure S5,we have also plotted the estimates and forecasts
given by the Box-Jenkins technique ¢f Castellino and Singpurwalla.
These estimates and forecasts are exclusively given at 24-hour
intervals., Since the Kalman filter results are based on non-
equispaced input data, a direct comparison cannot be made.

The sensitivity of the resulting Kalman filter estimates to
the choice of a nominal system model (14) was investigated by
fitting a different nominal model to the input data. When the

nominal model

0.5

Lnh(t) = 0.03979t + 2.82400(0.85277)% - 7.83338 , (40)

was used rather than (39), the resulting estimates were not
noticeably different from those in Figure 1 based on the use of
(39). This is explained by noticing that ¢(ti. ti-l) in (16) is
a ratio and that changes in the nominal model tend to '"cancel
out" to a large extent.

Now the ent re procedure may be interpreted as a Bayesian
technique for smoothing non-parametric failure-rate estimates.
The degree of smoothing is governed by the magnitude of the state
error variance estimate a, and the smoothing occurs in the direc-
tion of the nominal system model.

In conclusion, we have shown that the Kalman filter cquations
can be used to provide realistic failure-rate estimates and {fore-
casts in the presence of imprecise knowledge of the actual form

of the failurc-rate function.
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