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ABSTRACT

This work discusses the symmetry breaking sector of the SU(2) x U(1) electroweak
model. The first two chapters discuss Higgs masses in two simple Higgs models. In chapt.:er
111, [ prove low-energy theorems for the symmetry breaking sector: The threshold_ behavior
of gauge-boson scattering is completely determined, whenever the symmetry brea.kx,ng sector
meets certain simple conditions. In the finial chapter, I use these theorems to derive event
rates for the superconducting super collider (SSC). [ show that the SSC may be able to
determine whether the interactions of the symmetry breaking sector are strong or weak.
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Introduction

The Glashow-Weinberg-Salam SU(2) x U(1) model of elec-
troweak interactions [1-3] has been an enormously successful expla-
" nation of the interactions of low energy particles. The experimental
discovery at CERN in 1985 of the W2 [4,5] and Z [6,7] particles
provided a spectacular verification of the central prediction of the
theory.

The confirmation of the electroweak model, though, raises as
many questions as it answers. PFor example, the standard model
has many arbitrary parameters, more than one would expect in a
complete theory. Is it nested in some bigger theory that has fewer
free parameters?

Perhaps the most perplexing puzzles raised by the success of
the SU(2) x U(1l) model are thase relating to the broken gauge
symmetry. Why aren’t the W and Z massless, like the photon?
Why do they have the masses thiey have? What is the nature of the
physics that breaks the gauge symnmetry? What is its scale, and are
there new quanta associated with it?

In this thesis, I will explore some of the ways in which we may
begin to answer some of these questions. The outline of this work
is as follows. In chapter I, I will discuss a model with an unusual
symmetry breaking sector, which includes lliggs bosons of charges
up to two. This model was invented by Gelmini and Roncadelh
[8], to demonstrate a novel way in which neutrinos can be given

majorana masses, within a model similar to the standard madel. 1
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will show that in this model simple considerations limit the masses
of certain Higgs particles, and therefore they must be light enough
to be produced at the SSC. In chapter 11, I will describe a model
with a slightly different Higgs sector, which also can be used to give
the neutrinos majorana masses, but is far less constrained than the
model of chapter 1. In chapter 111, I will prove low-energy theorems
regarding the symmetry breaking sector. These theorems state that
the threshold behavior of gauge-boson scattering is completely spec-
ified, as long as the symmetry breaking sector meets certain simple
conditions. In the final chapter, I discuss how the low-energy the-
orems of chapter 11l can be used to find actual event rates for the
SSC. I show that, at the SSC, it may be possible to determine
whether the symmetry breaking sector is characterized by strong
interactions or weak.

It is possible to imagine countless numbers of ways to accom-
plish SU(2) x U(1) symmetry breaking - 1 have discussed only two
explicit examples here. This thesis describes some ways in which we
may begin to understand some important features of the symmetry

breaking sector.



Chapter 1

The model of Gelmini and Roncadelli [8,9] offers an attractive
way to add neutrino masses to the standard model. Their scheme
docs not require the addition of new, as yet unobserved, fermions.
Instead there is an enlarged Higgs sector. In this chapter I will show
(10] that the masses of some of these unconventional Higgs partit les
generate radiative corrections to the W* and Z masses, which will
cause cotrections to the relation

Myy?
— = L1
M, cos?(fyy ) (th

p

Therefore, the existing measurements of the W# and Z masses con-
strain the masses of some of these new Higgs particles.

The Higgs sector of the GR model has, in addition to the or-
dinary doublet ¢ = (¢g,¢_), a complex triplet x = (xqg,x_,Y__)-
Since the x multiplet has hypercharge —1, there is only one allowed

coupling to fermions

gLL.\i’,‘a"qli,xi +hec (1.2)
where
" ("'.) 15
L= e (1.3)
and

<

~ -,
¢, = ( v ) (L1)
vy
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are the lepton spinors for the three generations. There are no al-
lowed couplings to quarks. This term conserves lepton number if
the field y is given a lepton nuimber —2. 1If ) gets a vacuum ex-
pectation value (vev), then the vacuum has lepton number, lepton
number is spontaneously broken, and the neutrinos get a Majorana
mass.

As in reference [9)], the most general potential for ¢ and x

preserving both the gauge and lepton symmetries can be written
1 1
Vig,x)= AI(¢'¢ - 5"22)2 + Az()('X - ‘2'"32)2
1 1
+ M(¢' — 5"22 +x'x - 5"32)2

1 i ) _ (1.5)
+ '\4(§¢'¢x'x - §(¢'0'¢)(x'f'x))
+ '\s(%x'xx'x - %(x'r‘x)(x'fix))

where o* are the Pauli matrices and ° are the normalized SU(2)
matrices for spin 1. If

Ad+ Ada+ A0 >0 A >0 >0 (16)

then the potential is bounded below, and the vev’s will be (p) =
(v2/v/2,0) and (x} = (v,/v/2,0,0). The three Goldstone bosons
which become the longitudinal components of the W and Z are



respectively

. 1
R

1 1 1
Gy= ——rooeor | v— - * QU ——= —_.
0= AEwE ( zl.\/i(‘Po ¥o') + ”3'.‘/5(3(0 Xo ))

(L7
The phyzical Higgs spectrum includes the doubly charged boson
X, which gets a mass m,__? = A2 4+ 2\;03. There is a singly
charged particle

1
M_ = T —_—_— - 2 - 1.8
et + 0.2 (v2x \/—Us‘P ) (L)

which has a mass my,_? = ), (v3+203)/2. The theory also contains
a massless Majoron
M, = —“l = (”2._1"'()(0 ~Xo') - 2"3._1‘"(‘.00 -~ P '))
22+ 42 \ V2 V2 °

(1.9)

which is the Goldstone boson of the spontaneously broken lepton

symmetry. The two other Higgs degrees of freedom (¢o+¢3 )/ v2—1,

and (xo + xg)/v2 — v5 have a mass squared matrix

(2('\1 + A3)v? 2X3v,0, ) (L10)

2X,40,04 2(A; + Ay)vy?

The two eigenvectors of this matrix shall be referred to an H, and
H,, for “heavy” and “light”.

Notice that the massless field My is comprised partly of the

doublet field ¢ and therefore it has couplings to quarks. Since the
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mixing of  in M, is proportional to the vev of x one can bound
v, by demanding that the new long range interactions mediated by
the Majoron be weak. The best limit is from the evolution of stellar
objects [8,9] from which one deduces that v, is not more than a few
MeV. That v, is so sinall compared to v, =~ 250GeV implies that
the fields My, M_, and H, are almost entirely x, while the field H),
is almost entirely .

An interesting feature of this model is that it does not preserve

p = L. This is already apparent at tree level, because

2 2 22
M2 = 5‘7(",2+2u;) Mp=2 ’;-" (v +4v3%) (1.11)
which implies
2u,?
Prce =1~ 30 (L12)

Since the value of v, is so strongly bounded, there is no conflict
with the best experimental value [I1] p = 0.998 + 0.0086. The
smallness of v; in no way ensures that the radiative corrections to
p are negligible. In the standard model, which has no triplet, these
corrections are bounded because the Higgs potential of the standard
mode] has a larger symmetry than just the SU(2), of the gauge
group {12,13). This symmetry may be made apparent by putting
o= (¢° ""S:) (L13)
- &

in which case the potential may be written as

Vid) = %A(uqb'tb — ) (114)
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This potential is manifestly invariant when ¢ is multiplicd by an

arbitrary SU(2) matrix from either the left or the right
@ = U, eU}, (1.15)

so the potential has a full 5U(2), x SU(2), symmetry. When the
Higgs gets a vev, (®) = v/V/2/, the diagonal subgroup of SU(2), x
SU(2)y remains unbroken. The field ® may be written as

! . .
@ = (U +9)] +iG o) (1.16)

where G; are the three Goldstone bosons which become the lon-
gitudinal degrees of freedom of the gauge fields, o, are the Pauli
matrices, and [l is the physical lliggs field. Under the unbroken
SU(2)y, which is known as a “custodial SU (2)", the G; transform
as a triplet.
‘The mass-squared matrix of the gauge bosons W, W,, Wy, and
B is of the form
Mg 0 0 0
0 Mi, © 0
0 0 Mg, My My
0 0 My Mg M

(117)

The exact unbroken U(1) of electromagnetism guarantees that we
can rotate the W, and W, into each other. This irmplies that My, =
My, , even after all radiative corrections. Since the lliggs potential
has an even larger symmetry, under which the W, W, and W, may

all be mixed up, the radiative corrections from the lliggs potential
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will not disturb the relation, true at tree level, My, = My, = My, .
Another way of saying this is that the relation p = 1 is true to all
orders in the (possibly large) parameter A.

In the standard model, not all the terms in the lagrangian re-
spect this custodial symmetry. The B meson is the gauge meson
associated with the o, rotation of SU(2)p, but the o, and o, direc-
tions are ungauged. This implies that the electromagnetic couplings
of the W* will correct the p parameter. In addition, the Yukawa
couplings of the Higgs multiplet to the fermions do not respect the
5U(2)g symmetry. The fact that the fermions generale corrections
to p can be used to put limits on their masses [14].

One might ask what becomes of the custodial 5U(2) in the GR
model. The neutrino mass, A,, and Ag terms are all consistent with
the custodial symmetry if the field x transforms as a triplet. The
A, term, however, is not. This means that, to the extent that this
term is present, it will generate corrections to p. The A; term is
responsible for the masses of the particles M_ and x__, because, as

was noted above,

m, %= M\t 4+ O(vy?)

X
. . (1.18)
my = '2"\4"22 + O(vy7)
Therefore, the radiative corrections to p will increase as the mass

of these particles increases.
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The mass of these particles cannot be made too simall, because
they mediate processes that violate lepton number, such as neu-
trinoless double beta decay, and = — e~e~e*. As was noted in
reference [15], the fact that M_ was not observed at PETRA means
that its mass must be at least 21GeV, and therefore M, _ > 30GeV.

Following reference [14], one expects that for large ), the most
iinportant corrections to the tree level W and Z propagators will
be of the form

80 = 8o (140 (¢4 525)) a9

where m is a Iliggs mass scale that depends on A,. If one assumes

that this Iliggs mass scale is larger than the gauge boson mass, one
need only retain terins enhanced by a power of m and one can drop
terms which are only as large as g? In{m?/ M}, ) relative to terns like
¢*m?/M},. It is useful to work in the Landau gauge, because it de-
couples the gauge from the Higgs degrees of freedom, allowing easy
_recognition of exactly which diagrams contribute effects enhanced
by the Higgs mass. It is important to note in this connection that
the Landau gauge condition is unique in that it is invariant under
renormalization, and therefore the masses of the unphysical Higgs
particles will remain zero even at one loop.

The truncated 1PI bubble for the gauge boson can be written

n* =iA(p*)g* +iB(P*)p'p” (1.20)



‘The renormalized mass of the gauge particle is given by
M2 = Mg + A(0) + M32A'(0) (1.21)

where the subscript 2 denotes renormalized guantities, and the sub-
script 0 denotes bare quantities. The physical p parameter is defined
by

p= Myn” (1.22)
Mzu2 cos?(Ow )
and so therefore
2 .
-1+ @ Aw(0) ) 4 A (0) - cos (0W0)2Ad(0) — A,(0)
My, My, )
2 2 (1.23)
cos (own) — cos?(Bio)
c0s?(Oyyo)

In the Landau gauge, diagrams similar to those in figures 1.1
and 1.2 are not enhanced by a factor of m and can be neglected; one
need only evaluate diagrams like those shown in figures 1.3 and 1.4.
Notice that the seagull diagram in figure [.3 makes no contribution
to A’(0), while the loop of figure 1.4 makes contributions which
are only of order In(m?*/M,). Therefore, the terms A’(0) may be
neglected.

For compactness, the mass eigenstate fields of the Higgs parti-

cles will be written as

G_=ag ¢_+Bg_x-
G.=a _]_( —") + 8 L( oy (1:24)
0 = G"i\/‘i %o — %o G,.,i\/i Xo = Xo')



for the Goldstone bason fields, and similarly for M_, M, H,, and
H,. The a’s and B’s are as given above. In order to use dimensionat
regularization, one must replace all d*p with d*%p and introduce
the arbitrary parameter u with dimension of mass. Then, defining,

z = (1/€) + (1 — 7) + In(4mp?)

1 1 1
h(my,m,) = m(ml‘ In(m,?) — m,* lu(m,;?) — 5113," + im._,‘,
1

h(i) = % (%u’i? + ﬁ_zmin) (z — In(m,))

2
hy(3,3) = (%aiaj + \/Ljﬂ_ﬂj) (J:(m‘2 + mj")) — h{m;,m;))

hy(i) = (410,-"’ + ﬂ,-z) mS(x — In(m;?))
] 2
hyi,3) = (ia,-a,- + ﬂ,-ﬁ,-) (:l:(m,»2 + mjz) — h(m;,m;))

(1.25)



2z
[(((""m"ﬂmw = (; P 4, Ow)z) (_”n_ﬂn%) z) +

Crr )™y + (i W)y + (g °0)Yy + (Y 00)ty +
(((Z_W'-“)“l - I)z_wu' ('Ng‘lvng)) -
I

(((,‘ﬂm)uu =), w2700t )) -
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The a’s and B's giver above satisfy

0.'2 + ﬁ.'2 =1
(128)
ajo+ B8, =0
where
i1 ={Gy,G_,My,M_,H, . H
{Gy o o 1t} (1.20)

(3, %) = {(Go, My), (G, M_), (11, H})}

This allows one to show that the dependence on z cancels in both
Aw(0) and A;(0). Therefore, to order g°m®/M}, there are only
finite renormalizations to the W* and Z masses.

This cancellation of the infinities was not accidental; it is a
manifestation of the gauge invariance of the unbroken theory. In
the GR modei, as well as in all similar versions of the SU(2) x U(1)
model, gauge invariance is broken softly, by the vev of one or more
Higgs fields. Therefore, all infinities in the W* and Z masses must
vanish when the vev vanishes. The masses of the Higgs particles
are fixed by terms in the lagrangian independent of the vev, so
an infinity proportional Lo the mass of a Higgs particle would not
vanish in the limit of zero vev. Therefore, there can be no infinite
contributions of O(g*m?*/M},) Lo My, or M. This can be compared
with the situation in reference {14], where the fermions gave infinite
contributions to the W and Z masses. Any infinity proportional
1o a ferinion mass is in turn proportional to the vev, and therefore

will disappear when the vev vanishes.
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Appearing in the expression for p is the correction 1o cos?(0,y).
‘lo evaluate it, one locks for effects which would change the mixing
between the W, and B mesons at one loop, or in other words, a dia-
gram which mixes the photon and the Z. Potentially, the diagrams
like 1.3 and 1.4 with a photon on one external leg and a Z on the
other could produce such a mixing. One finds, however, that these
bubbles contribute nothing of order m?/Mg,, and, thercfore, that
there is no correction to cos*(fy) to this order.

To simplify evaluation of p, note that ag, By, ay, , and gy, are
all O(1), but Bg,ap. By,, and ay, are all O(vyfv,). Dropping all

the latter terms and retaining only the foriner, one finds

2
g 1
p=1+ foripge [/ mamy )+ 3 flmg_ )

1 1
+ = flmp_smg )+ = f(mg_,mg)
2 oA I (E)
1 1 :
+ if(m“_ sy ) — ZI(”.GD',""A)
= fQnyyiny) + 0 (ﬁ)]

v

where
1 m,%m,* m,?
2 2 1My 2
my,my) = =(m my')+ ———=—In| —= I.

f( 1 '.') 2( 1t 2 ) ,n|2 _ng 7"12 ( 31)
This expression should be compared with the one given in reference
[14], where the fermion corrections to p were considered. p here
has the saine functional dependence on the mass of the particles

(through f) as in that case.
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One may now use the relations for the masses of the Iiggs
particles given above: m,__ = v2my, + O(v), my, = O(vy), and
mg, =mg_ =my, =0. This yields

2
p=l+g—

(1—!n2)-l+26x|0“"(1mc v) (1.32)

Notice that the masses of all the Higgs particles except for Af_ and
X__ have cancelled out. This is precisely what was expected, as
these particles were the only one which got their masses from the
A, term in the potential.

If one demands that the value of p agree to within one standard

deviation of the experimental value, then
my, < 200GeV

and

m,. < 280GeV

Xem

If the GR model is correct, these particles must be light enough to
be produced at the S5C.

The production of heavy doubly charged Higgs bosons by gauge
boson fusion (figure 1.5) was discussed by Georgi and Machacek [16].
As they point out, the x, , W~W~ vertex is proportional to the vev
of xo. In the GR model, v, is very small, and therefc-e W-W~
fusion will not be an appreciable source of doubly charged bosons.
On the other hand, the coupling x,,x__7 is not dependent on the
vev of the triplet. If it is light enough, the doubly charged boson
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may be observed at the S5C, in pair production via the Drell-Yan
process.

A similar calculation to that presented in this chapter has been
done for the case of two Higgs doublets in reference [17). The calcu-
lation of this effect in the GR model is briefly mentioned in reference
[18], but their result differs by a factor of 2 from the one presented

here.



Chapter 11

As we saw in the last chapter, not every irreducible representa-
tion of the gauge group SU(2), gives p = 1 in tree approximation.
For example, the complex triplet representation x of the last chap-
ter would by itself have given p = 2. The real triplet, (t,y) = (1,0),
would give p = 0o, as would any real representation. The require-
ment that an irreducible representation of SU(2), give p = 1in tree
approximation yields [19] a Diophantine equation in the isospin ¢
and hypercharge y, ¢ + t — 3y = 0, which has only 11 solutions for
t < 1,000,000.

It has been noted, however, that one complex and one real
triplet taken together, or equivalently three real representations,
would give p = 1 in tree approximation if they have equal vacuum
expectation values [16,20-22]. 1In general this appears to be an
unnatural condition, in the sense that it need not survive quantum
corrections arising from a strongly interacting Higgs sector.

In this chapter we will see that there is indeed a Higgs potential
which naturally preserves this equality of the vevs {23). It is guaran-
teed by the same custodial SU(2) that protects the standard model
as described in the last chapter. The camplex and the real triplet
taken together form a (1,1) representation of SU(2), % SU(2)y;
in the last chapter we saw that the doublet of the standard modet
forms a (3}, }) representation.

In the previous chapter, using the comiplex triplet to generate

a Majorana mass for the neutrino, the constraint 2 = 1 forces the
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triplet vev to be much smaller than the doublet vev vy, < v,. Since
the model contains a true Goldstone boson, the “Majoron”, it is
severely constrained [8,9]. In the mode! described ‘in this chapter,
because of the global SU(2),, x SU(2)g, there i3 no Goldstone bo-
son and p = 1 is zutomatic, whether v,/v, is large or small. One
interesting new possibility is that the triplets make the dominant
contribution to the W mass, v; > v, or even v; >> v,. The dou-
blet vev v,, could be much smaller than the 250GeV value of the
standzcd model, so that quark and charged lepton masses could
be obtained with larger Yukawa coupling constants than the very
small values needed in the standard model. Lepton number will be
conserved unless one chooses to break it explicitly by introducing
a Majorana coupling of the complex triplet to the leptons, as in
the last chapter. The model has very different phenomenological
implications than the GR model both because v, can be large and
because of the absence of a Goldstone boson. In this chapter, I will
confine myself to describing the Higgs potential of this model.

As in the last chapter, the doublet ficld p can be written as a

2 x 2 matrix

P (¢o _¢:) (1.13)
. 4
The complex and real triplets together fit into an analogous 3 x 3
matrix
xo —€& xI.
x=|x & -xt (1.1)

x.- & x
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where the field &, is real. The action of SU(2), x SU(2)y rotations
is then @ — U,}DU,'; and x — ULxU,'?, where Up g = e'io—L-“'TL-",
is a rotation of magnitude ]0,;R| about the axis éL'R. T,‘_n are
the appropriate representations of the SU(2) generators; for the
doublet, T¢ = %a", while for the triplet, 7% = 7%, the matrices
for the spin 1 representation of SU(2) in which T} is diagonalized.

Equivalently, the matrix x may be conjugated with the unitary
matrix V, x = x’ = VxV!, where

~1 i 0
A
v={ 0 0 1 (11.2)
] i
i n 0

This yiclds a purely real ', and the transformation matrices appro-
priate for this representation are the O(3) matrices, (T;);, = —icV*.
I will refer to this as the “cartesian” basis for the generators, while
the 7 basis is the “spherical” basis.

The most general SU(2), x SU(2)p symmetric potential may

be written in the convenient formn (inspired by the form of V in
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reference [8])

V(®,x) =), (rd'd — 02)" + A, (i 1y — 303)°

+ 2, (trd'd — o + gty — 31)})2

+ 2, (et dtsyy — 2@ T T Iury T 1)

+25 (3xx'x ~ (trx'x)?)

+ b, (virxtx — 2vgdetx)

+ by (60200t + v3trxty — 2u;(x") e’ do)

(11.3)

The last part of the b, ter is easiest to write as above, using x’,
which transforms under the cartesian basis for the generators. This
is because in the expression trdo'®o’ the indices i and j trans-
form under the cartesian representations of SU(2), and SU(2)g
r&‘pgctively.

If one imposes a discrete symmetry x — —x, then one can
eliminate the two b terins. For simplicity I will do this for the rest
of the chapter. This does not qualitatively affect the physics except
in one instance noted below.

The X terms in V are all pesitive semidefinite, so if all the
A's are positive, then the potential is pasitive semnidefinite. In fact
one can impose the weaker conditions A, + A, +2X; > 0, A\, +
M3+ 205 > 04, >0, A; > 0. That the A, ), and Ay terms

are positive semidefinite is clear, because they are squares. The
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positive semidefiniteness of the Ay term can readily be seen when it

is writlen out in components

20l xoxo +xIx- +xIox- 276 - &P
+6) — X0 +x 6+ ExE (11.4)
+32x0x-- —x2I%)

To minimize V it is convenient Lo chose an SU(2),, gauge such that
¢ is proportional Lo the unit matrix, ® = ;}ih,l . Then the A
term, which assures proper alignment of the two vevs, is

l * * x
§A4hi [(Rexo — &)* + (Imxo)® + x*_x__ + x¥x_ +£7¢.]

(11.5)

In this form the positive definiteness of this term is manifest. It

_ is also clear that, for A, > 0, this has it minimum at Rex, = §

with other components of x and £ vanishing. The entire potential

is then minimized by (hg) = v, and (xg) = (£,} = v;. In the matrix

notation the minimum is at (¢) = 7'2-1),1 and {x) = vsl, so that

SU(2), x SU(2)p is spontaneously broken to the diagonal SU(2)
subgroup, the custodial SU(2)¢.

The gauge invariant kinetic energy terms are
1 1 .
Lyg = St [(D*ONDO)] + 5t [(PNDx)]  (116)

where D"® = 8@ — igT - W® + ig’®T,B, and D¥yx is defined

—- similarly. Shifting scalar fields to have vanishing vevs we find that
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the mixture of scalar fields which mix with W+ and W,, B are
respectively .

1, . .
Gws = ;(v21¢+ + 2v5(ix, +£,)) a
Gz= %(v,lmd»o + 2\/5”3"“)(0)

v=y/v} 4+ 8} (11.8)

From equation (11.6) the W* mass is My, = 1gv and
Mz = My [ cos(By ). .
The scalar mass spectrum is obtained from the quadratic terms

where

in the potential, equation (I1.3). The thirteen scalar particles of this
model form a 5, two 3’s, and two 1’s of the unbroken SU(2). The
composition of the 5 and the 3’s were deduced ir reference [16]. The
action of the custodial SU(2) on x and & is just a conjugation by
a unitary matrix, under which hermiticity and trace are preserved.
The field x therefore decomposes into a hermitian traceless piece
(5), an antihermitian piece (3), and a trace {1). As we saw in the
last chapter, the doublet field @ contains a trace and a triplet. The
triplets of @ and x and have the right quantum numbers to mix with
each other, and so one linear combination becomes the Goldstone
bosons, equation (I1.7), and the orthogonal combination is a set of
physical Higgs particles.

The masses of the 5 and 3 are

m2 = 3002 + 24);02 (11.9)
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m3 = ), (v 4 8v3) (11.10)
while the two 1’s are eigenstates of the mass matrix

2 B+ 2300 8V3Aupu,
tratne = ( 8V 2400, + /\s)ug) (Lt

While this potential naturally preserves p = 1, the model is no
more natural than any other model with elementary scalars. Gauge
interactions contribute quadratic divergences to scalar self-energies,
of order g?A%/1652, where g is a gauge coupling constant and A
is a cutoff parameter, giving rise to the GUT hierarchy problem.
As was mentioned in the last chapter, the hypercharge interactions
break the custodial SU(2), and therefore this model is afflicted not
only with the problem of controlling the overall scale of the Higgs
boson masses, but also with quadratically divergent contributions
to p— L. In order for these to be acceptable, A, the cut off, must
not be larger than a few hundred GeV. Above this scale there must
be some new physics.

This model has no iMajoron because the corresponding lepton
U(}) is broken explicitly by the A, interaction. This U(1) rephases
the complex triplet (xq,x_, x__), but not £ or @, so that it is broken
by terms in A, interaction proportiona! to xofg, cf equation (I11.5).
If the terin b, is non-zero, then it too breaks the lepton U(1). These
terms are dictated by the SU(2), x SU(2)p symmetry and the
necessity of a physically acceptable vacuum. Were we to take Ay =

b, = 0, a condition which could be naturally maintained by the
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lepton U(1) symmetry, we would in fact find an additional triplet
of Goldstone bosons, equation (11.10), reflecting the larger initial
symmetry of V with A, = b, = D. But with A\, = b, = 0 the
potential does not align the vevs of @ and ) and prevent the photon
from acquiring a mass.

An interesting possibility is that Lhe five ); are of the same
order of magnitude a~:2 v > v,. In this case the triplets make the
dominant contribution to the W and Z masses. Diagonalizing the
mass matrix (I1.11), to leading order in the small parameter v3/3v3,
one sees that one of the eigenstates has a mass proportional to v3,
substantially lighter than the other surviving scalars with masses
m} ~ 24003, m} ~ 8,03, and m} = 24(),; + Ag)v3. This light
boson has couplings that are enhanced by a factor of v /v, relative to
the couplings of a standard model Higgs. It is therefore a candidate
for discovery in T decays.

The potential discussed here, with no cubic interactions, has
two gauge inequivalent degenerate minima, distinguished by the
sign of the vev (x}) = tv,/. Such a degeneracy might lead to
the formation of domain walls in the observable universe. If so, Lthe
model might be ruled out on cosmological grounds. The degeneracy
is lifted by allowing the terms b, and b, to be ncnzero; which does
not qualitatively change the principal results.
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Chapter III

Unlike the previous two chapters, the work contained here does
not depend on the particulars of the symmetry breaking sector. In
this chapter | will derive low energy theorems for the scattering
of longitudinally polarized W and Z gauge bosons, Wy, and Z;,
which hold for all symmetry breaking sectors, provided that all the
physical Higas bosons savisfy my; 3> my, [24). These low energy
scattering amplitudes are compieicly specified by the p parameter

and the vev
-}
v=(V2G,) " ~025TeV (1L1)

As was noted before, experimental measurements fix the value of p
to be very close[11] to 1, which implies universal values of the low
energy scattering amplitudes for all experimentally viable models
of the symmetry breaking sector with spectra fully above 1 TeV or
so. If the spectrum contains bosons much lighter than 1 TeV, e.g.
pseudogoldstone bosons, they may cause the low energy amplitudes
to be modified.

The reason that these low energy scattering amplitudes are of
interest is that they are Lhe basis of a general probe of the symme-
try breaking sector that could be implemented at a hadron collider
with the energy and luminosity proposed for the SSC [25,26]. The
central qualitative point is that WW flusion, figure (111.1), provides
a significantly enhanced yield of gauge bosons if and only if the
WW — WW scattering amplitudes (the blob in figure (I111.1)) are
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strong. The strength of the interactions of transversely polarized
gauge bosons is characterized by the gauge coupling constant g, a
number which is less than one. The longitudinal gauge bosons, in
contrast, are the swallowed lliggs bosons of the symmetry breaking
sector, and therefore may have much stronger interactions. Accord-
ingly, if we are to understand these gauge boson pair signals, we
must study the scattering of longitudinal gauge bosons.

It is instructive to examine the correlation between the inter-
action strength of the symmetry breaking sector Agg, and its mass
scale, Mgg. The pattern is exemplified by the minimal Higgs model,
though it is followed more generally. In the Higgs model, the scalar

interactions are given by the potential
" X/ - 2
Vie) = V(@1 = 3 (& + 1y - ) (111.2)

where G is a triplet of scalar particles and H is a fourth scalar
field. Assuming the vacuum state is given by the classical vacuum
at G = 0, H = v, and redefining H to have vanishing vev, the
potential becomes

o A = o
V(G,H) = Z(G2 + H2P? + Awll(G? + H?) + WA (1113)
The mass of the Higgs boson can therefore be identified as
m}y = 220? (111.4)

The G remain massless, being the Goldstone bosons associated

with the spontancous symmetry breakdown of the global SU(2), x
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5U(2)p symmetry to the diagonal subgroup SU(2)y (12]. When
the SU(2) x U(1) gauge interactions are turned on, the triplet G
becomes, by virtue of the Higgs mechanism, the longitudinal modes
of the gauge bosons, Wy, and Z, . There is an “equivalence theorem”
[25], which states that at energies large compared to their masses
longitudinally polarized gauge busons behave as though they were
really the Goldstone bosons G, i.e. they interact according to equa-
tion (111.3). The correlation between Msp and Agg is then exem-
plified by equation (I1.4); heavy Higgs boson masses imply strong
~ coupling.

More precisely the onsct of strong coupling may be said to
begin at M, = 1TeV where the Born approximation amplitudes
for s 3> mj, saturate partial wave unitarity [25]. The interpretation
of this fact is not that the parameter m;; cannot be larger than
1TeV or that A/4x cannot be larger than = 2/, but that for larger
my; or A the quantuin corrections become as big as the Born terms,
i.e. that the theory becomes strongly interacting. (Of course, there
is no guarantee in the strong coupling regime that my; corresponds
to the mass of an observable particle.)

It was shown in reference [25] for a particular class of strongly
interacting models that current algebra, PCAC, and the G-w,
equivalence theorem together imply low energy theorems for W, , Z;,
scattering that are valid to all orders in the strong coupling Agy.

The class of models discussed there had the global SU(2), x SU{2),,
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symunetry described in the previous chapters. When it breaks spon-
taneously to the diagonal SU(2),, subgroup, the SU(2), triplet are
identified as the the Goldstone bosons swallowed by the W and
Z. As we saw in the first chapter, this custodial SU(2) {13} is
sufficient to show that p = 1 to all orders in the strong coupling
constant Agg. It has not been proven necessary, however. We
have seen that the minimal Higgs model has this custodial sym-
metry; in another contexi and at a different inass scale, QCD is
another example. In fact, if one identifies G — %, ## — o, and
v = 25TeV — f, = 93MeV, then the minimal Higgs model be-
comes precisely the pre-QCD sigma model that was derived to illus-
trate the sponta.neous'sly broken chiral symmetry of hadronic physics.

Just as Weinberg [27] proved pion-pion scattering low energy

theorems, such as

M(rtr™ = 2%~

%' (11L.5)

for all models of hadronic physics in which the pions are Goldstone
bosons associated with the SU(2)y, x SU(2)g — SU(2) 4,40, S0 for
all models of the symmetry breaking sector with a custodial SU(2)
invariance, one has, in an R-gauge

M(GysGyy- = G,Gp) ~ > (111.6)

s
v

Equation (I11.5) is valid for s much sinaller than the masses of the

exchange quanta (such as the p meson) and much smaller than the
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scale 47 f, & 1GeV at which quantum corrections become appre-

ciable [28,29). Similarly equation (111.6) holds for s < A3, where
ASB = lﬂill{h’ss,“ﬂ’v} ("l.7)

provided that there are no exchange quanta with masses much
lighter than the characteristic scale of the spectrum Mgg. For en-
ergies large compared to My, the equivalence theorem asserts that
U-gauge scattering amplitudes for longitudinally polarized W’s and
2’s are equal to the R-gauge amplitudes of the correspanding Gy,
and Gz Goldstone bosons:

; i My,
M), Wi, )y = M(Gus 8, G (82, Do +0 (22
(111.8)
The equivalence theorem was proven to leading order in reference
[30). As is essential for applications to strongly coupled theories, it
was praved to all orders in reference [25].

Combining equations (I11.6) and (111.8) one obtains the low en-
ergy theorem for the physical amplitude valid in the energy domain
M} <« s < Alg

- s
MWW, — 2,2~ »
N ¢s (11L9)
T am,
using the relation My = gv/2, which is valid up to electroweak

corrections and corrections of order M%, /A}y. Similarly one finds
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the other two indepehdent amplitudes

2,
MWEWE - WHW]) ~ _% (111.10)
w

M(2,2, - 2,2,) ~0 (1.11)

The other four scattering amplitudes, namely, elastic scattering of
Wiz,
WiWg, and WL Wy follow from equations (111.10) and (I11.11) by
crossing
symmetry:

2

t
MWEZ, - WiEZ,)~ 497%

(1L12)
MWW - WEWE) = MWW, - W WE)
g (11.13)
T aMg,

In this chapter I will not assume that the symmetry breaking
sector has the custu.lial SU(2) invariance, since there is no proof
that it is necessary to obtain p = 1. I will show that the low energy
theorems (I11.9) and (II1.10) are in general (again for M3, < s <
Atg)

2
MWEWL - 2,2,) ~ 74% : (111.14)

|-

N o gu 3
MW — Wiwp) ~ =t (12 (111.15)
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while equation (111.11) is not modified. Of course, for p = 1 equa-
tions (I11.14) and (I11.15) agree with the low energy amplitudes that
were obtained assuming a custodial SU(2) symmetry. The experi-
mentally cstablished constraint that p = 1, accurate to a few per-
cent, therefore implies that the low energy theorems are essentially
given by equations {111.9}-(111.13) whether the symmetry breaking
sector has a custodial SU(2) or not.

In this chapter I present a current algebra derivation of the
low energy theorems. Foflowing reference {25], 1 work in a renor-
malizable gauge and use the equivalence theorem to obtain the W,
Z;, amplitudes. The present derivation differs from reference [25}
in that it does not make use of the full SU(2), x SU(2)y global

symmetry

(Las Ly} = i€ase L. (11.16)
[Ry, R,) = i R, (11L17)
e B =0 (11L.13)

used by Weinberg [27] to obtain the pion-pion scattering lengths.
Instead, it uses only the SU{2), charge algebra, (I11.16), which is
necessarily fulfilled in the symmetry-breaking sector in order to sat-
isfy electroweak SU(2),, gauge invariance. Consequently this deriva-
tion is valid whether there is a custodial SU(2) symmetry or not

and applies for all values of the p parameter.



The currents L% can in general be expressed as

L= _% LG, + %:-nluh(:,,a(:c +o (111.19)

where [, and r, are constants (no sum on a) and the omitted terms
involve the non-Goldstone fields and/or carry higher operator di-
mension and are suppressed by powers of the large parameter Agy.
The G, are just the three Goldstone bosons which mix with the W
and Z gauge bosons. Signs and factors of two are chosen to agree -
with the usual L = (V — A)/2 current. The charges appearing in
equation (111.19) are

L, = jL“(i:‘,O)(P.: (111.20)
The unbroken U(1) of electromagnetism requires

Lh=5 (118.21)

and
r=r, (111.22)
If there were a custodial SU(2) one would also find f, = f; and
ry =ry. In general f; and f; are related to known quantities by
considering the contribution of the Goldstone bosons to the vacuum

polarization tensor (L4L{). Up to corrections of order a and/or

(My,/Asy)? the gauge boson masses are

1
My = 391, (111.23)
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My = %g 1] cosOyy (111.24)

from which one deduces

hi=ve %TeV (111.25)
and.
o= (Hlh) (11.26)

The r, are determined by demanding that the SU(2), charge
algebra, equation (111.16), close. In particular, the commutator of
the f8°G, term in L2 with the rG x 8G in L? yields the f&PG,
term in L2 on the right hand side of equation (111.16).

The result is

1
n=n=—s (111.27)
1
ra=2- - 128
3 » (111.28)

These results show that p = | implies an effective low energy
custodial SU(2) for the Goldstone boson triplet. If p = 1 then
h=f=fyand ry =r, =ry =1, so that the purely Goldstone
boson components of the current L* can be decomposed into vector
and axial terms, Lt = %(Vn“ - A%)+ ..., where the vecter component
V# = ¢,,.G,0*G, generates the custodial SU(2) for the Goldstone
boson sector under which thz axial component A% = f3#G, forms
a triplet.
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The proof now uses the standard current algebra soft pion
method, similar to Weinberg’s derivation of the pion-pion low en-
ergy theorems, except that liere one is working in the Goldstone

limit with 9,L% = 0. The fundamental equation is then
/e"”“'”*”“‘)(dl’l'i)“L;‘(y)ayl.‘c’(.:)|b)nI‘.ul'y =0 (111.29)

Integrating twice by parts and taking p,,p. — 0, one finds a term
proportional to M, ;. 4, the amplitude for G,G, — G.G, scatter-
ing, that arises from pole diagrams in which the currents L% and LY
create G, and G, bosons. Using the form of the current in equation
(111.19), one finds

e etace bde 4 v —ip. TP B [
Mypa =2is S0l 4 iy [ e

+0(")
(111.30)

where s = (p, + p,)*. The first term arises from the commutator
equation (111.16), and the second contributes in leading order only if
there are s, ¢, or u channel pole contributions from massless particle
exchanges.
In Weinberg’s derivation there are no pole terms because the
7 vertex is forbidden by G-parity, but in our case there is an
LGy Gyy vertex and pole terms do contribute. If one assumes that
the Goldstone bosons G' are the only light particles, their contribu-

tion to the pole terms can be explicitly evaluated. The result for
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the sum of the equal time commutator term and the pole terms is

Mu,b'.a.d = ;3- (2r= - rnrc)‘ace(hlc (“I:n)

Bose symmetry, U(1) invariance, and cressing symmetry con-
strain the low energy expansion of the off-shell scattering amplitude
to have the form

M, ped =(696%3638R) (A, )+

(6738 A 4 536 BAY (A, + By(t + u) + Cas)+

(696PAM  §RFBA™) (A, + By(s + u) + Cyt)+

(69653 A% 4 526CARX) (A, + By(s + ) + Cou)+

(A%AS)(Ay + Byt +u) + eys)+

(A*AM)(A; + By(s + u) + 4t)+

{ARA) (A, + By(s +8) + cu) + ...

(111.32)

where s = (p, + )% t = (p, +2.)h u= (P +pa)% and A;, B, G
are constants. The tensor A® is defined
1 ifi=3j+#3

A% = ?
0 otherwise

(111.33)

and 6% is the usual Kronecker delta.

From equation (I11.31) one sees that

A=A, =A, =0 (I1.34)
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Since on mass shell s + ¢ + u = 0, the leading low energy behavior
of the amplitude is determined by just twe constants D, =C, - B;,
1=2,3:
Mn_b;c_d =(6u36b3Acd + 6d6ﬂAnb)Dzs+
(6562 AY 4 $26B A%)D,t+
(8862 4 626 R A¥) D,ut {111.35)
AA#D,s + A*AMDt + A¥A¥ D u
+ ...
By comparing equation (111.35) with equation (111.31) one can
extract the full content of the current algebra result. In the limit of

small p, and p,, equation (I11.35) becomes
M, g =(6P6PA 4 53BA® — 68620 — §235PAY) D, s+
(%8 — AA%*)Dys
(111.36)
Comparing equations (111.35) and (111.31) for various values of a, b, ¢, d,
one finds that D, and D; are determined:

Dy = ——(2r, ~r,rs) (111.37)
1J3
i

Dy = F(2rs - ) (111.38)

or using equations (111.26)-(111.28),

(111.39)
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D=5 (4 - %) (111.40)

Substituting these values of £, and D; into (111.35) and using the

equivalence theorem it is easy to verify that one has recovered (up

to an overall phase convention) p:ecisely the low energy theorems

{111.11), (111.14), and (ili.15}. Since the equivalence theorem re-

quires Ey > My, the W, Z, scattering theorems derived in this
way hold for the intermediate domain between My, and Agy.

The derivation of these low energy theorems assumes, as does
Weinberg’s derivation of the pion low energy theorems, that there
are no light spin 0 exchange particles which could contribute to the
low energy scattering. While some special cases are easily under-
stood, no general formulation of the effect of light particles, such
as pseudogoldstone bosons, on the low-energy W, , Z; scattering
amplitudes has been obtained. A trivial example is given by the
global symmetry SU(2), x SU(2)g, as in three flavor QCD, which
would result in five pseudogoldstone bosons, the counterparts of the
K and 5. Just as in QCD where K and n do not medify the pion
low energy theorems, in electroweak theory the Wy, Z, amplitudes
would be unaffected.

It is also easy to see that the sign of the effect of light particles
on amplitudes involving only W# but not Z, WW — WW, is triv-
ially fixed by the electric charge of the light exchange particle, since
only the square of the absolute value of the WW coupling appears
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in the amplitude. For neutral scalars, such as the ordinary Higgs bo-
son, the effect is to diminish the magnitude of the amplitude, while
for charge two scalars the amplitude is increased. Similar rules will
apply to WW — ZZ and WZ — W Z if there is a custodial SU(2)
relating the couplings of the W and Z bosons to the light scalars,
but not in general.

The principle use of the low energy theorems is to estimate the
magnitude of the longitudinal gauge boson pair signal that would
be observed at multi-TeV colliders. It is to this task that I turn in
the next chapter.
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Chapter IV

The low energy theoreins of the preceding chapter are not solely
of theoretical interest; they alsc have direct phenomenological im-
port. First, they serve as a heuristic guide to the likely mass regime
for the resonances of a strongly interacting symnetry breaking sec-
tor. If we imagine that the pion had been discovered before the pro-
ton or neutron or any other hadron, and that it had been recognized
as a Goldstone boson, then we can formulate the analogous problem:
given only f, = 93MeV, what is the energy scale at which strong
interactions set in and hadron resonances occur? Naive extrapola-
tion of the low-energy theorem for the isosinglet spin 0 partial wave

amplitude

s
=— ;.
ey ior )2 (1v.1)

suggests a scale of 44/7f, =~ 700MeV. The I = J = | amplitude
would suggest a scale of 1100MeV, larger by a factor of V3. Both of
these values are the order of magnitude of typical low-lying hadron
masses and, not coincidently, of the energy scale at which 77 — #x
scattering saturates unitarity. It is also, again not coincidently, the
scale set by: one-loop corrections to this amplitude calculated using
a low-energy chiral lagrangian (28,29).

If the electroweak SU(2) x U(1) is broken by new strong:
interaction dynamics, then the Wy, Z; low-energy theorems sug-

gest a scale of 4/ & 1.8TeV for the onset of strong interactions
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and the emergence of resonances. In this chapter I will expicre the
experimental implications this expectation.

At the S5C, one hopes to observe the low energy theorems in
action. That is, one would like to see the process depicted in figure
1111, the gauge boson fusion mechanism [31]. The signal is events
with two gauge bosons in the final state, in any of the five possible
charge channels: WW* W+Z,Z2Z WHW-, W-Z and W-W-.

The signal of a strongly interacting symmetry breaking sector
is that there are a large number of events with pairs of gauge bosons
at high invariant mass. If the symmetry breaking sector is weakly
interacting, it is likely that there are one or more “light” resonances
(M < 1T¢V), which saturate unitarity at low diboson mass. Away
from the resonances, at high invariant mass, there are very few
events.

These behaviours are shown in figure IV.1, which sketches the
typical behavior of the ay, partial wave amplitude in weakly (IV.1a),
and strongly (IV.1b) interacting symmetry breaking sectors. In
both cases, the slope at the origin is 1/167, as is required by the low
energy theorem. But in the weakly interacting case the amplitude
does not get to grow very far before it is cut off by the resonances. In
the strongly interacting theory, in vontrast, the amplitude at large
s is far higher.

These signals compete with processes producing a pair of gauge
bosons through other mechanisms. Any discussion of the observ-

ability of this process requires calculations of both the signal and
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the background rates. For these two-gauge-boson processes, these
computations are not entirely straightforward, in part because they
involve strong interactions. I begin by discussing the difficulties as-
sociated with the calculation of the signal and background, and |
then turn to event rates themselves.
IV-A Signal

The computation of the gauge boson fusion rates is non-trivial.
We saw in in the previous chapter that these processes involve the
symmetry breaking sector. When the symmetry breaking inter-
actions become strong, the calculation of the gauge boson fusion
diagrams in principle involves the solution of a strongly interacting
field theory. In fact, even in the M, < 500GeV standard model,
which is not strongly interacting, the calculation of the full gauge
invariant amplitude for qg — VVyqq is too difficult to do in closed
form. (Here and below, V refers to either W or Z.) The diagrams
for the ZZ final state are shown in figure IV.2. The best that has
been accomplished is to program the different diagrams as com-
puter subroutines, in order to evaluate the amplitude numerically
[32]. Unfortunately, the resulting program is so slow that it is of
little practical use, except to check the various approximations that
are used in other calculations.

The choice of approximation used in computing the gauge bo-
son fusion signal is dependent on the strength of the interaction of
the symmetry breaking sector. If the symmetry breaking sector is

weakly interacting, for example in the standard model with a light
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Higgs mass, then, as was shown in the last chanter, there is no en-
hancement of the longitudinal over the iransversely polarized gauge
boson pair signal. Therefore, the approximation one uses must ac-
curately compute all the polarization states. The easiest thing to
do is to compute the s-channel Higgs exchange diagrams, IV.2a and
IV.2e, alone, ignoring all the other diagrams [33,34). These ampli-
tudes can be written in closed form, and the amplitude can then
be put into a computer program to convolute it with the proton
structure functions. For sufficiently light Higgs masses, M), below
about 800GeV, the Higgs is quite narrow, and therefore the contri-
bution of the s-channel Higgs diagram for diboson masses near the
Higgs resonance is far larger than the total of all the other diagrams.
Moreover, the resonance is sufficiently strong that the majority of
the diboson signal comes from within one width of the Higgs mass.

This procedure is not gauge invariant, however, since the two
sets of diagrams in 1V.2 each form a single gauge class. At high
energy, the s-channel amnplitude violates unitarity, since the bad
high energy behavior of the s-channel diagramn is canceled by the
exchange of the quanta in the f and u channels, such as in diagrams
IV.2b,c, and f. One can rectify this problem by making a cut in
diboson mass about one Higgs width on either side of the Higgs
pole. For Higgs masses above 1TeV or so the Higgs is so broad that
the two-gauge-boson signal from it never stands very far above the
production from the other diagrams, and the violation of unitarity

renders the s-channel pole approximation usciess.
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Figures 1V.3a-c (taken from reference 35) illustrate this point.
They plot the cross section for unpolarized ZZ — ZZ scattering,
with the incoming Z’s on their mass shell. This is not precisely
the same as the signal process, g9 — ¢9ZZ, but the qualilative
features are the same. The solid lines show the correctly computed
cross section, which is the square of the sum of diagrams with the
Higgs exchanged in the s, t, and u channels. The dashed lines show
the square of the s-channel diagram only. Clearly, the s-channel
only cross sections are badly behaved at large s for all values of
the Higgs mass, but for M, = 400,800GeV the problemn can casily
be rectified by making a cut at about one Higgs width on either
side of the Higgs mass. For Mj; of 1TeV, though, the shape of the
approximation no longer follows that of the vorrect amplitude, even
near the center of the Higgs resonance. For My > 1TeV, another
approximation must be used.

For such large values of My, the theory has become strongly
interacting. The longitudinally polarized gauge boson pair signal is
much larger than the transversely polarized. The most straightfor-
ward way to do the calculation, therefore, is to apply the equivalence
theorem to the amplitude in question. That is, instead of calculat-
ing the g9 — qqVV amplitude, one calculates g9 — ¢qGG, where
G are the Goldstone bosons swallowed by V. If one neglects quark
masses, there are many fewer diagrams for this process than for the
full amplitude. The diagrams for the GG, final state are shown

in figure IV.4. The amplitudes are simple enough to be evaluated
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in closed form, and so they can be put into a program which is fast
enough to be used for realistic computations. {36). -

Simple though this technique is, it cannot be used for Higgs
masses larger than about 1TeV. This is because, for Mj; > 1TeV,
the standard model violates unitarity at tree level [37]. Above this
value, one requires a calculational technique based in some way on
the low energy theorems.

Another limitation of this method is that, since the equiva-
lence theorem neglects terms of order M, /E, this approximation
does not give trustworthy results near the two-gauge-boson thresh-
old. In practice this is not a serious problem, since at low diboson
invariant mass the signal is swamped by the background anyway.
Any experimentally viable procedure for extracting the signal over
the background always invelves a cut that keeps the diboson mass
large.

A more commonly used calculational technique utilizes the
“effective-W" approximation {38-40,25), which is an analogue of
effective-y approximation in two-photon physics [41]. The essential
idea of the effective photon approximation is the following. Since
the vertex ff7 has a singularity in the forward direction, the am-
plitude a photon-photon fusion process is dominated by photons
emitted almost collinear with the incoming fermion. Therefore, the
photon is almost on mass shell. Because of this, cne is justified

in computing an effective luminosity of photons in incoming beam,



45

and then convoluting with the cross section for the on shell photon-
photon process. ‘

For the gauge boson fusion process the situation is similar, dif-
fering only in the respect that, since the gauge symmetry is broken,
on shell W’s and Z’s are not strictly massless. The initial state
gauge bosons have smali spacelike momenta, and so putting them
on mass shell produces errors of order My, /E. This means that, as
was the case for the equivalence theorem calculation, the effective-W
approximation is uot trustworthy near the two-gauge-boson thresh-
old.

One can derive the effective luminosity functions for either
transverse or longitudinal gauge bosons [39]. However, if the sym-
metry breaking sector is strongly interacting, the rescattering of
the transversely polarized gauge bosons will be contribute only a
negligible fraction of the two-gauge-boson signal,

There are several ways to compute the two-gauge-boson scat-
tering amplitude. In the standard model, the amplitudes for V, V, —
V.V, scattering are simple enough to be computed in closed form.
An even simpler computation, however, is to use the equivalence
theorem to compute GG — GG scattering. The errors of order
M,y /E produced in this way are no worse than the errors implicit
in the effective-W computation itself. Thus one has a very simple

way Lo evaluate the rate for the standard model with a heavy Higgs.
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The greatest advantage of the effective-W approximation is
that it permits the use of amplitudes not derived from the stan-
dard model. One can snnply evaluate the amplitude for GG — GG
scattering in one’s favorite strongly interacting model, and then con-
volute the amplitude with the eflective luminosity for longitudinal

gauge bosons. Chanowitz and Gaillard [25) have used

s s s
o0 = lﬁw'u"o(l - lﬁw'u') +0( 1673002 )
o1 - -1 (IV.2)

) +0(
Qo = JZI’U' 32x2°° 32x22

“o0 = l(nr’u2 o - 16:707) + lﬁ:’:ﬂ -
where a,; are the amplitudes for the pastial waves with angular
momentum J and “isospin” - i.e. the custodial SU(2) of the pre-
ceeding chapters - I, Their model is a simple linear extrapolatior
of the low-energy amplitudes derived in the previous chapter up
to the energy at which they saturate unitarity (aj; = 1). Above
this energy, the amplitude remains 1. They have dubbed this the
“conservative model”; it is conservative in the sense that the ampli-
tude smoothly grows to saturate unitarity without any resonances,
such as a Higgs, which would produce large number of events at low
diboson mass. ‘
Another procedure for coming up with a unitary amplitude for
the GG — GG processes is to use the experimentally measured
QCD [42] amplitudes for xx — xx scattering [25]. If one assunied
that the SU(2) x U(1) symmetry breaking sector was exactly the

same as strong interactions of QCD, then one would expect the



47

GG — GG scattering amplitudes to mimic at 1.8TeV the behavior
of the xx — xx ampjitudes at 700GeV. Of course, one has no
reason lo expect that the symmetry breaking sector of SU(2) x
U(1) is exactly the same as the SU(3) x SU(3) of QCD, but this
method does have the philosophical advantage that it comes from
a real-world strongly interacting theory, rather than some arbitrary
unitarization of the low energy amplitudes.

However one computes the g¢ — qgVV' amplitude, one is al-
ways vonfronted with the problem of evaluating the proton struc-
ture functions f,(z,Q?). This is a decidedly nontrivial task, which
raquires fitting the presently available proton scattering data to a
theoretically derived functional form. The structure functions may
then be evaluated at values of z and Q? outside the currently mnea-
sured range. Throughout this work, the EHLQ II [43] structure
functions were used.

To perform any computation with proton structure functions,
one must choose the renormalization scale Q2. The choice of this
scale is, in theory, arbitrary, but one normally likes to choose it so as
to minimize the size of the next order QCD corrections, the size of
which are dependent on the renormalization point. Thus one usually
chooses @ to be some pertinent momentum scale in the problem. in
this signal computation, in any of the above approximations, since
there is only one vertex cn each fermion line, the scale should be

set equal to the amount of momentum transferred at these gqW
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vertices in a typical event. That this scale is My, may be shown
analytically [44) or numerically.
1V-B Background

Calculating the background processes is simpler than evaluat-
ing the signal. The largest background to the gange boson fusion
mechanism comes from the quark antiquark annihilation processes
g — WIW-,ZZ. WZ Inthe W*W™ and WZ channcls, the feyn-
man diagrams in figures 1V.5a and 1V.5b both contribute, while in
the ZZ channel, figure 1V.5b is absent. There is no ¢4 annihilation
background for the charge two channels, W¥W* and W-W~. For-
tunately, the structure of these diagrams is simple enough to permit
their evaluation in closed form [45,46].

Next one needs to determine the structure functions. There is
nothing new to add on this subject here, except to note that the
errors in the signal due to the uncertainty in the structure functions
is correlated with the errors in the background. Therefore, even if
there are 30% fewer signal events than predicted when the EHLQ
11 structure functions are used, the signal:background ratio will not
be as significantly changed.

1t is also important to note that the situation will be improved
when the SSC turns on, since the SSC itself will measure some of
the relevant structure functions. For example, the two-gauge-boson
background rate will be calibrated to better than 60% for dibosons
with an invariant mass below about 1TeV, and above this energy

the event rate will be known to better than a factor of 2 [35].
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Unlike the signal computation, the choice of Q? scale is not
entirely obvious. In evaluating these processes, EHLQ, reference
43, chose the scale

(1)

Q*= (IvV.3)

where 3 is square of the sum of the incoming quark momenta. For
the W*W= and W Z processes this choice may be justified, since the
scale appropriate for diagram 1V_5b is the energy of the s-channel
gauge boson. In the ZZ channel another choice of scale is prefer-
able, one which more accurately reflects the amount by which the
quark exchanged in the ¢ channel is off mass shell. For example, the
ISAJET Monte Carlo [47], commonly used to evaluate potential
signals and backgrounds at the SSC, uses a scale
25th .

Q= FrocE (1v4)

and the PYTHIA Monte Carlo [33] uses

l 2
Q= E(P?.L +pos +mi +mj) (Iv.5)

Clearly, both the ISAJET and PYTHIA choices are “softer” than
the EHLQ choice.

Unfortunately, event rates calculated with different choices of
scale can often differ quite substantially. In reference [35) the effect
of changing the Q? scale was investigated. The authors conclude
that the different Q? scales can make a 25% difference ir the total

event rate. This indicates the need for a higher order calculation
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of these processes, since only the next order QCD calculation can
resolve the differences.

In addition to the ¢§ annihilation background, there is also a
background in the charge 0 channcls from gluon-fusion processes.
The feynman diagrams for the standard model are shown in ﬁgure
IV.6. If the top mass is sufficiently heavy, then the Higgs diagram
1V.6a becomes quite significant [48]. In fact, it may even dominate
the gauge boson production of the Higgs, especially if the Higgs is
light. In this case, figure IV.6a simply increases the rate of Higgs
production, ::» it should probably be considered an enhancement of
the signal, rather than an additional background. For the remainder
of this paper, 1 will assume that the top quark is not too heavy, and
therefore that figure IV.6a can be neglected.

For the ZZ channel, figure IV.6b was calculated by Dicus, Kao,
and Repko [49], who concluded that this process increased the back-
ground rates by about a factor of 30%. This factor has been included
in the numbers reported below. The rates for gg — W*W~ have
not been computed, but I will assume that it too contributes a fac-
tor of about 30% to the background rates, and I include this factor
in the numbers repo-ted below.

In all channels there is also a background from gluon exchange;
the diagrains for the W+W* final state are shown in figure IV.7.
Since the outgoing gauge boson attaches directly to the quark line,
the diagram is suppressed whenever the gauge boson has an ap-

preciable transverse momentum. Calculations have shown that this
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process produces a negligible source of background, as long as any
reasonable rapidity cut on the outgoing gauge boson is enforced [50].
1V-C Event Rates and Observability

The gauge bosons W and Z are, of course, not the actual par-
ticles that are observed in the final state; they are seen via their
decays into quarks and leptons.

The cleanest final state is a ZZ pair decaying into electrons
and/or muons. The signal is four isolated leptons, which pairwise
reconstruct to the Z mass, a combination which is quite difficult
for a “junk™ background to fake. One can, in this case, completely
reconstruct the 4-momenta of the two Z’s, and thereby know the
mass of the state that produced them. This signal can be used
to discover the standard model Higgs if it weighs less than about
600 ~ 800GeV [35].

Another way to observe the ZZ final state is in its decay to
IYI"vp, where again | = e,p [51]. Here the signal is a pair of
leptons which add up to a Z, the transverse momentum of which is
not balanced by any significant jet activity. The advantage of this
mode is that it has a branching ratio of 2.5%, about 6 times bigger
than the four lepton mode’s branching ratio of 0.44%. This signal
competes against a background coming from the huge Z + jet(s)
rate, in which the hard jet balancing the Z’s transverse momentum
gets lost, Stringent cuts are required to pult this signal out fromn
the background, and it is not entirely clear that this mode will be

useful in practice. In reference [35] the authors studied this signal as
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a possible way to observe the 800GeV Higgs. Though their statistics
were limited, they conclude that it likely that one can construct a
set of cuts that entirely eliminate the Z + jet(s) background, while
paying about a factor of 2 in the signal, if the detector has hadronic
calorimetry coverage oul o a rapidity |y,.4l = 5.5. Such a hermetic
detector was crucial - if the detector had rapidity coverage only out
1o lyp.al = 4, then their cuts were inadequate to remove the signal
from the background. For this mode, cases other than the 800GeV
Higgs have not been studied in detail.

For the modes involving a W, the leptonic decays always in-
volve a neutrino, so the four momentum of the W will not be recon-
structible. A true W will decay to an isolated lepton, while QCD
jets, even ones in which the lepton gets most of the jet’s momentum,
usually have some hadronic energy near the lepton. To avoid this
background one imposes a strict isolation cut around the lepton, but
fortunately this cut should not have a drastic effect on the signal
[52]. The effect of this cut on the background is difficult to estimate,
however, because it is designed to act on jets that are fluctuations
- thatis, jets in which the lepton gets most of the energy. Monte
Carlo calculations of this type of jet are extremely time consuming
and not particularly reliable [53].

The detectors at the SSC may be able to measure the charge
of the lepton if it has momentum less than 1TeV or so. This is
importart if one is to distinguish the W+W~ from the WTW+ and
W~-W- channels.
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It may be possible to detect the W when it decays into quarks.
Many papers have explored this decay mode in the context of search-
ing for the a standard model Higgs (54]. The main advantage of this
mode is that it has a n;uch higher branching ratio than the leptonic
modes B(WtW™ — lvgj) = 25%. The disadvantage is that there is
a huge background from W + jet(s) production where the jet system
has invariant mass close to the W mass. This rate is substantially
larger than the gauge boson fusion rate. To separate the signal from
this background, one must be able to distinguish W — ¢4 — jel(s)
from QCD jets of similar invariant mass with rejection factors of or-
der 100:1 or more. That this can be done has not been convincingly
demonstrated by anyone.

The WtW ™~ modes will have an additional problem if the the
top quark is heavier than the W. In this case, the top can decay
into real W', so that #f pairs will provide an enormous additional
source of background, which probably cannot be overcome by any
combination of cuts [53].

For the remainder of this paper I will assume that the quark
modes of the W and Z are unobservable and will not discuss them
further.

Table IV.1 shows the event rates for the charge 0 and 1 channels
described above. The table assumes that the SSC energy will be
40TeV, and that in one year's running it accumulates an integrated

luminosity of 10**cm™2.
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In these numbers there is a cut on the rapidity of the gauge
boson, |yy/| < 1.5. This does not correspond to an experimentally
implementable cut in the case of the W's because the exact W
moinentum cannot be reconstructed. However, the rapidity of the
lepton is usually within one unit of the rapidity of the W which
decayed to produce it, so these numbers correspond roughly to a
cut in lepton rapidity of |y| < 2.5.

In these numbers there is also a cut to kecp the gauge bosons
away from low diboson invariant mass, as indicated by the row head-
ings. This is done because the signal is swamped by the background
near threshold, and so such a cul is required to observe significant
numbers of signal events. A diboson invariant mass cut is experi-
mentally implementable in the case of the ZZ — il mode. In the
case of the ZZ — Hlvé mode, the diboson mass will not be known,

so instead the cut shown is on the transverse mass, defined by

A1lrc|ru =2 v pQZJ. + ’"zz (lv '6)

where p, is the transverse momentumn of the Z that was recon-
structed. In the case of the WZ modes, the Z momentum may
be reconstructed. If one makes the approximation that the trans-
verse momentum of the WZ pair is small, then the W momentum
is known up to a twofold degeneracy. If one assumes that the gauge
boson pair has the lower of the two invariant masses, one will usu-
ally be correct. Therefore, in these rows, the cut on the diboson

mass as shown has roughly the same effect as the cut that would
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actually be made in an experiment. Lastly, in the WIW mode, the
cut was mnade on diboson mass, despite the fact that this is not an
experimentally known quantity.

For each decay mode three numbers are shown. The first col-
umn is the number of gauge boson fusion signal events per year,
as calculated using the “conservative model”. The second column
is number is the number of signal events as calculated with the
ITeV lliggs model. Both of these calculations were done using the
effective-W approximation, and the 1TeV Higgs calculation uses the
equivalence theorem. The number in the third column is the num-
ber of “physics background” events, which are events which have a
pair of gauge bosons in the final state from some other source. The
source of these backgrounds were mentioned above - the biggest is
¢g annihilation, and in the charge 0 modes about 30% comes from
g9 fusion. These numbers are the “raw” numbers of events - that
is, before any cuts that might be necessary to bring them out from
under the “junk” backgrounds discussed above. As was mentioned
above, the cuts required to remove “junk” backgrounds may reduce
these numbers by a factor of 2 or more, depending on the mode.

There are several things that are notable about the numbers in
this table. First of all, it is clear that, unfortunately, none of these
signals have large numbers of events. This means that much more
work remains Lo be done in order to show that the “junk” back-
grounds do not contribute sufficient numbers of events to swamp

these signals.
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It is clear that the cleanest mode, the four lepton mode, will not
be of use for discovering a strongly interacting symmetry breaking
sector. Even for the 1TeV Higgs case, the signal is too small.

The ZZ — i mode is more uncertain. ‘There are more events
in this channel, but the backgrounds are more difficult to deal with.

The WW~ mode has larger numbers of events, so the statisti-
cal significance of the signal would appear to be high, but one has to
remember that the absolute numbers of background events inay not
be very well known. As discussed in reference [35], the background
may be uncertain to about 60%, even after the SSC is turned on.
It may therefore be difficult to exploit these modes to discover the
excess of events caused by strongly interacting syminetry breaking.

Table IV.2 shows the charge 2 channel, W*W* and W-W- —
lvly In these modes the situation is improved, because there is no
background from ¢4 annihilation or gg fusion. The largest back-
ground is from gluon exchange, figure IV.7, but this contributes
less than 1 event {50].

In this table there is a cut on lepton rapidity, |y,| < 3. This is
a likely value for the limit of the electromagnetic calorimetry cov-
erage. There is also a cut My, > 500GeV imposed; this is to keep
the signal away fromn threshold, where the effective-W approxima-
tion used to compute the amplitude is not reliable. This is not an
experimentally implementable cut, and its presence nieans that the
numbers in table 1V.2 should really be regarded as lower bounds on

the numbers of events one is likely to see. There is a cut requiring
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the leptons to have transverse momentum greater than 59GeV, so
that one knows that its source wasn't some beam jet. Lastly, there
is a cut that requires my; > My, so that the two like charged leptons
didn’t come from the same original W. (i.e. W — th — ItI*X)
The first column shows the rates as calculated in the “conserva-
tive model” of Chanowitz and Gaillard, while the second shows the
scaled QCD model.

In this doubly charged channel the situation is encouraging.
Because there are no physics backgrounds, the numbers of events
shown in the table are certainly significant. What remains to be
shown is that there are no “junk” backgrounds which produce a
large number of like-charged lepton pairs. An important thing to
notice, however, is that the W+W* events are three times more
common than W~ W events. This is due to the greater number of
u than d quarks in a proton. This 3:1 ratio can serve as a check -
“junk” backgrounds will come in a ratio more nearly 1:1.

IV-D Conclusions

The two-gauge-boson signal is an important test of the strength
of the symmetry breaking sector. The signal of a strongly interact-
ing symmetry breaking sector is a large number of gauge boson
pairs with high invariant mass. These events may be observable in
the leptonic decays of the ZZ, WW~, or WZ modes. The most
promising modes, however, are the doubly charged modes W+W+
and W-W -. These have no g4 or gg annihilation backgrounds,
and the gluon exchange background is negligible. These modes also
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come with a built-in cheek - the ratjo of the positive Lo negative

channels is 3:1, which is very difficult for « background Lo fake.
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Mode “Conservative Standard Model Background

model” M, = 1TeV
lv[zz > 2TeV
ZZ — IF-H- 0.5 0 0.1
Miprany > 2TeV
Z2Z - I¥l-vo 3 0 0.9
Mzz > 1TeV
ZZ 1t 2 4 2
Mo, > 1TeV
ZZ = 1*tun 17 24 10
Avfwz > 2TeV
WZ — [H-ly 3 t] .5
ﬂfwz > 1TeV
W2Z - (+i-lv 11 0 10
J‘!ww > 2TeV
W+W= — [*ui~5 4 1 4
My > 1TeV
WHW- = Yul™i 17 62 58
Table IV.1

Rates per year for the two-gauge-bosons processes detected in leptonic
modes at the SSC. The SSC is assumned to be a pp machine with a CM energy
of 40TeV and an integrated luminosity per year of 10%°cm=2. The leptons, I, are
only e and p. The first column is the rate calculated using the “conservative
model™ of Chanowitz and Gaillard, the second is the rate for the standard model
with My = 1TeV. Both of these columns were calculated using the effective-W
approximation, The third column is the background rate, which includes the
quark-antiquark annihilation and, in the charge 0 channels, gluon-gluon fusion.



In all of these numbers a rapidity cut on the gauge bosons was imposed, de-
manding that |yy| < L.5. In addition, mass cuts were imposed as shown. See
the text for the definition of transverse mass.



Mode “Conservative “QCD”

model”
WHW+ = [Fulty 26 14
W-W- = "bl"0 9 5
Table [V.2

SSC rates for the doubly charged two-gauge-boson modes. The first column
was calculated in the “conservative model” of Chanowitz and Gaillard, and the
second was- calculated using the scaled #x amplitude. These were calculated
using the effective-W approximation. There are no appreciable backgrounds to
these processes from production of real like-charged gauge boson pairs. There
may be “junk” backgrounds, the removal of which may require further cuts. The
cuts applied here were: My > 500GeV, ly| < 3, p; > 50GeV, and My > M,y,.
Note that the ratio W*W+ : W~W~= is 3:1.
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Figures I.1 - 1.4
Radiative corrections to the W or Z mass. Figures 1.1 and 1.2 are not

enhanced by a factor of M, but 1.3 and 1.4 are.



Figure 1.5

Gauge boson fusion production mechanism for the doubly charged Higgs

boson.
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The behavior of the ay, partial wave in a typical weakly interacting (a)
and strongly interacting (b) theory. In the weakly interacting theory, there are
narrow resonances at low invariant mass, which saturate unitarity at sma.ll'_s. At
large s, the amplitude is small. [n the strongly interacting theory, the amplitude
grows according to the behavior dictated by the low energy theorem until it is

saturated by a very broad resonance. At large s, the amplitude is big.
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Figure IV.2
Diagrams for the process gq¢ — gqZZ. In diagrams (d), (i), and (j). the
outgoing Z's attached to the quark line may be connected in any one of four
possible places. In diagrams (e)-(j), the final state quarks are different from
those in the initial state, since chargeAis exchanged between them. In (a)-(d),
the initial and final state quark Havors are the same. Accordingly, (a)-(d} are
added and squared separately from (e)-(j). (a)-(d) and (e)-(j}) each form a single

gauge class.
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Cross scetion for wnpolarized 22 — ZZ scattering, as a function of Lhe
cuergy of the ital state energy. The solid hine was calenlated by adding all

the dingrams (s, (, and u-channel Higgs exchanges), while the dolted line is the
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Figure [V.1
Diwgrais for qq = 4qG G 7. (a)-(c) are for the process in which no charge

is exchanged between the quarks: they are separate from (d)-(g).



Figure IV.5

qq annihilation backgrounds. For the ZZ channel, (b) is absent.



Figure IV.6

Diagrans for gg — V'V, where V' = IV, Z. (a) is only appreciable for a

heavy top and a light Higgs. (c) is absent in the ZZ channel.



Figure IV.7

Diagrams for the §¥"+1V"* background from gluon exchange.



