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ABSTRACT

A new non-parametric method is described for analyzing failure

data. The approach used is to model the logarithm cf the failure-

rate process as a linear dynamic system with observations. This

formulation permits the underlying failure-rate process to be

corrupted by noise from various sources. In addition, the observa-

tions of the process are functions of simple non-parametric failure-

rate estimates which are assumed to be noisy. The Kalman filter-.

equations are used to provide the estimates and future forecasts.

An example is provided.

-i-
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1. INTRODUCTION

The failure-rate function, or hazard function, is of fundamen-

tal ~.mportance in both the theory and applications of reliability.

Numerous parametric and non-parametric meth~ds have been proposed

for estimating the failure-rate function based on failure data.

Parametric methods assume that the failure data arise from a

specified distribution, but with unknown parameters which must be

estimated from the data. A large portion of the book by Mann,

Schafer, and Singpurwall& [14] is devoted to a discussion of such

techniques. Cn the other hand, non-parametric methods do not

require a distributional assumption. Barlow and Van Zwet [3]

-, summarize and compare several non-parametric estimators ior mono-

tone failure-rate functions. Grenander [9] also discusses several

non-parametric methods. Additional references may be found in [3].

As Singpurwalla [24] points out, a basic disadvantage of both

approaches is the inflexibility due to the assumed model and lack

of a theory for forecasting. Further, we cannot account for con-

tamination of the failure-rate estimates from such sources as

periodicitics due to inspection, data recording or reporting errors,

or maintentince policy effects. In an effort to account for such

contamination and to provide a theory for forecasting, Castellino

and Singpurwalla [7] and Singpurwalla [24] have presented IIew and

novel approaches for estimating and forecasting failure-rate

functions. In their approach, they think of the time-ordered

scqucncc of certain non-pararnctric estimates of the failure-rate

function ils being gcncratcd by a time series process. The esti-

mated failure-rntc function is thus a stochastic process wilich
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they refer to as the fuiZure-rute process. An appropriate Box-

Jenkins time series model is then fitted to either the process

itself [7], or a simple functional of the process [24]. The

fitted model ~s then used to provide the required failure-rate

estimates and forecasts. The approach is free of any assumptions

regarding the failure distribution or the parametric form of its

failure-rate function.

In this paper, we likewise consider the problem of estimating

a failure-rate function, and then use Kalman Filtering techniques

to forecast its future values based on faj.l~:re and withdrawal data

up to some point in time. The approach used is to cansidrr a

simple functional of the true failure-rate function which satisfies
-.

a certain linear random differential equation, referred to as the

state equation. The unknown value of the specified functional of

the true failure-rate function at any time is referred to as the

stateof the system (or system state or state) at the time.

Consequently, a general parametric form for the failure-rate function

will be assumed in order to identify and fit the state equation.

However, this equation does include a random error (noise) component

to account for errors in identifying cnd fitting the state equation.

Likewise, this error accounts for the obvious fact that any such

mathematical model is at best an imperfect representation of

reality. A second equation is adjoined to the state equation in

order to relate the state of the system at any time to a simple

non-parametric estimate of the state at that time. This equation

is referred to as the observation equation. This equati~rt also

includes a random error component to account for the statistical

error associated with the non-parametric estimate. The set of
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both equations is referred to as a Zfnear dgnamfc system tiith

observations. Once the system has been identified (Section 3),

the unknown parameters are then estimated from the failure data

(Section 4]. The Kalman filter equations (Section 2) are then

used to generate minimum mean square error estimates and forecasts

of the syster., state,which are then transformed to the required

failure-rate estimates and forecasts. An expository introduction

to the use of the Kalman filter in reliability is given by

Breipohl [s].

The idea of using the Kalman filter in time series forecast-

ing is not new. ?4cWhorter [16], and Nclfhorter et al. [17], [18]

have all conside?ec! the use cf the Kalman filter for forecasting
-.

certain economic time series in which structural regression models

with randomly varying time-dependent coefficients are used.

Belsley and Kuh [4] and Rosenberg [22] also discuss some of the

theoretical research relating to the use of the Kalman filter in

time series forecasting. McWhorter [16] empirically compared the

performance of the Kalman filter and the BEA macroeconometric

forecasting models [10] for five quarterly economic tine series.

Narasimham et.al. [20] have also compared the predictive perform-

ance of the BEA model with certain Box-Jenkins models. Kamat and

Cox [12] also discuss the use of the Kalman filter in time series

forecasting. Also, Duncan and Horn [8] examine linear dynamic

estimation from a regression vieh~oint.

The manner in which the Kalrnan filter is used here is entirely .

different from its previous use in forecasting economic time series.

Regression models with randomly varying time-dependent coefficients
<

are not used in estimating and forecasting the failure-rate function. -
,,

3
:a
s
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Rather, a com~)letely different approach is taken,as discussed in

detail in Section 3.

The Kalman filter method proposed here has advantages, as well

as disadvantages, over the: Box-Jenkins approach taken by Castellino

and Singpurwalla. First, let us consider some of the advantages.

One important advantage is that the failure-rate function can be

estimated at any point in time and it is not necessary to consider

equispaced time points. In certain instance~,the necessity for

considering equispaced time points may make inefficient use of the

failure data (see Section 5).

A secG;.d advantage concerns model identification. To illustrate

this, suppose that the failure data for the device in question have-.

been obtained over periods of time in which different classes of

underlying failure modes generate the observed failure data. For

example, suppose that failure data are obtained during both the

infant IIIOr~dlity and wear out regions of the useful life of the

device. In such a case,it is reasonable to assume that either com-

pletely different modeis or the same model but with different

parameters are likely to be required for the different regions.

Since the standard Box-Jenkins models are non-dynamical, one is led

to adaptive estimation or to consider the use Uf different models.

Further, perhaps the environment in which the failure data have

been obtained changes over time due to such things as changing

policies regarding withdrawals, changing data recording policies,

changing environmental test ~onditions, etc. This may also yield a .

situation in which a single non-dynamical model is inappropriate.

On the other hand, the Kalman filter model is dynamical in nature ..*

and the parameters of the model may be’ time-varying.
.

This advantage :-,
.-r:,.
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is also illustra” d in Section 5.

A third advantage is that random model identification and

fitting errors are more or less distinct and separate from the

random statistical error accompanying the non-parametric failure-

rate estimates. As illustrated in Section 5, this property may

be used for controlling the extent to which the Kalman estimates

are “smoothed” versions of the rather jagged non parametric

estimates. This is further discussed in Section 5.

A fourth advantage is that the Kalman estimation and forecast

errtir variances are conveniently uomputed in applying the Kalman

filter equations. Consequently, probability iimits can be readily

-. and efficiently computed for the true failure-rate function and

its forecasted values.

There is one major disadvantage in the Kalman filter approach

as compared to the Box-Jenkins approach of Castellino and

Singpurwalla. Briefly, the entire procedure is less non-parametric.

Although there is no assumption regarding the failure distribution.

the random error components in the state and observation equations

will be assumed to follow specified distributions. The justifica-

tion for these will be considered in Section 3. The proposed

procedure may be thought of as lying somewhere between a completely

non-parametric and a completely parametric approach.

A b;.ief introduction to linear dynamic estimation dill be

presented in the next scction- Failure-rate estimation within the

framework of line:.r dynamic estimation will be considered in

Section 3. Section 4 discusses procedures for fit”ing the Froposed
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model to the data. A real-data example application will be

presented in Section S.

-.

..
*,
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2, LINEAR DYNAMIC EST13tATION

Linear dynamic estimation concerns the estimat5.on of a phys-

ical process f=om observations of the process which may be corrupted

by random “noise.” The physical process is considered to be a

random process which is linear in the state of the process.

As pioneers in this area, Wiener [26] and Kolmogorov [13]

presented the basic theoretical solution to the problem of esti-

mating the random process. The end result of their work was the

specification of a weighting function for the optimal physically

-. realizable estimator as the solution of a complicated integral

equation. This estimator subsequently became known as the Wiener-

Kolmogorov or Wiener filter. The details may be found in l,umerous

modern textbooks on statistical control, comrnnnicstion, or infor-

mation theory.

The practical problem of solving the integral equation of

Wiener represented an additional degree of difficulty in applying

the Wiener filter. Kalman [11] an~ Bucy and Kalman [6] recogni~~d

this shortcoming and propose’i that the solution should be an algo-

rithm which provides the num?rical estimate from numerical obser-

vations with the aid of a digital computer. They converted the

integral equation of Wiener into ~ non-linear differential equation

which could be efficiently sa”l,vej. Their basic method becOine known

as the Kalman-Bucy or Kalmall filter.

The mathematical statement of the general dynamic estimation

prohlcm will now be given. Consider the random linear differential
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equation (the state equation) given by

+
dx t

t = A(t) x(t) + U(t) (1)

where x(t) is an rxl \ector which represents t}ic s:ate of the

system at time t, A(t) is a specified time-varying rxr matrix of

coefficients , and U(t) is a rxl vector-valued Wiener process

representing the st:~te error driving the system. From the Wiener

proce,ss assumption it follows that E[U(t] ] = II and E[U(t)UT[t’]]

= K(t]6(t - t’], where K(t) is a specified nonncgat~ve definite

matrix function of t and 6(t - t’) is the Dirac delta function.

It is easily shown that the function given by-.

{

t
X(t) = ‘(t,ti-],)x(ti-l) + @(t,A)U(A) d~

t.1-1

satisfies (I) for initial condition x(ti-l)~ where ~(t~ti-l)

satisfies the differential equation

a@(t,ti-i]

at = A(t)Q(tPti-l)

with initial condition @(ti-lbti-l) = I= If we now define

[

ti

U(tl-~) = 4[t,A)U(A) dA ,
‘i.l

then the discretizcci counterpart of (1) can be written as

\ X(ti) = ‘(t.iSti.l )x(ti-~) ‘“”[ti-~) O

(3)

(4)

(s)



-9-

where {ti} is a specified sequence of time points. From the

Wiener process assumption on U(t) it follows that {U(ti)} is a

sequence >f Gaussian random r-vectors with E[u(ti)] u JI and

E[u(ti)uT(tj)] = ~ijQ(ti)s where 6.1]
is the Kronecker delta function.

Thust{u(ti)} is a sequence of independent Gau:sian random vectors

with mean j? and time-dependent cova’riance matrix

f

ti

Q(ti) ~ @(t,A)K(A)@T(t,~) d~ .
t. 1-1

(6)

lt is observed that the state equat;on in (5) is basically an

autoregressive model with time-~-arying coefficients and non-

stationary Gaussian wF1ite noise shock process.

Xow consider the discrete-time linear observation equation

given by

Y(ti) = ‘+~ti)x(ti) + ‘(tj,) 9 (7)

where y(ti) is a pxl vector of observations, H(ti) is a specified

pxr matrix relating x(ti) to y(ti), and {v(ti)} is a sequence of

Gaussian random p-vectors with E[v~ti)] = @ and E~v(ti)vT(tj)~

= ~ijR(ti). Thus {V(tj)} is also a non-stationary Gaussian whita

noise process known as the cbservat{on error within the system.

Suppose we further assume that {l(ti) is independent of v(tj) for

sll i and j. Equations (5) and (?) together are referred to as a

2inear (diaerete-t?me) dynamic sgsten with observations. The

prublem is to estimate x(ti) from the available sequence of obser-

vations y(tl), .“., y(ti) and to forecast x(tm), where tm > ti.

u
,:
:.

ii

...-
-t
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Under the assumptions outlined above? as well as the assump-
. .

t!on that $[t i~ti-l), H(ti)$ QCti)p and Rcti) are known for time

points tl, ● m., ti, the Kalman filter equations arc known to provide

the minimum mean square error estimate of x{ti). The Kalman

estimates are also known to be 14VU estimates as well. The details

may be found ir most modern tex?hoaks un control theory such as

Estrbm [2]. The Kalman filter equations are given by

-.* (- -1
+ R.‘i = ‘i + ‘iHil,HipiHiT I )(

Yi ‘“- ‘ixl )
(8]

[9)

(10)

(11)

for i= 1, 2, . . ..where for convenience in notation we have let

E X(t+), Yi‘i . ~ Y(ti), ~i,i-l ~ Q(tijti-l], and so forth. Here

Ci is the minimum mean square estimate of xi and Pi is the co-

variance matrix of the estimation error (ii - xi). In a similar

way, ~i is the minimum mean square estimate of xitgiven the
-.

observation.s yiP . . . . yi-l, and Pi is its estimation error

covariance matrix. The initial state estimate ~0 and its error

covarinncc matrix PO are also required to start the filterin~;

process. Note thut ii is recursively computed and depends only

upon ii-l and yi~ Further nohe- that Pi ClOCS not depend upon the

obscrvnt ionstprovidcd that $, II, Q, F, and PO are. known. In ,J~u

practirc, however,
---

somt? or all of these quantities arc unknown :Ind
:.’~
i.-)w
u.
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must be cstil.,.; ed from the available data, This will be considered

in Section 4. The matrix @i i-l is sometimes called the state
8 “1

transition matrix a[~d the matrix piHiT (Hi~iHiT + Ri ) is often

referred to as the gain matrix (or gain) of the Kalman filter.

.
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3. FAILURE - IUiTE

Let h(t), the true

PROCESSES AS LINEAR DYIWNIC SYSTEMS

failure-rate at time t, represent the

state of the system at time t. Consider a lifetest experiment in

which n items are initially placed on test and in which r C n fail-

ures are recorded as they occur at times O = To < T1 < T2<==o< Tr.

Let Zi denote the total time on test between the (i - l)= and

the ith failure. In the case of either censored or truncated.—

testing and no progressive withdrawals, we have that 21 = nT1,

22 =“ (n - 1)(T2 - Tl), ..*, Zi = (n - i + l)(Ti - Ti-l), m..,

2= = @ - r + l)(T= . Tr-l)O In the case of progressive with-

drawals, Zi is calculated by appealing directly to the definition
..

of total time on test. The MLE, fi(t) , is a step function, constant

between observations, and is given by

fi(t]~Z~l, li-l<t<Ti, i= l,.._ jr . (12)

Unfortunately, the asymptotic variance of fi(t) depends upon h(t)

[3] and this violates the conditions of (7). Since the logarithmic

transformation is the appropriate variance stabilizing transfor-

mation, we consider th~ usc of lnh(t) here.

Correspondingly, wc now consiclcr the state equation for the

logarithm of the failure-rate function, h h(t) . Suppose that we

define th~ state equation corresponding to a univariate version

of (1) as

w= abtb-l + +..tid + ~/t

1

tnh(t) + J(t)
atb + cd t +C1’,nt + f

. (13)

,

,,,.
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Here A(tj of [1) represents the expression in brackets, where

a, b, c, d, e and f arc parameters of the expression. ?!ativation

for this choice of A(t) is based on the following, Consider the

deterministic counterpart of (13) obtained by ignoring U(t), the

random error process driving the system. A soZution to thi~

deterministic equation is given by

lnh(t] = atb + cd t +e lnt + f , (14)

from which

[
h(t) = exp atb + cdt 1+e[nt+f . (15)

-.

Equations [14) and (1S] will be referred to as the nominaZ system

modeZ for the log failure-rate and failure-rate process,

respectively.

Several important parametric failure-rate functions are

special cases cf (’15). The constant failure-rate (exponential)

model h(t) “ A is obtained by letting a s tn~, b=c=dme=f s O.

The linearly increasing (Rayleigh) model h(t) = at, a > 0, is

obtained by setting a s lna, b=c=f = O, and e s 1. The polynomial

(Weibull) and exponential (extreme value) failure-rate models are

likewise easily shown to bc special ca:;es of (15). Also, the first-

order autoregressivc log failure-rate model for equally spaced

time points, tnh(t + 1) =mlnh(t), is obtained by letting d = a,

a=crnf ~ 00 It is noted here that higher-order autwrcgrcssivc

models can hc obtained by considering a suitably dimensioned.

vector stntc varinb]c consisting of an appropriate number of lags

in the 10E failure-rate function. l~ach of the moclcls nnd their

!’,:
-1
,
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combinations discussed above is, of course? assumed to be con-

taminated by Gaussian random noise input to the system as in (13].

Thustan actual log failure-rate process in practice is assumed

to depart from the nominal system model in (14] dependjng upon

the magnitude of the parameters in the assumed Wiener noise process

contaminating (or corrupting] the system. The system state

equation in [13) thus appears to be sufficiently flexible for use

in many practical applications. It is also noted here that any

assumed periodicities in the log failure-rate process could be

accounted for by adding appropriate periodic terms to the

nominal system model [14). Without such terms, it is impossible

to forecast periodic behavior of the log failure-rate process

when using the Kalman filter approach presented here. However,

if there are periodicities in the MLE given in (12] as a result

of periodically contaminated data, these will also likely be

present to some extent in the Kalman filter estimates, even

though (14) is used without adding periodic terms. The basis for

this statement will be illustrated in Section 5.

The discrete-time version of (13] as ~iven in (5) becomes

[

ti
at; + C(! + elnt. + f

~~lh(ti) M
1 1~nh(ti-l)+U(ti-l)t(16)

atib-~ + c&l
+ ‘t’lti-l + f

where O(tisti.l ) is obtained by solving (3) and is the expression’

given in brackets. NOW $(ti)t i-l) may bc thought of os the timc-

dcpcndcnt cocff~cient which maps the cxpcctcd log fnilurc-rate at time

.1
!.

.

.

,)
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t i-l intc the expected log failure-rate at time ti. The additive

Gaussian error u(t i-l) in (16) accounts for potential modeling

errors as well as other contaminants which are likely to perturb

the nominal log failure-rate process model. The assumption of

additive Gaussian error in (16) is equivalent to an assumed

multiplicative log-Gaussian noise component in the failure-rate

system model corresponding to (16). It is argued that a positively

skewed distribution, such as the log-Gaussian, is appropriate for

a multiplicative error in which the mapped nominal system state

is more often expected to underestimat.e the true system state.

That is, underestimation of tile true failure-rate is perhaps more

frequent than overestimation based on the assumed system model.

Now let us consider the observation equation (7) in a form

tentatively given by

hfi(ti] = ~nh(ti) + v(ti) , (17)

where ti ~Ti, i = 10 2, . . . . r, and fi(~) is the MLE given in

(12). For the case of testing without progressive withdrawals,

let us determine the mean and variance of lnfi(ti) in order to find

the mean and variance of the observation error v[ti). It is well-

known that, if x is an exponentially distributed random variable

with mcnn P, then T![hx] = lnp - Y and V[lnx] = ~2/6, where Y is

Euler’s constant. Watson and Leadbcttcr [25] state that if
.

xl, . . . . Xn are iid failure time random variables then

(n - ‘ arr independent and exponentiallyi + 2)[H(Ti) - H(Ti-l).

distrihutcd with mcnn 1, where l!(x) is the integrated fai”lure-rate

.

function corresponding to x. It then follows by usc of the Mean
●

..
.l
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k’alue Theorem that H(Ti) - H(Ti-l) = h(G)[Ti - Ti-l] for some L

such that Ti-l < ~ < Ti. From this it is easily shown that

[+1E~nk(t)] =lnh(t) + Y + O “tt (18)

and .

v[~nfi(t)] = # + ok+] . (19)

Assuming the failure-rate function h(t) to be reasonably smooth,

the terms of O[h’ (t)/h(t)] can be neglected~thus yielding

E[4%~(t)] ~ lnh(t) + Y and V[lnfi[t)] * Tr2/6. Thus, we redefine the

observation equation (17) for use here as

&th*(ti) ~ ~nfi(ti) - y M lnh(ti) + v*(ti) , (20)

where now v*(ti) is approximately normally distributed with mean

O and variance ~2/6. Upon comparing (20) to (7),it is observed

that H(ti) ~ 1 and R(ti) ~ R = n2/6.
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4. MODEL FITTING AND PARAMETER ESTIBfATION

We now discuss the procedures to be used in fitting the

linear dynamic system h’ith obser}rations to a given set of failure

data. We begin by considering the nominal system model given in

(14) which is used in calculating @(tit ti-l) in (16). Since all

of the parameters a,b ,...,f appearing in (14) will not likely be

known a priori, a procedure for estimating these from the failure

data is needed. We currently propose using nonlinear ordinary

least squares (OLS) to estimate the unknown parameters in (14)

according to the following scheme. Suppose that N < r failures

have been observed up to the present time, where N is large

relative to the number of parameters a,b,. . . ,f to be estimated.

These N observations will be used to identify the nominal system

model in (14). Consider the sum of squares function given by

N 2

Z[
~nh*(Ti)

b Ti
S(a,b, .O.,f) = - aTi + cd +e4nT. +f

1 1i=l
N. -12

xl
1.

m - &IZi -y-aTib + cd 1 + e lnT. + f
1 I , (21)

where Y = 0.57721S7 ● 0” is Eulerts constant. Use the techniques

of constrained nonlinear least squares estimation to find the

values of the parameters a,b,. . . , f which minimize S. These are

the OLS estimates of a,b ,...,f and will be labcle~J ~,%,...,;.

These estimates arc then usci in computing $(ti, ti-l), where the

OLS cstimiltcs rcplacc the ~nknown ;}nrameters.
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Several aspects regarding this procedure should be mentioned.

First, in many practical applications some of the parameters a,

b ,...,f are either likely to be known, or can be assumed to be

known, a priori. For example, if the failure-rate process is

justifiably believed to be basically a contaminated Weibull

process, then b, c, and f can be set equal to zero and the general

six-parameter nonlinear OLS problem reduces to a simple two-

parameter linear OLS problem. Generally, it is unlikely that the

full six-parameter model will be required.

Secondly, the form of @(ti, ti-l) in (16) is such that a

high degree of accuracy for ~,~,...,; is unnecessary. That is,

slight changes in ~,~ ,...,? have relatively small effect on

a(ti, ‘i-~ ) and thus somewhat “rough” estimates will usually be

sufficient. In fact, due to the flexibility of a six-parameter

model, different lower order subsets of these six parameters can

sometimes be used to calculate ~(ti, ti-l) values which do not

have a significant effect on the estimates generated by the Kalman

filter equations. This will be illustrated in the neAt section.

Thirdly, each of the terms appearing in (14) may be loosely

interpreted as follows. The term (atb) in (14) may be loosely

thought of as accounting for exponential tendencies in the failure-

rate process. The terms (cdt) and (e~nt) loosely account for

autodcpendcnt and polynomial behavior, respectively, in the model.

Finally, the parameter f in (14) Iooscly acts as a scale

parameter in the nominal failure-rate process model. Taken to-

gether, these terms can account. for dissimilar process tcndcncics

such as may occur during the infant mortality and wear-out re~ions
.
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of useful life of a devi~c. This will also be illustrated in the

next section.

Now consider estimation of the initial state &h[tO], initial

state error variance po, and state error variance Qi. For con-

venience we shall assume that the state error variance Qi is

constant over time and consider estimating the common value

Qi E Q. Thus,thc additive error contaminating the log failure-

rate ctate equation (16) is assumed to be a stationary white noise

Gaussian process with mean O and variance Q. For convenience we

shall also set P. equal to Q, since the long-range performance of

the K’ ‘an filter is known to be rather insensitive to initial

starting conditions.

Numerous estimation procedures have been proposed for

estimating the state error variance and initial s ate of a linear

dynamic system with observations. Pearson [21] provides an

extensive bibliography and gives an excellent survey of available

methods. Shellenbarger [23] and Abramson [1] develop maximum

likelihood estimators of bot?i the state and observation error

covariance matrices. Mehra [19] also devc ops estimators of both

error covariancc matrices based on the use of residuals.

Wc consider estimators for Q and E[lnh (to]] based on the

method of moments. By repetlted use of (16) it is easily shown
r

that the distr:.bution of Z~lh~, conditional on the initial state

~nhO, has mean and variance given by

and

(22)

(23)

A.
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respectively, where we have defined

i-k

‘ki = TT
i.l,z,

‘j+k, j+k-l’ ....k-0. 1, . . . . i-1, (24)

j=l

i-1
ei -

E
Y:i 1, i = 2, 3, ,., , (25)

k.1

el=la (26)

Now, by use of ~ne fact that E(X) = 7[E(XIY)] andV(X) =VIE(XIY)~

+ EIV(XIY]],we find that

(27)

and

Define the first two sample moments of the scquence{lnh~, i=l ,...,N;

as

and

a
r,
,.’
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Equating (27) to (29) and (28) to (30) and solving for E[l.nho]

and Q yields the moment estimators given by

and

(31)

(32)

Two things should be pointed out here. First, since the nominal

sy~ model (14) is fitted to the data by means of OLS as in (21),

E[4nho] will be identically equal to the value of (14) , in which

the appropriate OLS estimates have been inserted, at the initial

time to. Thus,the initial Kalman filter estimate required to

start the filter is the initial nominal system estimate. If

setting t = to = O in (14) yields a value of -~, i.e., if e # O,

then an initial time to should be selected such that O < to < T1.

Secondly, it may happen that d < 0, in which case an arbitrary

nonnegative value must be selected for Q. It is noted here that

the above estimates are considerably simpler to compute than

corresponding maximum likelihood estimates which cannot be obtained

in closed form.

Once i(ti, ‘l-i ), E[fi~], and ~ have been obtained tht~

Kalman filter equations can be applied. The Kalman filter

equations (8)-(11) now become
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hdii = i i,i-1 ‘ii-l

(33)

(34]

(3s)

A

q= ;2
i,i-1 ‘i-1 + Q ‘

i=l ,2, ● ... N (36)

u
where LnhO s E[4Jlh O] and PO = ~ are used as initial starting

values. Recall that the subscript i der,otes the ith observed—

failure time Ti. Kalman fiiter estimates of the log failure-rate

function are thus calculated at each of the observed failure times.

Future forecasts of the log failure-rate function at any time

t>tN are calculated by means cf

hi(t) = i(t,tN) ~nhN F

.

(37)

and the variance associated with the forecast errar is estimated

to be

p(t] = i2(t,tN)p~ + 6 ●
(38)
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5, AN EXANPLE APPLICATION

We shall illustrate the Kalran filter procedure by the

following example taken from NAILSC Report ILS 04-21-72.,

Castellino and Singpurwalla [7] used this same example.

$~ngpurwalla [24] also considers this same example and Table 1 of

that paper gives the failure and withdrawal times (in hours) for

an A/C generator. A total of 55 failures were reported ranging

from a minimum of 1.0 hour to a maximum of 10?7,3 hours. However,

only 53 generators failed at distinctly different times, since

two generators failed at 3.0 hours and two generators failed at

2S2.8 hours.

Singpurwalla observed periodicity at lag 7 in the sequence

of MLE’s computed from [12) at 24-hour equispaced time points.

This pericdicity was the result of a weekly inspection policy

wherein items soon expected to fail were withdrawn fron the test.

Castellino and Singpurwalla [7] fitted a Box-Jenkins .IRIN.A model

of the form (1,0,0) x (Z,l,0)7 + ~0 directly to the !!::E’s of the

failure-rate function. By use of this model,they *ere able to

satisfa~torily estimate and ‘forecast the failure-rate function.

Their estimates and forecasts preserved the perioclicities in the

data.

For simplicity tind convenience, we shall deliberate:!y igncre

the periodic contaminants in the data and proceed direl:tly to fit

the general linear dynamic model preserted in Sections 3 and 4.

However, we are well aware that there js ample evidence that.

periodic-type terms should bc included in the noriinal sy~tem

model (14).
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Upon examining the plot of (Ti, tnh~), i=l, . . . . 53, it was

tentatively decided that parameters e and b in the nominal system

model (14) could be set equal to O and 1, respectively. The
*

resulting OLS curves fitted to the data {(Til~hi) , i ~ 1, 2,.. . , 53}

tended to confirm this choice. The remaining palanmters a, c, d,

and f were estimated by use of the software program Z05LSQS* using

the method due to Marquardt [15]. The OLS estimates of these

parameters were found to be ~ = 1.0911?, ~ = 2.61270, ~ = 0.83065

and ~ = -7.53429. Thus5the nominal system model for the log

fuilure-rate function was taken to be

lnh[t) = 1.09113t + 2.61270(0.83065)t - 7.53429 . (39)

Both the input observation data Znfi(Ti) as well as the nominal

system mudel (39) are plotted in Figure 1. It is observed

that the apparent rapid decrease in the input data occurring

during the brief infant mortality or break-in period is captured

in the nominal model. It is further observed that the generators

tend to begin wearing out somctirne after the break-in period as

evidcnccd by the increasing trend of the input data over time.

The nominal model copturcs this increasing trend and is ncnrly

linear during this region. Also, the chance-failure region is

nominally cstimatccl to be of fairly short duration. Finally, the

input data marked with an asterisk (*j in Figure 1 represents the

data used by Castcllino and Singpurwalla [7] and Singpurwallu [24]

“r—
]ntcrntil nonlincur 01,S program availublc at the I.os Alamos
Sc.icntific !,tiboratory, LOS Alilmos, ~~w ~lcxi~~~
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when considering 24-hour equispaced time intervals. It is clearly

apparent that this particular subset of input data is nonrepre-

sentative of all the data. Consequently, it must be remembered

that failure-rate estimates and forecasts based on this subset

should be interpreted onZy at 24-hour intervals and not at

arbitrary points in time. On the other hand, the Kalman filter

procedure effectively uses all of the input data, thus providing a

composite view of the entire failure-rate function,

Moment estimates of EIEnhO] and Q were computed to be -4.92

and -0.00055, respectively. Since ~ is negative, we shall arbi-

trarily set ~ equal to several nonnegative values and observe the

corresponding performance of the filter. The Kalman filter

estj.mates given by (33) are plotted in Figure 1. For these

estimates, Q was taken to be 0.02. It is observed that the Kalman

estimates are significantly smoother than the input MLE’s and

effectively represent a compromise between the input data and

nominal system model. The Kalman estimates are observed to account

nicely for the log failure-rate function during the break-in as

well as the wear-out regions. In Figure 1 we have also plotted

the Knlman estimates forecasted ahead at each observed failure to

the time of the next failure. These estimates arc given in (35)

and illus?.rate the short-range forecasting ability of the Kalrnan

filter procedure. These short-range forecasts arc observed to be

in good agrccmcnt with the Kalman estimates themselves.

The same estimates arc plotted in Figure 2 except that now

6 = 2.0. In this casc,lcss smoothing occurs and the ragged nnture

of the input data is largely prcscrvrd in the Kalman estimotcs.
*

G
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r,
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This situation corresponds to somewhat imprecise knowledge of the

nominal system model. It is interesting to observe that the Ki~lman

estimates seem to be in phase with the input data. Periodicities

in the input data are also likely to be preserved.

Figure 3 considers the case where ~ = 0.001. This corre-

sponds to precise, system knowledge. It is observed that the

Kalman estimates nearly coincide with the nominal system model

and are extremely smooth relative to the input data. In the case

where ~ s P. = O, the Kalman estimates reduce to the nominal system

estimates and no state noise is assumed to be driving the system.

In Figure 4 we have plotted the antilogs of corresponding

--, estimates in Figure 1. This graph illustrates the Kalman filter’s

performance in estimating the failure-rate function. The perform-

ance appears to be satisfactory, and is analogous to Figure 1.

Figure 5 presents a plot of the Kaiman estimates and fore-

casts of the failure-rate function for Q = 0.02. The estimates

are plotted up to time T55 = 1097.3 hours and the forecasts are

given at 25-hour cquispaced time intervals beginninE witl~ t = 1100

hours through t = 1700 hours. The forecasts were obtained by

taking the antilog of (37). As pointed out in Section 3, perio-

dicities cannot be forecast without the use of suitable periodic

terms in the nominal systcm model. In Figure 5 we have

~lso plotted approx~matc 95 percent probability limits for the

underlying failure-rate function. At the obscrvccl failure times

up to 1097.3 hours, the limits were ccmputcd according to
.

~xp[f~lhi t l.gti+~i]. The 95 percent limits on the failure-rate

forecasts were computed from c!xp[fnE(t) f 1.9G/TT)], where
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ln~(t) and ~(t) arc given in (37] and (38).

In Figure S.we have also plotted the estimates and forecasts

given by the Box-Jenkins technique of Cast.ellino and Singpurwalla.

These estimates and forecasts are exclusively given at 24-hour

intervals. Since the Kalman filter results are based on non-

equi.spaced input data, a direct comparison cannot be made.

The sensitivity of the resulting Kalman filter estimates to

the choice of a nominal system model (14) was investigated by

fitting a different nominal model to the input data. h%en the

nominal model

l.nh(t) = 0.03979t 0“5 + 2.82400(0.85277]t - 7.83338 , (40)

was used rather than (35), the resulting estimates were not

noticeably different from those in Figure 1 based on the use of

(39) . This is explained by noticing that @(ti, ti-l) in (16) is

a ratio and that changes in the nominal model tend to “cancel

out” to a large extent.

Now the cnt re procedure may be interpreted as a Bayesian

technique for smoothing non-parametric failllre-rate estimates.

The degree of smoothing is governed by the magnitude of the state

error variance estimate Q, and the smoothing occurs in the direc-

tion of the nominal system model.

In conclusion, wc have shown that the Kalman filter equations

can bc used to provide realistic failure-rute estimates and i“ore-

casts in the presence of imprecise knowlcdgr of the actual form

of the failure-rate function.
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