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ABSTRACT

A model is derived for the resonance absorption of molecular bands 
composed of Lorentzian lines that is suitable for calculating fluorescence 
from irradiated air. The model is based on an explicit functional form de­
rived for the resonance absorption of a single Lorentzian line which properly 
accounts for the possibility of unequal emission and absorption line widths.
A procedure for rapid numerical computation of this function is given. This 
function yields a model for the resonance absorption of molecular bands com­
posed of either overlapping or separate lines. A significant savings in 
computation time is obtained by using the model in place of exact expressions 
for resonance absorption. Examples are given for the resonance absorption of 
the First Negative band system.
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1. INTRODUCTION

The main features of the fluorescence spectrum from irradiated air 
are strong bands of N^ and N^ (see, for example, Gaydon and Pearse1). Most 
laboratory measurements of air fluorescence are made at low pressures using 
relatively weak radiation sources. Under these conditions, fluorescence is 
a valuable tool for studying excitation and ionization processes and the 
related molecular structure.2’3 Relatively few measurements have been made 
at pressures near one atmosphere. Notable exceptions are deactivation 
measurements by Davidson and O'Neal4 and by Mitchell.5 These investigators 
find that the fluorescence efficiencies of the First and Second Positive 
bands of N„ and the First Negative bands of N^ are reduced at high pressure 
by factors of 10 -10 relative to the low pressure regime.

Very few quantitative measurements of air fluorescence have been 
made at high pressure using intense radiation sources that strongly excite 
the air but produce negligible heating. Fluorescence is commonly observed 
from strongly excited air in the vicinity of high current pulsed electron 
beams, high flux nuclear reactors, and atmospheric nuclear explosions. In 
this regime, processes not normally encountered in the laboratory play a 
major role in producing and transporting air fluorescence. For example, 
deactivation of ion states through electron-ion recombination can be impor­
tant as well as collisions with neutrals.2’6 Molecular species produced 
by nonequilibrium processes in strongly irradiated air can absorb the fluo­
rescence.6 In particular, lower states of the nitrogen fluorescence tran­
sitions are metastables. This suggests that resonance absorption is impor­
tant. We are concerned here with the latter effect.

Radiation that exits from a volume of gas that is both emitting 
and absorbing in the same transitions is called resonance radiation. The 
absorbing process is called resonance absorption. The process whereby 
absorbed radiation is re-emitted, called resonance scattering, will be 
neglected here since the fluorescence from air at high pressure is strongly 
quenched by collisions.4’5 Mitchell and Zemansky7 treated the resonance 
absorption of isolated lines in atomic gases. Our goal is to formulate a 
model for the resonance absorption of molecular bands applicable to numeri-

ocal calculations of fluorescence from irradiated air. In a separate report, 
the model will be applied to the N^ First Negative bands.
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In previous work, Bennett and Holland9 considered the resonance 
scattering of fluorescence from high altitude nuclear explosions. They 
estimated average absorption coefficients for bands composed of lines with 
Doppler profiles. These coefficients were used in the exponential (Beer's 
Law) formula of absorption. The approach here is closer to the development 
of band models for the absorption of continuum radiation by molecular 
bands.10 *11 *12 The resonance absorption of a single Lorentz line is first 
formulated in Section 2. The approach is similar to that given in Reference 
7. The effect of unequal emission and absorption line widths is examined 
in detail, and convenient expressions for numerical computation are given.
In Section 3, the two cases of bands composed of separated and overlapping 
Lorentz lines are considered. Approximate expressions of the single line 
form are derived for both cases.
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2. SINGLE LINE WITH LORENTZ PROFILE

Band models that approximate the absorption by molecular bands of 
continuum light sources are based on functional forms for absorption by iso­
lated lines.10’11’12 Similarly, a model for resonance absorption by molecular 
bands must be based on functional forms for the resonance absorption of a 
single line associated with an isolated electronic-vibrational-rotational 
molecular transition. The resonance absorption of such a line has the added 
complexity that it depends on both the emission and absorption line shapes 
and strengths.7 The dependence on line shapes can be understood by solving 
the equation of radiative transfer10’13 restricted to the case of resonance 
absorption.

A formal solution to the equation of radiative transfer is the 
spectral radiance that would be observed along a column through a radiating 
volume. In the special case where scattering can be neglected, and for a 
spatial distribution of isotropic radiators, the spectral radiance can be 
written

N^ : spectral radiance, W/cm • sr • frequency 
j : volume emission coefficient, W/cm • frequency 

: volume absorption coefficient, cm ^
L : column length, cm

For a single line with Lorentz profile associated with an isolated molecular 
transition, the spectral dependence of and can be written explicitly 
in terms of the Lorentz function

b(v)
(v-vo)'

frequency

y : half width at half maximum, frequency 
: line center, frequency

{2)
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where
OO

dv b(v) 1

and the coefficients are

jv(v,x) = j(x) be(v,x) 

kv(v,x) = S(x) ba(v,x)

3
j : integrated volume emission, W/cm 
S : absorption line strength, frequency/cm 
be : emission line shape 
b& : absorption line shape

(3)

The line shapes b and b are functions of position through foreign gas and6 3-
self broadening collisions. In general, both the Lorentz half-width y and 
the line center frequency Vo depend on collisional effects.14 The integrated 
volume emission j and absorption line strength S are functions of position 
through the concentrations of emitting and absorbing states, respectively.

In terms of the Einstein spontaneous emission probability, A.f(s 
and the Einstein absorption coefficient, (cm /J • s), for transitions
between upper state i and lower state f, j and S are given by13’15

and

j(x) = ni(x) hVQ Aif

S(x) = n.(x) hv B_.f o fi

fi o u 3 ifSir hvo

n^,n^ : emitter, absorber concentrations, cm-3

4



A small variation of j and S with transition frequency has been neglected in
Eq. 4. By combining Eqs. 1-4 and integrating over frequency, an expression

2
is obtained for the line radiance, N(W/cm • sr).

N(L) / dv N (L) V (5)

— hv 4tt o if

[L

I dx ni(x) / dv be(v,x) expL Bf. ['
\ ° {1I

nf(x') b&(v,x')

From Eqs. 4 and 5, the integrated transmittance of a resonance absorbed line 
is

T(x)

OO

dv be(v,x) exp
L
dx'S(x') ba(v,x') (6)

The line integrated radiance in terms of T is

N (L) " k/ dx T(x)

In the remainder of this section, functional forms for T are derived 
for important special cases of Eq. 6. Limiting forms of these T-functions are 
found which are convenient for numerical computation. In all cases, the emis­
sion and absorption line center frequencies are assumed to be the same. The 
line shape functions, b and b , are at first restricted to be constant over0 3.
the radiating volume; these results are then generalized to account for spa­
tially varying line shapes.

CASE A. Homogenous radiating volume, equal line widths (y = y = y)•3 0

In this case, the line shapes are identical, b = b = b, and are3 0
not functions of position. The transmittance, Eq. 6, becomes

5



(7)
o

where x is defined by

X(x)
fL
I dx S(x) = S • (L-x) 
x

The integration over frequency can be performed by expressing it 
in terms of the equivalent width, W, for the absorption line.

W(X) (8)

For absorption lines with Lorentz profile, W is the Ladenberg and Reiche 
function. 10,11,12

W(X) = X exp (-X/21TY) b^)] f9)

I ,1, : zeroth, first order Bessel functions o 1
of imaginary argument16

It is apparent from Eqs. 7 and 8 that

T(x) =
LXJ dX

The Ladenberg and Reiche function, Eq. 9, is easily differentiated using 
properties of the Bessel functions16, and T is found to be

where

T(Z) = exp(-Z) Io(Z)

Z 5 JL_
Ziry

(10)
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The T-function, Eq. 10, has well-known weak line (linear) and strong line 
(square root) limits.10’11’12

T(Z) * 1 - Z (weak line, linear)
Z o (11)

T(Z)-------- - (strong line, square root)
o « Z

Percentage errors incurred by using these limiting forms for small and large 
values of the argument have been fully discussed by Plass, Ref. 11. Figure 
1 is a plot of the T-function, Eq. 10, as a function of the dimensionless 
variable, Z. The linear and square root regions are evident in the figure.

Figure 1. Transmittance function, Eq. 10, for the resonance 
absorption of an isolated Lorentz line, with Ya=Te 
and Z = x/2'n'Y ■3.
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CASE B. Homogenous radiating volume, unequal line widths (y ^ y ).ci 6

In this case, the line shapes, b and bcl ©
tion, but b ^ b so that Eq. 6 becomes3. ©

are not functions of posi-

T(X) (12)

where, as in Case A, x(x) = S • (L-x)

A series representation can be found for the integral in Eq. 12 by 
expressing it in terms of a generalized Ladenberg and Reiche function, .

o
(13)

T(X)
dW1(x) 

dX

By substituting the explicit form for the Lorentz functions, Eq. 2, and 
making a trigonometric change of variable, Eq. 13 can be recast in the form

T(Z)
1+3

exp(-Z) =/'
exp(-Z cosQ) (14)
1 +1 fl-3"

U+3'
cosG

where

and

Z X
Zttya

The parameter 3 measures the departure from equal (3=1) emission and ab­
sorption line widths.
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If the denominator in the integrand of Eq. 14 is expanded in geo­
metric series, one can identify an integral representation of the Bessel 
function, Io, and an infinite sequence of derivatives of I0-16

T(Z)
1+3"

exp(-Z) £<n=0
1-3
,1+3a, ■ r m (15)

I ^ : n1"^1 derivative of I

The n derivative of I can be expressed as a linear combination of Bessel 
functions of imaginary argument.16

(n) -TV)1 *~n\m/ n-a 
m=0

(16)

binomial coefficient

By substituting Eq. 16 into Eq. 15 and rearranging the series, one can verify 
that

T(Z) ~~^~2 exPC-Z^
1+3

C I (Z) o o + 2

CO

En=l
C I (Z) n n (17)

The coefficients, C , are given by
uu

-Eae)'
m=0

1 A 1 o(C -1)

C = TC . - C „,2<n n A n-1 n-2’ ~

where
A 1-3

1+3

2

2

(18)
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The restThe series for Cq can be summed using Series No. 899 in Jolley.17 
of the coefficients can then be evaluated using the recursion formula in 
Eq. 18. The result of this procedure is

Cn 0 £ n (19)

Combining Eqs. 17 and 19 yields a series representation for the T-function
in the case that y ^ y .a. ©

T(Z) = exp(-Z) Vz) + 2 rVl+3; In(z) (20)

It is easy to verify that Eq. 20 holds for all values of 8, 0 £ 8 < 0o. In 
particular, for $ = 1(y = y ), the T-function reduces to that of Case A,3. ©
Eq. 10. Several useful limiting forms of the T-function have been derived 
and are summarized in Eq. 21.

(a) 8=1, arbitrary Z, (21)

T(Z) = exp(-Z) Io(Z)

(b) 8+0, arbitrary Z,

T(Z) + 1

(c) 1 < < 8, arbitrary Z,

T(Z) = exp(-2 Z)

(d) Z 0, arbitrary 8

T(Z) = 1 - Z (weak line, linear)1+8

(e) 0 < < Z, arbitrary 8 

T(Z) = | (strong line, square root)

10



Fig. 2. Transmittance function, eqn (20), for the resonance absorption
of an isolated Lorentz line plotted as a function of Z = x/2fry
for fixed values of B = y /y . aa e

The T-function, Eq. 20, is plotted in Figure 2 as a function of
-2the dimensionless variable Z for several values of 3 in the range 10 to 2

210 . The shape of the T-function depends significantly on the value of 3; 
in particular, the regions of validity of the weak and strong line limits 
change dramatically as 3 is varied. Clearly, this 3 dependence cannot be 
neglected in resonance absorption calculations. The series for the T- 
function, Eq. 20, converges slowly for values of 3 such that the expansion

For example, if Z = 400 and 3 

mately 100 terms are required for convergence (absolute error < 10 u). This 
is not a severe problem for large 3 values since the strong line limiting 
form, Eq. 21(e), is applicable over the range of large Z values where con­
vergence is slow. To circumvent the convergence problem for small 3 values 
(3 < 10 *), approximations to the infinite series, Eq. 20, have been derived 
in terms of finite series based on expansions of the Bessel functions for 
small and large values of the argument.16

parameter,^Y-j-|0 ±1. -2 210 or 10 , approxi-

11



A prescription will now be given for evaluating the T-function which 
has been found to be particularly useful in numerical calculations of resonance 
absorption.8 It is based on the exact expression Eq. 20, the limiting forms 
Eq. 21, and the approximations by finite series mentioned previously. Con­
vergence is rapid for all values of the 3 parameter. The accuracy of the 
approximations has been checked, and a relative error less than 1% has been 
found over the following ranges,

10"2 <_ Z ^ 105

10"3 1 3 < 103

10"3 < T < 1

In the calculational procedure, the T-function is evaluated as a function of
the variable Z 
of 3,

X
27TY The following parameters are defined for fixed values

z„E °-02 (ir) 
(^)2 

(^)2 

(^)2

(22)

Z = 50 s

Z = wl

ZS1 ■ 4 \23

and.

(a) for Z < Z^ and arbitrary 3,

T(Z) = 1 -
1+3

12



where

where

for < Z and arbitrary 3,

T(Z)
(2ttZ)1/23

(c) for 3=1 and Z < Z < Z w — — s

T(Z) = e"Z Io(Z)

for 3 < 0.1 and Z < Z < Z , , w — wl

T(Z) = 1 - (t!b)V2) * (its) Vz) - (its) A3tz)

AjfZ) = Ze"Z(Io(Z) + IjCZ))

a2(z) = y 1 - e (I„tz) * vzn]

a3(Z) = e^cijfZ) + I2(Z)) - | [:1 - e_Z(Io(Z) + 21 itz))]

(e) for 3 < 0.1 and Z . < Z < Z si — s

T(Z)
(2ttZ)1/2 (1-B)(1+B)2

= (wXjt) i
for 0.1 <. 3 and Zw £ Z <. Zs,

and for 3 < 0.1 and Z . < Z < Z ,wl — — si

T(Z) = e -Z I (Z) + 2 o
n=l

13



Terms in the series are monotonically decreasing; the series is 
terminated by dropping terms smaller than 10 After evaluating 
IQ and 1^, the Bessel functions I , 2 £ n are generated using the 
recurrence relation16

CASE C. Inhomogeneous radiating volume.

In this case, the line shapes, b and b , and the emitter and
3. ©

absorber concentrations, n^ and n^, are functions of position. The general 
form, Eq. 6, must be integrated to find the transmittance for each radiating 
point in the column. Note that one cannot proceed by dividing the inhomo­
geneous volume into homogenous subvolumes and then taking products of T- 
functions because TfzpTf^) / T(Z^ + Z^) . A complete numerical simulation 
of the problem is possible, but this would require evaluating the spectral 
radiance, Eq. 1, on many frequency subintervals, and then summing over the 
line profile.

Instead, we apply the Mean Value Theorem of the calculus to the 
integral in the exponent of Eq. 6.

The problem is then one of evaluating the mean value of the absorption line 
shape b on any subinterval of the column. An estimate of b can be ob- 
tained in the following way. First, find an average absorption line width

/■dx' S(x') b (v,x')
cl

(23)
x

b : mean value of b on the subinterval (x.Ll ax a l > j

x

Y using the density of absorbers n. as a weighting function.3.X t

14



(24)
f dx' Ya(x') nf(x')

Yax /»LfI dx' (x')

Then, assign to the mean line shape b the average width y on each sub-3.x ax
interval [x,L). In this way, the T-function, Eq. 20, is specified for every 
radiating point along the column, and can be evaluated using the procedure 
given in Case B, Eq. 22.
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3. MOLECULAR BAND COMPOSED OF LINES WITH LORENTZ PROFILES

In Section 2, the resonance absorption of a single Lorentz line
was described. Those results will be used here to construct a model which 
approximates the resonance absorption of a molecular band composed of 
Lorentz lines. Two cases will be considered: first, a band composed of
separated lines, and then the more general case of a band with overlapping 
lines. It is assumed that the profiles of all lines forming either an 
emission or absorption band are identical and that the line center fre­
quencies of emission and corresponding absorption lines are the same.

CASE A. Separated lines.

in transitions between upper state (U, v, J) and lower state (X, v', J') 
where U,X denote electronic states; v,v' denote vibrational levels; J,J' 
denote rotational levels. For an isolated rotational line, the development 
in Section 2 for the line integrated radiance of a single resonance absorbed 
line can be applied. In particular, the integrated volume emission j and 
the line strength S (Eq. 3) become

Consider a molecular band composed of rotational lines produced

j(x) = n (x) P (x) PT(x) hv . A ITTtU v J vv1 vv'JJ’■\r\r • i 1 "
(25)

vv'jj

S(x) = nv(x) P .(x) PT,(x) hv B ,TT, .T T, X v' J' vv' vv'JJ'vv'JJ'

concentrations of molecules in electronic 
states U,X
fraction of U-state molecules in vibration- 
rotation level (v,J)
fraction of X-state molecules in (v',J') 
transition frequency of the (v,v') band 
Einstein spontaneous emission probability 
absorption coefficient

17



The decomposition of the A-coefficient into electronic-vibrational and 
rotational transition probabilities is (see, for example, Herzberg18)

Avv 'JJ'
JJ' 

vv' 2J+1 (26)

and

^vv, ’■ total transition probability for the 
(v,v') band

Mjj( : rotational transition probability

VV'JJ' Srtiv3 ,VV 1

2J+1 A
2J'+1 vv'JJ'

JJ'
STthv' vv' 2J'+1
w

Combining Eqs. 25 and 26, one obtains the following useful expressions for 
j and S

where

j (x) = n-.fx) P (x) hv A F (x)J U v vv' vv' Jvv'JJ'
C27)

s(x) = nx(x) P (x) Avv, Gj.fx)
vv'JJ' 8ttv .vv'

FJ(^X-) 2J+1

PJ'(‘X') 2J' +1

For an isolated rotational line the line radiance Eqs. 5 and 6
becomes

N(L)
vv'JJ'

1_

4tt/
L
dx j(x) 

vv'JJ'
T(x)
vv'JJ'

(28)

18



where

T(x)
vv'JJ' /

00

dvbe(v,x) exp
L
dx' S(x')

vv'JJ'
ba

For a band composed of separated rotational lines, the band radiance is 
merely the sum of line radiances

N(L)
VV'JJ'

= ( dxJ VV'
T(x)
vv'

(29)

The following definitions have been used in Eq. 29.
•L

T (x) ^FJCx) J (-/Fj(x) j dv be(v,x) exp | - j dx' S(x') Gj.Cx') ba(v,x')^

j(x) = nM(x) P (x) hv .A J K J U V vv? vv1w"
(30)

2

In Eq. 30, T^^, is the transmittance due to resonance absorption of the 
(v,v') band. By applying the Mean Value theorem, we replace the sum over 
rotational lines in the expression for T , by a single term. In this way, 
the resonance absorption T-function for a band composed of separated Lorentz 
lines has the same form as the T-function for a single Lorentz line with an 
additional parameter, gg that accounts for the average line strength in the 
band.

19



3) (31)

and

Tvv ^vv'5 Ts£t8s zvv i >

Ts£ : single line T-function, Eqs. 20-22 and Figure 2 
gs : average rotational line strength for separated 

lines

x ,
Z = vv vv' 27rya

S(x')
vv'

3
Y
Y
a^

e

If gs is a function of position through the rotational state population 
fractions Pj and Pj, (Eq. 27), then average values along the column must 
be used in Eq. 31, in the same manner that average values for the absorp­
tion line width y were previously defined, Eq. 24.

We have computed T-functions for the First Negative bands assum­
ing that the rotational states are populated in thermal equilibrium.8 For 
example, if 3=1 and the rotational temperatures are 300°K, the T-function
computed via Eq. 31 with g = 0.026 is a good fit to the exact result, Eq.

-3 S30, over the range 10 <_ T^, <_ 1 (standard error = 3%). Note that some
improvement in accuracy could be obtained by evaluating separate T-functions 
for the P and R branches of the First Negative bands.9’18

CASE B. Overlapping lines.

Models which describe the absorption of continuum radiation by 
molecular bands10’11’12 account for line overlap by introducing a parameter 
for the average line spacing. Heaton19 has given a formulation for combining 
the equivalent widths of two Lorentz lines in the square root region. His 
results show the transition from the separated line case to the coincident 
line case as a function of line width and spacing, and line strength.

20



For the resonance absorption of a molecular band with overlapping 
lines, the band transmittance, Eq. 30, must be rewritten summing the contri­
butions from neighboring absorption lines to the absorption of each emission 
line.

Note that in Eq. 32, the subscript J' on the absorption line shape function 
denotes the variation of line center frequency with J', while the absorption 
line shapes are still taken to be equal. Approximate solutions to Eq. 32 of 
the single line form, Eq. 20, are easily obtained in the two limits of sepa­
rated lines and coincident lines. The solution for separated lines was given 
in Eq. 31. For the case of coincident lines, the absorption line shape func­
tion no longer depends on J', and a solution obtains by making the following 
replacement in Eq. 31

gs GJ'

For intermediate cases, we replace the parameter gg in Eq. 31 by a parameter 
g which varies continuously as a function of Z between the separated and 
coincident line limits, i.e.,

gs < g < gc

The parameter g is a complicated function of the absorption line width and 
average spacing and the magnitude of Z ,. For a particular band with fixed 
absorption line width and average spacing, g approaches the separated line 
limit for Z . small, and the coincident line limit for Z large.19 We 
shall assume a simple (nonunique) functional form for g which has the proper 
limits.

21



+ (33)g(zvv,) = gc +s \l+aZ
vv'

(gc - gs)

gs (separated lines)

gc (coincident lines)
vv'

Thus, a T-function that approximates the resonance absorption of a molecular 
band with overlapping Lorentz lines is given by

T , (Z ,) = T 0 (g(Z .) • Z . ,e) (34)vv' vv' s£ V vv' w' /

T^^ : single line T-function, Eqs. 20-22
and Figure 2

g(ZvvJ : Eq. 33
Z ,,B : Eq. 31vv' n

The parameter a in Eq. 33 depends on the absorption line width and average 
spacing. The value of a determines the region of transition, a^vv, ~1, 
between separated and coincident line regimes. The parameter a must be 
evaluated for the particular band of interest by fitting it to numerical 
calculations using the exact form of the transmittance, Eq. 32, or by fitting 
it to experimental data.

We have compared the T-function, Eq. 34, with the exact expression, 
Eq. 32, evaluated for the First Negative bands assuming that the rotational 
states are populated in thermal equilibrium.8 In this case, g£ is equal to
0.5 for both the P and R branches. If 3=1 and T = 300°K, we find reasonable
agreement over a broad range of y values by writing a in the form, a =

2 a 2 constant • y . The value of the constant was found to be ^ 0.015 cm with
-1 ay in cm . Standard errors obtained by comparing numerical calculations

a 5of Eqs. 32 and 34 over the range 1 < Z , < 10 for fixed values of y arevv' — a

22



Standard Error (%)Ya(cm 1)

0.001 3
0.01 6
0.1 10
1.0 12

Rotational lines of the First Negative bands were found to be essentially 
independent for y < 0.01 cm The exact expression, Eq. 32 and the T-3-
function, Eq. 34 are plotted in Figure 3 as functions of Z , for y^ = 0.1 
cm ^. Errors incurred by using the T-function, Eq. 34, will be acceptable 
for many applications. Use of Eq. 34 in place of Eq. 32 results in tremen­
dous savings of computation time.

Model, Eq 34

Figure 3. Transmittance due to resonance absorption of the N2 first
negative bands: rotational states populated in thermal
equilibrium, gs(300°K) = 0.026; gc = 0.5 for P and R
branches; equal emission and absorption line widths, 3=1;
line overlap parameter a = 0.015 y\, ya = 0.1 cm-^;
Z , = Y •vv' Avv' a
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4. CONCLUSIONS

A band model of resonance absorption has been derived that is suit­
able for numerical calculations of fluorescence from strongly irradiated air 
at high pressure. In Section 2, a functional form, Eq. 20, was obtained for 
the transmittance produced by the resonance absorption of an isolated Lorentz 
line. This function properly accounts for differences in emitting and absorb­
ing line widths. A prescription, Eq. 22, was given for rapid numerical com­
putation of this function. In Section 3, a transmittance function, Eq. 34, 
based on the single line form was derived for the resonance absorption of 
molecular bands composed of overlapping or nonoverlapping Lorentz lines. For 
clarity, Eq. 34 is reproduced here along with the definitions of the parameters.

T 0 : single line form, Eq. 20, to be evaluated
by the prescription given in Eq. 22

Z'vv'
X

x,L : emission point, column length
S^, : absorption band strength, Eq. 30

Y ,y : absorption, emission line width3- S

gs : average rotational line strength for
separated lines

gc : sum of rotational line strengths for
coincident lines

a : line overlap parameter
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