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ABSTRACT

Document retrieval systems accept a user request for 

information and respond with a list of documents which 

contain information relevant to the request. When the 

documents (or abstracts of the documents) are stored in a 

computer memory, a function can be defined which estimates 

the semantic distance between documents. If this function 

together with the set of documents forms a metric space, a 

graph, which I call a progressive graph, can be constructed 

to aid the search for the documents with relevant 

inf ormation.

Progressive graphs are studied and the search 

algorithms which use this graph structure are presented.

The search algorithms always perform correctly on any 

progressive graph, but the presence of the progressive 

property in a graph is not sufficient to insure that the 

algorithms will work efficiently. The characteristics of a 

progressive graph which will optimize the search algorithms 

are discussed and algorithms to build and optimize 

progressive graphs are given. The results of a small 

problem show that the search process using the graph created 

by these algorithms can be very efficient. Finally, the 

distance function property which determines when a graph is 

a progressive graph is isolated and studied.



INTRODUCTION

When information is required from a large document 

library, the first problem is to formulate a query which 

describes the nature of the information desired. After the 

query is formulated, the next problem is to find the 

documents which contain relevant information. Furthermore, 

if the number of documents with relevant information is very 

large, the documents with the most relevant information must 

be identified. This suggests that a measure of the 

similarity between the query and the documents must be 

performed. In addition to measuring the similarity between 

the query and the documents it is sometimes useful to measure 

the similarity between documents.

One such measure is correlation. Correlation between 

documents increases as the documents become semantically 

alike. On the other hand, if the measure becomes smaller as 

the documents become semantically alike, then the measure can 

be considered a distance. When the distance function 

satisfies the properties of a metric, then the documents may 

be considered to be in some metric space.

Any query may be considered as a point in this metric 

space, and using the properties of the distance function the 

following questions can be answered.

(1) Which document is closest to the query?
(2) Which documents are within distance 'r' of the query?
(3) Which are the 'n' closest documents 

(given in order of increasing distance)?
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THE DOCUMENT SPACE

A general document space is a set of documents and a 

distance function or a correlation function. The function 

must measure the semantic similarity between documents. The 

distance between documents may be determined by manually 

scanning the information. However, unless the number of 

documents is very small, this task is much too time 

consuming.

Burd and Morrison investigated the usefulness of 

computing lexicographical correlation using the PATRICIA 

indexing algorithm|-^ j. Lexicographical correlation was 

computed between five documents of approximately the same 

length. Their results showed that the correlation between 

related documents was about twice the correlation between 

unrelated documents.

Correlation and distance can also be computed for 

document pairs by representing the documents as vectors and 

then computing the correlation or distance between the 

corresponding vector pairs. The vector representation of a 

document using t index terms is

where d^ 

document. 

be used as 

be used as

Di = ^di1’di2’•*•’dit ^
f* Vorepresents the weight of the j 

The cosine of the angle between 

a correlation measurement and th 

a distance function j-^ j.

term in the ith 

vector pairs can 

e angle itself can
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PROGRESSIVE GRAPHS

When one knows how to measure the semantic closeness

between two documents or between a document and a query, the

questions posed in the introduction can be answered by

comparing the query with each document in the library. This

process may be very time consuming. One method of reducing

the amount of work to answer these questions is to cluster

the documents into groups of related documentsrQ -.on.Lo, p« 323J
Then one needs only to compare the query with documents in 

clusters which may contain relevant documents. I am 

investigating an alternate method which requires that the 

distance function be a metric. A distance function is a 

metric if it satisfies the following conditions for arbitrary 

documents X, Y and Z.
(1) d(X,Y)>0 and d(X,Y)=0 iff X=Y

(2) d(X,Y) = d(Y,X)

(3) d(X,Y) < d(X,Z)+d(Z,Y)

A distance function can be used to construct a graph which 

will help in the search for relevant documents. The points 

in the metric space correspond to descriptions of documents 

or queries, while the nodes in the graph correspond to 

descriptions of documents which have been catalogued.

The following definitions classify finite graphs whose 

nodes are points in a metric space. A finite graph (S,L) is
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a finite set of nodes S and a set L of arcs between nodes in

S. If the nodes in S are points in a metric space with a 

distance function d, then (S,d) will be a finite metric 

space. An arc in L between two nodes X and Y will be denoted 

by the unordered pair [X,Y]. In this case we say that X is 

adjacent in L to Y and Y is adjacent in L to X. (S'.L1) is a 

subgraph of (S,L) if S' is a subset of S and L' is a subset 

of L. For any subset S' of S the induced subgraph <S'> of 

(S,L) is the subgraph (S'.L') where L* contains all arcs in L 

between points in S'. A path from X to Y in (S,L) is a 

sequence of nodes X=X^,X2,...,Xn=Y with the property that X^ 

is adjacent to X^+^ for i=1,...,n-1. The following two 

special kinds of paths depend on both the graph and the 

distance function.

DEFINITION:(Progressive Path) A path X=XQ,XX=Y 
in a graph (S,L) is progressive with respect to the 
distance function d if and only if i<j implies that

d(X.,Y) > d(Xj,Y).
Traveling along a progressive path, the distance to the last 

node in the path is getting progressively smaller.

Figure 1.
Progressive path in the Euclidean plane.
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DEFINITION: (Regressive Path) A path X=X0,X1,...,Xn=Y 
in a graph (S,L) is regressive with respect to then 
distance function d if and only if i<j implies that

d(Xi,X) < d(Xj,X).
Traveling along a regressive path, the distance from the 

first node in the path is getting larger.

Figure 2.
Regressive path in the Euclidean plane. 

Progressive and regressive graphs can now be defined as 

follows.

DEFINITION: (Progressive Graph) A graph (S,L) is 
progressive with respect to the distance function d 
if and only if for every pair of nodes X and Y in S 
there exists a progressive path from X to Y.

DEFINITION: (Regressive Graph) A graph (S,L) is 
regressive with respect to the distance function d if 
and only if for every pair of nodes X and Y in S 
there exists a regressive path from X to Y.

The following lemma shows the relationship between a

progressive path and a regresssive path.

LEMMA 1: A path Xq,X.j , . . . ,Xn is progressive if and only if 

the path xn * xn_-]»•••* xq regressive«

PROOF: In any regressive path, the distance from the 

first node in the path must increase as the number of 

steps from the first node increases. The path 

Xn , Xn_-j , . . . , Xq has indices which decrease as the number 

of steps from Xn increases. It follows that
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Xn,Xn_-| , . . . ,Xq is regressive 

if and only if

j>i implies that d(Sj,Xn) < dU^X^ 

if and only if

i<j implies that d(X.,X ) > d(X.,X )i n J n
if and only if 

X0,X1,...,Xn is progressive

A path is progressive or regressive depending on which 

direction you are traveling. The following theorem says that 

the progressive and regressive properties for graphs are 

equivalent.

THEOREM 1: A graph (S,L) is progressive with respect to the 

distance function d if and only if (S,L) is regressive with 

respect to the distance function d.

PROOF: Let X and Y be arbitrary nodes in (S,L). By 

lemma 1 we know that a path from X to Y is progressive 

if and only if the reverse path from Y to X is 

regressive.

The complete graph is a graph in which every node is 

adjacent to every other node. It is progressive with respect 

to any distance function, because a one step path exists 

between every pair of nodes. Every progressive graph must be 

a subgraph of the complete graph. Theorem 2 shows that arcs 

between closest neighbors must always be in every progressive 

graph.
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THEOREM 2: Let the graph (S,L) be progressive with respect to 

the distance function d. Let X be an arbitrary node in S.

If Y is a node in S such that X ^ Y and d(X,Y) < d(X,Z) for 

all nodes Z/X, then Y is adjacent to X.

PROOF: Let X and Y be arbitrary distinct nodes in S with 

the property that d(X,Y) <. d(X,Z) for all Z/X. Since 

(S,L) is progressive with respect to d, (S,L) must also 

be regressive with respect to d. Therefore, there 

exists a regressive path X=Xq,...,X =Y from X to Y. If 

n > 1 , then d(X,X^) < d(X,Y). This contradicts the 

assumption that d(X,Y) < d(X,Z) for all Z^X.

Therefore, the regressive path from X to Y is X=Xq,X^=Y. 

This shows that X is adjacent to Y.

Theorem 2 tells us which arcs must be in every 

progressive graph, but the existence of these arcs is not 
sufficient to show that a graph is progressive. The 

following theorem gives a criterion by which one can 

determine if a graph is progressive.

THEOREM 3: (First Step Rule) A graph (S,L) is progressive 

(and hence regressive) with respect to a distance function d 

if and only if for every pair of nodes X and Y in (S,L) the 

following holds:

(I) There exists Z in (S,L) such that Z is adjacent to X and 
is closer to Y than X is to Y (i.e., d(Z,Y ) <d(X,Y) ).

PROOF: Let (S,L) be a progressive graph with respect to

the distance function d. Let X and Y be arbitrary nodes
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in (S,L). Since (S,L) is progressive, there exists a 

progressive path X=Xq,X1,...,Xn=Y. By the definition of 

progresive path, X1 is adjacent to X and d(X1,Y)<d(X,Y). 

Hence, condition (I) holds.

Conversely, assume that condition (I) holds. Let X 
and Y be arbitrary nodes in (S,L). Condition (I) says 

that there exists a node X1 such that d(X1fY) < d(X,Y).

If X^ = Y, then X=Xg,X^=Y is a one step path from X to 
Y. In general, let X=Xg,...,Xk be a path such that i>j 
implies that d(X.,Y) < d(X.,Y). For k=1, I have shown 

that such a path exists. If Xk=Y, then X=XQ,...,Xk=Y is 
a progressive path from X to Y. If X, ^ Y, then therenv
exists Xk+1 such that d(Xk+1,Y) < d(Xk,Y). Thus,

X=XQ.... Xk,Xk+1 is a path of length k+1 with the same

property. If the terminal point of the path is Y, it is 

a progressive path from X to Y. Otherwise, the path 

length can be increased by one. Since (S,L) has a 

finite number of nodes, this process must end with a 

progressive path from X to Y. Therefore, the graph 

(S,L) is progressive with respect to the distance 

function d.

The following example shows a case where the set of arcs 

between the closest neighbors is sufficient to make the graph 

progressive.
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Example 1:

S = {1,2,3,4}

L = { [1,2],[2,3],[3,4] }

The distance function is the normal distance function on the 

integers.

d(X,Y) = |X-Y!
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PROGRESSIVE GRAPHS AND INFORMATION RETRIEVAL

Each document in the library must have a description 

with sufficient information to calculate the distance between 

two documents or between a document and a query. The points 

in the metric space correspond to these descriptions. The 

nodes in the graph correspond to the entries in the library 

catalogue. Therefore, in addition to a list of adjacent 

nodes, each node in the graph must contain a description of 

the document and any other information a catalogue must 

contain. Since the node contains all the necessary 

information, the following two functions will be trivial, 

des(location) - Given the location of a node in the graph,

return the description of the document, 

adj(location) - Given the location of a node in the graph,

return the set of all node locations which 

are adjacent to this node.

The properties of a progressive graph can be used to 

find the location of the node corresponding to a document 

description. If (S,L) is a progressive graph with respect to 

the distance function d, then Theorem 2 says that for any two 

nodes X and Y in S there exists a node adjacent to X which is 

closer to Y than X is to Y. The closer node may be Y itself. 

Thus, to find a node Y in (S,L) one needs only to start at 

any arbitrary node X in (S,L) and examine all nodes adjacent 

to X. One of these nodes must be Y or must be closer to Y 

than X is to Y. This suggests the following algorithm to
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find any node in (S,L).

ALGORITHM 1: (Given a description of a document Y, 
find the location of the node corresponding to this 
document.)

function loc(Y) 
description Y 
location X
X := location of any node in (S,L) 
while des(X) ^ Y do

X:= location of the node which is closest to Y 
among all nodes adjacent to X 

loc := X 
return
end

the ball

Figure 3.
The neighborhood N(r,X) in a progressive graph.
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Algorithm 1 must terminate because each iteration is a 

step in a progressive path, and there are only a finite 

number of documents. At each step in this path, the adjacent 

node closest to the terminal node is chosen as the next step. 

The work performed to find a location is proportional to the 

sum of the degrees of the nodes in the path.

The next problem is to find all nodes which are within a 

fixed distance 'r' of X. See Figure 3. This set of nodes 

will be denoted by N(r,X). In the metric space (S,d), N(r,X) 

is a ball of radius 'r' with center at X. The following 

theorem shows that the induced subgraph <N(r,X)> is not only 

connected, but that regressive paths exist from its center to 

every other point.

THEOREM 4: If (S,L) is progressively connected with respect 

to the distance function d, then the induced subgraph 

<N(r,X)> contains a regressive path from X to every other 

point in N(r,X).

PROOF: For every node Y in N(r,X) there exists a 

regressive path X=XQ,X1,...,Xn=Y in (S,L) from X to Y.

By the definition of regressive path, d(X.X^)<d(X,Y)<r . 

Thus, each node X^ is in the neighborhood N(r,X) and the 

path is in the subgraph <N(r,X)>.

To find all the nodes in N(r,X) it is sufficient to use the 
subgraph <N(r,X)>. Let Y be the nth closest point to X in 

N(r,X). There exists a regressive path in <N(r.X)> from X
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to Y. Therefore, by Lemma 1 the reverse of this path is a

progressive path from Y to X. Since a progressive path

exists from Y to X, Y must be adjacent to X or adjacent to

one of the n-1 closer nodes. Thus, having found the n-1

closest nodes, one need only search through nodes which are

adjacent to X or the n-1 closest. This is the same property

that assures the correctness of algorithms to find the

shortest path through a network^ ^] • Since Algorithm 2
finds all the documents in the neighborhood N(r,X) in order

of increasing distance from document X, it can easily be

modified to find the closest 'n' documents.

ALGORITHM 2: (Given r and X, find the documents in 
N(r,X) in order of increasing distance from X.)

function NRX(r,X) 
sequence NRX 
nodes X,nth,a 
number r
sets Frontier,Periphery ,A

NRX := <> "Initalize NRX to a null sequence."
Frontier : = { a jjn adj(X) : d(a,X) ^ r}
Periphery := { a in adj(X) : d(a,X) > r} 
until Frontier = TT d£

nth := (closest node in Frontier)
NRX := NRX,nth "Append nth to NRX."
A := adj(nth) - (NRX .union. Frontier .union. Periphery) 
Periphery := Periphery .union. {a i_n A : d(a,X) > r} 
Frontier := Frontier .union. {a i_n A : d(a,X) r} 
Frontier := Frontier - {nth} 

return 
end

s tAfter the closest k nodes have been found, the (k+1) 

closest node must be in the Frontier. The (k+1) closest 

node can be found by a simple search of the nodes in the
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Frontier. This search can be eliminated by keeping the 

Frontier as a list in increasing order of distance from X.

An alternative algorithm is to simply find all nodes in 

N(r,X) which are one step away from X, then all nodes which 

are two steps away from X, etc. When the complete 

neighborhood has been found, it can then be sorted in 

increasing distance from X. In any case the number of 

comparisons required to sort the nodes in increasing order of 

their distance from X depends only on the number of documents 

in the neighborhood.

When a node is added to the neighborhood, any of its 

adjacent nodes which have been reached before can be 

discarded. A node has been reached before if it is already 

in the neighborhood N(r,X), the Frontier, or the Periphery.

If each node is marked when it is placed in any of these 
lists, the lists will not need to be searched to determine 

when a node has been reached before. At the end of the 

algorithm, all marks must be removed.

Algorithm 1 finds only nodes which are in the graph. A 

query will not be a node in the graph, but the properties of 

a progressive graph can be used to find the document node 

which is closest to a query. If a node X in (S,L) has no 

adjacent nodes which are closer to the query q, then X is 

locally closest to q. If there exist nodes in (S,L) which 

are closer to q they will be members of the neighborhood
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N(2*d(X,q),X ). Suppose X is locally closest, but is not the 

closest node to q. Then there exists a node Y such that 

d(Y,q) < d(X,q). Using the triangle inequality 

d(X,Y) < d(X,q) + d(q,Y)

= d (X , q ) + d (Y , q )

< d(X,q) + d(X,q) = 2*d(X,q)

If d(X,q) is large, the neighborhood N(2*d(X,q).X) may 

contain many nodes. Therefore, if X has no adjacent nodes 

which are closer to q it is sufficient to find any node in 

N(2*d(X,q),X) which is closer to q. In this case Algorithm 3 

finds all nodes in N(2*d(X,q),X) which are one step away from 

X, then all nodes which are two steps away from X and so on 

until a closer node is found or until all nodes in 

N(2*d(X,q),X ) have been found. Only arcs in the induced 

subgraph <N(2*d(X . q),X ) > need to be examined, because 

<N(2*d(X,q),X )> has progressive paths from X to every node 

and is therefore connected.

Algorithm 3 is a combination of algorithms 1 and 2. 

Algorithm 1 is used until a locally closest node is found. 

Then, a modification of Algorithm 2 is used to verify that 

the current location is the closest or to find a closer 

location. If a closer location is found. Algorithm 1 is 

again used to step closer to the query.
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ALGORITHM 3: (Algorithm to find the document 
closest to a query.)

function closest(q)
description q
sets A,OF,NF,NRX
locations closest,f,x,xO,a,n
numbers r
boolean closer
closer := true
x := any location in S
while closer = true do

"Check all locations adjacent to x 
for locations closer to the query q."

"If any exist, choose the location closest to q." 
xO : = x
for all a in adj(x) do

if d(des(a),q) < d(des(x),q) then x := a 
if x = xO then

"If no points adjacent to x are closer to q, 
check a neighborhood of radius 2*d(x,q) for 
closer documents." 

r := d(x,q)
NRX := {x}
OF := {x}
until 0F=O or x^xO do 

NF := {}
for all f in. OF while x = xO do 

A := adj(f) - NRX 
NRX := NRX .union. A 
for all a in A do

if d(des(a),q) < r then x:=a
if d(des(a),des (x )) <. 2*r then NF := NF.union, {a} 

OF := NF
if x=xO then closer :•= false 

closest := x 
return

By finding successively larger neighborhoods of the 

closest document, the following algorithm will find the 'n* 

closest. If Y is the closest document to the query q and Z
x.is the kL closest document to q, then the neighborhood 

N(d(Z,q)+d(Y,q) ,Y) will contain all the k-1 closest 

documents. This follows from the fact that the neighborhood 
N(d(Z,q),q) is contained in N(d(Z,q)+d(Y,q),Y).
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ALGORITHM 4: (Algorithm to find the 'n' closest 
documents to a query.)

function findn(n,q)
"At stage k, all the k closest nodes have been found."

"findn - A list of the k closest nodes <N(1 ),...,N(k )>"
"NBR - Nodes in the neighborhood N(r,N(1)) but

not in findn. r= d(N(k),N(1)) + d(N(1),q)"
"PER - Nodes adjacent to a node in NBR or findn which 

are not already members of NBR or findn." 
sequence findn 
description q 
numbers n,dqy,count,total 
locations y,z,p,a 
sets NBR,OF,NF,PER,IN,NEW

findn := <> 
if n £ 0 return 
y := closest(q) 
dqy := d(des(y),q) 
findn := <y>

count := 1 
total := n
PER := { p in adj(y) }
until PER= {T~or count_>total do

NBR := { element in PER which is closest to y } 
unti 1 NBR={} 0£ count_>total dc>

z := (element in NBR which is closest to y) 
r := d(des(z),q) + dqy
OF := {z} .union, {p i_n PER : d(des(p), des(y) ) < r}
PER := PER - OF 
until 0F={} do 

NF := {}
NBR := NBR .union. OF 
for all f ijn OF do

A: = ia in adj(77}-{elements in NF,NBR,PER, or findn} 
IN := Ta _iri A : d (des ( a ). des(y )) < r }
NF := NF .union. IN
PER := PER .union. (A-IN)

OF := NF
"At this point NBR must contain all nodes which are not 
already in findn but are closer to q than z is."

"If d(des(a),q) < d(des(z),q) , then
d(des(a),des(y7) < d(des(a).q) + d(des(y).q)

< d(des(z),q) + dqy = r."
NEW := {a _in NBR : d(des(a),q) < d(des(z),q) }
NBR := NBR - NEW
"Sort the elements in NEW and append them to findn." 
findn := append(findn,<sorted elements of NEW>) 
count := count + (number of elements in NEW)

return
end
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OPTIMAL PROGRESSIVE GRAPHS

The complete graph is a graph in which every node is 

adjacent to every other node. Such a graph is clearly 

progressive since a one step progressive path exists between 

any two nodes. However, a simple sequential search is more 

efficient than using algorithms 1 through A on the complete 

graph.

Given any two distinct nodes X and Y in a complete graph 

with n nodes, Algorithm 1 will make n-1 distance calculations 

to find Y starting at node X. Since the graph is complete, X 

has degree n-1 and Algorithm 1 will sequentially search all 

n-1 adjacent nodes for the closest node to Y. Since Y is 

adjacent to X, Algorithm 1 will find Y during this search. A 

sequential search of a file would require at most n distance 

calculations and the average number of distance calculations 

a sequential search makes is n/2.

The difficulty Algorithm 1 encountered with the complete 

graph was that the degree of each node was very large. One 

may come to the conclusion that all Algorithm 1 requires is a 

progressive graph with the smallest number of arcs possible. 

However, consider the case of a path graph. A path graph 

(P,L) is a set of nodes {X^ ; i=1,2,...,n} and a set of arcs

^Xi’^i+1^ : i=1*•••♦n-1J• Progressive graphs must first 

be connected, and any connected graph with n nodes must have 

at least n-1 arcs^j. Therefore, no progressively connected 

graph can have fewer arcs than a path graph. If the path
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graph (P,L) is progressively connected (see example 1) then 

Algorithm 1 will make 2k-3 distance calculations to find 

starting at . There are k-1 steps and every step requires 

two distance calculations except the first step, which 

requires only one distance calculation. The average number 

of distance calculations to find X^ , k=2,3.... n will be
[ 1 + £ (2k-3) ] / (n-1 ) = (n-1). 

k= 1
Thus, although the path graph has the smallest number of arcs 

possible for a connected graph, the average number of 

distance calculations required by Algorithm 1 is proportional 

to the total number of documents in the graph.

This indicates that both high node degrees and long

search paths will cause Algorithm 1 to be inefficient. The

following definition incorporates both these measurements.

DEFINITION: (degree weighted path length) The degree
weighted path length of a path X = XQ.... X =Y is

n-1
£ degree(X ). 
i = 0 1

Starting at any node X in a progressively connected graph. 

Algorithm 1 will follow a unique path searching for the node 

Y. At each step X^ in the path Algorithm 1 will make 

degree(X^) distance calculations to determine the next step. 

Thus, the degree weighted path length of this path from X to 

Y is the total number of distance calculations Algorithm 1 

makes to find Y starting at X. The degree weighted path 

length of this unique path from X to Y will be denoted by
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DWPL(X,Y). I have already shown that for a complete graph 

DWPL (X, Y) = n-1 if X/Y and for the path graph DWPLU^X^ = 

2k-3.

Algorithm 1 is a search algorithm which will start at a 

location X and find the location of a node Y which may be 

unrelated to X. On the other hand, Algorithm 2 starts at a 

node location X and finds all locations within a given 

distance from X, i.e., all locations in the neighborhood 

N(r,X). To find a neighborhood N(r,X) Algorithm 2 will make 

at most
^ ^degree(Y )

N(r.X)
comparisons of the distance to X and the radius of the 

neighborhood 'r*. If the graph is the complete graph, then 

Algorithm 2 must determine if d(X.Y) <_ r for all Y adjacent 

to X. This requires degree(X) = n-1 distance calculations 

where n is the total number of nodes in the graph. However, 

if X is a node in a path graph. Algorithm 2 will make at most
^ ^ degree (Y ) <. 2 * tfN(r,X)

N (r , X)
distance calculations, where #N(r,X) is the number of nodes 

in N(r,X). The number of distance calculations in the 

complete graph is proportional to the total number of nodes 

in the graph while the number of distance calculations in a 

path graph is proportional to the number of nodes in the 

neighborhood N(r,X). Therefore, the complete graph is
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undesirable for both algorithms 1 and 2, and a path graph is 

undesirable only for Algorithm 1. In general it is clear 

that Algorithm 2 requires progressive graphs whose nodes have 

low degree.

Let S' be the set of all graphs on the set of nodes S 

which are progressive with respect to a distance function d.

A partial order can be defined on S' by:

(S,L1 ) < (S,L2) 
if and only if 

is contained in L2

The minimal elements in this partial order are the 

progressive graphs of interest. If (S,L) is a minimal 

element, then the removal of any line will cause the graph to 

lose the progressive property. Minimal progressive graphs 

can be found by removing unnessary lines from a graph which 

is already progressive. Theorem 3 gives a criterion to 

determine when an arc is unnecessary. Theorem 3 says that an 

arc [X,Y] is unnecessary if its removal does not cause X or Y 

to fail the first step requirement. A much harder problem is 

to find a minimal progressive graph with the property that no 

other progressive graph has fewer arcs. Such a graph must 

exist, but the following example shows that it is not unique.
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Example 2:

S = l X1=(0,0) , X2=(0.4) , X3=(3.8) , X4=(3,0) } 
^1 = ^ [X ^,X2] , [X1,X4] , [X2,X3] , [X2,X4] }

^2 = ^ ^ 1 »^2 ^ ’ ^1 * tX2, X^ ] , [X3,X4] }

Figure 4.
Progressive graphs with a minimum number of arcs.

Both L1 and have the same number of arcs and are 

progressive with respect to ordinary Euclidean distance. 

Furthermore, no progressive graph can have fewer than 4 arcs 

on this set of nodes.

Since graphs in S' with the smallest number of arcs are 

not unique, it follows that the intersection of two graphs in 

S' may not be a graph in S'. However, by Theorem 2 it 

follows that the intersection of two graphs in S' cannot 

result in a graph with no arcs. The following set of arcs 

must be in every progressive graph.

X is a closest node to Y
{ [X,Y] in S or

Y is a closest node to X
}
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When two nodes A and B are equidistant to a third node X 

and no other nodes are closer to X, then A and B are closest 

to X. Any progressive graph must contain both arcs [A,X] and 

[B,X], However, if the distance function does not measure A 

and B as exactly equidistant to X, then only the closest node 

may need to be adjacent to X.

A distance function d will be called an isosceles 

distance function on the set S if there exist three points X, 

Y and Z in S such that d(X,Y) = d(X,Z). Otherwise, the 

function will be called non-isosceles. The triangle with 

vertices at X, Y and Z will be an isosceles triangle if 

distance is measured with an isosceles distance function.

If d is an isosceles distance function on the set S and 

a:S-->{1,2,...,n} is a one to one function from S onto 

{1,2,...,n}, then a non-isosceles distance function da can be 

defined by

da(X’Y) 0 if X=Y
d(X,Y) + e*[a(X)+a(Y)] if X/Y

where
p - min {|d(X,Y)-d(X,Z)i : d(X,Y)*d(X,Z)}

2n

To. show that the triangle inequality holds, assume that X, Y 

and Z are arbitrary points in S. Then,
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da(X,Z) = d(X,Z) + e*[a(X)+a(Z)]

< d(X,Y) + d(Y , Z) + e*[a(X)+a(Z)]

< d(X,Y) + d(Y , Z ) + e*[a(X)+2a(Y)+a(Z)]

= d(X,Y) + e*[a(X)+a(Y) ] + d(Y,Z) + e*[a(Y)+a(Z) ]

= da(X,Y) + da(Y,Z)

The following theorem shows that d is a non-isosceless
distance function on S.

THEOREM 5: For any three points X, Y and Z in S, 

i) d(X,Y)<d(X,Z) implies that d (X,Y) < d„(X,Z)
a. a.

ii) d(X,Y)=d(X,Z) implies that

d (X,Y)<d (X,Z) if and only if a(Y)<a(Z)d a.
PROOF:

Assume that d(X,Y) < d(X,Z). 

d (X,Y) = d(X,Y) + e*[a(X)+a(Y) ]d
< d(X,Y) + 2ne
_ d(X y) + 2n min{ld(r.s)-d(r,t) ! : d(r,s)^d(r,t)} 

’ 2n

< d(X,Y) + 2n

= d(X,Y) + |d(X,Z)-d(X,Y)!

= d(X,Y) + d(X,Z)-d(X,Y) since d(X,Y)<d(X,Z)

= d (X, Z)
i

< d(X,Z) + e*[a(X)+a(Z)]

= da(X,Z)

This proves i). Now assume d(X,Y)=d(X,Z).
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since d(X,Y)=d(X,Z)

da(X,Y) = d(X , Y) + e*[a(X) + a(Y)]

= d(X , Z) + e*[a(X) + a(Y)]

= d(X,Z) + e*[a(X)+a(Z)+a(Y)-a(Z)]

= d(X,Z) + e*[a(x)+a(Z)] + e*[a(Y)-a(z)]

= d (X,Z) + e*[a(Y)-a(Z)]a
This proves ii).

This theorem shows that d uses the function 'a' to resolve 

any ties that d may encounter when measuring distances from a 

common point. Thus, any progressive path with respect to d 

will be a progressive path with respect to d .
3

COROLLARY: Let a:S-->{1,2,...,n} be a one to one function 

from S onto {1,2,...,n}. If (S,L) is a progressive graph 

with respect to a distance function d, then (S,L) is a 

progressive graph with respect to d .3
In the study of progressive graphs it is convenient to 

use a non-isosceles distance function, as it avoids 

troublesome special cases caused by pairs of points 

equidistant from a third point. In the remainder of this 

paper I shall use only non-isosceles distance functions.
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BUILDING PROGRESSIVE GRAPHS

The previous algorithms illustrate how progressive 

graphs can be useful in document retrieval. Now I turn my 

attention to the problem of building a progressive graph. A 

progressive graph can be built by initializing the graph to 

contain one document and no arcs. Then, the rest of the 

documents can be added one at a time with a sufficient number 

of arcs to insure that the graph will remain progressive. 

Theorem 3 tells us that a graph is progressive if and only if 

there exists a first step in a progressive path from each 

node to every other node. Therefore, when a new node X is 

added to a progressive graph, it is sufficient to insure that 

for every old node Y there exists a first step in a 

progressive path from Y to X and from X to Y. Recall that a 

first step in a progressive path from X to Y exists if there 
is a node Z adjacent to X such that d(Z,Y)<d(X,Y ) .

When a new node X is added to a progressive graph, it

will initially be isolated from the rest of the graph, i.e., 

it will not have any adjacent nodes. Therefore, it is best 

to start by insuring that there exists a first step from each

old node to the new node. If a first step does not exist for

some node Y, then one can insure a first step by adding the 

arc [Y,X] to the graph. If Y^ is the closest old node to X, 

then Yq cannot have an adjacent node which is closer to X.
The arc [Y^X] must therefore be added to the graph. Thus, 

after a first step is assured from all the old nodes to the
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new node X, then X will no longer be isolated.

Next, one must insure that a first step exists from the

new node X to every old node, 

for some node Y, then a first 

the arc [X,Y] to the graph. 

ALGORITHM 5: (Add a document 

subroutine addl(x)

If a first step does not exist 

step can be insured by adding

to a progressive graph.)

"addl(x) adds one more node to a progressive graph 
to create a new progressive graph.”

description x,y,z 
location locx,locy,locz 
global Graph 
set Frontier

"Create a new node for the new document."
"Save the location of the new node in locx." 
locx := create(x)

"Check for progressive paths to locx." 
for locy in. Graph do. 

y := des(locy)
if [ for all locz in adj(locy) : d(y,x)<d(des(locz),x) ] do 

call tie(locx,locy) "form the arc [locx,locy]"

for locy in Graph do
"Check for a first step in a progressive."
"Path from locx to locy."

y := des(locy)
if [ for all locz in adj(locx) : d(x,y)£d(des(locz),y)] do 

call tie(locy,locx) "form the arc [locy,locx]"

return
£nd

When a progressive graph is built by adding documents 

one at a time, the final graph will depend on the sequence in 

which the documents are added to the graph. The following 

algorithm will use the first step rule to eliminate
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unnecessary lines from the graph. 

ALGORITHM 6: (Optimization)

function removable(x,y) 
boolean removable,stepxz,stepyz 
locations x,y,z,a 
global Graph

removable := true
"Check for a first step from x to every other location." 
for z Iji Graph while removable = true do 

stepxz := false 
if z=x then stepxz := true
else "Check for a first step which is not y." 

for a in adj(x) while stepxz=false do
if a^y and d(a,z)<d(x,z) then stepxz := true 

removable := stepxz

"Check for a first step from y to every other location." 
for z i_n Graph while removable = true ^o 

stepyz := false 
if z=y then stepyz := true
else "Check for a first step which is not x ."

if a^x and d(a,z ) <d(y,z ) then stepyz := true 
removable := stepyz 

return 
end

subroutine optimize
"acc(x) is a function which will return

the accession number of the location z." 
"untie(x,y) is a subroutine which will remove 

x from adj(y) and y from adj(x)." 
locations x,y 
sets X,Y

X := {all locations}

for all x in X do
Y := {y i_n ad j(x)}
for all y i_n Y such that acc (x ) >acc (y ) do 

if removable(x,y) then call untie(x.y)
return
end

Subroutine 'optimize' uses the function 'removable' to
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determine which arcs can be removed without causing the graph 

to lose the progressive property. When an arc can be 

removed, subroutine 'untie' is used to remove the arc from 

the graph. After all arcs which can be removed are 

eliminated, the graph will be a minimally progressive graph.

The function 'removable' uses the first step rule to 

determine when an arc can be removed without the loss of the 

progressive property. An arc [X,Y] can be removed if for 

every node in the graph, there exists a first step from X 

which is not Y and a first step from Y which is not X.

These algorithms were applied to a small problem with 

200 documents. The documents were program abstracts from the 

program library maintained by the Computer Science and 

Services Division of the Los Alamos Scientific Laboratory. 

Each document was represented by a 266-dimensional vector

Di = (di1 ’di2.... di2b6)

where d. . = 1 if term i occurred in document i, otherwise ij
d^rO. See Appendix 2 for a list of the terms. The angle 

between the document vectors was used as the distance 
measurej-^j. The graph was initalized by setting S={D^} and 

L={}. Algorithm 5 was used to add the rest of the documents 

t<5 the graph one at a time. At each multiple of 10, the 

following values were computed.
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average degree = (1/n)
n
^2 degree(D . ) 
i = 1 1

P n n
average DWFL = (1/n^) E E DWPL(D . , D .)

i=1 j=1 1 J

maximum DWPL = max { DWPL(D^,Dj) : i,j = 1,2,...,n } 

Table 1 summarizes the results.

er of average average maximum
ments degree DWPL DWPL
10 2.60 5.74 13
20 3.90 10.21 24
30 5.27 13.50 33
40 5.30 15.99 40
50 5.48 18.18 54
60 5.53 19.80 50
70 5.63 21.01 55
80 6.05 23.12 6 1
90 6.42 24.98 69
100 6.80 26.33 73
110 7.11 27.41 75
120 7.75 28.86 77
130 8.20 29.94 80
140 8.66 30.92 83
150 8.99 32.46 91
160 9.44 33.69 10 1
170 9.40 34.53 102
180 9.54 35.45 103
190 9.70 36.35 104
200 10.12 37.38 109

Table 1.
Results for unoptimized graph.

When a document is added to the graph with Algorithm 5, 

arcs which were essential to keep the graph progressively 

connected may not be essential after the addition of the new 

document. Table 2 summarizes the results of using Algorithm 

6 to optimize the graph. At each multiple of ten, the graph 

was optimized and average degree, average DWPL and maximum 

DWPL were computed.
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number of average average maximum
documents degree DWPL DWPL

10 2.40 5.56 14
20 3.20 9.15 21
30 4.07 11.81 29
40 4.30 14.30 38
50 4.72 16.61 45
60 4.70 18.34 53
70 4.77 19.38 58
00 4.88 20.64 63
90 5.61 22.13 67
100 5.52 23.31 75
110 5.76 24.24 94
120 6.07 25.28 85
130 6.38 26.27 100
140 6.60 26.97 103
150 6.72 27.56 105
160 7.11 28.80 101
170 7.14 29.45 103
180 7.34 30.27 104
190 7.38 30.92 107
200 7.78 31.90 111

Table 2.
Results for optimized graph.

Figure 5 shows that the average degree for

unoptimized graph is increasing at a faster rate than the 

average degree of the optimized graph. However, when a least 
squares method is used to fit the equation A+I^log^CX) to the 

data, it is apparent that the average degree of both the 

optimized graph and the unoptimized graph is increasing at a 

rate proportional to the log of the number of documents. The 

data points from 100 to 200 were used in order to estimate 

the rate of increase when the graph is large. The best fit 

fdr the unoptiraized graph was

-15.1 + 3.3*log2(X)

and the best fit for the optimized graph was

-8.93 + 2.2*log2(x) .
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Figure 6 shows how well these functions fit the data. In 

this range, the average degree is increasing at a rate 

proportional to the log of the number of documents.

Figure 7 shows that the average degree weighted path 

length is also increasing at a faster rate for the 

unoptimized graph than for the optimized graph, but the rate 

of increase for both graphs is proportional to the log of the 

number of documents. The best fit for the unoptimized graph 

is

-48.74 + 1 1.24*log2(X) 

and the best fit for the optimized graph is

-33.32 + 8.48*log2(X).

Figure 8 shows how well these functions fit the data.
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ENUMERATION OF GRAPHS

A progressive graph on a document space with n documents

will be a labeled graph of order n. Harary and Palmer give

the following formulas for the enumeration of labeled

graphs^j. The total number of labeled graphs of order n is
G _ 2(n’2) 
n

Where (n,2) is the binomial coefficient.

(n,2) = n! / (n-2)! 2! = n(n-1 )/2

The number of connected labeled graphs of order n is

Cn = 2<n’2) - O/n) E K*(n,k)*Ck*Gn.k.
k= 1

The number of labeled trees with n points is
T = n(n_2). 
n

The following table shows the number of each kind of graph 

for n <. 8.

n Tn G n
1 1 
2 1
3 3
4 16
5 125
6 1296
7 16807
8 262144

1
1
4

38
728

26704
1866256

251548592

1
2
8

64
1024

32786
2097152

268435546

Table 3.
Enumeration of labeled graphs.

Table 3 shows the magnitude of the problem if one were to 

make an exhaustive search for progressive graphs. The large
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ORDER MATRICES

A graph (S,L) is progressively connected with respect to 

a distance function d if and only if there exists a first 

step in a progressive path from each node in the graph to 

every other node. A first step in a progressive path from A 

to B exists if there is a node C which is adjacent to A and 

d(C,B)<d(A,B). Therefore, the relationship of all pairs of 

distances d(A,B) and d(C,B) for arbitrary A, B and C is 

sufficient information to determine when a metric graph is 

progressively connected. When the points in the set S are 

labeled ,...and d is a non-isosceles distance

function, this information can be organized in an NxN matrix 
0. The ith row 0(i,1),0(i,2),...,0(i,N) will be a 

permutation of the set of integers {0,1 , . . . , N-1} such that 

0(i,j) is the rank of the distance dCX^X.) among all 

distances d(X.,X ) for k=1,2,...,N. Thus, the matrix 0 will1 K
have the property that 0(i,i) = 0 and 0(i,j)<0(i,k ) if and only 

if d(X.,X .)<d(X.,X ). I will call matrices of this form,i j ik
order matrices.

DEFINITION:(Order Matrix) An NxN order matrix is a 
matrix with zero diagional and rows that are 
permutations of the set of integers {0,1,...,N-1 }.

Every NxN order matrix defines a relation r on the set 

of unordered pairs {(i,j) : i,j = 1 ,2 , . . . ,N } by the following 

rule. (i,j) r (i,k) if and only if 0(i,j) < 0(i,k). Thus, 

two pairs are unrelated unless they have one point in common
A. t_and the iL row of the order matrix determines how (i,j) and
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(i,k) are related. I will call a sequence .X^ , .. . ,Xk an 

r step sequence if (X^ ^,X^) r (X^,X^+^) for all

i = 1 ,2, . .. ,k-1. Since two pairs are unrelated by r unless 

they have one point in common, any cycle will be of the form 

(Xq.X^ r (XrX2) f ... r (^k.Xu) r (Xq.X^. This is 

equivalent to the r step sequence XQ,X^,X2,...,X^,XQ,X^. 

Thus, any r step sequence whose first two points and last 

two points are equal will be called an r step cycle. If 0 

is the matrix where 0(i,j) is the rank of the distance 

d(X.,X.) among all distances d(X.,X ) in some finite metrici j ik
space, then d(X.,X.) < d(X.,X ) implies that (i,j) r (i,k).

1 J IK

DEFINITION:(Compatible order matrix) The NxN order 
matrix 0 is compatible with a finite labeled metric 
space ({X ...,X },d) if it is true that
d(X.,X . )<d(X.,X ; if and only if (i,j)r(i,k).

1 J IK

Given a set of three points. S={1,2.3}, there are only 

six ways the distances d(1,2), d(1,3) and d(2,3) can be 

related when d is a non-isosceles distance function.

(1 ) d(1,2) < d( 1 ,3) < d(2,3)

(2) d(1 ,2) < d(2.3) < d(1,3)

(3) d(1,3) < d(1.2) < d(2,3)

(4) d( 1 , 3) < d(2,3) < d(1,2)
(5) d(2,3) < d(1.2) < d(1,3)

(6) d(2,3) < d(1,3) < d(1.2)

Each relation corresponds to one of the six different ways a 

three point metric space can be labeled. The following six
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order matrices are compatible with any three point metric 

space whose distances satisfy relations (1) through (6) 

respectively.

(1) (2) (3) (4) (5) (6)
0 1 2 0 1 2 0 2 1 0 2 1 0 1 2 0 2 1
1 0 2 1 0 2 1 0 2 2 0 1 2 0 1 2 0 1
1 2 0 2 1 0 1 2 0 1 2 0 2 1 0 2 1 0

There are 2^=d ways to arrange the rows of a 3x3 order

matrix. The following two order matrices are not listed 

above.

(7) (6)
0 1 2 0 2 1
2 0 1 10 2
1 2 0 2 1 0

Order matrix (7) defines the following relation on the 

unordered pairs.

(1.2) r (1,3)

(2.3) r (2,1)
(3,D r (3,2)

Since the pairs are unordered, this relation has the 

following cycle.

(1,2) r (1, 3) = (3,1) r (3,2) = (2,3) r (2,1) = (1,2)

If order matrix (7) were compatible with some metric space, 

then this would imply that d (X1 , X2 ) <d (X.j , X£ ). Since this 

cannot be true for any metric space, order matrix (7) cannot 

be compatible with any three point metric space. Similarly, 

order matrix (b) cannot be compatible with any three point 

metric space because the relation defined by order matrix (8)
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has the following cycle.

(1,3) r (1 ,2 ) = (2,1 ) r (2,3) = (3,2) r (3.D = (1,3)

Order matrices (1) through (6) are all compatible with the

same three point metric space. This is true because each of

the relations (1) through (6) corresponds to one of the six

different ways a three point metric space can be labeled.

The following definition gives a semi-canonical form for

order matrices which will eliminate most reorderings.

DEFINITION:(Semi-Canonical order matrix) An NxN order 
matrix 0 is semi-canonical if

1) 0(1,i) = i-1 for i = 1,2,...,N
2) 0(2,1) = 1
3) 0(3,1) < 0(3,2)

Order matrix (1) is a 3x3 semi-canonical order matrix. A 

semi-canonical order matrix is compatible with a metric space 

which has been labeled such that points 2 through N are 

labeled in increasing order of their distnace from point 1 , 

points 1 and 2 are mutually closest, and d(1 ,3)<d(2,3). In a 

three point non-isosceles metric space there is a unique 

labeling which satisfies these conditions. This unique 

labeling is the labeling which specifies that 

d (1 ,2 ) <d(1,3)<d(2,3).

DEFINITION:(Consistent order matrix) An NxN order 
matrix is consistent if the relation r defined by 0 
on the unordered pairs does not contain any cycles.

If the relation defined by an order matrix does not contain

any cycles, then it can be embedded in a linear order.

Knuth’s topological sort algorithm can be used to check an
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order matrix for consistency^ p 255]’ the order matrix

is consistent, the topological sort algorithm will find a 

linear order which contains the relation r. If the order 

matrix is inconsistent, the topological sort algorithm will 

find a cycle in r. Matrices (1) through (6) are consistent 

while matrices (7) and (8) are inconsistent.

THEOREM 6: Every non-isosceles metric space can be labeled so 

that it is compatible with a consistent semi-canonical order 

matrix. Conversely, every consistent semi-canonical order 

matrix is compatible with some non-isosceles metric space.

PROOF: Let (S,d) be a non-isosceles metric space 

with N points. Since there are only a finite number of 

points, there exist two points X and Y such that d(X,Y) 

is a minimal distance. Let be the second closest 

point to X and Zy be the second closest point to Y. One 
of the following inequalities must hold.

d(Zx,X) < d(Zx.Y) 
or

d(Zy,Y) < d(Zy,X)

If neither inequality holds, then the following cycle 

will occur.

d(Zx,Y) < d(Zx,X) < d(Zy,X) < d(Zy,Y) < d(Zx,Y)

This contradicts the fact that <. is a partial order on 

the real numbers. If d(Z X)<d(Zv,Y) then label X as 

one, Y as two, and Zx as three. Otherwise, label Y as 

one, X as two and Zy as three. Having labeled points



one through three, the remaining nodes are labeled in 

increasing order of their distance from point one. If 0 

is the order matrix with 0(i,j) equal to the rank of the 

distance d(i,j) among all distances d(i,k), then 0 is 

compatible with the metric space and 0 will have the 

following properties.

0 (1 , k) = k- 1 k= 1,2.... N

0(2,1)=1 since d(1,2) was minimal

0(3,1)<0(3,2) since d(3,1)<d(3,2)

This shows that 0 is semi-canonical. Conversely, 

suppose 0 is an NxN consistent semi-canonical order 

matrix. Since 0 is a consistent order matrix, the 

relation defined by 0 does not contain any cycles. This 

relation on the M=N(N-1)/2 pairs {(i,j) : i^jl can be 

embedded in a linear order p 1 <P2<...<pM. Define a 
distance function d:{1,...,N}x{1,...,N}-->{real numbers} 

by

d(i,i) = 0 for i=1,2,.. .,N

d(i,j) = 1 + k/M for i/j and (i,j) is the
k^ pair in the linear 

order p1<p2<...<pM

This distance function satisfies the triangle inequality 

since all distances are less than or equal to two and 

the sum of any two distances is strictly greater than 

two. The order matrix 0 is compatible with the metric
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space ({1,2,...,N},d).

Two metric spaces (S^.d^) and (S^.d^) are isometric if 

there exists a one to one function fiS^-^S^ which preserves 

distances (i.e., d^Ca.b) = d^(f(a ),f(b)) ). A more general 

morphism is one that only preserves the order relation on the 

distances. (S^d^) is order isomorphic to (S2>d2) if for all 

a, b, c and d in , it is true that

d1(a,b)<d1(c,d) implies d2(f(a ),f(b))<d2(f(c),f(d)).

Order isomorphic metric spaces will be compatible with the 
same order matrix when the order isomorphism f maps the i^

t hipoint in one metric space to the i point in the other 

metric space. The following theorem shows that every finite 

metric space is order isomorphic to a Euclidean metric space. 

It follows by Theorem 6 that every consistent order matrix is 

compatible with some Euclidean metric space.

THEOREM 7: Let (S,d) be any finite non-isosceles metric space 

with n points. Then there exists a subspace of Euclidean 

n-space which is order isomorphic to (S,d).

PROOF: Label the metric space (S,d) so that its 

corresponding order matrix is semi-canonical. I will 

show that there exists a set of vectors in

Euclidean n-space such that for some real number e>0,

IX.-Xj! = 1 + e*d(i,j).

If such a set of vectors exists, then the function 

f:S-->{X^} defined by f(i)=X^ is an order isomorphism
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because

d(i,j)<d(n,m) implies 1 + e*d(i,j) < 1 + e*d(n,m) 

implies IX^Xj! < iXn-Xra!.

The following proof constructs a set of n vectors close 

to the n scaled unit vectors
( (1/2)1/2, 0, 0, 0, ... )
( 0,(1/2)1/2, 0, 0, ... )
( 0, 0,(1/2)1/2, 0, ... )

• • • •
• • • •
• • • •

Define the vector functions

Xi(e) = (Xi1(e).... Xii(e))

by the following recursive process. First set
X1 1(e)=(1/2)1/2.

Suppose that for all j<i, X.(e) is defined andvJ
continuous on some interval [0,t^_.|] such that,

i) !Xj(e)-Xk(e)! = 1 + e*d(j,k)
ii) !X (e) i2 = 1/2

J
iii) X^O) = (0,0,...,(1/2)1/2)

A vector function X^(e) must be defined such that it is 

continuous on some interval [0,t^] and satisfies 

condtions i) through iii). X^e) can be defined in 

terms of {X^(e):j=1,...,i-1}. In order to satisfy 

condition i), X^(e) must be a solution to the following 

equation for all j<i.
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[1 + e*d(i,j)]2 = !Xi(e)-Xj(e)!2

= k?, [xik^) -

:: ! (e) j + ! Xj (e) ! +2 ^ik ^e ^ jk ^e ^
k — 1

In order to satisfy condition ii), X^(-e) must be a 

solution to these equations with the constraint that 

!X^(e)i=1/2. Using this constraint, the system of i-1 

equations becomes,

£ Xik(e)*Xik(e) = - e*d(i,j) - e2*d2(i,j)/2.
k= 1 ‘jk

Since Xj^(e)=0 for all k>j, this is a triangular system 

of i-1 equations and will have the following solution

everywhere Xjj(e)^0 for all j<i,

- e*d(i,j) - e2*d2(i,j)/2 - E Xiu(e)*X . (e).i-1

Xij(e) = K=1 ik ljk

XJj(e)

Since X (0) = ( 1/2)1X2 for all j<i, there exists an
O

interval [0,t] in which X.,(e)>0. Thus, all the X.-Ce)

are defined and continuous on [0,t]. As long as x^^(e)
is chosen such that ! Xi(e) ! 2=1/2, Xi(e) will satisfy

condition i). Since, X . , (0) = ( 1/2)1/2 and X-, (0)=0 for
J J J K

all k<j, it is clear that X^j(0)=0. Finally, x^^(e) can 

be defined by:

i-1X^Ce) = [1/2 - E X?- (e) ] 1/2
ll k- 1 IK

For all k<j, X^^(e) is continuous on [0,t] with
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X.. (0)=0. Therefore, function X..(e) is defined andX XX
continuous on some possibly smaller interval [0,t^].

By the definition of X^Ce), it is clear that X^Ce) 

satisfies conditions ii) and iii) and is continuous 

on the interval [0,t^].

In the paragraphs that follow, a recursive method is

given for constructing all NxN consistent semi-canonical
N + 1order matrices. If 0 is an (N+1)x(N+1) order matrix, is

the NxN matrix generated by eliminating the Nth row and Nth

column an order matrix? In general the resulting NxN

submatrix will not be an order matrix because its rows will

not be a permutation of the integers {0,1 , . . . ,N-1}. The

following theorem describes how to generate an NxN order

matrix from an (N+1)x(N+1) order matrix.
N + 1THEOREM 8: Let 0 be an (N+1)x(N+1) matrix, define the

Nmapping to an NxN matrix 0 by:

N , . ..° (1’j) ~ I „N+1
0 (i,j) - 1 otherwise

N + 1If 0 is a consistent semi-canonical order matrix then so 
N Nis 0 . In fact, 0 is compatible with the labeled metric

space formed by deleting the point + i from a labeled metric
N + 1space which is compatible with 0

N + 1PROOF: It is sufficient to show that 0 (i.j) <
0N+1(i,k) implies that 0N(i,j) < 0N(i,k). This shows

that both matrices 0N + 1 and 0 N define the same relation
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on pairs of the first N points.
Suppose that 0N+1(i,j) < 0N+1(i,k). If 0N+1(i,N+1) 

is less than both 0N+1(i,j) and 0N+1(i,k) then 0N(i,j) = 

0N+1(i,j)-1 < 0N+1(i,k)-1 = 0N(i,k). If 0N+1(i,N+1) is 

greater than both 0N+1(i,j) and 0N+1(i,k) then 0N(i,j) = 

0N+1(i,j) < 0N+1(i,k) = 0N(i,k). If 0N+1(i,N+1) is 

greater than 0N+1(i,j) but less than 0N+1(i,k) then 

0N(i,j) = 0N+1(i,j) < 0N+1(i,k)-1 = 0N(i,k).

The mapping --> O1'* is not one to one. There may be

more than one (N+1)x(W+1) order matrix which maps into the 

same NxN order matrix by this process. When a consistent 

semi-canonical NxN order matrix is known, it is of interest 

to find all the consistent semi-canonical (N+1)x(N+1) order 

matrices which map into it. The following theorem 

characterizes these matrices.
THEOREM 9: Let 01^+'' be an (N+1)x(N + 1) order matrix which maps 

into a consistent NxN order matrix 0N. is consistent if

and only if the relation defined on the unordered pairs by 

0 does not contain any r step cycles of the form

N+1,i,...,N+1,i.
PROOF: If the relation defined by 0^+^ has an r 

step cycle N+1,i,...,N+1,i , then by definition it is 

inconsistent.
M+ 1Conversely, assume that 0 is inconsistent.

Then, the relation defined by 0N+1 contains an r step
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cycle. By the proof of theorem 8, we know that 0^ + "' and 
N0 define the same relation on pairs of the first N

Npoints. Since 0 is consistent, there are no r step 

cycles in the first N points. Therefore, the r step 
cycle which exists must contain the (N+1)st point. By 

starting at the (N+1)st point the cycle has the form

N+1,i,...,N+1,i.

Let A be a permutation and B a sequence of the integers

{1,2,...,N-1}. Define a matrix 0 
0N+1(N+1,N+1) = 0 

0N+1(N+1,i) = A(i) 

0N+1(i,N+1) = B(i)

N + 1 by:

0N+1(i,j) =
0N(i,j)

0N(i,j) + 1 if 0N(i,j)>B(i)
if 0N(i,j)<B(i)

0N+1
0 N

modified

B (1) 

B (2)

J B(N)

A(1) A(2) ... A(N ) 0

Figure 9.
(N+1)x(N+1) order matrix 0N+1
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Every (N+1)x(N + 1) order matrix which maps into O1^ will be of

this form. Thus, to find all the consistent semi-canonical
(N+1)x(N+1) order matrices which map into 0^, it is

sufficient to find all permutations A and sequences B such 
Nthat 0 , A and B define a consistent semi-canonical order 

matrix.
If 0N+1 is semi-canonical, then 0^+^(1,N+1)=N and 

qN + 1(2,i)_-|> Therefore, the sequence B must have B(1)=N and 

B(2) > 2. If B(i) is set to N for all i, then
(i,N+1)=B(i)=N > 0N(i,k) for all k. This implies that 

N+1,i,k cannot be an r step sequence for any k. Therefore, 
0N+1 is a consistent semi-canonical order matrix regardless 

of what permutation is chosen for the (N+1)st row. Since 

there are N! permutations of {1,2,...,N}, there are at least 

N! consistent semi-canonical order matrices which map into

o“.
The previous discussion shows that B(m)=N is a 

sufficient condition to assure that N+1,m,...,N+1,m is not an 

r step sequence. A necessary and sufficient condition is 
that B(m) > 0W(m,j) for all j such that there is an r step 

sequence of the form m,j,...,N+1. If B(m) < 0N(m,j) for some 

j such that m,j,...,N+1,m is an r step sequence, then 

N+1,m,j,...,N+1,m is an r step cycle. This is because 
B(m) <. 0^(m,j) implies that 0^ + ^(m,N + 1) < 01^ + ''(m,j).
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(k , N +1 ) r (N +1 , m)
------ >o-------

N + 1

(N+1,m)r(m,j)
----- >o-----

m

k j 9

■■ ■ ■ ■ — 11 ■ 1 ■ - — • • • ^----------------------------------------------------

Figure 10.
r step cycle N+1.m,j,...,k,N+1,m

Conversely, assume that B(m) > for all j such that

m,j,...,N+1,m is an r step sequence. Let N+1,m,j,...,N+1,m

be any sequence. If m,j,...,N+1,m is not an r step

sequence, then N+1,m.j,...,N+1,m cannot be an r step cycle.

On the other hand, if m,j,...,N+1,m is an r step sequence,
Nthen B(m) > 0 (m,j). This implies that (m,j)r(m.N + 1 ), so

j,m,N+1 is an r step sequence. Therefore, N+1,m,j is not

an r step sequence, and the complete sequence

N+1,m,j,...,N+1,m cannot be an r step cycle.
Given a consistent semi-canonical order matrix OlJ, the

following algorithm generates all consistent semi-canonical
N(N+1)x(N+1) order matrices which map into 0 . For each

permutation A, the algorithm generates all possible sequences 
NB such that 0 , A and B define a consistent semi-canonical 
N + 1order matrix 0 . Let S be a permutation such that A(S(i))=i

for all i (i.e., S(i) is the index of i in permutation A).

Th.e algorithm uses the fact that if S(m),j.... N + 1.S(m) is an

r step sequence then there exists k<m such that

S(m),j,.,.,S(k),N+1,S(m) is an r step sequence. Therefore,
NB(S(m)) must be greater than 0 (S(rn),j) for all j such that 

S(m),j.... S(k),N+1 is an r step sequence for some k<m. It
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is possible that j=S(k) in this sequence.

ALGORITHM 7: (Generate all (N+1)x(N+1) consistent 
serai-canonical order matrices from an NxN 
consistent semi-canonical order matrix)

subroutine genorder(n,0)
"0 is an NxN order matrix.” 

sequence S,A,B 
array 0(N,N),K(N,N) 
number i,k
S := A := <1,2,...,N> 
until A=<> do

for i=1,2,...,N do 
for j = 1,2,...,N do 

k ( i,j ) : = 0 
call or'der (1 , K)

"Subroutine order generates all sequences B 
such that 0, A and B define a (N+1)x(N+1) 
consistent semi-canonical order matrix."

A := nextperm(A)
" Nextperm generates the next permutation in
lexicographical order. If the input permutation 
is <N,N-1,...,1> then nextperm returns the null 
sequence <>."

S := gradeup(A)
" gradeup generates a sequence where A(S(i))=i."

return
end
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subroutine order(m,K)
"For all i<m, B(S(i)) has been defined such that cycles 
of the form N +1,S(iN+1,S(i ) cannot occur."

"K is an NxN array with the property that K(i,j)=1 
if there exists an r step sequence i,j,...,S(k),N+1 
for some k<m. Otherwise, K(i,j)=0." 

global N,0,S,B
"0 - The NxN matrix being expanded."
"S - A permutation such that A(S(i))=i."
"B - The sequence specifying the (N+1)s column." 

sets F,NF
number N , n,i,j,m,r,t 
array K(N,N),0(N,N)

if m <. N then
n := 1 + max{ 0(S(m),j)*K(S(m),j) : j=1,2,...,N}

"n is the smallest value B(S(m)) can 
assume and assure that there cannot be 
any cycles N+1,S(m),...,N+1,S(m)." 

if S(m)=1 then n := N "B(1) must be N."
if S(m)=2 then n := max{n,2}"B(2) must be greater than 1." 
for n < t < N do 

B(S(m)) := t
F := { <S(m),j> : 0(S(m),j)<B(S(m)) and K(j,S(m))=0} 

"Put in F all <S(m),j> such that j,S(m),N+1 is an 
r step sequence and K(j,S(m))=0. If tC( j , S (m)) = 1 , 
then all r step sequences ending in j,S(m),...,N+1 
have been found before." 

until F= {} dp.
NF := {}
for <i,j> in F do 

K(j ,i) := 1
NF := NF.union.{<j,r>:0(j,r)<0(j,i) and K(r,j) = 0} 

"0(j,r)<0(j,i ) implies that r,j,i,...,S(m),N + 1 
is an r step sequence. If K(r,j)=0, 
then an r step sequence r,j,...,S(k),N+1 
has been found before for some k<m."

F := NF
call order(m+1,K)

"B(S(m)) has been defined such that r step 
cycles N+1,S(m),...,N+1,S(m) cannot occur."

"K has been updated so that K(i,j)=1 when 
there is an r step sequence i,j,...,S(m),N+1."

return

else
"If n>N then every element B(i) has been defined 
so that cycles of the form N+1,i,...,N+1,i 
cannot occur."
"By theorem 9, 0,A, and B define an (N+1)X(N+1) 
consistent semi-canonical order matrix."

end
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After B(S(i)) has been defined for all i<m, procedure 

order generates an order matrix for every permissible value 

of B(S(m)). Thus, every (N+1)x(N+1) order matrix must be 

generated by Algorithm 7. Since each NxN matrix generates 

at least N! (N+1)x(N+1) order matrices, the number of 

semi-canonical order matrices is a very rapidly growing 

function of N. Table 4 lists all the 4x4 semi-canonical 

order matrices in the order they were generated by Algorithm 

7 from matrix (1) listed on page 41. Recall that this is the 

only 3x3 semi-canonical order matrix.

(1) (2) (3) (4) (5) (b)
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
1 0 3 2 1 0 3 2 1 0 2 3 1 0 3 2 1 0 2 3 1 0 2 3
1 3 0 2 1 2 0 3 1 2 0 3 1 3 0 2 1 3 0 2 1 2 0 3
1 2 3 0 1 2 3 0 1 2 3 0 1 3 2 0 1 3 2 0 1 3 2 0

(7) (8) (9) (10) (11) (12)
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
1 0 3 2 1 0 3 2 1 0 2 3 1 0 3 2 1 0 2 3 1 0 3 2
1 3 0 2 1 2 0 3 1 2 0 3 2 3 0 1 2 3 0 1 1 3 0 2
2 1 3 0 2 1 3 0 2 1 3 0 2 3 1 0 2 3 1 0 2 3 1 0

(13) (14) (15) (1b) (17) (18)
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
1 0 2 3 1 0 2 3 1 0 3 2 1 0 3 2 1 0 3 2 1 0 2 3
1 3 0 2 1 2 0 3 2 3 0 1 1 3 0 2 1 2 0 3 1 2 0 3
2 3 1 0 2 3 1 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0

(19) (20) (21) (22) (23)
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
1 0 3 2 1 0 2 3 1 0 3 2 1 0 2 3 i 0 2 3
2 3 0 1 2 3 0 1 1 3 0 2 1 3 0 2 i 2 0 3
3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

Table 4.
4x4 semi-canonical order matrices.

-55-



Since there was only one 3x3 semi-canonical order

matrix, a three point metric space is compatible with a

unique semi-canonical order matrix. The following discussion

will show that there exist some four point metric spaces

which are compatible with two semi-canonical order matrices.

Let 0 be an order matrix which is compatible with an .N
point labeled metric space. If the ith and jth labels are

interchanged in the metric space, then the order matrix 0’

which is compatible with this modified labeling is simply
matrix 0 with the i^h and rows interchanged and the ith

and columns interchanged. Since any permutation of the

labels is a product of transpositions, the order matrix

compatible with a relabeling of this metric space can be

generated by a series of interchanges of the rows and columns

of order matrix 0. A series of interchanges of the rows and

columns is equivalent to the transformation
TPOP

Twhere P is a permutation matrix and P is the transpose of

P. Thus, if there exists a permutation matrix P such that 
TO' = P 0 P , then O' and 0 are compatible with a relabeling 

of the same metrix space. In particular, order matrices (7) 

and (17) in Table 4 are compatible with a relabeling of the 

same metric space. The following transformation shows that 

if labels one and two are interchanged and labels three and 

four are interchanged in a metric space compatible with order
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matrix (17), then the metric space will be compatible with 

order matrix (7).

0 1 2 3 0 1 0 0 0 1 2 3 0 1 0 0
1 0 3 2 1 0 0 0 * 1 0 3 2 * 1 0 0 0
1 3 0 2 = 0 0 0 1 1 2 0 3 0 0 0 1
2 l 3 0 0 0 1 0 3 1 2 0 0 0 1 u

-57-



CONCLUSIONS

Porgressive graphs are useful when they have been 

constructed so that the average degree weighted path length 

and average degree are small. The graphs constructed in the 

test problem have the property that both degree weighted path 

length and average degree are increasing at a rate 

proportional to the number of nodes in the graph. This 

implies that the amount of work the search algorithms must 

perform is proportional to the log of the number of nodes. 

However, the time required to construct the graphs is 

increasing at a rate approximately proportional to the square 

of the number of nodes, and the time to optimize the graphs 

was approximately proportional to the cube of the number of 

nodes.

The consistent order matrices contain all the 

information about compatible metric spaces which is relevant 

to the study of progressive graphs. Therefore, progressive 

graphs can be studied relative to order matrices. Although 

only the non-isosceles metric spaces can be compatible with 

an order matrix, this restriction to non-isosceles distance 

functions is not significant. Any isosceles distance 

function in a finite metric space can be converted to a 

non-isosceles distance function without changing the relative 

distances in any non-isosceles triangle.
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APPENDIX 1

Madcap 6 programs j-b ^ 1 q j

ALGORITHM 1:

1 O C ♦- oc
1 : descr j ption
X *- location
2 *■ location
X *■ seed 1 oc 
while desCX)*Y :

B ♦- adj(X)
Tor 2€ft a dist(des(2),Y)

< distCdes(X).Y) : x<-Z 
<return^ X
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ALGORITHM 2:

ana *- ~ r : real
x : location
<a,£> location

NBR ^ rea1 set ^ne i ghberrhood^
PER ^ r ea1s et <pertpheryC
(IF *- r e a 1 s e t ^ new f r ©ntier C
OF - r e a 1 s e t < e 1 d frontier^

MBR ^ O
PER ^ O
OF «- t x>

unt i 1 #QF = 0 #
•

NF ^ O
NBR ^ NBR u OF 
for f € OF :

0 «- “Ca: a^adjCf )> ~ (NBRuNFuPER)
IN ♦- {. a : a€fi while true ^ 
dist(des(a),des(x)) < r >

NF NF u IN 
PER ♦- PER u (P-IN)

OF <- NF
^return^ NBR
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ALGORITHM 3:

Si X Q Si &. Si !L ^ ^
3 : description

^ 5. £. K ^ «- location 
<U3B>9E,yE> - realset 
C ♦- real

£l2SS£ *“ true 
x - seed 1oc

while closer Anodes are founds :
Kfi ♦- x

^checK nodes adjacent to
For aeadjCx) a dist(des(a),q)<dist(desCx ).q) :

x«-a

iF x=xO : CchecR a neighborhood of radius 2rC 
r ♦- dist(desCx).q)
(NBR,0F)4-Cx>
unti1 #0F=O ^ x*xO :

NF ♦- O
For F€0F while x=xO :

0 «- £a:a€adj(f)> NBR

NBR «- NBR u ft

if t 3 dist(des(a),q) < r 3 :o ^ H

x*-a

else:
IN faraeft while true a 

d i st(des(a).desCx)) £ 2 r >

NF ♦- NF u IN

OF ♦- NF

if x=xO : closer ♦- false 
freturn^ x

-61-



ALGORITHM 4:

£. A. n si n *- ^
Q : real 
j : description

<a.£,£> ♦* local i on 
«- closest (q)

Jjgy *- distC(ies(y),q) 
liit <y>
AStal - n
PtB *- Cp:p€3dj(y)>

CflliDi 1
until #PER=0 v count^tetal :

liEB *■ ^nearest ( des ( y ) , PER) > 
until ^NBR=0 ^ count^total : 

i i- near est ( des ( y ), NBR)
£ ♦* d i st ( des ( z ) , q ) dqy 
BE ♦* Cp:p€RER while true a 

d i st ( des C p ). des ( y )) ii r > u Cz>
PER PER ~ OF 
until «OF=0 :

t^F +- Ereal: 0 items>
NBR ♦- NBR u OF 
for f€OF :

B *- faiaeadjCf) while true a 
1 ( a€1iSt ^ a€NBR v a€PER v

a€NF) }
Xy ♦* fa:a€ft while true a 

di st(des<a).des(y)) i r >
NF «- NF u IN 
PER «- PER u (R~IN)

OF ♦- NFfcJEy -CaraeNBR while true a dist(des<a ),q ) ^ dist(des(z).q) >
NBR «- NBR ~ NEW
^sort the elements in NEW and append^ 
♦them to 1ist♦
list ♦* append ( 1 i st, set sort ( q v NEW) ) 
count «- count + «NEW 

♦return£1ist

-62-



ALGORITHM 5:

ASlfil JL
J5 : description

♦- descr i pt i on
< ^ location

^Create a new node for the new document.C
N < I de s: < r e a 1 : 0 i t ems >; iad j : < r e a 1: 0 items))
desTN «- x
)ocx ♦- dgraph
graph append ( graph, <N>)

for 0Slocy<Jocx :
❖Check for a first step in a progressive pathC 
❖from all old documents to the new document.❖

y «- des (1 ocy )

if [H ^ .dist(y.x) i d i st ( d e s C z ). x) ] :

tie(1ocx,1ocy) 

for 051ocy<locx :
❖check for a first step in a progressive path^ 
❖from the new document to all old documents^

y «- des(1 ocy)

. ,, dist(x.y) £ d i st (des (z). y) ] : z€adj(locx) J * J
tie(1ocx.1ocy)

graph
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algorithm 6:

&£>i»jLm_L.s.«a
•“ location

C£03y3!ll5 ^ «
.y) : location 

< ♦* locat i on

H *■ «<£,a): 1 ocat i on ; d i st (desC x). des (y ) >»► 

^0S2<«graph(

z=x " t3a€aaj(x) **« - d(a,2)<d(x.z)]

> z=a v [3a€adj(!j) «*>• - d(a.z)<d<B,z)]

for 0£x<#graph :

for y€adj(x) a y>x :

if remouab1e(x.y) : untie(xay)
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APPENDIX 2

List of terms for

PE PELE PESO
•=iLS PN PNGE PNGL
mpe P P *31J PPL Y HPPP

ft'JTD EPSE EE E E S S
CE CM CHPP CHEC
CD NT CDPY CDS I PPTP
t'EPI PETE P I ME P I SP
ET' E I GE EL EM
EP EPPD EPS ES
El.-'i=iL EXCH EXPD FPC T
F I NIi F IPS FLDP FDP
FUNC GENE GU-'E GPPL
HE PM HTS I PGD I PL
INI'E I NE INFD I NG
I DNS I S ISID I T I P

L Fi Y LCM LE LEPS

LUTE LY MP I N MPTP

MPDS MUM NPL NPME
NENT NG NOM I NS I D

NUEC DF IL DL IC DM
DP DP PE DPS DUTP

FLDT F D I N PDLY F DPT

DU I C PPP I PPL PPM

PEmP P E PL PELP PEDU

PN PNS PDDT RDUT

SC PL SCM SEPP SECD

SINE S I NG SDL * • SDPT
r-5 ST P T ST DP STP I
Tm I N TP TE TH
T IDN T 11 ’ E TD TD°S
TYPE UPTE UCES UCT

USE USEP US I N UT
VE i.'ECT ME IG HH I C
HP I T ZEPD

sample problem.

PC PCTE PGE PL
PNDT PNS PF PP PP
PPr PT PTE PT ID
ED UN EY CPLC CPLL
CLDC CD PE CDEF CDMF
PPTE PP T PP PECO
PMF >: PDUE PPPM PUMP
ENP ENT ENTS EDUP
EST E S T S ETP I El.-'
FPST F IC I FILE FILM
FDPM FDPT FDUP FROM
GPPP GP I P G T HEP
I PE I EP I F IE I N
I N T E INTO INUE I DN
I X K INP LPNG L PPG
LEX L I ER L INE L.DG
MPX I MENT M I CP MM
NPTU NP N PIN NS
NT NUME MU NX PL
DN DNPL DNE DPT I
DUTS DM D >: IM FPSS
FDSI FPEC PPDP FPDG
PPN PPNP PPTE PE
PES PETU P M P T PM I N
PF DL PS PSE PY
SELE SEP I SET SFDP

SDUP SPEC SFL SDUP
ST ME SYMM SYST TP EL
THPN THE TIME TING
TPPN TRIP TS TMD
UES ULPT UN I T t.iS

UTE l/PLU l.- 'PP I l/PT I
MHDS M I N p M I TH MDPP
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