

EGG--10617-7008

FOREIGN TRIP REPORT

DE90 011582

1. SUMMARY

a. Traveler: **Ronald L. Baskett**

Position: Scientific Specialist II, ARAC Assessment Meteorologist

Telephone: Commercial: 415-423-6731, FTS: 543-6731

DOE Contractor Organization: EG&G Energy Measurements, Inc., Pleasanton, California
Contract No. DE-AC08-88NV10617

Support to Lawrence Livermore National Laboratory (LLNL)
Atmospheric and Geophysical Sciences Division (G-Division)
Atmospheric Release Advisory Capability (ARAC)

Trip Report Date: May 10, 1990

b. Dates of Trip: **April 28 to May 4, 1990**

Destination: **Roskilde, Denmark**

c. Succinct Statement of Purpose

The purpose of this trip was to attend the Ninth Conference on Turbulence and Diffusion held at the Scandic Hotel in Roskilde, Denmark from April 30 to May 3, 1990. The conference was sponsored by the American Meteorological Society and hosted by Riso National Laboratory, Roskilde, Denmark.

d. Summary of Activities, Discussions and Events

This conference addressed recent theoretical advancements of turbulence and diffusion in the atmospheric boundary layer (ABL). My activities centered on the technical sessions of the conference. Sessions addressed clouds and the marine atmospheric boundary layer, field experimental techniques, physical and numerical simulations, transport and diffusion, surface properties, general boundary layer, stratified turbulence and turbulence in complex terrain. I presented a jointly authored poster on an evaluation of the ARAC emergency response models with and without on-site sound detection and ranging systems (sodars) which measure vertical wind profiles. Several scientists commented on our work and some requested further information. In addition, there was a workshop on dispersion around groups of buildings and a tour of Riso National Laboratory.

Developments relevant to our work included work on dispersion model evaluation, especially using Monte Carlo random walk techniques, parameterizations of mixing height and turbulence from remote sensing systems such as sodars and radars, and measurements and parameterizations of enhanced turbulence around groups of buildings.

MASTER

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

2. DETAILED TRIP REPORT

a. Detailed Statement of Purpose

The purpose of this trip was to attend the Ninth Conference on Turbulence and Diffusion held at the Scandic Hotel in Roskilde, Denmark from April 30 to May 3, 1990. The conference was sponsored by the American Meteorological Society and hosted by Riso National Laboratory of Denmark. Appendix A gives a complete itinerary.

This conference was the ninth in a biennial series originating in 1971 to address theoretical advancements of turbulence and diffusion in the atmospheric boundary layer (ABL). It provided information relevant to G-Division's research themes in numerical simulation of dispersion, atmospheric microphysics, heavy gases, and sub-grid scale climate processes. The research presented is also important to ARAC's operational dispersion models. These models are used to estimate the real-time consequences of accidental releases of radioactive material into the atmosphere for the Departments of Energy and Defense. New developments are periodically integrated into ARAC's models to maintain the state-of-the-art.

Interaction with scientists from around the world was beneficial for gaining information and understanding of research on these developments. About 200 attended from 20 countries including Canada, USA, Australia, India, Japan, China, USSR, and most of Europe. The list of pre-registered participants is provided in Appendix B.

A preprint of four-page extended abstracts was distributed at the conference. A bibliographical listing of literature acquired is provided in Appendix C.

b. Detailed Summary of Activities, Discussions and Events

Clouds and Marine Atmospheric Boundary Layer

The conference began with sessions on clouds and the marine ABL. The focus was on the formation and dissipation of turbulence in the moist ABL. Low-level marine stratocumulus (SCu) clouds that form over west coasts of continents strongly influence the earth's radiation budget. Several papers presented analyses of the First International Satellite Cloud Climatology Project Regional Experiment off the California coast in 1987. Formation and breakup of SCu is controlled by the relative amount of entrainment from evaporative cooling due to downdrafts versus the amount of condensational heating from the surface, which causes updrafts. Parameterizations of the moisture balance and small-scale turbulence for higher-order turbulence closure and large eddy simulation (LES) models were presented. Dissipation of the turbulent kinetic energy (TKE) over water was measured by several other recent experiments. Advances in measurements of the velocity variance spectrum in the inertial subrange, wind stress, drag coefficient, and surface fluxes over water were discussed.

Field Experimental Techniques

A second focus of the conference was on progress in instrumentation, which includes fast-response sonic anemometers, atmospheric tracers, aircraft moisture

measurements, and surface-based remote sensors along with concomitant advances in data acquisition. Remote sensing systems include the use of sound (sodars), radio (conventional weather, doppler, and wind profiler radars), and light (doppler lidar using lasers). The meteorological community is approaching a point where affordable measurements of transport and diffusion are allowing more direct and sophisticated parameterizations of the ABL. An integration of a dozen such state-of-the-art remote sensing systems by Pennsylvania State University is nearly complete. Data can be simultaneously collected on the large-scale thermodynamic and wind fields as well as by small-scale turbulent cloud entrainment processes. Algorithms to determine mixing height, surface heat flux, and similarity scales for heat and momentum were presented.

Turbulence and Diffusion Modeling

Several sessions were devoted to boundary layer modeling, both physical and numerical. Papers on random walk, turbulent kinetic energy (TKE), large eddy simulation (LES), spectral, and diffusivity-dissipation (K-e) models were presented. Monte Carlo random walk models were evaluated by the Chinese and Italians with tracer experiments concentrated on low wind speed, nocturnal, stable conditions, similar to the recent work in G-Division using the DOE ASCOT data. Modeling sea-surface evaporation was another application of Monte Carlo and K-theory models. TKE models were shown to be superior to K-theory for treatment of the convective boundary layer (CBL). Sub-grid parameterization of diffusivity in the CBL and extension of LES to the stable case were the focus of recent LES work. A few papers discussed modeling flows over escarpments, dispersion in complex terrain and shoreline environments. A model evaluation study similar to our work was done by Riso and the U. S. Naval Postgraduate School. They tested new wind field sub-models in their emergency response puff model with Vandenburg AFB data.

General Boundary Layer and Surface Properties

Similarity theory, velocity spectra, surface roughness, von Karman's constant, effects of forest canopies on turbulence and gravity waves, coherent turbulent structures and stationarity, convective structure, wind shears, mesoscale forcing, and determination of inversion and mixing heights were topics of general boundary- and surface-layer sessions. Some of the most interesting developments were with the use of sonic anemometers to analyze the cause-effect relationship between turbulent coherent structures and gravity waves above forest canopies.

Dispersion around Groups of Buildings

Julian Hunt, University of Cambridge, UK, chaired a workshop on dispersion around groups of buildings. Many of the presentations were associated with recent Commission of the European Communities (CEC) collaborations coordinated by Pat Mestayer, LMTTD, Ecole Nationale Supérieure de Mécanique (ENSM), France. Participating organizations include LMTTD, Centre Scientifique de Technique du Bâtiment (CTSB), Riso, and DAMTP, Cambridge. The goal of the CEC group is to improve modeling of accidental releases in urban areas.

The workshop focused on parameterizing the enhanced dispersion within and around multiple buildings including complex urban areas by treating channeling effects, determining flow lifting above the buildings, and parameterizing the transition layer between the top of the buildings and the constant-flux surface layer.

Modifications to Gaussian plume, random walk, and TKE models were presented. Several wind tunnel and full-scale field experiments were conducted in several countries including one using heavy gases conducted by Riso. The three contributions from the USA (two from DOE facilities) had been withdrawn from the workshop, but Lawson from the US EPA was reinstated since he able to attend. He showed a method to quantify dispersion by analyzing video tape of smoke in the wind tunnel.

Hunt proposed that the experimental studies be coordinated to provide modelers with necessary parameters to develop new algorithms. However, there was little time for such interaction during this rushed 90-minute workshop because each of the 15 authors was only given 4 minutes to discuss his work! Overall, the information content of the workshop was weak because of the limited time frame and because only half the authors provided written papers for the conference preprint. A CEC conference on the topic is planned for next spring.

Tour of Riso National Laboratory

We were bussed about 5 miles to Riso on the afternoon of May 2nd. Several programs were reviewed. Riso has just begun a multi-year, multi-disciplinary modeling program to study acid deposition, deforestation, and lake eutrophication with a focus on the nitrogen cycle. Riso has just completed a wind power atlas for Europe using a three-dimensional wind flow model to extend measurements in complex terrain. The atlas as well as the Wind Atlas Analysis and Application Programme (WASP) computer code are available. Riso has modeled the transport of radioactive waste from spent nuclear fuel dumped by the British in the North Sea for decades. Another primary research area for Riso has been designing and engineering wind turbines with a goal of 7 percent wind power for Denmark by the year 2000. Currently the country has about 2,600 turbines, which produce 1.5 percent of the nation's electrical power for about 5 cents/kilowatt-hour. We toured the wind mill test station.

c. Traveler's Role and Participation in Discussions and Events

Determining the value of sodar data for initializing ARAC's three-dimensional, regional-scale wind field was the subject of our poster presentation on May 1. ARAC's MATHEW/ADPIC model accuracy was shown to improve by using sodar wind profiles, in comparison to using profiles from distant rawinsonde stations that provide the real-time upper air data for ARAC-supported sites. Several ARAC-supported DOE facilities are in the process of acquiring sodars, and ARAC is preparing to integrate these into the next generation site workstation in the early 1990s. Further improvements in model accuracy should be possible if additional algorithms for mixing height and turbulence were to be incorporated into the ARAC modeling system in the future.

Many scientists visited our poster, and several discussions are worth noting. Tzvi Gal-Chen, University of Oklahoma, recommended our looking into using the combined radar-sodar systems for determining vertical thermal stratification as well as vertical velocity variation for direct parameterization of the vertical eddy diffusivity. One such system, the REMTECH Radio Acoustic Sounding System (RASS), costs about \$140K. We are aware of these systems, but they are twice the cost of doppler sodar systems.

Frank Ludwig, Stanford Research Institute (SRI), was interested in our results because he and Roy Endlich worked for Pacific Gas and Electric (PG&E) on developing and evaluating the emergency response model used at the Diablo Canyon Nuclear Power Plant, where one of the two tracer studies that we used was conducted. Walt Dabberdt, National Center for Atmospheric Research (NCAR), indicated was just completing a project with Dr. Endlich for Taiwan. They have implemented SRI's potential flow puff model on an emergency response workstation. It continuously displays the real-time surface wind field. Near-in puff size is determined from a time-dependent, regression model of building-wake enhanced dispersion which was developed by Ramsdell at Pacific Northwest Laboratory. This is also the model used by the U. S. Naval Postgraduate School.

Lech Lobocki, Warsaw Technical University, Poland, was interested in obtaining the ARAC MATHEW/ADPIC models and supporting documentation for use in his nuclear power plant emergency response program. He has one sodar and five towers. Christian Sacre, Centre Scientifique et Technique du Batiment, France, wanted more complete details on the results of the Savannah STABLE study. His application was using sodar for wind energy analysis.

Brian Sawford, Commonwealth Scientific and Industrial Research Organization, Australia, echoed our concerns about extending the sodar profiles in complex terrain based on his experience with siting sodars. He later presented a paper on his 1988-89 Convective Atmospheric Dispersion Study (CADS) at the Tarong Power Station in Queensland. His data set including lidar, sodar, tower turbulence, radiosonde and gas measurements will be available in about a year.

Eugene Fedorovich, A.I. Voeikov Main Geophysical Observatory, Leningrad, suggested that we consider more complex algorithms than the power law we currently use for determining the vertical wind direction profile. He offered to send me papers by his colleagues on the topic.

Guiseppe Brusasca, ENEL, Milan, who visited ARAC three years ago and uses MATHEW/ADPIC for ENEL's emergency response, said they were just completing a joint effort with the Electricite de France (EDF) to implement a prognostic emergency response model.

d. Recommendations and Follow-up Activities

This is a useful and informative conference series in which LLNL/G-Division/ARAC should continue participation and making contributions.

General follow-up activities include maintaining contact with scientists working on algorithms that use sodar data in dispersion models, tracking progress with remote sensing systems, and following developments in dispersion model evaluation, tracer data sets and dispersion around buildings.

Specific follow-up actions include the following:

- (1) Send Lech Lobocki, Warsaw Technical University, Poland, information on how to obtain ARAC's MATHEW/ADPIC computer codes from DOE's software library at Argonne National Laboratory.

- (2) Pass the request from Christian Sacre, Centre Scientifique et Technique du Bâtiment, France, for further information about the Savannah STABLE study on to Al Weber at Savannah River Site.
- (3) Respond to Robert Walko's, Colorado State University, request for any numerical technique we might have to handle irregular domain without transforming coordinates for use with the CSU Regional Atmospheric Modeling System (RAMS) in LES configuration

APPENDIX A. FULL ITINERARY

April 28 - Air travel from San Francisco to Copenhagen, Denmark

- Note: Original TWA flight from SFO to JFK was cancelled due to a mechanical failure of the plane. I changed to a TWA flight from SFO to Heathrow and a British Airways flight from Heathrow to CPN
- Surface travel to Roskilde, Denmark, a suburb of Copenhagen

April 28 to May 3 - Stay at Scandic Hotel, Roskilde

April 29 - Roskilde-Copenhagen area

April 30 - Attend American Meteorological Society Ninth Conference on Turbulence and Diffusion at Scandic Hotel, Roskilde

- Afternoon travel to Copenhagen and Malmo, Sweden

May 1 - Attend Conference in Roskilde

May 2 - Attend Conference in Roskilde, tour Riso National Lab

May 3 - Attend Conference in Roskilde, travel to Copenhagen

May 4 - Air travel from Copenhagen to San Francisco; surface travel to home

APPENDIX B. LIST OF PERSONS CONTACTED

Pre-registered Participants for the
Ninth Symposium on Turbulence and Diffusion,
April 29 - May 3, 1990,
Scandic Hotel, Roskilde, Denmark.

Persons contacted are noted with a checkmark.

ADDIS, Robert
Savannah River Laboratory
Savannah River Site, building 773-A
Aiken, South Carolina
U.S.A.
Tel: 803 725 3325, Fax: 803 725 1660

ALVARES, Sandrine Levi
ENSH LMTTD
1 Rue de la Noë
44 Nantes
FRANCE
Tel: 33 40371600

ANDREAS, Edgar L.
U.S. Army cold Regions Research and Engineering Lab.
72 Lyme Road
Hanover, New Hampshire 03755-1290
U.S.A.
Tel: (603) 646 4436 Fax: (603) 646 4644

ANFOSSI, D.
Istituto di Cosmogeofisica del C.N.R.
Corso Fiume 4
10133 Torino
ITALY
Tel: (0)11 658979, Fax: (0)11 658972

ARGILLANDER, S.
Finnish Meteorological Institute
Sahaajankatu 22 E
SF-00810 Helsinki
FINLAND
Tel: 358 0 758111, Fax: 358 0 7581396

BAAS, Anne de
Meteorology and Wind Energy Department
Risø National Laboratory
DK-4000 Roskilde
DENMARK
Tel: 45 42371212, Fax: 45 42370115

✓ BACH, Walter D
U.S. Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211
U.S.A.
Tel: (919) 549-0641, Fax: (919) 549-9399
bach@aro-emh1.army.mil

BASKETT, Ronald L.
EG&G Energy Measurements, Inc.
P.O. box 9051
Pleasanton, CA 94566
U.S.A.
Tel: 415 423 6731, Fax: 415 423 4527

BATCHVAROVA, Ekaterina A.
Institute of Meteorology and Hydrology
Bul. Lenin 66
Sofia 1184
BULGARIA
Tel: 722271/288

BEIER, Claus
Danmarks Tekniske Højskole
Lab. for Økologi og Miljølære
DK-2800 Lyngby
DENMARK
Tel: 45 42882222 ext. 3162

BEIER, Norbert
Met. Inst. Univ. München
Theresienstr. 37
D-8000 München 2
F.R.G.
Tel: 089/23944387, Fax: 089/2805248

BERGSTROM, H.
Department of Meteorology
Uppsala University
Box 516, S-751 20 Uppsala
SWEDEN
Tel: 46 18 142789, Fax: 46 18 144706

BERKOWICZ, Ruvim
National Environmental Research Institute
Frederiksborgvej 399
DK-4000 Roskilde
DENMARK
Tel: 45 42371137

BINK, N.J.
Free University Amsterdam
Institute for Earth Sciences
de Boelelaan 1085, 1081 MV Amsterdam
NETHERLANDS
Tel: 020 5485311, Fax: 020 462457, BINK@SARA.NL

BRADLEY, E.F.
CSIRO, P.O. box 821
Canberra A.C.T.
AUSTRALIA
Tel: 61 62 465976, Fax: 61 62 574476
pyelab@pican.oz.au

BRECHLER, Josef
Charles University
Dept of Geophys. and Meteorology
Fac. of Mathem and Phys.
V Holesovickach 2, 180 00 Praha 8
CZECHOSLOVAKIA
Tel: 843153

BROWN, R.A.
University of Washington
Dept of Atmos Science, AK-40
Seattle, WA 98195, U.S.A.
Tel: (206) 5438438, Fax: (206) 5430308,
R.BROWN/OMNET

✓ BRUSASCA, Giuseppe
ENEL - Centro di Ricerca Termica e Nucleare
Via Rubattino 56
20134 Milano
ITALY
Tel: 2 88473935, Fax: 2 88473915

BUITJES, P.H.J.
MT-TNO
P.O. box 342
7300 AH Apeldoorn
NETHERLANDS
Tel: 31 55493750, Fax: 31 55419837

BUSCH, Niels E.
Danish Technological Institute
P.O. Box 141
2630 Taastrup
DENMARK
Tel: 42996611, Fax: 42995436

CAHALAN, R.F.
NASA/Goddard Space Flight Centre
Code 613 Climate and Radiation Branch
Greenbelt, Maryland 20771
U.S.A.
Tel: 301 2864276, Fax: 301 286 4804

CARISSIMO, Bertrand
Electricite de France
6, Quai Watier
78401 Chatou Cedex
FRANCE
Tel: 33 1 30717615, Fax: 33 1 30718109

CASANOVA, Maria
Department of Meteorology and Wind Energy
Risø National Laboratory
P.O. box 49
DK-4000 Roskilde
DENMARK
Tel: 45 42371212, Fax: 45 46755619

CHANG, S.S.
GL/LYP Hanscom AFB
Bedford, MA 01731 5000
U.S.A.
Tel: 617 377-2954, Fax: 617 377-4498

CLAUSSEN, Martin
Forschungszentrum Geesthacht
Max-Planck-St.
2054 Geesthacht
F.R.G.
tel: 49 4152 871521, Fax: 49 4152 871403

CUIJPERS, J.W.M.
Royal Netherlands Met. Inst.
P.O. box 201
3730 AE de Bilt
NETHERLANDS
Tel: 30 206468, Fax: 30 210407

COURTNEY, Michael
Meteorology and Wind Energy Department
Risø National Laboratory
DK-4000 Roskilde
DENMARK
Tel: 45 42371212, Fax: 45 46755619

✓ COUTSIAS, Evangelos A.
Optics and Fluid Dynamics Department
Risø National Laboratory
DK-4000 Roskilde
DENMARK
Tel: 45 42371212, Fax: 45 42370115
VAGELI@RISOE.DK

✓ DABBERDT, Walter F.
National Center for Atmospheric Research
P.O. Box 3000
Boulder, Co 80307, U.S.A.
Tel: 303 497 8647, Fax: 303 497 8770
SCIENCEnet/OMNET: NCAR.SSSF

DAMSKI, Juhani
Finnish Meteorological Institute
Sahaajankatu 22 E
SF-00810 Helsinki
FINLAND
Tel: 3580 758111, Fax: 3580 7581396

DAVIDSON, Mark J.
University of Cambridge (DAMTP)
Silver Street
Cambridge CB3 9EW
ENGLAND
Tel: 223 337858, Fax: 223 337918

DERBYSHIRE, Steven
U.K. Meteorological Office
Met.0.14 c/o Room 153
London Road, Bracknell
Berks. RG12 2SZ
ENGLAND
Tel: 344 856456, Telex: 849801

DJOLOV, George Dimitrov
Institute of Ecology
Bulg. Acad. of Science
Gagarin Str. 2, Sofia
BULGARIA
Tel: 705498

DLUGI, Ralph
Meteorological Institute
University
Theresienstr 37
D-8000 München 2
F.R.G.
Tel: 89 23944368, Fax: 89 2805248

DÖRNBRACK, Andreas
Academy of Sciences
Heinrich-Hertz-Institute of Atmospheric Research
Rudower Chaussee 5
DDR-1199 Berlin, D.D.R.
Tel: 6745140

DUYNKERKE, P.G.
K.N.M.I
P.O. box 201
3730 AE de Bilt
NETHERLANDS
Tel: 030 206468, Fax: 030 210407

✓ EBERHARD, Wynn L
 NOAA Wave Propagation Laboratory
 U.S. Dept. of Commerce - R/E/WP2
 325 Broadway
 Boulder, CO 80303
 U.S.A.
 Tel: 303 497 6560, Fax: 303 497 6978

EDSON, James B.
 LMTTD - ENSM
 1, Rue de la Noë
 44072 Nantes Cedex
 FRANCE
 Tel: 33 40371678, Fax: 33 40747406

EK, Michael
 Oregon State University
 Atmospheric Sciences Department
 Corvallis, OR 97331, U.S.A.
 Tel: 503 737 4558, Fax: 503 737 2540
 OREGON ST. ATMOS

EMEIS, Stefan
 Institut für Meteorologie und Klimaforschung
 Universität Karlsruhe
 Kaiserstrasse 12
 D-7500 Karlsruhe 1, F.R.G.
 Tel: 49 721 6083565, Fax: 49 721 6084290
 BH41@DKAUNI2.BITNET

ENGER, Leif
 Department of Meteorology
 Uppsala University, Box 516
 S-751 20 Uppsala
 SWEDEN
 Tel: 46 18142792, Fax: 46 18144706

ESCHER-VETTER, Heidi
 Met. Inst. Univ. München
 Theresienstr. 37
 D-8000 München 2
 F.R.G.
 Tel: 89 23944640, Fax: 89 2805248

ETLING, Dieter
 Institut für Meteorologie und Klimatologie
 Universität Hannover
 Herrenhäuserstr 2
 3000 Hannover 21
 F.R.G.
 Tel: 511 762 2677, Fax: 511 1762 3456

✓ FAIRALL, Chris
 Wave Propagation Laboratory
 R/E/WP7 NOAA/ERL
 325 Broadway, Boulder, CO 80303
 U.S.A.
 Tel: 303 497 3253, Fax: 303 497 6978

✓ FEDOROVICH, Eugene E.
 A.I. Voeikov Main Geophysical Observatory
 Karbyshev Str 7
 Leningrad 194018
 U.S.S.R.
 Tel: 812 2470103, Fax: 812 2478661

FIEDLER, Franz
 University Karlsruhe
 Department of Meteorology
 Kaiserstr 12
 D-7500 Karlsruhe, F.R.G.
 Tel: 49 721 6083555, Fax: 49 721 6084290

FOKEN, T.
 Main Meteorological Observatory
 Meteorological Service of the GDR
 Telegrafenberg
 Potsdam, DDR-1561
 Tel: 0037 33 316297, Telex: 15433 mspd dd

FRANDSEN, Sten
 Meteorology and Wind Energy Department
 Risø National Laboratory
 DK-4000 Roskilde
 DENMARK
 Tel: 45 42371212, Fax: 45 46755619

FRENZEN, Paul
The University of Chicago
c/o Environmental Research div.
Argonne National Lab., Bldg. 203
Argonne, IL 60439, U.S.A.
Tel: 708 9725830. Fax: 708 9725498
FRENZEN@ANLER.BITNET

FRIHE, Carl A.
University of California
Dept of Mechanical Engineering
Irvine, CA 92717, U.S.A.
Tel: 508 548 1400 or 714 856 6159
OMNET/SCIENCE NET: C.FRIHE

✓ GAL-CHEN, T.
University of Oklahoma
NCAR
P.O. Box 3000
Boulder, CO 80307-3000, U.S.A.
Tel: 303 497 8921, Fax: 303 497 8701

GARCIA, Roberto San Jose
University of Valladolid (Spain)
c/o Max Planck Institut für Meteorologie
Bundesstrasse 55
D-2000 Hamburg 13, F.R.G.
Tel: 40 41173212, Fax: 40 41173298
220030@DHOKRZ5.BITNET

GERZ, Thomas
DLR, Institute of Atmospheric Physics
D-8031 Oberpfaffenhofen
F.R.G.
Tel: 49 8153 28586, Fax: 49 8153 28243

GRIFFITH, Richard F.
Environmental Technology Centre
Department of Chemical Engineering
UMIST, P.O. box 88, Manchester M60 1QD
ENGLAND
Tel: 61 200 3980, Fax: 61 200 4399

GRYNING, Sven-Erik
Meteorology and Wind Energy Department
Risø National Laboratory
DK-4000 Roskilde
DENMARK
Tel: 45 42371212, Fax: 4542370115

GRØNSKEI, Knut Erik
Norwegian Institute for Air Research
P.O. box 64
N-2001 Lillestrøm
NORWAY
Tel: 6 814170

HALLGREN, Richard E.
American Meteorological Society
45, Beacon St.
Boston, MA 02108
U.S.A.
Tel: 617 227 2425, Fax: 617 742 8718. R.HALLGREN

HAMMOUCHE, Rabah
Office National de la Meteorologie
153 Dar el Beida
Alger
ALGERIA

HANSEN, Carsten
Meteorology and Wind Energy Department
Risø National Laboratory
DK-4000 Roskilde
DENMARK, Tel: 45 42371212, Fax: 45 42370115

HARRISON, A.W.
University of Calgary
2500 University Drive N.W.
Calgary, Alberta
CANADA T2N 1N4
Tel: 403 220 6337, Fax: 403 282 7298

HEINZ, Stefan
Akademie der Wissenschaften der DDR
Heinrich Hertz Institut
Rudower Chaussee 5
Berlin- Aldershof
DDR 1199
Tel: 6745069

HELFAND, Mark H.
NASA/Goddard Space Flight Center
Greenbelt
Maryland 20771
U.S.A.
Tel: 301 286 7509

HENDERSON, Harry W.
Meteorology Department/Penn State
603 Walker Building
University Park, PA 16802
U.S.A.
Tel: 814 863 2473, HWH@PSUVM.PSU.EDU

HOUDYSH, Walter G.
Environmental Science and Services Corp.
45-43 37th Street
Long Island City, NY 11101
U.S.A.
Tel: 718 7863948, Fax: 718 7060391

HUMMELSHØJ, Poul
Meteorology and Wind Energy Department
Risø National Laboratory
DK-4000 Roskilde
DENMARK
Tel: 45 42371212, Fax: 45 42370115

✓ HUNT, J.C.R.
Dept. of Applied Mathematics & Theoretical Physics
University of Cambridge
Silver Street, Cambridge CB3 9EW
ENGLAND
Tel: 44 2237870, Fax: 44 223 337918

HÖGSTRÖM, Ulf
Meteorologiska Institutionen
Box 516
S-75120 Uppsala
SWEDEN
tel: 46 18 142800, Fax: 46 18 144706

HØJSTRUP, Jørgen
Meteorology and Wind Energy Department
Risø National Laboratory
DK-4000 Roskilde
DENMARK
Tel: 45 42371212, FAX: 45 46755619

JEGEDE, 'Gbenga O.
Department of Meteorology
Uppsala University, Box 516
S-751 20 Uppsala
SWEDEN
Tel: 46 18 136758, Fax: 46 18 144706

JENSEN, Allan Bang
DK-Teknik
Gladsaxe Møllevej 15
2860 Søborg
DENMARK
Tel: 31696511, Fax: 31696002

JENSEN, Niels Otto
Meteorology and Wind Energy Department
Risø National Laboratory
DK-4000 Roskilde
DENMARK
Tel: 45 42371212, Fax: 45 42370115

✓ JOCHUM, Anne M.
DLR
Institut für Physik der Atmosphäre
D-8031 Oberpfaffenhofen
F.R.G.
Tel: 49 8153 28549, Fax: 49 8153 28243
PA15@DLRVM

JOFFRE, Sylvain M
Finnish Meteorological Institute
Sahaajankatu 22 E
SF-00810 Helsinki
FINLAND
Tel: 3580 7581320, Fax: 3580 7581396

JOHANSSON, Per-Erik
Department of Meteorology
Uppsala University
Box 516, S-751 20 Uppsala
SWEDEN
Tel: 46 18 142745, Fax: 46 18 144706

JØRGENSEN, Hans E.
Meteorology and Wind Energy Department
Risø National Laboratory
DK-4000 Roskilde
DENMARK
Tel: 45 42371212, Fax: 45 42370115

KAMADA, Ray
Naval Postgraduate School
Monterey, CA 93943
U.S.A.
Tel: 408 6462674

KAUPER, Erwin K.
Metro Monitoring Services Inc.
P.O. Box 4584
Covina, CA 91723
U.S.A.
Tel: 818 3328411

✓ KAYE, Andrew D.
AEA Technology
B551 Harwell Laboratory
Didcot Oxon OX11 0RA
ENGLAND
Tel: 235 821111, Fax: 235 432910

KHALSA, Siri Jodha S.
Cooperative Institute for Research in Envir. Sciences
University of Colorado, Campus Box 449
Boulder, CO 80309-0449
U.S.A.
Tel: 303 492 1445, Fax: 303 492 2468, S.KHALSA

KING, J.C.
British Antarctic Survey
High Cross, Madingley Rd.
Cambridge CB3 0ET
ENGLAND
Tel: 223 61188, Fax: 223 62616
U JCK@UK.AC.NBS.VC (JANET)

KOLAROVA, Maria Petrova
Institute of Meteorology and Hydrology
Bul. Lenin 66
Sofia 1184
BULGARIA
Tel: 722271/307

KORACIN, Darko
Desert Research Institute
P.O. box 60220
2625 Fox Avenue, Reno
Nevada 89506, U.S.A.
Tel: 702 677 3209, Fax: 702 677 3157

✓ KRISTENSEN, Leif
Meteorology and Wind Energy Department
Risø National Laboratory
DK-4000 Roskilde, DENMARK
Tel: 45 42371212, Fax: 45 42370115
METLEIF@RISOE.DK

✓ KYAW, Tha Paw U.
University of California
Dept of Land, Air and Water Resources
151 Hoagland Hall
Davis, CA 95616, U.S.A.
Tel: 916 752 1510, Fax: 916 752 1552
ktpawu@mizar.ucdavis.edu (BITNET)

LANDBERG, Lars
Meteorology and Wind Energy Department
Risø National Laboratory
DK-4000 Roskilde
DENMARK
Tel: 45 42371212, Fax: 4542370115

✓ LUDWIG, Francis L
SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025
U.S.A.
Tel: 415 859 2915, FLUDWIG@CRVAX.SRI.COM

✓ LARSEN, Søren
Meteorology and Wind Energy Department
Risø National Laboratory
DK-4000 Roskilde
DENMARK
Tel: 45 42371212, Fax: 45 42370115

LYCK, Erik
National Environmental Research Institute
Frederiksborgvej 399
DK-4000 Roskilde
DENMARK
Tel: 45 42371137

LENSCHOW, Donald H.
NCAR
P.O. box 3000
Boulder, CO 80307
U.S.A.
Tel: 303 4978903, Fax: 303 4978701

LYNOV, Jens-Peter
Optics and Fluid Dynamics Department
Risø National Laboratory
DK-4000 Roskilde
DENMARK
Tel: 45 42371212, Fax: 45 42370115
FYSIKJPL@RISOE.DK

✓ LILLY, Douglas K.
CIMMS/CAPS, University of Oklahoma
401 E. Boyd
Norman, OK 73019
U.S.A.
Tel: 405 325 3041, Fax: 405 325 7614

LOFSTRØM, Per
National Environmental Research Institute
Frederiksborgvej 399
DK-4000 Roskilde
DENMARK
Tel: 45 42371137

✓ LOBOCKI, Lech
Warsaw Technical University
POLAND
Telex: 813307 pw pl

Technical Univ. of Warsaw
Inst. Environmental Engineering
Meteorology Division
Nowowiejska 20
00-653 WARSZAWA
POLAND

MACVEAN, M.K.
U.K. Meteorological Office
Met 014, room 258
London Road, Bracknell
Berks. RG12 2SZ
ENGLAND
Tel: 344 856462, Telex: 849801

LOMBARD, Peter N.
University of Washington
Dept. of Mechanical Engineering, FU-10
Seattle WA 98195
U.S.A.
Tel: 206 5437837, Fax: 206 5458047
LOMBARD@KARMAN.ME.WASHINGTON.EDU

MAHRT, Larry
Oregon State University
Atmospheric Sciences Department
Corvallis, OR 97331, U.S.A.
Tel: 503 737 4558, Fax: 503 737 2540
OREGON.ATMOS

MAILHOT, Jocelyn
Recherche en Prévision Numérique - SEA
2121 Voie de Service Nord 508
Route Trans-canadienne
Dorval, Québec, CANADA H9P 1J3
Tel: 514 421 4760, Fax: 514 421 2106

MARTNER, Brooks E.
NOAA Wave Propagation Laboratory
325 Broadway
Boulder, CO 80303
U.S.A.
Tel: 303 497 6375

MASON, Paul J.
U.K. Meteorological Office
London Road, Bracknell
Berks, RG12 2SZ
ENGLAND
Tel: 344 854602

MAZUR, Evelyn
American Meteorological Society
45, Beacon St
Boston, MA 02108
U.S.A.
Tel: 617 227 2425, Fax: 617 742 8718, R. HALLGREN

MELAS, Dimitrios
Dept. of Meteorology, Uppsala University
Box 516
S-75120 Uppsala
SWEDEN
Tel: 46 18 142745, Fax: 46 18 144706

MENGELKAMP, Heinz-Theo
Forschungszentrum Geesthacht
Max-Planck Str.
D-2054 Geesthacht
F.R.G.
Tel: 49 4152 87 1558

✓ MESTAYER, Patrice G.
LM TTD - ENSM
1, Rue de la Noë
44072 Nantes Cedex 3
FRANCE
Tel: 33 40371678, Fax: 33 40747406

MILLER, Mark A.
The Pennsylvania State University
503 Walker Building
Dept. of Meteorology
University Park, PA 16802
U.S.A.
Tel: 814 864 3459

✓ MIKKELSEN, Torben
Meteorology and Wind Energy Department
Risø National Laboratory
DK-4000 Roskilde
DENMARK
Tel: 45 42371212, Fax: 45 42370115

✓ MOENG, Chin-Hoh
NCAR
P.O. Box 3000
Boulder, CO 80307
U.S.A.
Tel: 303 497 8911

✓ MORTENSEN, Niels Gylling
Meteorology and Wind Energy Department
Risø National Laboratory
DK-4000 Roskilde
DENMARK
Tel: 45 42371212, Fax: 45 42370115

✓ MORTENSEN, Sten
Danske Slagterier
Veterinær-afdelingen
Axeltorv 3
1609 København V
DENMARK

✓ MYLNE, Kenneth R.
UK Meteorological Office
London Road, Bracknell
Berks, RG12 2SZ
ENGLAND
Tel: 344 856242, Fax: 344 854411

NIELSEN, Morten
Meteorology and Wind Energy Department
Risø National Laboratory
DK-4000 Roskilde
DENMARK
Tel: 45 42371212, Fax: 45 42370115

NIELSEN, Niels Voetmann
Geofysisk Institut, Københavns Universitet
Haraldsgade 6
2200 København N
DENMARK
Tel: 31818188, Fax: 35822565

NIEUWSTADT, F.T.M.
Technological University Delft
126 Aero & Hydrodynamics
Rotterdamseweg 145, 2620 AI Delft
NETHERLANDS
Tel: 15 781005, Fax: 15 785602
WBAHNIE@HDETUD1.TUDELFT.NL

NIKITIN, Nicolai L.
Prospect Vernadskogo 101
117526 Moscow
U.S.S.R.

OHBA, R.
Mitsubishi Heavy Industries Ltd
Akunouramachi 1-1
850 91 Nagasaki
JAPAN
Tel: 958 28 7151, Fax: 958 28 7232

NØRGÅRD, Per
Meteorology and Wind Energy Department
Risø National Laboratory
DK-4000 Roskilde
DENMARK
Tel: 45 42371212, Fax: 45 46755619

OKE, T.R.
The University of British Columbia
Atmospheric Science Programme, Dept of Geography
218-1984 West Mall
Vancouver B.C., CANADA V6T 1W5
Tel: 604 228 2663, Fax: 604 228 5785
USERQUSS@UBCMTSG.BITNET

OLESEN, Helge Rørdam
National Environmental Research Institute
Frederiksborgvej 399
DK-4000 Roskilde
DENMARK
Tel: 42371137

ONCLEY, Steven
National Center for Atmospheric Research
P.O. Box 3000
Boulder, CO 80307-3000, U.S.A.
Tel: 303 497 8757, Fax: 303 497 8770
ONCLEY@RDSS.UCAR.EDU (Internet)

PECHINGER, Ulrike
Central Institute for Meteorology and Geodynamics
Hohe Warte 38
A-1190 Vienna
AUSTRIA
Tel: 222 364455-2402, Fax: 222 3691233-2403

PETERSEN, Erik L.
Meteorology and Wind Energy Department
Risø National Laboratory
DK-4000 Roskilde
DENMARK
Tel: 45 42371212, Fax: 45 42370115

PETERSON, E.W.
Rø Meteorology and Wind Energy Department
Risø National Laboratory
DK-4000 Roskilde
DENMARK
Tel: 45 42371212. Fax: 45 42370115

RAMAN, Sethu
North Carolina State Univ
Box 8208
Raleigh, NC 27695-8208
U.S.A.
Tel: 919 737 7144. Fax: 919 737 7802

✓ PETERSON, Holly G.
Norwegian Institute for Air Research
Postboks 64
N-2001 Lillestrøm
NORWAY
Tel: 6 814170

RASMUSSEN, Jens Juul
Optics and Fluid Dynamics Department
Risø National Laboratory
DK-4000 Roskilde
DENMARK
Tel: 45 42371212, Fax: 45 42370115. JUUL@RISOE.DK

PETERSON, Richard E.
Atmospheric Science Group
Texas Techn. University
Lubbock, TX 78409
U.S.A.
Tel: 806 742 3113

RICHNER, Hans
Atmospheric Physics ETH
Honggerberg
CH-8093 Zürich
SWITZERLAND
Tel: 411 3772759, Fax: 411 3711864
EARN: U9764@CZHETH5A

✓ POREH, Michael
Technicon, Israel Institute of Technology
Dept. Civil Engineering
Technician City, Haifa
ISRAEL
Tel: 972 4 292941. Fax: 972 4 220133

RILEY, James J.
University of Washington
Dept. of Mechanical Engineering
Seattle, WA 98195, U.S.A.
Tel: 206 5435347, Fax: 206 6858047
Rileyj@max.u.washington.edu (Internet)

✓ RAASCH, Siegfried
Institut für Meteorologie & Klimatologie
Universität Hannover
Herrenhäuser Str. 2, 3000 Hannover 21, F.R.G.
Tel: 511 7623253. Fax: 311 7623456

ROGBERG, Peter
The Royal Institute of Technology
Dept of Hydraulics Engineering
S-10044 Stockholm
SWEDEN
Tel: 46 8 7908696

RABY, Angus
Gill Instruments ltd
Solent House, Cannon Street
Lymington, Hants. SO41 9BR
U.K.
Tel: 590 679955. Fax: 590 676 409

ROGERS, David
Scripps Institution of Oceanography
A-021
La Jolla, CA 92093, U.S.A.
Tel: 619 534 6412, Fax: 619 534 7452, D.ROGERS (OM-
NET)

✓ ROTACH, Matthias
Geogr. Inst. ETH
Winterthurerstr. 190
8057 Zürich
SWITZERLAND
Tel: 0 2575221, Fax: 1 3625197, U5431@CZHETH5A

ROTH, Matthias
The University of British Columbia
Atmospheric Science Programme, Dept of Geography
218-1984 West Mall
Vancouver B.C., CANADA V6T 1W5
Tel: 604 228 2663, Fax: 604 228 5785
USERQUSS@UBCMTSG.BITNET

ROUAULT, Mathieu
Meteorology and Wind Energy Department
Risø National Laboratory
DK-4000 Roskilde
DENMARK

ROW, Mark
Bristol Industrial & Research Associates Limited
P.O. Box 2, 1 Beach road West
Portishead, Bristol BS20 9JB
ENGLAND
Tel: 272 847787, Fax: 272 847303

✓ SACRE, Christian
Centre Scientifique et Technique du Bâtiment
11, Rue Henri Picherit
44300 Nantes
FRANCE
Tel: 40372021, Fax: 40372040

SANDERHOFF, Peter
Meteorology and Wind Energy Department
DK-4000 Roskilde
DENMARK
Tel: 45 42371212, Fax: 45 46755619

✓ SAWFORD, B.L.
CSIRO Division of Atmospheric Research
Private Bag no 1, Mordialloc
Vic 3195
AUSTRALIA
Tel: (03) 586 7638, Fax: (03) 586 7600

SCHALLER, Eberhard
Fraunhofer-Inst. F. Atmosphärische Umweltforschung
Kreuzeckbahnstrasse 19
D-8100 Garmisch-Partenkirchen
F.R.G.
Tel: 8821 183240, Fax: 8821 73573

SCHMID, H.P.
Geogr. Inst. ETH
Winterthurerstr. 190
8057 Zürich
SWITZERLAND
Tel: (01) 257 5222, Fax: (01) 362 5197
U5431@CZHETH5A

✓ SCHNEIDER, Jeanne M.
CIMMS/CAPS University of Oklahoma
401 E. Boyd
Norman, OK 73019, U.S.A.
Tel: 405 325 3041, Fax: 405 325 7614
jschneid@geo785.gcn.uoknor.edu

SCHUMANN, U.
Institut für Physik der Atmosphäre
D-8031 Oberpfaffenhofen
F.R.G.
Tel: 49 815328321, Fax: 49 815328243
PA54@DLRVM.BITNET

SHABALOVA, Marina
State Hydrological Institute
199053 Leningrad, 2nd line, 23
U.S.S.R.
Tel: 812 1640005, Fax: 812 1135896
SFMT:SEAURCHIN

✓ SHAW, Roger H.
Dept. Land, Air & Water Resources
University of California
Davis, CA 95616
U.S.A.
Tel: 916 752 1822, Fax 916 752 1552

✓ SHAW, William J.
Naval Postgraduate School
Dept. of Meteorology, code MR
Monterey, CA 93943
U.S.A.
Tel: 408 646 3430, W.SHAW/OMNET

✓ SKUPNIEWICZ, Charles E.
Naval Postgraduate School
Monterey, CA 93943
U.S.A.
Tel: 408 6462451, Fax: 408 6463061

✓ SMEDMAN, Ann-Sofi
Meteorologiska Institutionen
Box 516
S-75120 Uppsala
SWEDEN
Tel: 46 18 142800, Fax: 46 18 144706

✓ SMITH, F.B.
U.K. Meteorological Office
London Rd, Bracknell
Berks. RG12 2SZ
ENGLAND
Tel: 344 856250, Fax: 344 854412

✓ SORBJAN, Zbigniew
CAPS, The University of Oklahoma
401E Boyd
Norman, OK 73019
U.S.A.
Tel: 405 3256099

✓ STAQUET, Chantal
Ecole Normale Supérieure de Lyon
Laboratoire de Physique
46 Allée d'Italie
69364 Lyon Cedex 07, FRANCE
Tel: 33 72728193, Fax: 33 72728080
STAQUET@FRENSL61

✓ STULL, Roland B.
Dept. of Meteorology
University of Wisconsin
Madison, WI 53706
U.S.A.
Tel: 608 262 9862, STULL@WISMACC (Bitnet)

✓ SUN, Wen-Yih
Purdue University
Dept of Earth and Atmos. Sc.
West Lafayette, IN 47907
U.S.A.
Tel: 317 494 7681, Fax 317 494 0776
mn2@mace.cc.purdue.edu

✓ SVENSSON, Gunilla
Department of Meteorology
Uppsala University, Box 516
S-751 20 Uppsala
SWEDEN
Tel: 46 18 108662, Fax: 46 18 144706

✓ SYRAKOV, Dimiter Entchev
Department of Meteorology, Sofia University
Institute of Meteorology and Hydrology
Bul. Lenin 66
Sofia 1184
BULGARIA

✓ THANING, Lennart
National Defence Research Establishment
S-901 82 Umeå
SWEDEN
Tel: 46 90189230, Fax: 46 90186902

THOMSON, David John
U.K. Meteorological Office
London Road, Bracknell
Berkshire RG12 2SZ
ENGLAND
Tel: 344 856249

VOGEL, Bernhard
Institut f. Meteorologie und Klimateforschung
Kernforschungszentrum Karlsruhe
Postfach 3640
D-7500 Karlsruhe 1, F.R.G.
Tel: 7247 824233, Fax: 7247 825070

✓ THYKIER-NIELSEN, Søren
Nuclear Safety Research Department
Risø National Laboratory
DK-4000 Roskilde
DENMARK
Tel: 45 42371212, Fax: 45 42370115
<SAAB@RISOE.DK>

TJERNSTRÖM, Michael
Department of Meteorology
Uppsala University, Box 516
S-75120 Uppsala, SWEDEN
Tel: 46 18 142761, Fax: 46 18 144706
metmt@alice.uu.se

TROEN, Ib
Meteorology and Wind Energy Department
Risø National Laboratory
DK-4000 Roskilde
DENMARK
Tel: 45 42371212, Fax: 45 42370115

VECCHIO, Guido Lo
Department of Physics, University of Ferrara
Via Paradiso 12
I-44100 Ferrara
ITALY
Tel: 532 760022, Fax: 532 762057

VILA-GUERAU DE ARELLANO, J.
Institute of Meteorology and Oceanography
University of Utrecht
Princetonplein 5
3584 CC Utrecht, NETHERLANDS
Tel: 31 30533271, Fax: 31 30531601
IN%"VILAEHUTRUU51"

✓ WALKO, Robert L.
Colorado State University
Dept. of Atmospheric Science
Fort Collins, CO 80523
U.S.A.
Tel: 303 491 8501, Fax: 303 491 8449

WEBER, M.
Met. Inst. Univ. München
Theresienstr. 37
D-8000 München 2, F.R.G.
Tel: 89 23944640, Fax: 89 2805248

WOOD, Nigel
U.K. Meteorological Office
Met.014, Room 153
London Road, Bracknell
Berks. RG12 2SZ
ENGLAND
Tel: 344 856456, Telex: 849801

XIAOHUA, Yang
Dept. of Meteorology, Uppsala University
Box 516
S-75120 Uppsala
SWEDEN
Tel: 46 18 142745, Fax: 46 18 144706

YORDANOV, Dimiter L.
Institute of Geophysics
Ac. G. Bonchev Str. Block 3
Sofia 1113
BULGARIA
Tel: 7131/3389

ZHANG, Cun-Xiao
Centre Scientifique et Technique du Batiment
11, Rue Henri Picherit
44300 Nantes
FRANCE
Tel: 40372000, Fax: 40372040

✓ ZELLER, Karl F.
US Forest Service
240 West Prospect Street
Fort Collins, CO 80526
U.S.A.
Tel: 303 498 1238, Fax: 303 498 1010

ZEUNER, Günther
Research Center Jülich
Safety and Radiation Prot. Dep.
Postfach 1913
5170 Jülich
F.R.G.
Tel: 49 2461 615189, Fax: 49 2461 613726

ZILITINKEVICH, Sergei
Institute of Limnology, USSR Acad. Sci.
Sevastyanov Str. 9
196199 Leningrad
U.S.S.R.
Tel: 812 2441542, Fax: 812 1135896

APPENDIX C. BIBLIOGRAPHICAL LISTING OF LITERATURE ACQUIRED

SESSION 1: BOUNDARY LAYER CLOUDS I

Chairperson: Christopher W. Fairall, NOAA/ERL/WPL, Boulder, Colo.

1.1	OBSERVATIONAL EVALUATION OF TURBULENT TRANSPORT MECHANISMS AND BUDGETS IN THE CLOUD-TOPPED CONVECTIVE BOUNDARY LAYER. D. Baumgardner and A. M. Jochum, Inst. of Atmospheric Physics, Wessling, Fed. Rep. of Germany	*
1.2	STABILITY CRITERIA FOR STRATOCUMULUS-TOPPED BOUNDARY LAYERS EVALUATED THROUGH CONDITIONAL SAMPLING OF TURBULENCE ELEMENTS. Siri J. S. Khalsa, CIRES, Univ. of Colorado, Boulder, Colo.	1
1.3	CLOUD-TOP ENTRAINMENT INSTABILITY AS A SMALL SCALE MIXING PROCESS. M. K. MacVean and P. J. Mason, British Meteorological Office, Bracknell, U.K.	5
1.4	A TURBULENCE MODEL OF THE CLOUD-TOPPED BOUNDARY LAYER. J. Mailhot and R. Benoit, AES, Dorval, Canada	*
1.5	COMPOSITE UPDRAFT AND DOWNDRAFT IN STRATUS-TOPPED BOUNDARY LAYER. Chin-Hoh Moeng, NCAR, Boulder, Colo.; and U. Schumann, DLR, Inst. of Atmospheric Physics, Oberpfaffenhofen, Fed. Rep. of Germany	7

POSTER SESSION P1

P1.1	TURBULENCE IN MARINE STRATOCUMULUS. Robert F. Cahalan, NASA/GSFC, Greenbelt, Md.; and J. B. Snider, NOAA/ERL/WPL, Boulder, Colo.	11
P1.2	THE INFLUENCE OF THE VEGETATION AND RADIATION ON THE FORMATION OF FOG: A COMPARISON OF MODEL RESULTS WITH OBSERVATIONS. Peter G. Duynkerke, Royal Netherlands Meteorological Inst., De Bilt, The Netherlands	14
P1.3	MESOSCALE INHOMOGENEITIES AND BOUNDARY LAYER CLOUD FORMATION IN HAPEX-MOBILHY. Michael Ek and L. D. Mahrt, Oregon State Univ., Corvallis, Oreg.	18
P1.4	MODEL STUDY OF THE TURBULENT EXCHANGE PROCESSES IN SHALLOW GENTLE WATER FLOW AND ATTACHED ATMOSPHERIC SURFACE LAYER. E. E. Fedorovich and B. G. Vager, Main Geophysical Observatory, Leningrad, U.S.S.R.	*
P1.5	PAPER WITHDRAWN	
P1.6	NUMERICAL STUDY OF COLD AIR OUTBREAK OVER THE EAST CHINA SEA. Wen-yih Sun, Purdue Univ., West Lafayette, Ind.; and Wu-ron Hsu, National Taiwan Univ., Taipei, Taiwan	*
P1.7	TURBULENCE STUDIES IN THE BOUNDARY LAYER ALONG THE MONSOON TROUGH. Malti Goel and H. N. Srivastava, Technology Bhawan, New Delhi, India	*
P1.8	WIND STRESS ESTIMATES FROM A SMALL BUOY. K. L. Davidson and C. E. Skupniewicz, Naval Postgraduate School, Monterey, Calif.	21
P1.9	CONSTRUCTION AND CALIBRATION OF A STATIC PRESSURE MEASURING DEVICE FOR ATMOSPHERIC APPLICATIONS. L. van Haren and J. M. Bessen, Delft Univ. of Tech., Rotterdam, The Netherlands	*

*Paper not available; if received in time, it will appear in back of book.

P1.10	FINITE SAMPLING, WINDOWING, AND THE ESTIMATION OF DISSIPATION RATES J. C. Kaimal, NOAA/ERL/WPL, Boulder, Colo.; and L. Kristensen, Risø National Lab., Roskilde, Denmark	25
P1.11	ESTIMATING TURBULENCE PARAMETERS FROM SODAR MEASUREMENTS. Dimitrios Melas, Uppsala Univ., Uppsala, Sweden	29
P1.12	FLUX-PROFILE RELATIONSHIPS IN THE CONVECTIVE SURFACE LAYER ABOVE THE TROPICAL OCEAN. E. Frank Bradley and P. A. Coppi, CSIRO, Canberra, Australia	*

SESSION 2: BOUNDARY LAYER CLOUDS II

Chairperson: Chin-Hoh Moeng, NCAR, Boulder, Colo.

2.1	TOP-HAT PROFILE APPROXIMATIONS FOR VERTICAL FLUXES IN THE CLEAR AND STRATUS-TOPPED CONVECTIVE BOUNDARY LAYER EVALUATED FROM LARGE EDDY SIMULATIONS. Ulrich Schumann, DLR, Inst. of Atmospheric Physics, Oberpfaffenhofen, Fed. Rep. of Germany; and C.-H. Moeng, NCAR, Boulder, Colo.	31
2.2	A NUMERICAL STUDY OF PERTURBATIONS IN STRATIFORM BOUNDARY LAYER CLOUD FIELDS ON THE MESOSCALE. Michael Tjernström, Uppsala Univ., Uppsala, Sweden	35
2.3	INFLUENCE OF MESOSCALE SEA SURFACE TEMPERATURE ON THE BREAKUP OF BOUNDARY-LAYER CLOUDS. Mickey Man-Kui Wai and S. A. Stage, Florida State Univ., Tallahassee, Fla.	39
2.4	OBSERVATIONAL STUDY OF THE DEVELOPMENT OF A SNOW-PRODUCING CONVECTIVE INTERNAL BOUNDARY LAYER OVER LAKE MICHIGAN. Sam S. Chang and R. R. Braham, Jr., Univ. of Chicago, Chicago, Ill.	43

SESSION 3: MARINE/OCEANIC BOUNDARY LAYERS

Chairperson: Søren E. Larsen, Risø National Lab., Roskilde, Denmark

3.1	ATMOSPHERIC TURBULENCE OVER THE WESTERN GULF STREAM DURING AN INTENSE COLD-AIR OUTBREAK. Shu-Hsien Chou, NASA/GSFC, Greenbelt; and M. P. Ferguson, Caelum Res. Corp., Silver Spring, Md.	47
3.2	ATMOSPHERIC SURFACE-LAYER ABOVE THE MARGINAL ICE ZONE: INTERNAL BOUNDARY LAYERS. Marti Clausen, Forschungszentrum Geesthacht, Geesthacht, Fed. Rep. of Germany	*
3.3	OVERWATER RESULTS ON THE DIMENSIONLESS TKE DISSIPATION RATE. K. L. Davidson and P. J. Boyle, Naval Postgraduate School, Monterey, Calif.	51
3.4	INFLUENCE OF COSTAL FETCH-LIMITED WAVES ON DETERMINING THE WIND STRESS DURING DIABATIC CONDITIONS. G. L. Geernaert, Naval Res. Lab., Washington, D.C.	54
3.5	SURFACE LAYER TURBULENCE OVER A SEA SURFACE TEMPERATURE FRONT. David P. Rogers, Scripps Inst. of Oceanography, La Jolla; C. A. Friehe, Univ. of California, Irvine; and W. J. Shaw, Naval Postgraduate School, Monterey, Calif.	58
3.6	THE STRUCTURE OF THE ATMOSPHERIC BOUNDARY LAYER FOR FLOW PARALLEL TO THE ICE EDGE: AIRCRAFT OBSERVATIONS FROM CEAREX. William J. Shaw, Naval Postgraduate School, Monterey, Calif.; and L. Radke, Univ. of Washington, Seattle, Wash.	62
3.7	INERTIAL-DISSIPATION FLUX ESTIMATIONS: THE HEXMAX RESULTS. James B. Edson and C. W. Fairall, Penn State Univ., University Park, Pa.; P.G. Mestayer, Inst. de Mécanique Statistique de la Turbulence, Marseille, France; and S. E. Larsen, Risø National Lab., Roskilde, Denmark	66

*Paper not available; if received in time, it will appear in back of book.

SESSION 4: FIELD EXPERIMENTAL TECHNIQUES I

Chairperson: Leif Kristensen, Risø National Lab., Roskilde, Denmark

4.1	THE DEVELOPMENT OF A SURFACE-BASED SYSTEM FOR OBSERVING BOUNDARY LAYER CLOUDS. Bruce A. Albrecht, M. A. Miller and R. M. Peters, Penn State Univ., University Park, Pa.	70
4.2	PROSPECTS FOR MEASURING PATH-AVERAGED TURBULENT HEAT FLUXES USING SCINTILLATION AT THREE WAVELENGTHS. Edgar L. Andreas, U.S. Army Cold Regions Res. and Engineering Lab., Hanover, N.H.	74
4.3	PROGRESS IN TURBULENCE MEASUREMENTS BY DOPPLER LIDAR. Wynn L. Eberhard, R. M. Hardesty and M. J. Post, NOAA/ERL/WPL; and B. J. Rye and K. R. Healy, CIRES, Boulder, Colo.	78
4.4	DOPPLER RADAR MEASUREMENTS OF VERTICAL VELOCITY IN THE CONVECTIVE BOUNDARY LAYER. A. S. Frisch, B. B. Stankov, B. E. Martner and J. C. Kaimal, NOAA/ERL/WPL, Boulder, Colo.	82
4.5	FLUX ESTIMATION OF THE FIFE PLANETARY BOUNDARY LAYER (PBL) WITH 10.6 μ m DOPPLER LIDAR. Tzvi Gal-Chen and M. Xu, Univ. of Oklahoma, Norman, Okla.; and W. L. Eberhard, NOAA/ERL/WPL, Boulder, Colo.	86
4.6	SPATIAL AND TEMPORAL VARIABILITY OF TURBULENT FLUXES OF OZONE IN THE CONVECTIVE BOUNDARY LAYER. Anne M. Jochum and N. Entstrasser, Inst. of Atmospheric Physics, Wessling; and R. Schmidt, Univ. Bonn, Bonn, Fed. Rep. of Germany	•
4.7	ERRORS IN MEASURING SECOND-, THIRD-, AND FOURTH-ORDER MOMENTS OF TURBULENCE VARIABLES. D. H. Lenschow and L. Kristensen, NCAR, Boulder, Colo.	90
4.8	PARTICLE SIZING AND VELOCITY MEASUREMENTS USING LASER DOPPLER TECHNIQUE. Per Haugen, Dantec Electronik, Skovlunde, Denmark	94

SESSION 5: FIELD EXPERIMENTAL TECHNIQUES II

Chairperson: Hans Richner, LAPETH, Zürich, Switzerland

5.1	DUAL DOPPLER MEASUREMENT OF MOMENTUM FLUX: RESULTS FROM THE PHOENIX II STUDY OF THE CONVECTIVE BOUNDARY LAYER. Douglas K. Lilly and J. M. Schneider, Univ. of Oklahoma, Norman, Okla.	98
5.2	EVALUATION OF THE RESPONSE TIMES OF AN AIRBORNE DEW-POINT HYGROMETER. Zekai Otles, Univ. of Wisconsin, Madison, Wis.	102
5.3	PARAMETERIZATION OF THE CONVECTIVE BOUNDARY LAYER BASED ON SODAR OBSERVATIONS DURING THE FIFE-1987 EXPERIMENT. Zbigniew Sorbjan, Univ. of Oklahoma, Norman, Okla.; and R. L. Coulter, Argonne National Lab., Argonne, Ill.	106
5.4	SIMULTANEOUS MEASUREMENTS OF THE EDDY DIFFUSIVITIES AND GRADIENTS OF OZONE, SENSIBLE HEAT AND MOMENTUM. Karl Zeller, D. Fox and W. Massman, USDA Forest Service, Ft. Collins, Colo.	110
5.5	RADAR OBSERVATIONS OF TRANSPORT AND DIFFUSION OF CHAFF IN A STRATUS CLOUD. Brooks E. Martner, NOAA/ERL/WPL, Boulder, Colo.	115

POSTER SESSION P2

P2.1	THE VALUE OF ON-SITE SODAR DATA IN REGIONAL MODELING. John S. Nasstrom and R. L. Baskett, EG&G Energy Measurements, Inc., Pleasanton; and R. Lange, Lawrence Livermore National Lab., Livermore, Calif.	119
------	---	-----

*Paper not available; if received in time, it will appear in back of book.

P2.2	THE HUNT FOR THE BIG EDDY: A VISUAL EXPLORATION OF THE VORTICAL STRUCTURES IN A HEATED, SHEARED PBL. Jeanne M. Schneider and D. K. Lilly, Univ. of Oklahoma, Norman, Okla.	
P2.3	ON THE USE OF PRESSURE FLUCTUATION ON THE RADOME OF A SABRELINER AIRCRAFT FOR BOUNDARY LAYER TURBULENCE MEASUREMENTS. Michael Tjernström, Uppsala Univ., Uppsala, Sweden	123
P2.4	A TRACER TECHNIQUE FOR FULL-SCALE ATMOSPHERIC DISPERSION EXPERIMENTS. Erik Lyck, National Environmental Res. Inst., Roskilde, Denmark	127
P2.5	WIND OBSERVATIONS AND "NONLINEAR INTERACTIONS" BETWEEN SUBJECTIVE AND OBJECTIVE MEASURES. Ernest W. Peterson, Oregon State Univ., Corvallis, Oreg.	130
P2.6	A TELEMETRY-FREE AIRBORNE DATA ACQUISITION SYSTEM (TADAS) FOR BOUNDARY LAYER MEASUREMENTS. D. Andre Erasmus, Univ. of Transkei, Umtata, Transkei, Southern Africa; and H. R. Ryerson, Univ. of Hawaii, Honolulu, Hawaii	132
P2.7	PAPER WITHDRAWN	
P2.8	PATTERNS OF ATMOSPHERIC DEPOSITION AFFECTED BY A SPRUCE FOREST EDGE. Claus Beier and P. Gundersen, Technical Univ. of Denmark, Lyngby, Denmark	135
P2.9	SMOKE AND TURBULENCE MEASUREMENTS FOR THE AMADEUS FIELD TRIALS OVER COMPLEX TERRAIN. Ronald M. Cionco, U.S. Army Atmospheric Sciences Lab., White Sands Missile Range, New Mexico; and T. Mikkelsen, Risø National Lab., Roskilde, Denmark	137
P2.10	FLUCTUATIONS OF VISIBILITY THROUGH A GROUND LEVEL AEROSOL PLUME. M. Poreh and A. Hadad, Israel Inst. of Technology, Haifa, Israel; and J. E. Cermak, Colorado State Univ., Ft. Collins, Colo.	141
P2.11	TURBULENCE IN A DENSE GAS MIXING LAYER. Morten Nielsen, N. O. Jensen and S. Ott, Risø National Lab., Roskilde, Denmark	145
P2.12	AN INVESTIGATION OF CONCENTRATION FLUCTUATIONS FROM MEANDERING PLUMES. Holly G. Peterson, Norwegian Inst. for Air Res., Lillestrøm, Norway; and B. K. Lamb, Washington State Univ., Pullman, Wash.	149
P2.13	FIELD AND RANDOM WALK MODELING STUDY OF THE ATMOSPHERIC DISPERSION IN MOUNTAIN VALLEY TERRAIN. Jia-Yi Chen and X. H. Cai, Beijing Univ., Beijing; and L. Cong, Fujian Prov. Envir. Protection Inst., Fuzhou, People's Rep. of China	153

SESSION 6: TRANSPORT AND DIFFUSION I

Chairperson: Frans T. M. Nieuwstadt, Delft Univ. of Technology, Delft, The Netherlands

6.1	RESULTS FROM A RANDOM WALK DISPERSION MODEL IN LOW WINDSPEED STABLE CONDITIONS. Domenico Anfossi, CNR Inst. di Cosmogeofisica, Torino; and G. Brusasca and G. Tinarelli, ENEL Centro Ricerca Termica e Nucleare, Milano, Italy	160
6.2	INTRODUCTION OF SUB-GRID SCALE EFFECTS IN REGIONAL MODELS. Jordi Vila-Guerau de Arellano and P. J. H. Builtes, Univ. of Utrecht, Utrecht, The Netherlands	164
6.3	CONCENTRATION FLUCTUATION MEASUREMENTS OF A TRACER PLUME AT UP TO 1KM RANGE IN THE ATMOSPHERE. Kenneth R. Mylne, Meteorological Office, Bracknell, U.K.	168
6.4	THE TARONG POWER STATION CONVECTIVE ATMOSPHERIC DISPERSION STUDY. Brian L. Sawford, S. A. Young, G. Patterson, E. F. Bradley, P. A. Coppin, J. C. Carras, D. J. Williams, A. L. Lange and C. J. Thomson, CSIRO, Mordialloc; and N. J. Clark, Flinders Univ., Adelaide, Australia	172

*Paper not available; if received in time, it will appear in back of book.

SESSION 7: PHYSICAL/NUMERICAL SIMULATIONS I

Chairperson: Paul J. Mason, British Meteorological Office, Bracknell, U.K.

7.1 SUBGRID PARAMETERIZATION IN A LARGE EDDY SIMULATION MODEL. 176
J. W. M. Cuijpers, KNMI, De Bilt, The Netherlands

7.2 INVESTIGATION OF QUANTITATIVE APPLICATIONS OF VIDEO IMAGING SYSTEMS 180
TO FLUID MODELING STUDIES OF TURBULENCE AND DISPERSION. Walter F. Dabberdt,
NCAR, Boulder, Colo.; and W. G. Hoydysh, Environmental Science & Services Corp., Long
Island City, N.Y.

7.3 LABORATORY OBSERVATIONS OF TURBULENT GRAVITY WAVE CRITICAL LAYER * /
INTERACTION. Donald P. Delisi and T. J. Dunkerton, Northwest Res. Associates, Inc.,
Bellevue, Wash.

7.4 SIMULATIONS OF EVAPORATING DROPLET DIFFUSION IN OCEANIC CONDITIONS 184
USING THE HEXIST/CLUSE NUMERICAL MODELS. James B. Edson and P. G. Mestayer,
Ecole Nationale Supérieure de Mécanique, Nantes, France; and M. P. Rouault and S.E. Larsen,
Risø National Lab., Roskilde, Denmark

7.5 SIMULATION OF SURFACE FLUXES AND SKIN TEMPERATURE: PRELIMINARY 188
RESULTS FOR THE PINE FOREST IN HAPEX-MOBILHY. A.A.M. Holtslag, NCAR, Boulder,
Colo.; and M. Ek, Oregon State Univ., Corvallis, Oreg.

7.6 NUMERICAL SIMULATION OF A SHEAR-DRIVEN, WELL-MIXED, ATMOSPHERIC 192
PLANETARY BOUNDARY LAYER. H. Mark Helfand and R. Boers, NASA/GSFC, Greenbelt,
Md.

7.7 SENSITIVITY TESTS OF TURBULENT KINETIC ENERGY CLOSURE IN SIMULATIONS 196
OF JANUARY 28 COLD-AIR OUTBREAK DURING GALE (1986). Ching-Yuang Huang and S.
Raman, North Carolina State Univ., Raleigh, N.C.

SESSION 8: PHYSICAL/NUMERICAL SIMULATIONS II

Chairperson: Willy Z. Sadeh, Colorado State Univ., Ft. Collins, Colo.

8.1 ENERGETICS OF A STABLY STRATIFIED MIXING LAYER. Peter N. Lombard and 202
J. J. Riley, Univ. of Washington, Seattle, Wash.; and D. D. Stretch, NASA/Ames Res. Ctr., Moffett
Field, Calif.

8.2 LARGE EDDY SIMULATION OF THE STABLY STRATIFIED ATMOSPHERIC 206
BOUNDARY LAYER. Paul J. Mason, British Meteorological Office, Bracknell, U.K.

8.3 THE DYNAMICS OF A BUOYANT LINE SOURCE IN THE CONVECTIVE BOUNDARY 209
LAYER: A LARGE-EDDY SIMULATION. Frans T. M. Nieuwstadt and L. van Haren, Tech.
Univ., Delft, The Netherlands

8.4 NUMERICAL STUDIES OF THE EVOLUTION OF COHERENT STRUCTURES IN 212
TWO-DIMENSIONAL SHEAR FLOW. E. A. Coutsias, T. Huld and J. P. Lynov, Risø National
Lab., Roskilde, Denmark

8.5 A NEW SALINE LABORATORY MODEL FOR STUDYING DISPERSION IN THE 216
CONVECTIVE BOUNDARY LAYER. Mark Hibberd and B. L. Sawford, CSIRO, Mordialloc,
Australia

8.6 ATTRACTOR DIMENSIONS AND STATISTICAL PROPERTIES OF SURFACE AND 220
PROFILER-MEASURED TROPOSPHERIC WINDS. Dennis W. Thomson and H. W. Henderson,
Penn State Univ., University Park, Pa.

8.7 USING THE K-EPSILON APPROACH FOR THREE-DIMENSIONAL ATMOSPHERIC 224
BOUNDARY LAYER MODELING. J. Y. Caneill, B. Carissimo and A. El Khalfi, EDF/DER,
Chatou, France

*Paper not available; if received in time, it will appear in back of book.

SESSION 9: SURFACE PROPERTIES/SIMILARITY I

Chairperson: Paul Frenzen, Argonne National Lab., Argonne, Ill.

9.1	ORGANIZED STRUCTURES AND TURBULENT PRESSURE FLUCTUATIONS ABOVE A PINE FOREST. Hans Bergström, Uppsala Univ., Uppsala, Sweden	228
9.2	THE BEHAVIOR OF THE TRANSFER EFFICIENCIES OF SENSIBLE HEAT AND WATER VAPOUR UNDER CONDITIONS OF LOCAL ADVECTION. Nick J. Bink, Vrije Univ., Amsterdam; and L. J. M. Kroon, Agricultural Univ., Wageningen, The Netherlands	232
9.3	ANALYSIS OF TURBULENCE STRUCTURE IN THE SURFACE LAYER WITH A MODIFIED SIMILARITY FORMULATION FOR NEAR NEUTRAL CONDITIONS. Ulf Höglström, Uppsala Univ., Uppsala, Sweden	235
9.4	SURFACE LAYER PROFILES AND TURBULENCE MEASUREMENTS OVER UNIFORM LAND UNDER NEAR-NEUTRAL CONDITIONS. Steven P. Oncley and J. A. Businger, NCAR, Boulder, Colo.; C. A. Friehe and J. C. LaRue, Univ. of California, Irvine, Calif.; E. C. Itsweire, Johns Hopkins Univ., Baltimore, Md.; and S. S. Chang, AFGL, Bedford, Mass.	237
9.5	CALCULATION OF THE PRESSURE FIELD ASSOCIATED WITH COHERENT TURBULENT STRUCTURES AT A FOREST SITE. Roger H. Shaw, K. T. Paw U, X. J. Zhang and W. Gao, Univ. of California, Davis, Calif.	241

POSTER SESSION P3

P3.1	GRAVITY WAVES, COHERENT STRUCTURES AND PLANT CANOPIES. K. T. Paw U and R. H. Shaw, Univ. of California, Davis, Calif.; and T. Maitani, Okayama Univ., Kurashiki, Japan	244
P3.2	ADVECTIVE INFLUENCES IN THE AMAZONIAN FOREST TERRAIN. Y. Viswanadham, R. C. dos Santos and R. Gielow, Inst. de Pesquisas Espaciais (INPE), São José dos Campos, Brazil	•
P3.3	THE INFLUENCE OF STABILITY ON EFFECTIVE ROUGHNESS LENGTHS. Nigel Wood and P. J. Mason, British Meteorological Office, Bracknell, U.K.	247
P3.4	SEA-SURFACE ROUGHNESS FOR EQUILIBRIUM AND NON-EQUILIBRIUM WIND AND SEA STATES. Carsten Hansen, Univ. of Copenhagen, Copenhagen, Denmark; G. L. Geernaert, Naval Res. Lab., Washington, D.C.; and F. A. Hansen and S. E. Larsen, Risø National Lab., Roskilde, Denmark	250
P3.5	THE NUMERICAL SIMULATION OF THE TURBULENT AIRFLOW OVER ASKERVEIN. P. J. Dawson, Boise State Univ., Boise, Idaho; and D. E. Stock, Washington State Univ., Pullman, Wash.	•
P3.6	ON THE USE OF A MESOSCALE MODEL TO ESTIMATE THE IMPACT OF AN ARTIFICIAL LAKE ON THE REGIONAL PRECIPITATION CLIMATE. Leif Enger and M. Tjernström, Uppsala Univ., Uppsala, Sweden	254
P3.7	A NUMERICAL SIMULATION OF AN OBSERVED HEATED AND SHEARED BOUNDARY LAYER WITH MESOSCALE FORCING. Douglas K. Lilly, Univ. of Oklahoma, Norman, Okla.; and P. J. Mason, British Meteorological Office, Bracknell, U.K.	258 /
P3.8	(Paper moved to P4.12)	
P3.9	A CELL DYNAMICAL SYSTEM MODEL FOR TURBULENT SHEAR FLOWS IN THE PLANETARY ATMOSPHERIC BOUNDARY LAYER. A. Mary Selvam, Indian Inst. of Tropical Meteorology, Shivajinagar, Pune, India	262
P3.10	IDENTIFICATION OF COHERENT STRUCTURES IN TWO-DIMENSIONAL TURBULENT FLOWS. T. Huld, A. H. Nielsen, H. L. Pécseli and J. J. Rasmussen, Risø National Lab., Roskilde, Denmark	266

*Paper not available; if received in time, it will appear in back of book.

		Page
P3.11	STUDY OF THE ADEQUACY OF A QUASI-NONHYDROSTATIC RESIDUAL SCHEME IN SECOND-ORDER CLOSURE MODELS. Yang Ziaohua, Uppsala Univ., Uppsala, Sweden	
P3.12	DETAILED OBSERVATIONS OF THE TURBULENT STRUCTURE THROUGH THE DEPTH OF AN INTERNAL BOUNDARY LAYER. Per-Erik Johansson, Uppsala Univ., Uppsala, Sweden	270
P3.13	DECOUPLING OF CLOUD AND SUBCLOUD LAYERS OVER THE OCEAN. Darko Koračin, Desert Research Inst., Reno, Nev.; and D. P. Rogers, Scripps Inst. of Oceanography, La Jolla, Calif.	272
 WORKSHOP ON DISPERSION AROUND GROUPS OF BUILDINGS		
Chairperson: Julian C. R. Hunt, Univ. of Cambridge, Cambridge, U.K.		
W1	MODELING OF URBAN DISPERSION. Julian C. R. Hunt, Univ. of Cambridge, Cambridge, U.K.	
W2	PAPER WITHDRAWN	
W3	DENSE GAS DISPERSION AROUND BUILDINGS. Niels O. Jensen, Risø Nat'l Lab., Roskilde, Denmark	
W4	FAST RESPONSE TRACER EXPERIMENTS IN THE FIELD ON AN ISOLATED BLDG. R. Griffiths, UMIST, Manchester; and C. D. Jones, Chemical Defense Establishment, Salisbury, U.K.	
W5	FIELD EXPERIMENTS IN URBAN DISPERSION. Sven-Erik Gryning, Risø National Lab., Roskilde, Denmark	
W6	WIND TUNNEL STUDIES AND MODELING IN URBAN DISPERSION. M. Davidson and R. Perkins, DAMTP, Cambridge, U.K.	
W7	NUMERICAL MODELING OF DIFFUSION IN URBAN CANOPIES. P. G. Mestayer, J.-F. Sini, S. Levi-Alvares, C. Rey, A. Abdelqari and J. B. Edson, Ecole Nationale Supérieure de Mécanique, Nantes, France	276
W8	(TITLE UNSPECIFIED). J. T. Lee, Los Alamos National Lab., Los Alamos, N.Mex.	Withdrawn
W9	PAPER WITHDRAWN	
W9A	URBAN DISPERSION STUDIES AT CSTB. Christian Sacré, C. Solliec and J. Gandemer, Ctr. Scientifique et Technique du Bâtiment (CSTB), Nantes, France	280
W10	TESTS FOR A FLOW SIMULATION AROUND AN ISOLATED BLOCK: K-EPSILON TURBULENCE MODEL IMPROVEMENTS. Sandrine Levi-Alvares and J.-F. Sini, Ecole Nationale Supérieure de Mécanique; and C. X. Zhang and C. Sacré, CSTB, Nantes, France	283
W11	PREDICTION OF GAS CONCENTRATION BEHIND A BUILDING UNDER UNSTEADY WIND CONDITIONS. R. Ohba, Mitsubishi Heavy Industries Ltd., Nagasaki; and S. Kakishima, Central Research Inst. of Electric Power Industry, Tokyo, Japan	285
W12	TURBULENCE IN AN URBAN TRANSITION LAYER. Mathias Rotach, Swiss Federal Inst. of Technology, Zürich, Switzerland	289
W13	TURBULENT TRANSFER CHARACTERISTICS OVER A ROUGH URBAN SURFACE. M. Roth, Univ. of British Columbia, Vancouver, Canada	293
W14	MODELING OF SHORT-TERM AND LONG-TERM AVERAGED CONCENTRATION FIELDS NEAR BUILDINGS. M. E. Berlyand, E. L. Genikhovich and A. S. Kulick, Voeikov Main Geophysical Observatory, Leningrad, U.S.S.R.	No show
W15	VARIATION IN DISPERSION CONDITIONS WITH HEIGHT OVER URBAN AREAS – RESULTS OF DUAL TRACER EXPERIMENTS. Knut E. Grønskei, Norwegian Inst. for Air Res., Lillestrøm, Norway	297

*Paper not available; if received in time, it will appear in back of book.

SESSION 10: SURFACE PROPERTIES/SIMILARITY II

Chairperson: Ulf Hogstrom, Uppsala Univ., Uppsala, Sweden

10.1	WIND SPEED SPECTRUM FROM ONE YEAR OF CONTINUOUS 8 HZ MEASUREMENTS. M. Courtney and I. Troen, Risø National Lab., Roskilde, Denmark	301
10.2	POWER SPECTRA OF HORIZONTAL WIND COMPONENTS IN THE NEUTRAL ATMOSPHERIC SURFACE BOUNDARY LAYER. Jorgen Højstrup, S. E. Larsen and P. H. Madsen, Risø National Lab., Roskilde, Denmark	305
10.3	ON THE NATURE OF SMALL-SCALE ISOTROPIC TURBULENCE. V. C. Wong, CIMMS/CAPS, Univ. of Oklahoma, Norman, Okla.	309
10.4	MODELING THE INTERNAL BOUNDARY LAYER AT A COASTAL SITE. Ruwim Berkowicz and H. R. Olesen, National Environmental Res. Inst., Roskilde, Denmark	311

SESSION 11: TRANSPORT AND DIFFUSION II

Chairperson: Frans T. M. Nieuwstadt, Delft Univ. of Technology, Delft, The Netherlands

11.1	AIR POLLUTION IN THE BOUNDARY LAYER. Wen-yih Sun, Purdue Univ., West Lafayette, Ind.	315
11.2	THE DESCRIPTION OF FLUID PARTICLE MOTION IN A TURBULENT FLOW. Stefan Heinz, Academy of Sciences of the GDR, Berlin, German Democratic Rep.	319
11.3	MODELLING DRY DEPOSITION OF PARTICLES TO THE OCEAN. P. Hummelshøj, N. O. Jensen and S. E. Larsen, Risø National Lab., Roskilde; and C. Hansen, Univ. of Copenhagen, Copenhagen, Denmark	321
11.4	THE EFFECT OF FINITE SAMPLING VOLUMES ON MEASURED CONCENTRATION PROBABILITY- DENSITY-FUNCTIONS. Torben Mikkelsen and H. E. Jørgensen, Risø National Lab., Roskilde, Denmark; W. aufm Kampe and H. Weber, German Military Geophysical Office, Traben-Trarbach; and S. Böttmann, Univ. of Mainz, Fed. Rep. of Germany	325

SESSION 12: GENERAL BOUNDARY LAYER I

Chairperson: Franz Fiedler, Univ. Karlsruhe, Karlsruhe, Fed. Rep. of Germany

12.1	A MODEL FOR K-THEORY IN A MULTI-SCALE LARGE EDDY ENVIRONMENT. R. A. Brown and P. Mourad, Univ. of Washington, Seattle, Wash.	329
12.2	THE ATMOSPHERIC BOUNDARY LAYER OVER AN ANTARCTIC ICE SHELF. J. C. King, British Antarctic Survey, Cambridge, U.K.	334
12.3	BOUNDARY-LAYER MOISTURE REGIMES. Larry D. Mahrt, Oregon State Univ., Corvallis, Oreg.	337
12.4	CONVECTIVE STRUCTURE MEMORY. Roland B. Stull, Univ. of Wisconsin, Madison, Wis.	340
12.5	DISPERSION LIMITS IN THE CONVECTIVE SURFACE LAYER. J. C. Weil, NCAR, Boulder, Colo.	344

POSTER SESSION P4

P4.1	ON THE INFLUENCE OF WIND SHEAR AT THE TOP OF THE CONVECTIVE MARINE ATMOSPHERIC BOUNDARY LAYER ON THE ORGANIZATION OF HORIZONTAL ROLL VORTICES. R. Raasch, Univ. Hannover, Hannover, Fed. Rep. of Germany	*
------	--	---

*Paper not available; if received in time, it will appear in back of book.

		Page
P4.2	NONLOCAL TURBULENT MIXING: MEASUREMENT AND PARAMETERIZATION OF TRANSILIENT MATRICES. Roland B. Stull, Univ. of Wisconsin, Madison, Wis.	348
P4.3	A BAROCLINIC PLANETARY BOUNDARY LAYER MODEL. D. L. Yordanov, M. P. Kolarova and G. D. Djolov, Bulgarian Academy of Sci.; and D. E. Syrakov, Sofia Univ., Sofia, Bulgaria	
P4.4	TURBULENCE COLLAPSE IN STABLY STRATIFIED FLOWS: APPLICATION TO THE ATMOSPHERE. D. Etling, Univ. of Hannover, Hannover, Fed. Rep. of Germany	
P4.5	(Paper moved to 14.5A)	
P4.6	PAPER WITHDRAWN	
P4.7	SOME TURBULENCE CHARACTERISTICS IN STABLE ATMOSPHERIC BOUNDARY LAYER FLOW. Ann-Sofi Smedman, Uppsala Univ., Uppsala, Sweden	352
P4.8	COMPARISON OF INVERSION HEIGHT ALGORITHMS FOR COMPLEX TERRAIN UNDER SEABREEZE CONDITIONS. R. F. Kamada, C. E. Skupniewicz, L. McKay and S. A. Drake, Naval Postgraduate School, Monterey, Calif.	354
P4.9	PAPER WITHDRAWN	
P4.10	THE E- ϵ MODEL IN SEPARATING FLOWS. Anne F. de Baas, Risø National Lab., Roskilde, Denmark	359
P4.11	A FIELD STUDY OF FLOW OVER AN ESCARPMENT. M. Courtney, J. Højstrup and N. O. Jensen, Risø National Lab., Roskilde, Denmark	363
P4.12	WIND TUNNEL EXPERIMENTS ON GAS DIFFUSION IN CONVECTION LAYER. R. Ohba and S. Nakamura, Mitsubishi Heavy Industries, Ltd., Nagasaki, Japan	367

SESSION 13: GENERAL BOUNDARY LAYER II

Chairperson: D. L. Yordanov, Bulgarian Academy of Sciences, Sofia, Bulgaria

13.1	CONVECTIVE PLANETARY BOUNDARY LAYER – THEORY AND EXPERIMENT. Dimiter L. Yordanov, M. P. Kolarova, and G. D. Djolov, Bulgarian Acad. of Sci., Sofia, Bulgaria; and D. E. Syrakov, Univ. of Sofia, Sofia, Bulgaria	425
13.2	TEST OF TRANSILIENT TURBULENCE THEORY AGAINST A FIELD EXPERIMENT. Qing Zhang, Univ. of Wisconsin, Madison, Wis.	371
13.3	GENERALIZED SIMILARITY IN THE NON-CONVECTIVE ATMOSPHERIC BOUNDARY LAYER. Niels W. Nielsen, Univ. of Copenhagen, Denmark	375
13.4	SIMPLE MODEL OF THE DAYTIME BOUNDARY LAYER HEIGHT. Sven-Erik Gryning, Risø National Lab., Roskilde, Denmark; and E. Batchvarova, Bulgarian Academy of Sci., Sofia, Bulgaria	379

SESSION 14: STRATIFIED TURBULENCE

Chairperson: Larry D. Mahrt, Oregon State Univ., Corvallis, Oreg.

14.1	LOCAL AND GLOBAL CRITICAL CONDITIONS IN A STABLY STRATIFIED ATMOSPHERIC BOUNDARY LAYER. S. H. Derbyshire, Meteorological Office, Bracknell, U.K.	383
------	--	-----

*Paper not available; if received in time, it will appear in back of book.

		Page
14.2	A GRAVITY WAVE MODEL OF TURBULENCE AND VARIABILITY IN THE STRATIFIED FREE TROPOSPHERE. Christopher W. Fairall, NOAA/ERL/WPL, Boulder, Colo.	384
14.3	DETECTION OF COHERENT STRUCTURES IN SHEAR INDUCED TURBULENCE USING WAVELET TRANSFORM METHODS. N. K. K. Gamage, Oregon State Univ., Corvallis, Oreg.	389
14.4	MIXING DURING THE FINAL STAGE OF DECAY OF TURBULENCE IN STABLY STRATIFIED FLOW. Thomas Gerz, DLR, Oberpfaffenhofen, Fed. Rep. of Germany; and H. Yamazaki, Johns Hopkins Univ., Baltimore, Md.	393
14.5	PAPER WITHDRAWN	
14.5A	TURBULENT STRUCTURE IN THE SHEARED BOUNDARY LAYER. Larry D. Mahrt, Oregon State Univ., Corvallis, Oreg. (Formerly P4.5)	397
14.6	LOW FREQUENCY BEHAVIOR OF HORIZONTAL VELOCITY SPECTRA IN STABLE SURFACE LAYERS. Søren E. Larsen and M. Courtney, Risø National Lab., Roskilde, Denmark; and L. D. Mahrt, Oregon State Univ., Corvallis, Oreg.	401
14.7	GENERATION OF THIN VORTICITY LAYERS IN A STABLY-STRATIFIED SHEAR FLOW. Chantal Staquet, Ecole Normale Supérieure de Lyon, Lyon, France	427

SESSION 15: TURBULENCE IN COMPLEX TERRAIN

Chairperson: Niels O. Jensen, Risø National Lab., Roskilde, Denmark

15.1	MODEL AND FIELD INVESTIGATION OF THE TURBULENCE CHARACTERISTICS AND WIND FIELD IN THE ATMOSPHERIC BOUNDARY LAYER OVER COMPLEX TERRAIN. E. D. Nadyozhina, L. R. Olenko and E. E. Fedorovich, Voeikov Main Geophysical Observatory, Leningrad, U.S.S.R.	*
15.2	MEASUREMENTS OF THE ABL ACROSS A STRATUS TO CLEAR SKY BOUNDARY UNDER SEA BREEZE CONDITIONS. C. E. Skupniewicz, R. F. Kamada and L. McKay, Naval Postgraduate School, Monterey, Calif.	405
15.3	PAPER WITHDRAWN	
15.4	LARGE EDDY SIMULATION OF THE CBL OVER HILLY TERRAIN. Robert L. Walko, W. R. Cotton and R. A. Pielke, Colorado State Univ., Fort Collins, Colo.	409
15.5	MODEL COMPARISONS WITH FLOW OVER AN ESCARPMENT. Niels O. Jensen and I. Troen, Risø National Lab., Roskilde; and P. Højholt, Danish Maritime Inst., Lyngby, Denmark	413
15.6	A HIGH RESOLUTION SPECTRAL MODEL FOR FLOW IN COMPLEX TERRAIN. Ib Troen, Risø National Lab., Roskilde, Denmark	417
15.7	WIND FLOW MODEL EVALUATION STUDY FOR COMPLEX TERRAIN. Søren Thykier-Nielsen and T. Mikkelsen, Risø National Lab., Roskilde, Denmark; and R. F. Kamada and S. A. Drake, Naval Postgraduate School, Monterey, Calif.	421

*Paper not available; if received in time, it will appear in back of book.