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ABSTRACT

A model is derived for the resonance absorption of molecular bands
composed of Lorentzian lines that is suitable for calculating fluorescence
from irradiated air. The model is based on an explicit functional form de-
rived for the resonance absorption of a single Lorentzian line which properly
accounts for the possibility of unequal emission and absorption line widths.
A procedure for rapid numerical computation of this function is given. This
function yields a model for the resonance absorption of molecular bands com-
posed of either overlapping or separate lines. A significant savings in
computation time is obtained by using the model in place of exact expressions
for resonance absorption. Examples are given for the resonance absorption of

+

the N2 First Negative band system.
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1. INTRODUCTION

The main features of the fluorescence spectrum from irradiated air
are strong bands of N2 and N; (see, for example, Gaydon and Pearse!). Most
laboratory measurements of air fluorescence are made at low pressures using
relatively weak radiation sources. Under these conditions, fluorescence is
a valuable tool for studying excitation and ionization processes and the

2>3  Relatively few measurements have been made

related molecular structure.
at pressures near one atmosphere. Notable exceptions are deactivation
measurements by Davidson and O'Neal® and by Mitchell.® These investigators
find that the fluorescence efficiencies of the First and Second Positive
bands of N2 and the First Negative bands of N,

2
by factors of 103—104 relative to the low pressure regime.

are reduced at high pressure

Very few quantitative measurements of air fluorescence have been
made at high pressure using intense radiation sources that strongly excite
the air but produce negligible heating. Fluorescence is commonly observed
from strongly excited air in the vicinity of high current pulsed electron
beams, high flux nuclear reactors, and atmospheric nuclear explosions. In
this regime, processes not normally encountered in the laboratory play a
major role in producing and transporting air fluorescence. For example,
deactivation of ion states through electron-ion recombination can be impor-

256

tant as well as collisions with neutrals. Molecular species produced

by nonequilibrium processes in strongly irradiated air can absorb the fluo-
rescence.® In particular, lower states of the nitrogen fluorescence tran-
sitions are metastables. This suggests that resonance absorption is impor-
tant. We are concerned here with the latter effect.

Radiation that exits from a volume of gas that is both emitting
aﬁd absorbing in the same transitions is called resonance radiation. The
absorbing process is called resonance absorption. The process whereby
absorbed radiation is re-emitted, called resonance scattering, will be
neglected here since the fluorescence from air at high pressure is strongly

by5

quenched by collisions. Mitchell and Zemansky7 treated the resonance

absorption of isolated lines in atomic gases. Our goal is to formulate a
model for the resonance absorption of molecular bands applicable to numeri-

. . . . 8
cal calculations of fluorescence from irradiated air. In a separate report,
+

the model will be applied to the N2

First Negative bands.



In previous work, Bennett and Holland® considered the resonance
scattering of fluorescence from high altitude nuclear explosions. They
estimated average absorption coefficients for bands composed of lines with
Doppler profiles. These coefficients were used in the exponential (Beer's
Law) formula of absorption. The approach here is closer to the development
of band models for the absorption of continuum radiation by molecular

bands. 10,11,12

The resonance absorption of a single Lorentz line is first
formulated in Section 2. The approach is similar to that given in Reference
7. The effect of unequal emission and absorption line widths is examined

in detail, and convenient expressions for numerical computation are given.
In Section 3, the two cases of bands composed of separated and overlapping
Lorentz lines are considered. Approximate expressions of the single line

form are derived for both cases.




2. SINGLE LINE WITH LORENTZ PROFILE

Band models that approximate the absorption by molecular bands of

continuum light sources are based on functional forms for absorption by iso-

10511512 Similarly, a model for resonance absorption by molecular

lated lines.
bands must be based on functional forms for the resonance absorption of a
single line associated with an isolated electronic-vibrational-rotational
molecular transition. The resonance absorption of such a line has the added
complexity that it depends on both the emission and absorption line shapes

7 The dependence on line shapes can be understood by solving

10,13

and strengths.
the equation of radiative transfer restricted to the case of resonance
absorption.

A formal solution to the equation of radiative transfer is the
spectral radiance that would be observed along a column through a radiating
volume. In the special case where scattering can be neglected, and for a

spatial distribution of isotropic radiators, the spectral radiance can be

written
L L
— _]-__ H _ ' '
N\)(\),L) = I dx J\)(\),X) exp / dx k\)(\),x ) (1)
0 X
. 2
N, ¢ spectral radiance, W/cm™ - sr - frequency
jv : volume emission coefficient, W/cm3 - frequency
k, : volume absorption coefficient, cm”
L column length, cm

For a single line with Lorentz profile associated with an isolated molecular
transition, the spectral dependence of jv and kv can be written explicitly

in terms of the Lorentz function

b(v) = %]’ frequency_l (2)

Tova™ o

Y : half width at half maximum, frequency

vo : line center, frequency



where

./f dv b(v) =1

0
and the coefficients are
J,(vsx) = 3(x) b (v, %)
(3)
kv(V,x) = S(x) ba(v,x)

. .o 3
: integrated volume emission, W/cm

j

S : absorption line strength, frequency/cm
be : emission line shape

ba : absorption line shape

The line shapes be and ba are functions of position through foreign gas and
self broadening collisions. In general, both the Lorentz half-width Yy and

1% The integrated

the line center frequency Yo depend on collisional effects.
volume emission j and absorption line strength S are functions of position
through the concentrations of emitting and absorbing states, respectively.

In terms of the Einstein spontaneous emission probability, Aif(s_l),

2 .
(ecm”/J - s), for transitions
13515

and the Einstein absorption coefficient, Bfi
between upper state i and lower state f, j and S are given by

jx) = ni(x) hvo Aif
(4)
S(x) = nf(x) hvo Bfi
C2
and B,. = —— A,
fi 8T thS if

ni,nf : emitter, absorber concentrations, cm




A small variation of j and S with transition frequency has been neglected in
Eq. 4. By combining Egqs. 1-4 and integrating over frequency, an expression

is obtained for the line radiance, N(W/cm2 < sr).

dv N (L)
/ v ()

[¢)

L L
1
Z-T-T-h\)o Aiff dx ni(x)/ dv be(\),x) exp —h\)o Bfi/ dx!' nf(x') ba(\),x')

¢} [o} X

N(L)

o]

From Eqs. 4 and 5, the integrated transmittance of a resonance absorbed line

o L
T(x) =/ dv be(\),x) exp -/ dx'S(x'") ba(\),x') (6)
X

[o}

is

The line integrated radiance in terms of T is

L
J/.dx i () T(x)

[o)

N(L) =

-
3l

In the remainder of this section, functional forms for T are derived
for important special cases of Eq. 6. Limiting forms of these T-functions are
found which are convenient for numerical computation. In all cases, the emis-
sion and absorption line center frequencies are assumed to be the same. The
line shape functions, be and ba’ are at first restricted to be constant over
the radiating volume; these results are then generalized to account for spa-

tially varying line shapes.

CASE A. Homogenous radiating volume, equal line widths (Ya = Ye =v).

In this case, the line shapes are identical, ba = be = b, and are

not functions of position. The transmittance, Eq. 6, becomes



[oo]

T(X) = / dv b(v) exp (-xb(V) (7)

[o}

where X is defined by

L
X (x) =/ dx S(x) =S -+ (L-x)

X

The integration over frequency can be performed by expressing it

in terms of the equivalent width, W, for the absorption line.

WO =/ dv [1 - exp (-xb(\)))] (8)
o

For absorption lines with Lorentz profile, W is the Ladenberg and Reiche

function. 9211212

WOO = X exp (-x/2m) [Io(fxw—y) 11(—2-§F—Y)] (9

I ,I. : zeroth, first order Bessel functions

0’1
of imaginary argument16

It is apparent from Eqs. 7 and 8 that

100 = Sg

The Ladenberg and Reiche function, Eq. 9, is easily differentiated using

properties of the Bessel functions®®, and T is found to be

T(2) = exp(-2) 1_(2) (10)

= X
where Z = Iy




The T-function, Eq. 10, has well-known weak line (linear) and strong line

(square root) limits,!021!1»>12

T(Z) =———> 1 - Z (weak line, linear)

Z > o (11)

T(Z) — (2%2)1/2 (strong line, square root)
0o << Z

Percentage errors incurred by using these limiting forms for small and large
values of the argument have been fully discussed by Plass, Ref. 11. Figure
1 is a plot of the T-function, Eq. 10, as a function of the dimensionless

variable, Z. The linear and square root regions are evident in the figure.
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Figure 1. Transmittance function, Eq. 10, for.the resonance
absorption of an isolated Lorentz line, with YazYe
and Z = x/2WYa.



CASE B. Homogenous radiating volume, unequal line widths (Ya # Ye).

In this case, the line shapes, ba and be are not functions of posi-

tion, but ba # be so that Eq. 6 becomes

T(X) =/ dv b_(v) exp ( -X b, (V) (12)

[0}
where, as in Case A, x(x) = S - (L-x)

A series representation can be found for the integral in Eq. 12 by

expressing it in terms of a generalized Ladenberg and Reiche function, W

1
“ b (V)
e
Wl(x) =/ dv W [1 - exp(—x ba(\)))] (13)
0
dWI(X)
TX) = I

By substituting the explicit form for the Lorentz functions, Eq. 2, and

making a trigonometric change of variable, Eq. 13 can be recast in the form

m
T(2) = 2 exp(-2) %/ go SR (-2 cosd) (14)
1+B (o) 1 +<1_—B_2_> COS@
148
where

X

7 = A

Zﬂya

d

an Ya
B=2
Ye

The parameter B measures the departure from equal (B=1) emission and ab-

sorption line widths.



If the denominator in the integrand of Eq. 14 is expanded in geo-

metric series, one can identify an integral representation of the Bessel

function, Io’ and an infinite sequence of derivatives of Io.16
T(2) = 28 exp(-2) 18 ) 1) gy (15)
1+B2 1+B2 °
n=0
Ién) : nth derivative of Io

The nth derivative of Io can be expressed as a linear combination of Bessel

functions of imaginary argument.'®
SN
Iy = N m) Tn-2m (16)

(E) binomial coefficient

By substituting Eq. 16 into Eq. 15 and rearranging the series, one can verify

that
[ee]
28
T(Z) = exp(-2)} C I (Z) + 2 CI (2) (17)
: 2 oo nn
1+B -
n=1
The coefficients, Cn’ are given by
[e 0]
m
c, -2 (@)
o) m /\2
=0
=1
C1 = (Co—l)
c =2¢ . -c 2 <n (18)
n A "n-1 n-2° -

where 2




The series for C0 can be summed using Series No. 899 in Jolley.!” The rest
of the coefficients can then be evaluated using the recursion formula in

Eq. 18. The result of this procedure is

2 n
_ 148 1-B
Ch = 28 (1+B) » 0 <m (19)

Combining Eqs. 17 and 19 yields a series representation for the T-function

in the case that Y, # Yo+

[oe]

n
T(Z) = exp(-2) |1_(2) + 2 z G—;—S) 1 (2) (20)

n=1

It is easy to verify that Eq. 20 holds for all values of B, 0 < B <, In
particular, for B = l(Ya = Ye), the T-function reduces to that of Case A,
Eq. 10. Several useful limiting forms of the T-function have been derived

and are summarized in Eq. 21.
(a) B =1, arbitrary Z, (21)

T(Z) = exp(-2) IO(Z)

(b) B - 0, arbitrary Z,
T(Z) ~ 1
(c) 1 < < B, arbitrary Z,

T(Z) = exp(-2 Z)

(d) Z »~ 0, arbitrary B

T(Z) =1 - %%E-Z (weak line, linear)

(e) 0 < < Z, arbitrary B ‘

1 1 1/2

T(Z) = E'(EEZ) (strong line, square root)

10
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Fig. 2. Transmittance function, eqn (20), for the resonance absorption
of an isolated Lorentz line plotted as a function of Z = x/2my
. a
for fixed values of 8 = Ya/Ye.

The T-function, Eq. 20, is plotted in Figure 2 as a function of
the dimensionless variable Z for several values of B in the range 10_2 to
102. The shape of the T-function depeﬂés significantly on the value of B;
in particular, the regions of validity of the weak and strong line limits
change dramatically as B is varied. Clearly, this B dependence cannot be
neglected in resonance absorption calculations. The series for the T-
function, Eq. 20, converges slowly for values of B such that the expansion
parameter,(%i%- + *1. For example, if Z = 400 and B = 10_2 or 102,6approxi-
mately 100 terms are required for convergence (absolute error < 10 ). This
1s not a severe problem for large B values since the strong line limiting
form, Eq. 21(e), is applicable over the range of large Z values where con-
vergence is slow. To circumvent the convergence problem for small B values
(B < 10-1), approximations to the infinite series, Eq. 20, have been derived
in terms of finite series based on expansions of the Bessel functions for

small and large values of the argument.16

11



A prescription will now be given for evaluating the T-function which
has been found to be particularly useful in numerical calculations of resonance
absorption.® It is based on the exact expression Eq. 20, the limiting forms
Eq. 21, and the approximations by finite series mentioned previously. Con-
vergence is rapid for all values of the B parameter. The accuracy of the
approximations has been checked, and a relative error less than 1% has been
found over the following ranges,

10'2 < Z 105

|A

-3 3

10 10

|~
>
A

103%<t<1

In the calculational procedure, the T-function is evaluated as a function of

the variable Z = 2§Y The following parameters are defined for fixed values
of B, a

Z, = 0.02 (égg) (22)

2, = s0 (L8)

2 = 00 (5

=4 (59
and,

(a) for Z < Zw and arbitrary B,
T(Z) = 1 - %%E- z

12



(b)

(c)

(d)
where

(e)
where

(£)

for Zs < Z and arbitrary B,

1

T(Z) = — 1
2nz)1/%g

for B = 1 and Zw < Z

T(Z) = e % I (2)

for B8 < 0.1 and Z < Z < Z
w w

28

<2z

S

() < 1 - (TIB)Al(Z) " (

1,

AL(D) = 2eT (I (2) + T (D)
A,(Z) =

2

Z
As(D) = 3

for B < 0.1 and ZS

2
e

A, (2) - (%§E>3A3(Z)

%—[1 - e (2) + 11(2))]

Z

e‘Z(Il(Z) +1,(2) - 5-[1 - e‘Z(Io(Z) " 211(2)ﬂ

2
20 - (5655 )

for 0.1 < B and Z <

and for B < 0.1 and

T(Z) = e - I (2) + 2 E (%5%

13

1
Z

Z <
Z
w

N

n=1

<
1 —



Terms in the series are monotonically decreasing; the series is
terminated by dropping terms smaller than 10_6. After evaluating
Io and Il, the Bessel functions In’ 2 < n are generated using the

recurrence relation!®

2(n-1) I

1) =1, - 29 ()

n-1

CASE C. Inhomogeneous radiating volume.

In this case, the line shapes, ba and be’ and the emitter and
absorber concentrations, n, and n, are functions of position. The general
form, Eq. 6, must be integrated to find the transmittance for each radiating
point in the column. Note that one cannot proceed by dividing the inhomo-
geneous volume into homogenous subvolumes and then taking products of T-
functions because T(Zl)T(ZZ) # T(Z1 + Zz). A complete numerical simulation
of the problem is possible, but this would require evaluating the spectral
radiance, Eq. 1, on many frequency subintervals, and then summing over the
line profile.

Instead, we apply the Mean Value Theorem of the calculus to the

integral in the exponent of Eq. 6.

L
f dx' S(x') ba(\),x') (23)

X

1l

B, (V) X()

bax : mean value of ba on the subinterval {[x,L]

L
X (x) =/ dx' S(x")

X

The problem is then one of evaluating the mean value of the absorption line
shape Eax on any subinterval of the column. An estimate of Bax can be ob-

tained in the following way. First, find an average absorption line width .

Yax using the density of absorbers n_. as a weighting function.

f

14



L
/ dx!' Ya(X') ne(x')

y.. =% (24)

ax L
/ dx!' nf(x')

X

Then, assign to the mean line shape Bax’the average width yax on each sub-
interval [x,L). In this way, the T-function, Eq. 20, is specified for every
radiating point along the column, and can be evaluated using the procedure

given in Case B, Eq. 22.

15






3. MOLECULAR BAND COMPOSED OF LINES WITH LORENTZ PROFILES

In Section 2, the resonance absorption of a single Lorentz line
was described. Those results will be used here to construct a model which
approximates the resonance absorption of a molecular band composed of
Lorentz lines. Two cases will be considered: first, a band composed of
separated lines, and then the more general case of a band with overlapping
lines. It is assumed that the profiles of all lines forming either an
emission or absorption band are identical and that the line center fre-

quencies of emission and corresponding absorption lines are the same.

CASE A. Separated lines.

Consider a molecular band composed of rotational lines produced
in transitions between upper state (U, v, J) and lower state (X, v', J')
where U,X denote electronic states; v,v' denote vibrational levels; J,J!
denote rotational levels. For an isolated rotational line, the development
in Section 2 for the line integrated radiance of a single resonance absorbed
line can be applied. In particular, the integrated volume emission j and

the line strength S (Eq. 3) become

J(Xz-.' = nU(x) Pv(x) PJ(X) hvvv' Avv'JJ‘ (25)
vv'jj
§(x) - nx(x) Pv,(x) PJ'(X) h\)vv' va'JJ'
VAABNA
N,y : concentrations of molecules in electronic
states U,X
Pva : fraction of U-state molecules in vibration-
rotation level (v,J)
P P : fraction of X-state molecules in (v',J')
v J!
vvv' : transition frequency of the (v,v') band
Avv'JJ"va'JJ' : Einstein spontaneous emission probability

. absorption coefficient

17



The decomposition of the A-coefficient into electronic-vibrational and

rotational transition probabilities is (see, for example, Herzberg'?®)

M

_ JJ!
Avv'JJ' - Avv' 2J+1 (26)
Avv' : total transition probability for the
(v,v') band
MJJ, : rotational transition probability
and 2
B - c 2J+1
vv'JJ! 8ﬂhv3 2J'+1 vww'JJ!
vv'!
_ c2 MJJ'
Sﬂhv3 vv' 2J'+1
vv!

Combining Eqs. 25 and 26, one obtains the following useful expressions for

j and S
J(X% ' = nU(x) PV(X) hvvv' Avv' FJ(X)
vv'JJ
(27)
C2
S(x) =n,(x) P ,(x) ——A_, G, (x)
wigge X gmv? Vvt
. Vv
where MJJ'
Fy() = P 733
M
JJ!
Gy = Py (0 vy
For an isolated rdtational line the line radiance Eqs. 5 and 6
becomes
L
N(L) = %/ dx 5(x)  T(x) (28)
vv'JJ! vw'JJ' vv'JJ!'

18



where

oo L
T\(l\);)VJJv_ =/ dvb_(v,x) exp —] dxt S(x1) by (v, )
X

vv'JJ!
o

For a band composed of separated rotational lines, the band radiance is

merely the sum of line radiances

N(L) = E N(L)
vv'! 3 vv'JJ!
, (29)
L
1 .
= | it T
™ 1 1
vv' vy
()
The following definitions have been used in Eq. 29.
T(x) = F_(x) dv b (v,x) exp|{ - dx' S{x') G, (x") b_(v,x")
) J e ' J a
vv vV
J o} X
J(X% = nU(x) Pv(x) hvvv' Avv’ (30)
vv
C2
S = -
(X)' ne(x) Py() —5—A,
Vv 8ﬂvvv,

, 1s the transmittance due to resonance absorption of the

In Eq. 30, TVV
(v,v') band. By applying the Mean Value theorem, we replace the sum over

rotational lines in the expression for Tvv' by a single term. In this way,
the resonance absorption T-function for a band composed of separated Lorentz
lines has the same form as the T-function for a single Lorentz line with an
additional parameter, g that accounts for the average line strength in the

band.

19



Tvv'(zvv') - Tsl(gs Zvv" B) (31)
Ts% : single line T-function, Eqs. 20-22 and Figure 2
g, @ average rotational line strength for separated

lines

and X,
vV

L
X(x)=[ dx' S(x")
vv! vv!

If g, is a function of position through the rotational state population

fractions PJ and PJ, (Eq. 27), then average values along the column must

be used in Eq. 31, in the same manner that average values for the absorp-

tion line width Y, were previously defined, Eq. 24.
+

2
ing that the rotational states are populated in thermal equilibrium.® For

We have computed T-functions for the N, First Negative bands assum-

example, if B=1 and the rotational temperatures are 300°K, the T-function

computed via Eq. 31 with g, = 0.026 is a good fit to the exact result, Eq.

3

30, over the range 10 S‘Tvv' <1 (standard error = 3%). Note that some

improvement in accuracy could be obtained by evaluating separate T-functions

for the P and R branches of the First Negative bands.?’!®

CASE B. Overlapping lines.

Models which describe the absorption of continuum radiation by

10511512 5ccount for line overlap by introducing a parameter

molecular bands
for the average line spacing. Heaton!? has given a formulation for combining
the equivalent widths of two Lorentz lines in the square root region. His
results show the transition from the separated line case to the coincident

line case as a function of line width and spacing, and line strength.

20




For the resonance absorption of a molecular band with overlapping
lines, the band transmittance, Eq. 30, must be rewritten summing the contri-
butions from neighboring absorption lines to the absorption of each emission

line.

® L
T(x) = E FJ(x)/d\)be(\),x)exp —/ dx' S(x") GJ,(x')b J,(\),x') (32)
vv! J o X w' *

Note that in Eq. 32, the subscript J' on the absorption line shape function
denotes the variation of line center frequency with J', while the absorption
line shapes are still taken to be equal. Approximate solutions to Eq. 32 of
the single line form, Eq. 20, are easily obtained in the two limits of sepa-
rated lines and coincident lines. The splution for separated lines was given
in Eq. 31. For the case of coincident lines, the absorption line shape func-
tion no longer depends on J', and a solution obtains by making the following

replacement in Eq. 31

For intermediate cases, we replace the parameter g in Eq. 31 by a parameter
g which varies continuously as a function of Zvv' between the separated and

coincident line limits, i.e.,

g.Lg=xg

S C

The parameter g is a complicated function of the absorption line width and
average spacing and the magnitude of Zvv" For a particular band with fixed
absorption line width and average spacing, g approaches the separated line
limit for Zvv' small, and the coincident line limit for Zvv' large.19 We
shall assume a simple (nonunique) functional form for g which has the proper

limits,

21



—
i}

OLZVV '
& \T+az__, (g, - &) (33)
vv

Gt & (separated lines)
g——— ¢, (coincident lines)

Thus, a T-function that approximates the resonance absorption of a molecular

~ band with overlapping Lorentz lines is given by

TVV;(ZVVJ B Tsl (g(zvv') ’ Zvv"6> (34)
Tsl : single line T-function, Eqs. 20-22
and Figure 2
g(Zvv,) : Eq. 33
Zvv"B : Eq. 31

The parameter o in Eq. 33 depends on the absorption line width and average
spacing. The value of o determines the region of transition, aZVV, ~1,
between separated and coincident line regimes. The parameter O must be
evaluated for the particular band of interest by fitting it to numerical
calculations using the exact form of the transmittance, Eq. 32, or by fitting
it to experimental data.

We have compared the T-function, Eq. 34, with the exact expression,
+

2
states are populated in thermal equilibrium.® In this case, g, is equal to

0.5 for both the P and R branches. If B=1 and T = 300°K, we find reasonable

Eq. 32, evaluated for the N, First Negative bands assuming that the rotational

agreement over a broad range of Y, values by writing o in the form, o =
constant - Yi . The value of the constant was found to be =~ 0.015 cm2 with
Ya in cm—l. Standard errors obtained by comparing numerical calculations

of Eqs. 32 and 34 over the range 1 S'Zvv' 5_105 for fixed values of Y, are
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-1
Ya(cm ) Standard Error (%)

0.001 3
0.01 6
0.1 10
1.0 12

Rotational lines of the First Negative bands were found to be essentially
independent for Yy < 0.01 cm_l. The exact expression, Eq. 32 and the T-
function, Eq. 34 are plotted in Figure 3 as functions of Zvv' for Y, = 0.1
cm_l. Errors incurred by using the T-function, Eq. 34, will be acceptable
for many applications. Use of Eq. 34 in place of Eq. 32 results in tremen-

dous savings of computation time.

0
10 F T T T 3
L Exact, Eq 32 ]
- essses Model, Eq34
10! | E
8 o ]
8§ C ]
z ! ]
§ [ I
1072 .
-3 1 1 L I
10
10° 10" 102 10° 10 10°
z ,
vv

Figure 3. Transmittance due to resonance absorption of the N, first
negative bands: rotational states populated in thermal
equilibrium, gs(300°K) = 0.026; gc = 0.5 for P and R
branches; equal emission and absorgtion line widths, B=1;
line overlap parameter o = 0.015 v§, Y, = 0.1 cm™7;

Zogr = Xyt /2T,

vv'! vv!
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4. CONCLUSIONS

A band model of resonance absorption has been derived that is suit-
able for numerical calculations of fluorescence from strongly irradiated air
at high pressure. In Section 2, a functional form, Eq. 20, was obtained for
the transmittance produced by the resonance absorption of an isolated Lorentz
line. This function properly accounts for differences in emitting and absorb-
ing line widths. A prescription, Eq. 22, was given for rapid numerical com-
putation of this function. In Section 3, a transmittance function, Eq. 34,
based on the single line form was derived for the resonance absorption of
molecular bands composed of overlapping or nonoverlapping Lorentz lines. For

clarity, Eq. 34 is reproduced here along with the definitions of the parameters.

Tvv'(zvv') - Tsl(g(Zvv') zvv"B)
Tsl : single line form, Eq. 20, to be evaluated
by the prescription given in Eq. 22
L
Zvv' = 2T1ry /dx' S(x")
a 4 vv'!
x,L : emission point, column length
v absorption band strength, Eq. 30
Ya’Ye : absorption, emission line width
g L2
Yo
oz .,
gz ) = g * ‘1_+Xz\£_“‘,‘ (g, - &)
vv
g, @ average rotational line strength for
separated lines
g. ¢ sum of rotational line strengths for
coincident lines
0 : line overlap parameter
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