

LA-10700-MS

UC-10

Issued: January 1987

## Materials Compatibility During the Chlorination of Molten $\text{CaCl}_2 \cdot \text{CaO}$ Salts

LA--10700-MS

Charles E. C. Rense  
Keith W. Fife  
David F. Bowersox  
Michelle D. Ferran

DE87 004770

### DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

# Los Alamos

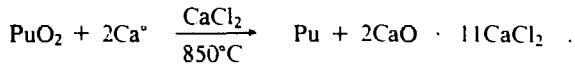
Los Alamos National Laboratory  
Los Alamos, New Mexico 87545

MASTER

DISTRIBUTION BY THE GOVERNMENT IS UNLIMITED

## MATERIALS COMPATIBILITY DURING THE CHLORINATION OF MOLTEN $\text{CaCl}_2 \cdot \text{CaO}$ SALTS

by


Charles E. C. Rense, Keith W. Fife, David F. Bewersox,  
and Michelle D. Ferran

### ABSTRACT

As part of our effort to develop a semicontinuous  $\text{PuO}_2$  reduction process, we are investigating promising materials for containing a 900°C molten  $\text{CaCl}_2 \cdot \text{CaO}$  chlorination reaction. We want the material to contain this reaction and to be reusable. We tested candidate materials in a simulated salt (no plutonium) using anhydrous HCl as the chlorinating agent. Data are presented on the performance of 36 metals and alloys, 9 ceramics, and 3 coatings.

### INTRODUCTION

The Plutonium Metal Technology Group (MST-13) at Los Alamos National Laboratory routinely performs plutonium metal purification in molten salt systems. One step of this operation involves the pyrochemical reduction of impure plutonium dioxide to plutonium metal.<sup>1-3</sup> The group uses calcium metal in a solvent bath of molten calcium chloride to reduce plutonium dioxide according to the reaction:



Because of the limited solubility of CaO in  $\text{CaCl}_2$  (18 mol%), our facility cannot reuse these solvent salts and currently discards them after each reduction. Because these spent salts contain low levels of plutonium, we discard them as a low-level waste. Not only is the cost of such disposal high, but the plutonium they contain is lost.

Research into converting this spent solvent salt back to  $\text{CaCl}_2$  for recycle is well under way. Currently, our staff converts molten  $\text{CaCl}_2 \cdot \text{CaO}$  to  $\text{CaCl}_2$  by chlorinating the salt mixture. After evaluating potential chlorinating agents, including phosgene, hydrogen chloride, chlorine, ammonium chloride, carbon

tetrachloride, magnesium chloride, and zinc chloride, we determined that both hydrogen chloride and chlorine are the most effective in regenerating a synthetic spent salt.<sup>4</sup>

Presently, the direct oxide reduction (DOR) process is a batch operation (Fig. 1). Our technicians load  $\text{PuO}_2$ ,

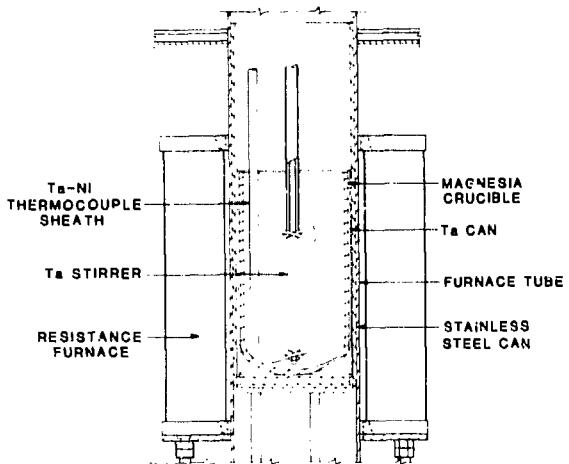



Fig. 1. Equipment for the pyrochemistry recovery of plutonium by direct oxide reduction of plutonium dioxide to plutonium metal.

$\text{CaCl}_2$ , and calcium metal into a 38-cm-tall, 15-cm-diameter vitrified  $\text{MgO}$  crucible and heat it to 850°C. After stirring and cooling the reagents, they break away the  $\text{MgO}$  crucible and recover the metal button.

Waste from the process consists of spent salt and the broken crucible. We hope to obtain up to an 80% reduction in waste volume if regeneration and recycle can be incorporated into the DOR process.

Regeneration and recycle of molten salts have been demonstrated in research settings. Transfer of molten salts from one reaction vessel to another is a necessary aspect of recycle and has been demonstrated. With successful development of these areas, our group could conceivably convert DOR from a batch operation to a semicontinuous process.

To successfully convert DOR from a batch to a semicontinuous process, our group must address the compatibility of construction materials with both DOR and regeneration environments. Below is a list of equipment and the environments it must withstand.

|                      |                                                                                                                                                         |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reduction vessel:    | At 900°C, a mixture of $\text{CaCl}_2$ , $\text{CaO}$ , calcium metal, plutonium metal, and $\text{PuO}_2$ .                                            |
| Regeneration vessel: | At 900°C, a mixture of $\text{CaCl}_2$ - $\text{CaO}$ salt, a sparge of either HCl or $\text{Cl}_2$ gas, and some residual plutonium and calcium metal. |
| Sparge tube:         | Same as regeneration vessel.                                                                                                                            |
| Transfer tube:       | At 900°C, a mixture of $\text{CaCl}_2$ - $\text{CaO}$ salt and some residual plutonium and calcium metal.                                               |

Reduction vessels and sparge tubes are presently made of vitrified  $\text{MgO}$ . Although  $\text{MgO}$  adequately resists the environment, it is brittle and has only fair thermal shock resistance. If the multiple-run semicontinuous oxide reduction process experienced a broken DOR vessel, then the system would be disrupted and plutonium metal previously produced in the vessels would be lost. A high breakage rate of these vessels in the proposed semicontinuous oxide reduction process would be unacceptable.

Our group identified the issue of materials compatibility early in the concept stage of this semicontinuous DOR process, resulting in the initiation of a materials compatibility test program. The program began in a radioactively cold facility using a synthetic spent salt, which differs from a true salt in its lack of both trace plutonium and calcium metal. Initially, our

personnel evaluated candidate materials by visual inspection, weight loss analysis, and chemical analysis of the test batch salt. We eliminated many materials from consideration based upon these criteria. For the metals that appeared to hold up well, we expanded testing and evaluation to include metallographic observation and hardware fabrication and testing. Table I lists the 36 metals and alloys evaluated, and Table II and Table III list the 9 ceramics and the 3 coatings, respectively, which were tested. Each of these three groups is discussed separately under Results and Discussion, with emphasis given to the metals evaluated.

## EXPERIMENTAL PROCEDURE

Our procedure was to contact candidate samples with HCl gas in  $\text{CaCl}_2$ -10 wt%  $\text{CaO}$  salt at 900°C. Figure 2 shows the basic apparatus. We nested a platinum crucible in a quartz tube, which was placed in a resistance furnace. A technician then loaded into the platinum crucible 72.0 g of  $\text{CaCl}_2$  and 8.0 g of  $\text{CaO}$ . Once the salt was melted and the furnace achieved stable operating temperature, the technician lowered the coupon into the salt and, after injecting argon for 15 min, started an HCl sparge at 0.7 l/min. A run consisted of 1 h of HCl exposure followed by 15 min of argon to purge the system of HCl. After its exposure, the technician pulled the sample coupon out of the salt and took a sample of the salt. A more detailed procedure is listed below.

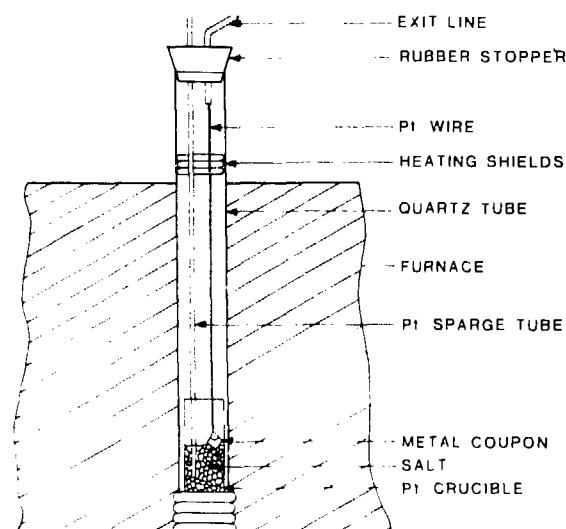



Fig. 2. Test setup used to evaluate candidate materials. Once the salt is melted, the test coupon is submerged in the salt and an HCl sparge is begun.

TABLE I

**METALS AND ALLOYS TESTED IN THE  $\text{CaCl}_2 \cdot \text{CaO}$  REGENERATION ENVIRONMENT USING HCl AS THE CHLORINATING AGENT**

| <b>Nickel Base</b>          | <b>"Pure" Metals</b> | <b>Iron Base</b> | <b>Cobalt Base</b>          | <b>Refractory Base</b>                 | <b>Zirconium Base</b> |
|-----------------------------|----------------------|------------------|-----------------------------|----------------------------------------|-----------------------|
| Allcorr <sup>a</sup>        | Cobalt               | ASTM 317L        | Carpenter L605 <sup>b</sup> | ASTM B708                              | Zirconium 705         |
| Cabot 214 <sup>c</sup>      | Hafnium (4% Zr)      | ASTM A446        | MP35N <sup>d</sup>          | KBI 40 <sup>e</sup>                    | Zircaloy 4            |
| Hastelloy B2 <sup>c</sup>   | Molybdenum           |                  |                             | Ta-10W                                 |                       |
| Hastelloy C276 <sup>c</sup> | Nickel               |                  |                             | TZM, Al <sub>2</sub> Cast <sup>e</sup> |                       |
| Hastelloy G3 <sup>c</sup>   | Rhenium              |                  |                             | Moly-10Re                              |                       |
| Hastelloy S <sup>c</sup>    | Tantalum             |                  |                             | Moly-50Re                              |                       |
| Hastelloy X <sup>c</sup>    | Titanium             |                  |                             |                                        |                       |
| Inconel 600 <sup>f</sup>    | Tungsten             |                  |                             |                                        |                       |
| Inconel 601 <sup>f</sup>    | Zirconium            |                  |                             |                                        |                       |
| Inconel 617 <sup>f</sup>    |                      |                  |                             |                                        |                       |
| Inconel 625 <sup>f</sup>    |                      |                  |                             |                                        |                       |
| Inconel 690 <sup>f</sup>    |                      |                  |                             |                                        |                       |
| Inconel 750 <sup>f</sup>    |                      |                  |                             |                                        |                       |
| Inconel 751 <sup>f</sup>    |                      |                  |                             |                                        |                       |
| Monel K500 <sup>f</sup>     |                      |                  |                             |                                        |                       |

<sup>a</sup>Teledyne Alvac: Box 759, Monroe, NC 28110

<sup>b</sup>Carpenter Technology Corporation: Reading, PA 19603

<sup>c</sup>Cabot Corporation: 1020 West Park Ave, Kokomo, IN 46901

<sup>d</sup>SPS: P. O. Box 1000, New Town, PA 18940

<sup>e</sup>AMAX: 21801 Tungsten Rd, Cleveland, OH 44117

<sup>f</sup>Inco Alloys International: Huntington, WV 25720

TABLE II

**CERAMICS TESTED IN THE  $\text{CaCl}_2 \cdot \text{CaO}$  REGENERATION ENVIRONMENT USING HCl AS THE CHLORINATING AGENT**

|                         |                              |
|-------------------------|------------------------------|
| Thoria                  | Equimolar magnesia + alumina |
| Cesium sulfide          | Silicon carbide              |
| Magnesia + 1 wt% yttria | Zirconia + 15 wt% yttria     |
| Magnesia + 3 wt% yttria | Beryllia                     |
| Alumina + 2 wt% yttria  |                              |

**TABLE III**  
**COATINGS AND THEIR SUBSTRATES EVALUATED IN**  
 $\text{CaCl}_2 \cdot \text{CaO}$   
**REGENERATION ENVIRONMENT**  
**USING HCl AS THE CHLORINATING AGENT<sup>a</sup>**

| <b><u>Coating</u></b> | <b><u>Substrate</u></b> |
|-----------------------|-------------------------|
| Erbia (1 mil)         | Allcorr                 |
| Gold (1-3 mil)        | ASTM 317L               |
| Yttria (1 mil)        | Hastelloy C276          |
|                       | Inconel 600             |
|                       | Inconel 601             |
|                       | Molybdenum              |
|                       | Ta-10W                  |
|                       | TZM                     |

<sup>a</sup>All three coatings were tested on all substrates except Ta-10W and TZM, which were tested only with yttria.

1. The test coupon is identified and marked; its dimensions and initial weight are recorded. (Most coupons were approximately 2 to 3 cm square and from 1 to 5 mm thick.)
2. Weighed and loaded into the platinum crucible is 72 g of  $\text{CaCl}_2$  and 8 g of  $\text{CaO}$ .
3. Platinum wire, usually through a hole in a corner of the test coupon, is used to hold and immerse the sample and to remove it from the molten salt.
4. Once the unmelted salt and test coupon are in the furnace (see Fig. 2), the furnace is heated to 900°C with an argon flush applied while the salt is melting. The test coupon is held above the salt.
5. Once temperature is reached and the salt is melted, the test coupon is completely submerged in the salt.
6. The test coupon is subjected to a 15-min argon sparge, followed by an HCl sparge for 1 h, and a final 15-min argon sparge. After this, the test coupon is pulled out of the furnace.
7. After removal of the test coupon, a sample of the salt is obtained by using a quartz tube and pipet bulb.
8. The test coupon is washed and gently cleaned in water and then reweighed and measured.

## RESULTS AND DISCUSSION

### Metals

Our group evaluated both traditional and exotic metals and their alloys. Compiled in Table IV are the nominal compositions of these alloys. As mentioned previously, our initial criteria for evaluating the performance of these alloys were visual inspection, chemical analysis of the salt bath, and weight loss. Although there are many problems inherent in evaluating corrosion resistance using these criteria, we deemed the volume of samples and the cost in both time and money of more detailed analysis unnecessary for our program. If the test sample showed obvious signs of severe corrosion, the staff eliminated the metal from further consideration. We report weight loss data in grams per square centimeter for each run and as an accumulation over the span of the test. Our analytical group performed chemical analysis of test bath salts after each run and we present these data, along with weight loss data, in Appendix A. Results from the chemical analysis of the salts are helpful in confirming the corrosion behavior of our samples. For example, we see relatively little molybdenum in its salt bath (average of 308 ppm per 1-h

**TABLE IV**  
**COMPOSITION OF ALLOYS TESTED IN THE HCl CHLORINATION**  
**OF MOLTEN  $\text{CaCl}_2 \cdot \text{CaO}^*$**

| <u>Alloy</u>           | <u>Composition</u>                            |
|------------------------|-----------------------------------------------|
| <b>Nickel Base</b>     |                                               |
| Allcorr                | Ni + 31 Cr, 10 Mo, 2 W                        |
| Cabot 214              | Ni + 16 Cr, 4.5 Al, 2.5 Fe, Y                 |
| Hastelloy B2           | Ni + 16 Cr, 15 Mo, 3 Fe, 2 Co, 1 W            |
| Hastelloy C276         | Ni + 16 Cr, 15 Mo, 5 Fe, 3.7 W, 1.4 Co, 1 Mn  |
| Hastelloy G3           | Ni + 28 Mo, 1.6 Fe, 1 Cr, 1 Co, 1 Mn          |
| Hastelloy S            | Ni + 22 Cr, 19.5 Fe, 7 Mo, 5 Co, 1.5 W, Nb    |
| Hastelloy X            | Ni + 22 Cr, 18.5 Fe, 9 Mo, 1.5 Co             |
| Inconel 600            | Ni + 15 Cr, 6 Fe, 1 Mn                        |
| Inconel 601            | Ni + 23 Cr, 14 Fe, 1.5 Al, Mn                 |
| Inconel 617            | Ni + 22 Cr, 12.5 Co, 9 Mo, 1.5 Fe, 1 Al       |
| Inconel 625            | Ni + 20 Cr, 9 Mo, 5 Fe, 4 (Nb + Ta)           |
| Inconel 690            | Ni + 30 Cr, 9 Fe                              |
| Inconel 750            | Ni + 14 Cr, 5 Fe, 2.5 Ti, Nb                  |
| Inconel 751            | Ni + 14 Cr, 5 Fe, 2 Ti, 1 Al, Nb              |
| Monel K500             | Ni + 30 Cu, 3 Al, 1 Fe                        |
| <b>Iron Base</b>       |                                               |
| ASTM 317L              | Fe + 18.4 Cr, 15.8 Ni, 4.2 Mo, 1.6 Mn, 0.4 Cu |
| ASTM A446              | Fe + 25 Cr, 0.6 Mn, 0.4 Ni                    |
| <b>Cobalt Base</b>     |                                               |
| Carpenter L605         | Co + 20 Cr, 15 W, 10 Ni                       |
| MP35N                  | Co + 35 Ni, 20 Cr, 10 Mo                      |
| <b>Refractory Base</b> |                                               |
| ASTM B708              | Ta + 2.5 W, 0.15 Nb                           |
| KBI 40                 | Ta + 40 Nb                                    |
| Moly-10Re              | Mo + 10 Re                                    |
| Moly-50Re              | Mo + 50 Re                                    |
| Ta-10W                 | Ta + 10 W                                     |
| TZM                    | Mo + 0.5 Ti, 0.1 Zr                           |
| <b>Zirconium Base</b>  |                                               |
| Zircaloy 4             | Zr + 4.0 Hf, 1.5 Sb, 0.2 Fe, 0.1 Cr, Oxygen   |
| Zirconium 705          | Zr + 2.5 Nb, 4.0 Hf, Oxygen                   |

\*Actual chemistries are given when known; otherwise, nominal chemistries are listed.

run) compared with the iron pickup seen in the bath testing ASTM 3171 (average of 2800 ppm per 1-h run). Chromium appears to be selectively leached from nickel-based alloys.

As the data base was generated, our section fabricated trial regeneration vessels from some of the more promising metals. Vessels made from Inconel 600, Inconel 601, and Cabot 214 were tested. We made and tested regeneration vessels of these three alloys because 1) their corrosion resistance, from initial testing, appeared good, and 2) these are relatively inexpensive and available alloys. Although the vessels held up for several hours of testing, none were sufficiently resistant to the regeneration environment. Concurrent with this testing, our staff initiated metallographic examination of some test coupons.

Metallographic examination included macro views of the test coupons, scanning electron microscope (SEM) views of the cleaned surface (at 100X and 1000X magnification), and an as-polished cross-sectional view to evaluate depth of corrosion. As a comparison of some of the metals evaluated, Fig. 3 shows macro views of molybdenum, MP35N, Inconel 600, and Monel K500. Figure 4 shows SEM views of these alloys, and Fig. 5 shows cross-sectional views.

A comparison of resistance to attack, or stability, can be performed with these photographs. For the four samples seen in Figs. 3 through 5, the order of stability is molybdenum, MP35N, Inconel 600, and Monel K500. Molybdenum's cross section shows very little sign of attack. (The white band along the edge is due to light refraction and is not a feature of the sample itself.) MP35N shows some attack, but not a great amount. Inconel 600's cross section, however, shows fairly deep penetration. Although this cross section shows poor resistance to attack, recall that its outer appearance (Fig. 3) and its weight loss data (Appendix A) indicated fairly good resistance to attack. Monel K500, whose weight loss and appearance indicated poor resistance, indeed shows complete penetration of attack (Fig. 5).

We measured the depth of penetration for these alloys and converted the measurements to depth per year values (millimeters per year). Figure 6 summarizes the penetration data for several alloys.

## Ceramics

As with the metal testing, our analytical staff performed chemical analyses on the salt baths used in each ceramic coupon test. Appendix B presents pertinent chemical data, along with weight loss data. Of the ceramics tested to date, none, with the exception of beryllium oxide, showed outstanding resistance to attack. Furthermore, most of the samples had fair to poor thermal shock resistance and cracked after several runs. Beryllium oxide, however, is relatively resistant to

thermal shock and, based upon limited weight loss data, showed reasonable resistance to the test environment. Because magnesium oxide is currently being used for the reaction vessels, however, switching to another ceramic may not greatly improve our present system. All of the tested ceramics indicate that breakage rates due to both thermal shock and inherent brittleness will be high.

## Coatings

Early in the program, our group applied several coatings to a variety of substrates and tested them in the regeneration environment. These coatings included gold, yttria, and erbia. We did not test platinum because it is incompatible with both plutonium and calcium metal. None of the coatings held up well (Table 7). Our staff is presently investigating other coating materials such as MgO and substrates with compatible coefficients of thermal expansion.

## CONCLUSIONS AND FUTURE PLANS

A regeneration environment at 900°C of calcium chloride, calcium oxide, and anhydrous HCl is extremely corrosive to the standard engineering materials we have tested.

Of the nickel-based alloys tested (15 total), none were able to satisfactorily withstand this environment. Some evidence exists that chromium is often selectively leached from nickel-based alloys.

Molybdenum, rhenium, and molybdenum/rhenium alloys satisfactorily withstood the tests. However, initial evaluation of these metals with calcium metal present in the salt indicates that calcium may aggressively attack molybdenum.

Ceramics were also unable to resist attack from this environment. Furthermore, their resistance to thermal shock is poor.

Coatings of gold, erbia, and yttria were unable to resist attack. Other coating systems, such as MgO, are still under consideration.

We are altering testing procedures to better reflect actual regeneration environments (adding calcium metal and switching from HCl to Cl<sub>2</sub> as the regenerating gas). We are also devoting more effort to coating systems. A coating of MgO on an acceptable substrate is an attractive system. Because of thermal expansion mismatches, however, our group has not yet found an acceptable substrate. Other corrosion prevention methods, such as cathodic or anodic protection, are being considered.

For semicontinuous DOR to become a reality, our industry must solve these material compatibility problems. If an alternative material cannot be found, we will continue to use MgO for the reaction vessels. Possibly

MOLYBDENUM



1 in.

MP35N



1 in.

INCONEL 600



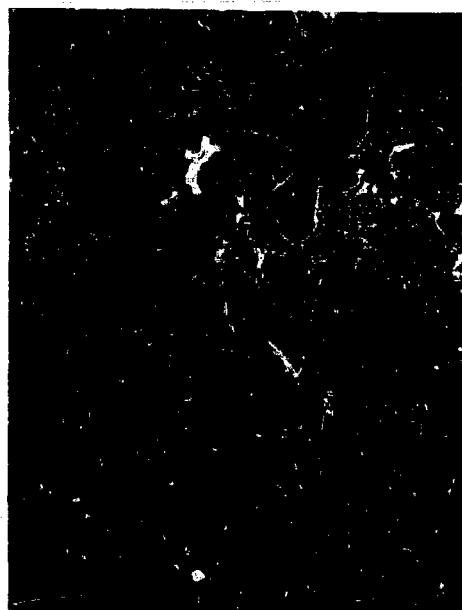
1 in.

MONEL K500

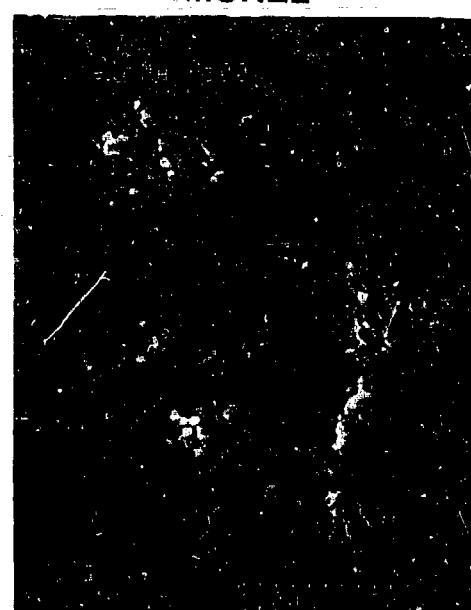


1 in.

Fig. 3. Macro view of four representative test coupons. Order of decreasing resistance to attack is: Molybdenum, MP35N, (cobalt/nickel base), Inconel 600 (nickel base + chromium), and Monel K500 (nickel base).

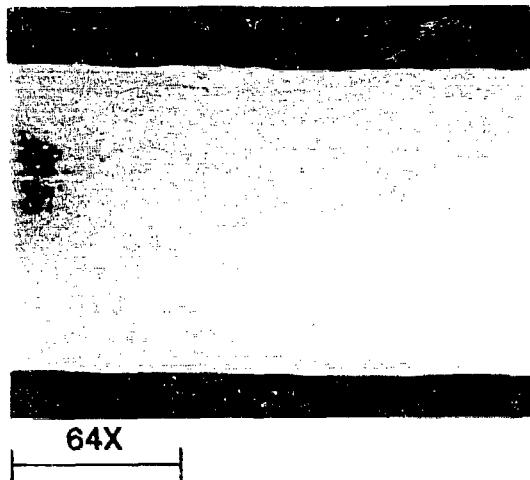

MOLYBDENUM



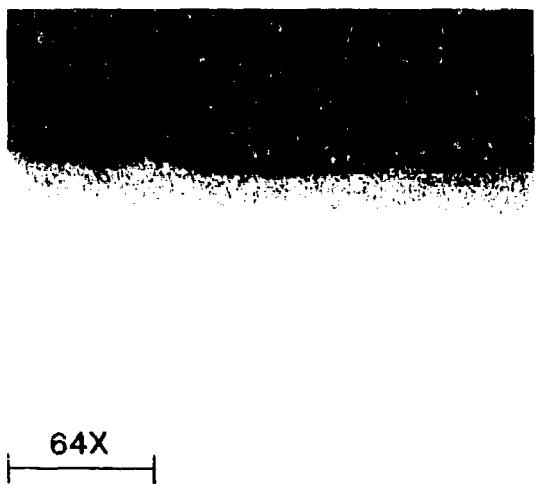

MP35N



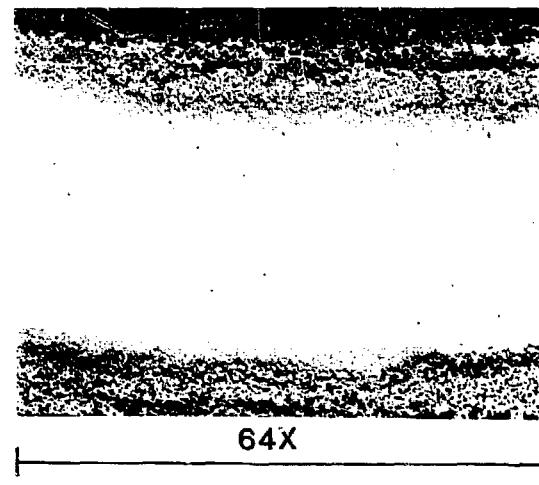
INCONEL 600




MONEL




**Fig. 4.** SEM views of the surfaces of four test coupons.


MOLYBDENUM



MP35N



INCONEL 600



MONEL K500

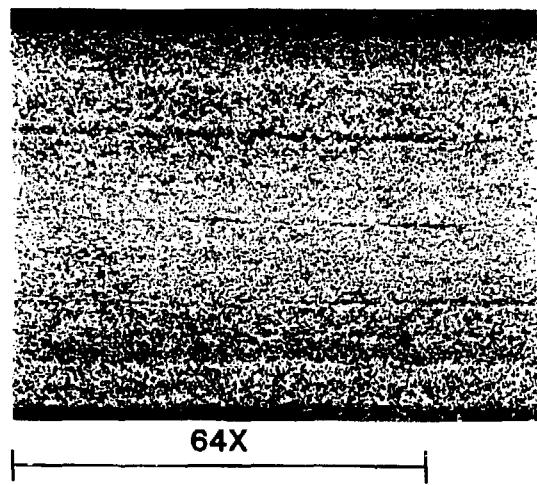



Fig. 5. As-polished cross sections of test coupons show degree of attack. Penetration of attack on molybdenum is zero. Penetration of attack on Monel K500 is 100%.

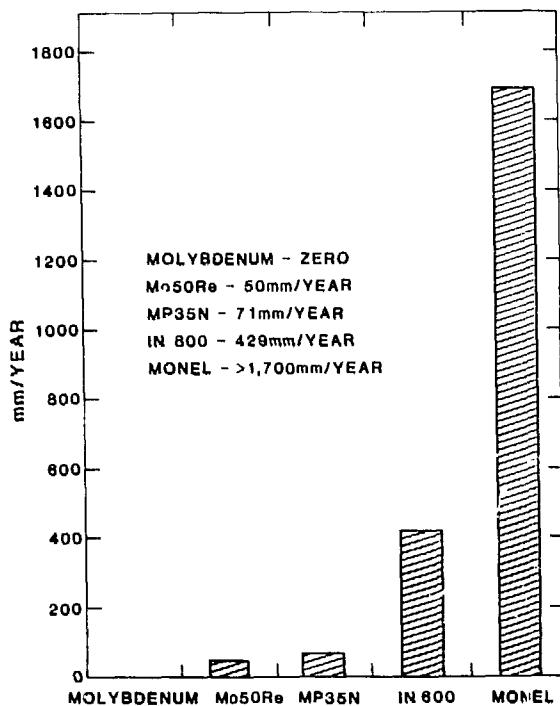



Fig. 6. Rate of attack, as based upon depth-of-penetration data, shown for several samples.

we can reduce their high breakage rates by using different ceramic engineering approaches.

#### ACKNOWLEDGMENTS

Without the dedicated efforts of many individuals, this project would have suffered greatly. We greatly appreciate the assistance of J. J. Lovato in the laboratory, along with D. W. Anderson and M. J. Chavez, who were invaluable in the early stages of this program. We would like to thank everyone in the Materials Technology Group (MST-6) for their tireless efforts and technical support. Also, the dedication of many individuals in the Analytical Chemistry Group (CHM-1) made possible the volume of analytical data, much of which appears throughout this report.

#### REFERENCES

- D. C. Christensen and L. J. Mullins, "Present Status of the Plutonium Metal Production at Los Alamos - 1982," Los Alamos National Laboratory report LA-9674-MS (June 1983).

- L. J. Mullins, D. C. Christensen, and B. R. Babcock, "Fused Salt Processing of Impure Plutonium Dioxide to High-Purity Plutonium Metal," Los Alamos National Laboratory report LA-9154-MS (January 1982).
- L. J. Mullins and C. L. Foxx, "Direct Reduction of  $^{238}\text{PuO}_2$  and  $^{239}\text{PuO}_2$  to Metal," Los Alamos National Laboratory report LA-9073-MS (February 1982).
- K. W. Fife, D. F. Bowersox, and E. D. McCormick, "Comparison of Phosgene, Chlorine, and Hydrogen Chloride as Reagents for Converting Molten  $\text{CaO} \cdot \text{CaCl}_2$ ," Los Alamos National Laboratory report LA-10523-MS (September 1985).

TABLE V

OBSERVATIONS OF COATINGS TESTED  
IN THE REGENERATION ENVIRONMENT

| <u>Coating</u>      | <u>Substrates</u> | <u>Observations</u>      |
|---------------------|-------------------|--------------------------|
| Erbia <sup>a</sup>  | Allcorr           | Coating completely gone  |
|                     | ASTM 317L         | Coating completely gone  |
|                     | Hastelloy C276    | Coating essentially gone |
|                     | Inconel 600       | Coating essentially gone |
|                     | Inconel 601       | Coating completely gone  |
|                     | Molybdenum        | Coating completely gone  |
| Gold <sup>b</sup>   | Allcorr           | Coating essentially gone |
|                     | ASTM 317L         | Coating essentially gone |
|                     | Hastelloy C276    | Coating 95% gone         |
|                     | Inconel 600       | Coating 90% gone         |
|                     | Inconel 601       | Coating completely gone  |
|                     | Molybdenum        | Coating 50% gone         |
| Yttria <sup>c</sup> | Allcorr           | Coating 70% gone         |
|                     | ASTM 317L         | Coating 85% gone         |
|                     | Hastelloy C276    | Coating 50% gone         |
|                     | Inconel 600       | Coating 40% gone         |
|                     | Inconel 601       | Coating 40% gone         |
|                     | Molybdenum        | Coating 30% gone         |
|                     | Ta-10W            | Coating 30% gone         |
|                     | TZM               | Coating 60% gone         |

<sup>a</sup>Data from samples hung 6 in. above the molten salt bath for 1 h.<sup>b</sup>Data from samples hung 2 in. above the molten salt bath for 1 h.<sup>c</sup>Data from samples submerged in the molten salt bath for 1 h.

## APPENDIX A

### ANALYTICAL<sup>a</sup> AND WEIGHT LOSS DATA FOR METALS AND ALLOYS TESTED IN THE REGENERATION ENVIRONMENT.<sup>b</sup>

#### NICKEL BASE

##### Allcorr: [Ni + 31 Cr, 10 Mo, 2 W]

| Run | Ni   | Cr   | Mo | W    | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|------|------|----|------|-------------------------------------|---------------------------------------------------|
| 1A  | <4   | 3700 | 4  | <400 | 0.0182                              | 0.0182                                            |
| 1B  | —    | —    | —  | —    | 0.0199                              | 0.0381                                            |
| 1C  | 1000 | 2500 | 4  | <100 | 0.0336                              | 0.0717                                            |
| 1D  | —    | —    | —  | —    | 0.0384                              | 0.1100                                            |
| 1E  | 350  | 6000 | <4 | <200 | 0.0429                              | 0.153                                             |
| 1F  | —    | —    | —  | —    | 0.0184                              | 0.171                                             |
| 1G  | 1500 | 500  | 50 | <100 | 0.0182                              | 0.190                                             |

##### Cabot 214: [Ni + 16 Cr, 4.5 Al, 2.5 Fe, Y]

| Run | Ni   | Cr   | Al | Fe  | Y  | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|------|------|----|-----|----|-------------------------------------|---------------------------------------------------|
| 1E  | 60   | 2000 | 85 | 4   | <4 | 0.0105                              | 0.0105                                            |
| 1F  | 350  | 7500 | 60 | 250 | 4  | 0.0109                              | 0.0214                                            |
| 1G  | 1000 | 1000 | 70 | 150 | <4 | 0.0545                              | 0.0759                                            |

##### Hastelloy B2: [Ni + 28 Mo, 1.6 Fe, 1.0 Cr, 1.0 Co 1 Mn]

| Run | Ni   | Mo  | Fe  | Cr  | Co | Mn | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|------|-----|-----|-----|----|----|-------------------------------------|---------------------------------------------------|
| 1A  | 1500 | 4   | 120 | 70  | <4 | 12 | 0.0296                              | 0.0296                                            |
| 1B  | 2500 | 25  | 350 | 100 | 12 | 20 | 0.0449                              | 0.0744                                            |
| 1C  | —    | —   | —   | —   | —  | —  | 0.0422                              | 0.117                                             |
| 1D  | 2500 | 250 | 200 | 120 | 4  | 12 | 0.0607                              | 0.177                                             |
| 1E  | —    | —   | —   | —   | —  | —  | 0.0617                              | 0.239                                             |
| 1F  | 3000 | 40  | 100 | 10  | 4  | 6  | 0.0282                              | 0.267                                             |
| 1G  | 1000 | 120 | 100 | 12  | <4 | 6  | 0.0223                              | 0.289                                             |

<sup>a</sup>Analytical data are given in parts per million.

<sup>b</sup>Analytical data are from the salt samples taken after each run.

**Hastelloy C276: [Ni + 16 Cr, 15 Mo, 5 Fe, 3.7 W, 1.4 Co, 1.0 Mn]**

| Run | Ni   | Cr   | Mo | Fe  | W    | Co  | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|------|------|----|-----|------|-----|-------------------------------------|---------------------------------------------------|
| 1A  | 1500 | 600  | 4  | 180 | <400 | <4  | 0.0164                              | 0.0164                                            |
| 1B  | —    | —    | —  | —   | —    | —   | 0.0486                              | 0.0650                                            |
| 1C  | 1500 | 1000 | 30 | 350 | <400 | 150 | 0.0274                              | 0.0925                                            |
| 1D  | —    | —    | —  | —   | —    | —   | 0.0576                              | 0.150                                             |
| 1E  | —    | —    | —  | —   | —    | —   | 0.0767                              | 0.227                                             |
| 1F  | 1000 | 400  | 50 | 300 | <100 | 50  | 0.0214                              | 0.248                                             |
| 1G  | 1000 | 300  | 60 | 900 | <100 | <4  | 0.0119                              | 0.260                                             |

**Hastelloy G3: [Ni + 22 Cr, 19.5 Fe, 7 Mo, 5 Co, 1.5 W, Nb]**

| Run | Ni  | Cr   | Fe   | Mo  | Co | W    | Nb  | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|-----|------|------|-----|----|------|-----|-------------------------------------|---------------------------------------------------|
| 1A  | —   | —    | —    | —   | —  | —    | —   | 0.0267                              | 0.0267                                            |
| 1B  | 25  | 6100 | 1200 | <4  | <4 | <100 | <40 | 0.0319                              | 0.0586                                            |
| 1C  | —   | —    | —    | —   | —  | —    | —   | 0.0307                              | 0.0893                                            |
| 1D  | 600 | 6000 | 600  | 200 | 50 | <100 | <40 | 0.0414                              | 0.131                                             |
| 1E  | —   | —    | —    | —   | —  | —    | —   | 0.0458                              | 0.177                                             |
| 1F  | 300 | 200  | 1200 | 20  | 70 | <100 | <40 | 0.0062                              | 0.181                                             |
| 1G  | 600 | 1000 | 900  | 200 | <4 | <100 | <40 | 0.00342                             | 0.185                                             |

**Hastelloy S: [Ni + 16 Cr, 15 Mo, 3 Fe, 2 Co, 1 W]**

| Run | Ni   | Cr   | Mo  | Fe  | Co | W    | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|------|------|-----|-----|----|------|-------------------------------------|---------------------------------------------------|
| 1A  | 2500 | 2000 | <4  | 120 | 5  | <100 | 0.0414                              | 0.0414                                            |
| 1B  | 2500 | 2000 | 4   | 120 | 10 | <100 | 0.0499                              | 0.0913                                            |
| 1C  | 2000 | 3000 | 85  | 75  | 4  | <100 | 0.0106                              | 0.102                                             |
| 1D  | 250  | 250  | 250 | 30  | 4  | <100 | 0.0619                              | 0.164                                             |
| 1E  | 800  | 2400 | <4  | 30  | 8  | <100 | 0.117                               | 0.281                                             |
| 1F  | 400  | 600  | 60  | 40  | 4  | <100 | 0.0243                              | 0.305                                             |
| 1G  | 600  | 1200 | 20  | 50  | 5  | <100 | 0.0579                              | 0.363                                             |

**Hastelloy X: [Ni + 22 Cr, 18.5 Fe, 9 Mo, 1.5 Co]**

| Run | Ni   | Cr   | Fe   | Mo | Ce  | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|------|------|------|----|-----|-------------------------------------|---------------------------------------------------|
| 1A  | 40   | 4900 | 1200 | <4 | <4  | 0.0303                              | 0.0303                                            |
| 1B  | —    | —    | —    | —  | —   | 0.0531                              | 0.0834                                            |
| 1C  | 1000 | 1200 | 1500 | 50 | 150 | 0.0396                              | 0.123                                             |
| 1D  | —    | —    | —    | —  | —   | 0.0545                              | 0.178                                             |
| 1E  | 300  | 5000 | 1000 | 30 | 35  | 0.0501                              | 0.228                                             |
| 1F  | —    | —    | —    | —  | —   | 0.0275                              | 0.25                                              |
| 1G  | 250  | 85   | 60   | 60 | 30  | 0.0181                              | 0.273                                             |

**Inconel 600: [Ni + 15 Cr, 6 Fe, 1 Mn]**

| Run | Ni  | Cr   | Fe  | Mn | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|-----|------|-----|----|-------------------------------------|---------------------------------------------------|
| 2A  | 30  | 50   | 250 | 25 | 0.00031                             | 0.00031                                           |
| 2B  | 20  | 600  | 100 | 12 | 0.0081                              | 0.0084                                            |
| 2C  | 200 | 2000 | 500 | 20 | 0.0408                              | 0.0492                                            |
| 2D  | 120 | 1000 | 400 | 15 | 0.0105                              | 0.0596                                            |
| 2E  | 120 | 1200 | 600 | 15 | 0.0269                              | 0.0866                                            |
| 2F  | 250 | 1800 | 350 | 25 | 0.0307                              | 0.1170                                            |
| 2G  | 300 | 2500 | 600 | 25 | 0.0323                              | 0.150                                             |
| 2H  | 180 | 2500 | 850 | 25 | 0.0324                              | 0.182                                             |

**Inconel 601: [Ni + 23 Cr, 14 Fe, 1.5 Al, Mn]**

| Run | Ni  | Cr   | Fe  | Al  | Mn | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|-----|------|-----|-----|----|-------------------------------------|---------------------------------------------------|
| 2A  | 6   | 1200 | 85  | 85  | 25 | 0.000385                            | 0.00385                                           |
| 2B  | —   | —    | —   | —   | —  | 0.0181                              | 0.0185                                            |
| 2C  | 10  | 3000 | 60  | 15  | 25 | 0.0339                              | 0.0524                                            |
| 2D  | 60  | 3000 | 600 | 6   | 40 | 0.0312                              | 0.0836                                            |
| 2E  | 50  | 3000 | 600 | 120 | 25 | 0.0208                              | 0.104                                             |
| 2F  | 85  | 3000 | 500 | 85  | 25 | 0.0160                              | 0.120                                             |
| 2G  | 250 | 1800 | 600 | 30  | 18 | 0.0258                              | 0.146                                             |

Inconel 617: [Ni + 22 Cr, 12.5 Co, 9 Mo, 1.5 Fe, 1 Al]

| Run | Ni  | Cr   | Co  | Mo  | Fe  | Al | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|-----|------|-----|-----|-----|----|-------------------------------------|---------------------------------------------------|
| 1A  | 230 | 600  | 180 | <10 | 50  | 25 | 0.0182                              | 0.0182                                            |
| 1B  | 720 | —    | 300 | <10 | 100 | 12 | 0.0214                              | 0.0397                                            |
| 1C  | 430 | 850  | 250 | <10 | 65  | 40 | 0.0149                              | 0.0546                                            |
| 1D  | 760 | 850  | 250 | <10 | 65  | 18 | 0.0152                              | 0.0698                                            |
| 1E  | 840 | 1200 | 300 | <10 | 80  | 25 | 0.00185                             | 0.0716                                            |
| 1F  | 450 | 1200 | 300 | 12  | 250 | 25 | 0.0155                              | 0.0871                                            |

Inconel 625: [Ni + 20 Cr, 9 Mo, 5 Fe, 4 (Nb + Ta)]

| Run | Ni   | Cr   | Mo | Fe   | Ta   | Nb  | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|------|------|----|------|------|-----|-------------------------------------|---------------------------------------------------|
| 1A  | —    | —    | —  | —    | —    | —   | 0.00399                             | 0.00399                                           |
| 1B  | 600  | 3500 | 25 | 1000 | <100 | <40 | 0.0335                              | 0.0375                                            |
| 1C  | —    | —    | —  | —    | —    | —   | 0.0568                              | 0.0944                                            |
| 1D  | 1200 | 1200 | 10 | 250  | <100 | <40 | 0.0398                              | 0.134                                             |
| 1E  | —    | —    | —  | —    | —    | —   | 0.0476                              | 0.182                                             |
| 1F  | 1000 | 6000 | 35 | 250  | <100 | 35  | 0.0175                              | 0.199                                             |
| 1G  | 750  | 1500 | 30 | 350  | <100 | <40 | 0.0426                              | 0.242                                             |

Inconel 690: [Ni + 30 Cr, 9 Fe]

| Run | Ni  | Cr    | Fe  | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|-----|-------|-----|-------------------------------------|---------------------------------------------------|
| 1A  | 17  | 2250  | 8   | 0.0139                              | 0.0139                                            |
| 1B  | 13  | 2250  | 7   | 0.0100                              | 0.0239                                            |
| 1C  | 10  | 1800  | 25  | 0.00971                             | 0.0337                                            |
| 1D  | 260 | >1000 | 550 | 0.0623                              | 0.0960                                            |
| 1E  | —   | —     | —   | 0.00158                             | 0.0975                                            |
| 1F  | —   | —     | —   | 0.0353                              | 0.133                                             |

**Inconel 750: [Ni + 14 Cr, 5 Fe, 2.5 Ti, Nb]**

| Run | Ni   | Cr   | Fe  | Ti | Nb  | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|------|------|-----|----|-----|-------------------------------------|---------------------------------------------------|
| 1A  | 350  | 1200 | 370 | 10 | <40 | 0.0186                              | 0.0186                                            |
| 1B  | 330  | 500  | 200 | 4  | <40 | 0.00741                             | 0.0260                                            |
| 1C  | 200  | 7    | 110 | 25 | <40 | 0.00002                             | 0.0260                                            |
| 1D  | 1200 | 1000 | 500 | 6  | <40 | 0.0496                              | 0.0757                                            |
| 1E  | 1000 | 1000 | 340 | 6  | <40 | 0.00424                             | 0.0799                                            |
| 1F  | 400  | 60   | 100 | 20 | <40 | 0.0238                              | 0.1037                                            |

**Inconel 751: [Ni + 14 Cr, 5 Fe, 2 Ti, 1 Al, Nb]**

| Run | Ni  | Cr       | Fe  | Ti | Al | Nb  | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|-----|----------|-----|----|----|-----|-------------------------------------|---------------------------------------------------|
| 1A  | 300 | 1000     | 250 | 4  | 25 | <10 | 0.0336                              | 0.0336                                            |
| 1B  | 80  | 850      | 110 | 18 | 25 | <10 | 0.0254                              | 0.0589                                            |
| 1C  | 220 | 1000     | 260 | 18 | 25 | <10 | 0.0564                              | 0.115                                             |
| 1D  | 470 | 300-3000 | 390 | 10 | 40 | <10 | 0.0559                              | 0.171                                             |
| 1E  | 420 | 300-3000 | 390 | 12 | 40 | <10 | 0.0634                              | 0.235                                             |
| 1F  | 800 | 1200     | 370 | 12 | 60 | <10 | 0.0397                              | 0.274                                             |

**Monel K500: [Ni + 30 Cu, 3 Al, 1 Fe]**

| Run | Ni  | Cu   | Al  | Fe | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|-----|------|-----|----|-------------------------------------|---------------------------------------------------|
| 1A  | 180 | 1200 | 10  | 40 | 0.0248                              | 0.0248                                            |
| 1B  | 30  | 4000 | 100 | 25 | 0.0300                              | 0.0548                                            |
| 1C  | 25  | 4000 | 100 | 25 | 0.0179                              | 0.0727                                            |
| 1D  | 20  | 2500 | 300 | 25 | 0.0104                              | 0.0831                                            |
| 1E  | 40  | 4000 | 60  | 25 | 0.0178                              | 0.101                                             |
| 1F  | 180 | 5000 | 100 | 60 | 0.0212                              | 0.122                                             |

## IRON BASE

ASTM 317L: [Fe + 18.4 Cr, 15.8 Ni, 4.2 Mo, 1.6 Mn, 0.4 Cu]

| Run | Fe   | Cr   | Ni  | Mo  | Mn  | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|------|------|-----|-----|-----|-------------------------------------|---------------------------------------------------|
| 1A  | 1800 | 4300 | <4  | <4  | 150 | 0.0378                              | 0.0378                                            |
| 1B  | —    | —    | —   | —   | —   | 0.0257                              | 0.0636                                            |
| 1C  | 4900 | 2500 | 25  | <4  | 120 | 0.0288                              | 0.0924                                            |
| 1D  | —    | —    | —   | —   | —   | 0.0303                              | 0.123                                             |
| 1E  | 2500 | 2500 | 600 | 250 | 85  | 0.0247                              | 0.147                                             |
| 1F  | —    | —    | —   | —   | —   | 0.0194                              | 0.167                                             |
| 1G  | 2000 | 600  | 50  | 30  | 100 | 0.0186                              | 0.185                                             |

ASTM A446: [Fe + 25 Cr, 0.6 Mn, 0.4 Ni, Si]

| Run | Fe   | Cr   | Mn | Ni | Si  | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|------|------|----|----|-----|-------------------------------------|---------------------------------------------------|
| 1A  | 600  | 2500 | 25 | 25 | 180 | 0.0282                              | 0.0282                                            |
| 1B  | 3700 | 3700 | 40 | 25 | —   | 0.0423                              | 0.0705                                            |
| 1C  | —    | —    | —  | —  | —   | 0.0496                              | 0.120                                             |
| 1D  | 2000 | 2000 | 50 | 30 | 100 | 0.0553                              | 0.175                                             |
| 1E  | 2000 | 2500 | 35 | <4 | 350 | 0.0857                              | 0.261                                             |
| 1F  | —    | —    | —  | —  | —   | 0.0286                              | 0.290                                             |
| 1G  | 1000 | 1500 | 30 | 4  | 300 | 0.0271                              | 0.317                                             |

## COBALT BASE

Carpenter L605: [Co + 20 Cr, 15 W, 10 Ni]

| Run | Co   | Cr   | W    | Ni  | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|------|------|------|-----|-------------------------------------|---------------------------------------------------|
| 1A  | 100  | 250  | <400 | 55  | 0.00664                             | 0.00664                                           |
| 1B  | 600  | —    | <400 | 55  | 0.0225                              | 0.0292                                            |
| 1C  | 1200 | 1200 | <400 | 100 | 0.0281                              | 0.0573                                            |
| 1D  | 1200 | 1000 | <400 | 150 | 0.0261                              | 0.0834                                            |
| 1E  | 1200 | 1000 | <400 | 180 | 0.0273                              | 0.111                                             |
| 1F  | 1200 | 1000 | <400 | 140 | 0.0306                              | 0.141                                             |

**MP35N: [Co + 35 Ni, 20 Cr, 10 Mo]**

| Run | Co   | Ni  | Cr   | Mo  | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|------|-----|------|-----|-------------------------------------|---------------------------------------------------|
| 1A  | 1000 | 250 | 1200 | 12  | 0.0287                              | 0.0287                                            |
| 1B  | —    | —   | —    | —   | 0.0265                              | 0.0551                                            |
| 1C  | —    | —   | —    | —   | 0.00297                             | 0.0581                                            |
| 1D  | —    | —   | —    | —   | 0.0159                              | 0.0740                                            |
| 1E  | 200  | 100 | 60   | 400 | 0.00576                             | 0.0797                                            |
| 1F  | 100  | 200 | 50   | 100 | 0.0442                              | 0.1239                                            |

**REFRACTORY BASE****ASTM B708: [Ta + 2.5 W, 0.15 Nb]**

| Run | Ta    | W   | Nb  | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|-------|-----|-----|-------------------------------------|---------------------------------------------------|
| 1A  | <120  | 350 | <35 | 0.00365                             | 0.00365                                           |
| 1B  | 15000 | 100 | <40 | 0.126                               | 0.129                                             |
| 1C  | 12000 | 100 | <40 | 0.250                               | 0.379                                             |

**KBI 40: [Ta + 40 Nb]**

| Run | Ta    | Nb    | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|-------|-------|-------------------------------------|---------------------------------------------------|
| 1A  | <120  | <35   | 0.0175                              | 0.0175                                            |
| 1B  | 25000 | 25000 | 0.209                               | 0.227                                             |

**Moly-10Re [Mo + 10 Re]**

| Run | Mo | Re  | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|----|-----|-------------------------------------|---------------------------------------------------|
| 1A  | <4 | <40 | 0.00449                             | 0.00449                                           |
| 1B  | <4 | <40 | 0.00385                             | 0.00834                                           |
| 1C  | <4 | <40 | 0.00353                             | 0.0119                                            |
| 1D  | <4 | <40 | 0.00448                             | 0.0167                                            |
| 1E  | <4 | <40 | 0.00437                             | 0.0211                                            |
| 1F  | <4 | <40 | 0.00767                             | 0.0287                                            |
| 1G  | 6  | <40 | 0.00438                             | 0.0331                                            |

**Moly-50Re [Mo + 50 Re]**

| Run | Mo | Re  | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|----|-----|-------------------------------------|---------------------------------------------------|
| 1A  | —  | —   | 0.00489                             | 0.00489                                           |
| 1B  | <4 | <40 | 0.00682                             | 0.0117                                            |
| 1C  | <4 | <40 | 0.00664                             | 0.0184                                            |
| 1D  | <4 | <40 | 0.00930                             | 0.0277                                            |
| 1E  | <4 | <40 | 0.00963                             | 0.0373                                            |
| 1F  | <4 | <40 | 0.0117                              | 0.0490                                            |

**Ta-10W. [Ta + 10 W]**

| Run | Ta   | W    | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|------|------|-------------------------------------|---------------------------------------------------|
| 1A  | <120 | <350 | 0.0063                              | 0.0063                                            |
| 1B  | 2500 | <400 | 0.0778                              | 0.0845                                            |
| 1C  | 2500 | 250  | 0.0953                              | 0.1798                                            |
| 1D  | 400  | <400 | 0.1067                              | 0.2865                                            |

**TZM: [Mo + 0.5 Ti, 0.1 Zr]**

| Run | Mo  | Ti | Zr  | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|-----|----|-----|-------------------------------------|---------------------------------------------------|
| 1A  | 500 | <4 | <10 | 0.0261                              | 0.0261                                            |
| 2B  | —   | —  | —   | 0.0113                              | 0.0374                                            |
| 1C  | 600 | 6  | <12 | 0.00949                             | 0.0469                                            |
| 1D  | —   | —  | —   | 0.0701                              | 0.117                                             |
| 1E  | —   | —  | —   | 0.0132                              | 0.130                                             |
| 1F  | 50  | —  | —   | 0.0167                              | 0.147                                             |
| 1G  | 20  | —  | —   | 0.0140                              | 0.161                                             |

**ZIRCONIUM BASE****Zirconium 705: [Zr + 4.0 Hf, 2.5 Nb, Oxygen]**

| Run | Zr  | Hf   | Nb  | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|-----|------|-----|-------------------------------------|---------------------------------------------------|
| 1A  | 120 | <100 | <40 | 0.00438                             | 0.00438                                           |
| 1B  | 250 | <100 | <40 | 0.0117                              | 0.0161                                            |
| 1C  | 300 | <100 | <40 | 0.0112                              | 0.0272                                            |
| 1D  | <10 | <100 | <40 | 0.0267                              | 0.0540                                            |
| 1E  | 250 | <100 | <40 | 0.0560                              | 0.1100                                            |
| 1F  | 200 | <100 | <40 | 0.00779                             | 0.1178                                            |

**Zircaloy 4: [Zr + 4.0 Hf, 1.5 Sb, 0.2 Fe, 0.1 Cr, Oxygen]**

| Run | Zr   | Hf   | Fe | Cr | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|------|------|----|----|-------------------------------------|---------------------------------------------------|
| 1A  | 18   | <100 | 10 | 4  | 0.00216                             | 0.00216                                           |
| 1B  | 180  | <100 | 85 | 6  | 0.00231                             | 0.00447                                           |
| 1C  | 120  | <100 | 10 | <4 | 0.0104                              | 0.0148                                            |
| 1D  | 250  | <100 | <4 | <4 | 0.00227                             | 0.0171                                            |
| 1E  | 850  | <100 | 25 | <4 | 0.0159                              | 0.0330                                            |
| 1F  | 1000 | <100 | <4 | <4 | 0.0101                              | 0.0431                                            |

**PURE METALS****Cobalt: [Co]**

| Run | Co  | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|-----|-------------------------------------|---------------------------------------------------|
| 1A  | —   | 0.242                               | 0.242                                             |
| 1B  | <4  | 0.0590                              | 0.302                                             |
| 1C  | <4  | 0.0656                              | 0.367                                             |
| 1D  | <4  | 0.0760                              | 0.443                                             |
| 1E  | <4  | 0.0786                              | 0.522                                             |
| 1F  | 100 | 0.0303                              | 0.552                                             |

**Hafnium: [Hf + 4 Zr] (After this run, 50% of the sample was lost.)**

| Run | Hf   | Zr  | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|------|-----|-------------------------------------|---------------------------------------------------|
| 1A  | <450 | <10 | 0.0198                              | 0.0198                                            |

**Molybdenum: [Mo]**

| Run | Co   | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|------|-------------------------------------|---------------------------------------------------|
| 1A  | 400  | 0.0143                              | 0.0143                                            |
| 1B  | <4   | 0.0117                              | 0.0261                                            |
| 1C  | 25   | 0.00926                             | 0.0353                                            |
| 1D  | 2000 | 0.0155                              | 0.0508                                            |
| 1E  | 30   | 0.00958                             | 0.0604                                            |
| 1F  | 250  | 0.00937                             | 0.0697                                            |
| 1G  | 25   | 0.0112                              | 0.0809                                            |
| 1H  | 40   | 0.0132                              | 0.0942                                            |
| 1I  | <4   | 0.00745                             | 0.102                                             |

**Nickel: [Ni]**

| Run | Ni    | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|-------|-------------------------------------|---------------------------------------------------|
| 1A  | 20100 | 0.0283                              | 0.0283                                            |
| 1B  | 4100  | 0.100                               | 0.128                                             |
| 1C  | 2900  | 0.0678                              | 0.196                                             |
| 1D  | 2500  | 0.0942                              | 0.290                                             |
| 1E  | 3600  | 0.0663                              | 0.357                                             |

**Rhenium: [Re]**

| Run | Re  | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|-----|-------------------------------------|---------------------------------------------------|
| 1A  | <40 | 0.000226                            | 0.000226                                          |
| 1B  | <40 | 0.00672                             | 0.00694                                           |
| 1C  | <40 | 0.0119                              | 0.0188                                            |
| 1D  | —   | 0.000366                            | 0.0192                                            |
| 1E  | <40 | 0.00157                             | 0.0207                                            |
| 1F  | <40 | 0.00181                             | 0.0225                                            |
| 1G  | <40 | 0.00129                             | 0.0238                                            |

**Tantalum: [Ta]**

| Run | Ta    | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|-------|-------------------------------------|---------------------------------------------------|
| 1A  | <120  | 0.00271                             | 0.00271                                           |
| 1B  | 500   | 0.0896                              | 0.0923                                            |
| 1C  | 500   | 0.110                               | 0.203                                             |
| 1D  | 500   | 0.148                               | 0.351                                             |
| 1E  | 25000 | 0.158                               | 0.509                                             |
| 1F  | 12000 | 0.132                               | 0.640                                             |

**Titanium: [Ti] (After this run, 80% of the sample was lost.)**

| Run | Ti  | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|-----|-------------------------------------|---------------------------------------------------|
| 1A  | 380 | 0.0916                              | 0.0916                                            |

**Tungsten: [W]**

| Run | W    | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|------|-------------------------------------|---------------------------------------------------|
| 1A  | <350 | 0.00684                             | 0.00684                                           |
| 1B  | <400 | 0.167                               | 0.174                                             |
| 1C  | —    | 0.168                               | 0.342                                             |
| 1D  | 370  | 0.171                               | 0.512                                             |
| 1E  | 250  | 0.110                               | 0.622                                             |
| 1F  | <400 | 0.122                               | 0.744                                             |
| 1G  | <400 | 0.056                               | 0.800                                             |
| 1H  | <400 | 0.066                               | 0.867                                             |
| II  | 100  | 0.105                               | 0.972                                             |

**Zirconium: [Zr]**

| Run | Zr  | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|-----|-------------------------------------|---------------------------------------------------|
| 1A  | 370 | 0.0179                              | 0.0179                                            |
| 1B  | 120 | 0.0238                              | 0.0417                                            |
| 1C  | 300 | 0.0447                              | 0.0864                                            |
| 1D  | 200 | 0.00551                             | 0.0919                                            |

## APPENDIX B

### ANALYTICAL<sup>a</sup> AND WEIGHT LOSS DATA FOR METALS AND ALLOYS TESTED IN THE REGENERATION ENVIRONMENT.<sup>b</sup>

#### Al<sub>2</sub>O<sub>3</sub> + 2% Y<sub>2</sub>O<sub>3</sub>

| Run | Al        | Y  | Mg  | Li  | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|-----------|----|-----|-----|-------------------------------------|---------------------------------------------------|
| 1A  | 1000-2000 | 40 | 260 | —   | 0.193                               | 0.193                                             |
| 1B  | —         | —  | —   | —   | 0.00985                             | 0.203                                             |
| 1C  | 1200      | 40 | 350 | 260 | 0.288                               | 0.491                                             |
| 1D  | 400-4000  | 60 | 370 | 260 | 0.0233                              | 0.514                                             |
| 1E  | 400-4000  | 60 | 340 | 260 | 0.0396                              | 0.554                                             |
| 1F  | 600       | 40 | 400 | 180 | 0.0312                              | 0.585                                             |

#### BeO

| Run | Be | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|----|-------------------------------------|---------------------------------------------------|
| 1A  | —  | 0.000897                            | 0.000897                                          |
| 1B  | 25 | 0.000812                            | 0.00171                                           |
| 1C  | 50 | 0.000952                            | 0.00266                                           |
| 1D  | —  | 0.000360                            | 0.00302                                           |

#### Ce<sub>2</sub>S (Sample was completely consumed.)

| Run | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|-------------------------------------|---------------------------------------------------|
| 1A  | All                                 | All                                               |

<sup>a</sup>Analytical data are given in parts per million.

<sup>b</sup>Analytical data are from salt samples taken after each run.

**MgO + Al<sub>2</sub>O<sub>3</sub>**

| Run | Mg  | Al   | Li  | Si  | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|-----|------|-----|-----|-------------------------------------|---------------------------------------------------|
| 1A  | 600 | 1200 | 180 | 700 | 0.0568                              | 0.0568                                            |
| 1B  | —   | —    | —   | —   | 0.0697                              | 0.126                                             |
| 1C  | —   | —    | —   | —   | 0.0701                              | 0.197                                             |
| 1D  | 270 | 100  | 230 | 600 | —                                   | —                                                 |
| 1E  | —   | —    | —   | —   | 0.0928                              | 0.289                                             |
| 1F  | 630 | 1000 | 270 | 370 | 0.108                               | 0.397                                             |

**MgO + 1% Y<sub>2</sub>O<sub>3</sub>**

| Run | Mg   | Y   | Li  | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|------|-----|-----|-------------------------------------|---------------------------------------------------|
| 1A  | —    | —   | —   | 0.284                               | 0.284                                             |
| 1B  | 3200 | 100 | 170 | 0.234                               | 0.518                                             |
| 1C  | 1400 | 60  | 160 | 0.0915                              | 0.610                                             |
| 1D  | 1100 | 40  | 170 | 0.0672                              | 0.677                                             |
| 1E  | 1300 | 10  | 200 | 0.0887                              | 0.766                                             |
| 1F  | 1450 | 60  | 260 | 0.0793                              | 0.845                                             |

**MgO + 3% Y<sub>2</sub>O<sub>3</sub>**

| Run | Mg   | Y   | Al | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|------|-----|----|-------------------------------------|---------------------------------------------------|
| 1A  | 510  | <4  | 25 | 0.265                               | 0.265                                             |
| 1B  | 1900 | <25 | 30 | 0.706                               | 0.971                                             |
| 1C  | 850  | <10 | 30 | 0.0308                              | 1.002                                             |
| 1D  | 900  | <10 | 25 | 0.0369                              | 1.039                                             |
| 1E  | 1700 | 6   | 25 | 0.0823                              | 1.121                                             |
| 1F  | 1900 | 50  | 60 | 0.0885                              | 1.210                                             |

**SiC**

| Run | Si   | Li  | Mg  | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|------|-----|-----|-------------------------------------|---------------------------------------------------|
| 1A  | 200  | 160 | 400 | 0.00462                             | 0.00462                                           |
| 1B  | 100  | 170 | 250 | 0.125                               | 0.129                                             |
| 1C  | 300  | 160 | 280 | 0.0835                              | 0.213                                             |
| 1D  | 100  | 160 | 250 | 0.0478                              | 0.261                                             |
| 1E  | 800  | 200 | 200 | 0.0420                              | 0.303                                             |
| 1F  | 3000 | 200 | 80  | 0.0427                              | 0.345                                             |

**Tho<sub>2</sub>**

| Run | Al | Si  | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|----|-----|-------------------------------------|---------------------------------------------------|
| 1A  | 25 | 350 | —                                   | —                                                 |
| 1B  | 60 | 600 | 0.421                               | 0.421                                             |
| 1C  | 25 | 600 | 0.346                               | 0.767                                             |

**ZrO<sub>2</sub> + 15% Y<sub>2</sub>O<sub>3</sub>:** (Two samples run; both broke after one run.)

| Run | Zr  | Y   | Si  | Weight Loss<br>(g/cm <sup>2</sup> ) | Cumulative<br>Weight Loss<br>(g/cm <sup>2</sup> ) |
|-----|-----|-----|-----|-------------------------------------|---------------------------------------------------|
| 1A  | <10 | 100 | 400 | 0.00557                             | 0.00557                                           |
| 1B  | —   | —   | —   | 0.0159                              | 0.0159                                            |