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Da\id Mandell, and Harold Trease
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ABSTRACT

A thr=d.i.nensional, time+dependent FkeeLagrange hydrodynamics code
has been multitasked and autotasked on a Cray X-MP/416, The multitask-
ing was done by using the Los Alamos Multitasking Control Library, which
is a superset of the Cray multitasking library. Autotasking is done by us-
ing constructs which are only comment cards if the source code is not run
through a preprocessor. The 3-I) algorithm has presented a number of prob-
lems that simpler algorithms, such as 1-D hydrodynamics, did not exhibit.
Problems in converting the serial code, originally written for a Cray 1, to a

multitasking code a~e discussed. Autotasking of a rewritten version of the
code is d%cussed. Timing results for subroutines and hot spots in the se-
rial code are presented and suggestions for additional tools and debugging
aidfi are given. Theoretical speodup results obtained from Amdahl’s law and
actual speedup results obtained oxi a dedicated machine me presented. Sug-
gestion for designing hrgc parallel codes are given.

1. INTRODUCTION

Large three-dimensional, time-dependent hydrodynamics codes take an
excessive amount of time to execute ●ven on the largest supercomputers cur-
rently available, such aa a Cray X-M P/4 16. In order to reduce the execution
time to practical values, it is deuirable to multitask codes so that all of the
processors can be used. A desirable goal is to provide users with overnight
turn-around.

The POLLY code was originally written for a Cray 1[1] and in multitask-
ing it for a Cray X-MP numerous problems were encountered that did not
occur when smaller codes were rm.dtitasked, These problems are discussed
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below. The code was multitasked using the Los Alamos Multitasking Cmn-
trol Library[2]. In order to Skeedup the serial POLLY code it was decided
to rewrite this code and the new code, called X3D, is a substantially faster
serial code. X3D wiMautotasked using the Los Alamos Autotasking method
developed by Bobrowicz[3].

By examining Amdahl’s Law[4,5],

S=l/(1-P+P/NP),

where S is the speedup ( best serial wall clock time / pmdlel wall clock time
), P is the fraction of serial code that is parallel, and NP is the number of
physical processors.

It becomes clar that in order to achieve high efficiencies, the serial por-
tion of a code must be reduced to an extremely small fraction. In a real
code this presents a significant challenge. The first step in doing this is to
examine the serial code in order to determine where the time is being spent.
The Los Alamos utility TALLY[6] was used to do this and the timing results
are presented.

In Section 2 the multitasking done for the POJ.LY code is described in
the hope that the problems encountered will enable other code developers to
avoid similar problems. Section 3 presents the autotasking method used and
describes the resulting autotasked version of X3D. Four processor TALLY
results, showing where processors were waiting are presented. Results for
the multitasked POLLY code and the autotasked X3D code are presented
in Section 4. The work on these two codes has been an intereaiing learning
experience and the lessons learned, as well aa code design
are given in Section 5,

2. MULTITASKING POLLY

recommendations,

POLLY was a large 3-D, timedependent I%eeLagrange hydrodynamics
code that had a number of features that that were not present in earlier
codes that we had multitasked. The phyeics portion of the code, excluding
the input generation, graphics, and control sections was about 40,000 unique
lines of code, In addition the code made extensive use of the solid state disk
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(SSD). The rmmber of words written to the SSD was not known a priori due
to the timedependent nature of the mesh. Dynamic memory management[7]
was used in all levels of the code. In smaller codes multitasking can frequently
be done by using temporary arrays, but POLLY was memory bound as well
as taking a very large amount of time to execute, and thus additional memory
could not be used in the multitasking. The multitasking was done by dividing
the mesh into NP sections, where NP is the number of available processors.
Each task worked on the identical coding, but on different data.

One of the most serious problems encountered in multitasking POLLY
involved the codes use of pointers. Pointers were used in low level subrou-
tines in a d~arnic manna; that is arrays were allocated and deallocated
during each time step. In the original serial code, one large array was used
in some cases and pointers into different parts of the array were used. In
the multitasked version, this created chaos. Separate pointers were needed
for each task so that arrays do not write over each other. This can be easily
done with the Los Alamoa Memory Management System(MMS)[’(] since this
system allows for both an array name and a partition name. The task name
was used aa the partition name.

3. AUTOTASKING X3D

Due to the extreme time that it took for POLLY to execute the code wat
rewritten and renamed X3D, In X3D an effort waa made to keep serial sec-
tions out of the core of the code. In addition the current version of X3D does
not use the SSD. X3D haa 100,000 unique lines of code and 561 IIubrout ine
currently. A number of real code features exist that still limit the fraction of
the code that can be run in parallel, These include the need to periodically
check for user interaction from the terminal, periodic graphics and restart
dumpe and normal output of the results.

In order to determine where the execution time is being fipent in the serial
code, and thue which Ioutines should be autotaaked first, timing studies were
done uoing the TALLY utility[6], Figure 1 shows a partial list of the TALLY
results. This figure shows that the maia hydrodynamics routine, HYDROM,
uses 62,5 percent of the execution time and the subroutine that determine
the time step for the next cycle, TIMSTP, ueea 32.38 percent. Therefore
about 95 percent of the time is spent in these two routines and if they were
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made entirely parallel, Amdahl’s Law, Figure 2, shows that the speedup
would be a maximum of 3.48 on 4 processors. It is significant that the next
most heavily used routine is the vector square root. Thus it is not practical to
increase the fraction parallel much above 95 percent since, after HYDROM
and TIMSTP, none of the X3D subroutines use enough time to make it
practical to autotask them.

Autotazking is done by using a number of constructs in front of Fortran
statements in the code. One advantage of autotasking is that these con-
structs are comment cards if the code is not run through a preprocessor.
This is a great advantage in a co ie such as X3D which is under continuous
development. In the multitasking done on the POLLY code it was necessary
to restructure large parts of the code and therefore it was not possible to
keep up-to-date with the latest code versions. Figures 3-6 show the most
important autotasking constructs used in X3D.

4. RESULTS

The POLLY results for four procemmrs during dedicated system time
(DST) are shown in Figure 7 for the Noh test problem[8]. The mesh consisted
of 48,400 mane points. Only 21 time-step cycles were run in DST due to the
large execution time rquired for POLLY. Amdahl’s Law is also shown so
that progreus can be judged as greater portions of the code were multitasked.
The speedups are for the physics portion of the code Initialization and final
dumping and cleanup are excluded since this code took so long to run that
initialization and final cleanup overwhelm the results if they are included.

During the initial multitasking work at Loo Alamoa, problems occumd in
virtually every aspect of the work, This included problems in the operating
system, libraries, compiler, debugger; and, of course, in the code itself. The
change in the spetdup, for a fixed fraction of parallel code, is shown for two
d: fierent versions of the Cray Time Sharing System (CTSS) and the same
version of POLLY. This CTSS bug fix resulted in s significant increase in
the speedup.

The first step in multitasking or autotaaking is to go from a static code
compilation to a stack (reentrant) based code. This caueed a number of
problems since, in a given subroutine, local variablea no longer exist after
exiting the subroutine, in stack baaed code. This is not the case in static
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code. These local variables had to be round and changed to global variables
in a common statement in those cases where it was expected that they would
be needed in succeeding time steps. In one case a buffer was defined in a
subroutine by using a dimension statement and then used again in a later
part of the code. The array no longer existed in the stack code.

Other problems occurred because only one channel exists in CTSS to the
solid state disk. The SSD was used in such a manner in the serial code that
each processor had to use it in the multitasked code. Thus a queue, at a low
level ir~ the code, existed and processors had to wait. Significant problems
existed because of the use of dynamic memory management. It was necessary
LOcarefully sort out the pointers that needed to be local to each task and
those that needed to be global to all tasks.

Because of the above problems, numerous critical and sequential sections
were necessary in the core of the physics part of the code and the best
speedup achieved waa 2.82 on 4 processors. This is not an acceptable use of
the resources on a X-MP/416. Bcxause of the overall speed of POLLY, it
was decided to rewrite the code.

The hydrodynamic core of X3D waa designed with consideration given
to autotasking the code mnd thus it was very much easier to autotask it than
it had been to multitask POLLY. This waa partially due to the fact that
autot~king is inherently easier to implement than multitasking. In this case
since the SSD is not being used only 6643 mass points were used. X3D
runs fast enough that the entire Noh problem of 760 time cycles can be run
during DST. The Noh problem consists of a sphere of ideal gaa with an initial
velocity of one inward. At time 0.6, Noh obtained an analytical solution. The
density as a function of the radial position haa a value of 64 and than tapers
off at large radius. The initial and final meuhes are shown in F~gure 8 and
the density aa a function of radius is shown in Figure 9.

TALLY remits for four processors me shown in Figures 10-12. These re-
sults were obtained during DST since the multituking version of TALLY is
not valid for non-DST runs. These reuults show that a significant portion of
the run time waa spent with three processors waiting ( 10,41 percent in the
MTHELP autotnaking wbroutine, Figure 10 and the waiting percentage in
Figure 11 ). A more detailed timing analysis showed that most of the waiting
time was in the time step subroutine (Figure 12, W at statement 500B, which
is the end of the do 500 loop). Work WM done to reduce the waiting time
and the results are shown in Figure 13, The serial time, the autotasking time
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during DST for 4 processors and the speedup are shown for three versions
of X3D over a two week period. The speedup remained almost constant; at
about 3, but significantly the serial code was speeded-up 27 percent in the
two week period. A speedup of three was less than we were hoping for, but
in terms of the total code execution time, the project has been very successful.

5. LESSONS LEARNED AND CODE DESIGN RECOMMENDATIONS

In this section we will discuss the lessono we have learned in converting
a code written for a serial machine, namely a Cray 1, to a multitasked code
for a Cray X-MP/416 in the hopes that other computational physicists can
avoid some of the problems we encountered. Code design recommendations
are also given.

As discussed above the first step is to produce a correct serial, stack
based code. Variables that must bc local have to be carefidly distinguished
from global variables. Dynamic memory management should be kept at
the highest levels possible since memory adjustments are a serial process. If
memory management must be done in multitasked parts of the code, pointers
need to be defined for each task. In the Los Alarnos ?vfernory Management
System, arrays can be separated into partitions so that the same array can
be defined for each task and each task has its own copy.

A desirable feature in future machines would be a separate channel to
the SSD from each processor so that SSI) requests would not have to enter
a queue.

A problem that existed with the X3D code is that the code is undex con-
tinuous development by a physics team, most of whom have no multitasking
or auto~.asking experience. This results in new code packagea being added
that are not optimum for subsequent autotasking, If autotasking is going to
be done on a code then the entire de team needs to be throughly trained
in the philosophy of parallel coding.

Better software tools are needed for parallel code development. Large
code development requires a good dynamic debugger in which break points
can be set in all taskc, not just the root task. This can be done in the
Lom Alamos Dynamic Debugging Tool (DDT), Better tools are needed to
determine code hot spot areas for both the serial and the parallel code.
Determining load balancing problems is essential. One of the hardest parts
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of converting serial codes to efficient parallel codes is differentiating between
local and global variables. Efficient tools to do this are nmded. For our codes
these tools must be able to handle pointers.

If resources are available, redesigning and rewriting the entire code is
the best course of action in order to obtain an efficient parallel code. Fkom
Amdahl’s Law it is clear that getting high efficiencies is extremely difficult
with older codes. The serial sections must be reduced to an extremely small
percentage, which is best done by redesigning the code.
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Figure 1: Partial List of TALLY Results For The Serial Version of The X3D
Code

ROUTINE HITS PERCENT

UNPACKTP 535 0.31

HYDROM 107513 62.50

ICONV 176 0s0

TIMSTP 55698 32.38

ISAMAX 503 0.29

%SQRT 2539 1.48

*

**********

*

**********

*

*

9



Figure2: Amdahl’s Law
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Figure3: Subroutine Construct For Autot~king

CMLT$ MULTI

subroutine hydrom

*

*

*

11



Figure 4: Non-Vector Do Loop Construct For Autotasking

CMLT$ DO MULTI

do 1000 n=l,nblocks

*

*

*
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Figure 5: Vector Do Loop Construct For Autotasking

CMLT$ DO MULTI 642001

*dir$ shortloop

do 2000 n=l,np(5)

*

*

*

13



Figure 6: Sequential and Critical Section Constructs For Autotasking

CMLT$ SEQ
if (... ) ...

*
*

*

CMLT$ END SEQ
*

*

*

CMLT9) CRITICAL
sum = sum + ..O

*
*

*

CMLT$ END CRITICAL
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Figure 7: POLLY Multitasking Results
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Figure 8: 3-D Spherical Noh Problem - Initial & Finai Meshes
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Figure 9: X3D Density VS. Position Results For The 3-D Noh Problem
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Figure 10: Partial Autotasking TALLY Results
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Figure 11: Percent of Time That Each Logicial Processors Was Waiting

LOGICAL PROC. WAITS

CONNECTOR O: 694WAITS ( 8.S5%)

CONNECTOR 1: 2073 WAITS ( 25.54~o)

CONNECTOR 2: 1973 WAITS ( 24.30%)

CONNECTOR 3: 2036 WAITS ( 25.08%)
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Figure 12: X3D Autotasking TALLY Results For Subroutine TIMSrIW

STM’T NO. ADDRS1
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Figure 13: Speedup Results For Three Versions of X3D
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