
LA-6341-T
Thesis

'*1
l MAS® An.

UC-32 A 77/
Issued: February 1977

A Metric Graph Structure for Information Retrieval

by

Karl Jerry Melendez

of the University of California
LOS ALAMOS, NEW MEXICO 87545

/ \
An Affirmative Action/Equal Opportunity Employer

UNITED STATES
ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

CONTRACT W-7 405-EjyG. 36

'DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image

products. Images are produced from the best available

original document.

This thesis was accepted by the University of New Mexico, Albuquerque,
NM, Mathematics and Statistics Department in partial fulfillment of the
requirements for the degree of Doctor of Philosophy. It is the independent
work of the author and has not been edited by the Technical Information
staff.

Printed in the United States of America. Available from
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

Price: Printed Copy $4.50 Microfiche $3.00

Thi> report was prepared as an account of work sponsored
by the I'niled States (lovcrnment. Neither the United States
nor the United States Knemv Research and Development Ad­
ministration. nor anv of their employees, nor any of their con­
tractors. subcontractors, or their employees, makes any
warranty, express or implied, or assumes any leRal liability or
responsibility for the accuracv. completeness, or usefulness of
any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights.

TABLE OF CONTENTS

Section Page

INTRODUCTION .. 1

THE DOCUMENT SPACE 2

PROGRESSIVE GRAPHS 3

PROGRESSIVE GRAPHS AND INFORMATION RETRIEVAL 10

OPTIMAL PROGRESSIVE GRAPHS 18

BUILDING PROGRESSIVE GRAPHS 26

ENUMERATION OF GRAPHS 37

ORDER MATRICES... 39

CONCLUSIONS... 58

APPENDIX 1 - Madcap 6 programs......................... 59

APPENDIX 2 - List of terms for sample problem........ 65

ACKNOWLEDGMENTS.................................... 66
REFERENCES............................. 67

--------------------- NOTICE----------------------
This report was prepared as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Energy
Research and Development Administration, nor any of
their employees, nor any of their contractors,
subcontractors, or their employees, makes any
warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not
infringe privately owned rights.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITE1'

LIST OF FIGURES

figure page

1 Progressive path in the Euclidean plane 4

2 Regressive path in the Euclidean plane 5

3 The neighborhood N(r,X) in a progressive graph. . 11

4 Progressive graphs with a minimum
number of arcs....................................... 22

5 Number of documents vs. average degree...........33

6 Logarithmic fit of the average degree data. ... 34

7 Number of documents vs. average DWPL................ 35

8 Logarithmic fit of the average degree data. ... 36

9 (N+1)x(N+1) order matrix 50

10 r step cycle N + 1 ,m, j , ,. . ,k,N+1 ,m.................52

LIST OF TABLES

table page

1 Results for unoptimized graph 30

2 Results for optimized graph 31

3 Enumeration of labeled graphs 37

4 4x4 semi-canonical order matrices 55

v

ABSTRACT

Document retrieval systems accept a user request for

information and respond with a list of documents which

contain information relevant to the request. When the

documents (or abstracts of the documents) are stored in a

computer memory, a function can be defined which estimates

the semantic distance between documents. If this function

together with the set of documents forms a metric space, a

graph, which I call a progressive graph, can be constructed

to aid the search for the documents with relevant

inf ormation.

Progressive graphs are studied and the search

algorithms which use this graph structure are presented.

The search algorithms always perform correctly on any

progressive graph, but the presence of the progressive

property in a graph is not sufficient to insure that the

algorithms will work efficiently. The characteristics of a

progressive graph which will optimize the search algorithms

are discussed and algorithms to build and optimize

progressive graphs are given. The results of a small

problem show that the search process using the graph created

by these algorithms can be very efficient. Finally, the

distance function property which determines when a graph is

a progressive graph is isolated and studied.

INTRODUCTION

When information is required from a large document

library, the first problem is to formulate a query which

describes the nature of the information desired. After the

query is formulated, the next problem is to find the

documents which contain relevant information. Furthermore,

if the number of documents with relevant information is very

large, the documents with the most relevant information must

be identified. This suggests that a measure of the

similarity between the query and the documents must be

performed. In addition to measuring the similarity between

the query and the documents it is sometimes useful to measure

the similarity between documents.

One such measure is correlation. Correlation between

documents increases as the documents become semantically

alike. On the other hand, if the measure becomes smaller as

the documents become semantically alike, then the measure can

be considered a distance. When the distance function

satisfies the properties of a metric, then the documents may

be considered to be in some metric space.

Any query may be considered as a point in this metric

space, and using the properties of the distance function the

following questions can be answered.

(1) Which document is closest to the query?
(2) Which documents are within distance 'r' of the query?
(3) Which are the 'n' closest documents

(given in order of increasing distance)?

-1-

THE DOCUMENT SPACE

A general document space is a set of documents and a

distance function or a correlation function. The function

must measure the semantic similarity between documents. The

distance between documents may be determined by manually

scanning the information. However, unless the number of

documents is very small, this task is much too time

consuming.

Burd and Morrison investigated the usefulness of

computing lexicographical correlation using the PATRICIA

indexing algorithm|-^ j. Lexicographical correlation was

computed between five documents of approximately the same

length. Their results showed that the correlation between

related documents was about twice the correlation between

unrelated documents.

Correlation and distance can also be computed for

document pairs by representing the documents as vectors and

then computing the correlation or distance between the

corresponding vector pairs. The vector representation of a

document using t index terms is

where d^

document.

be used as

be used as

Di = ^di1’di2’•*•’dit ^
f* Vorepresents the weight of the j

The cosine of the angle between

a correlation measurement and th

a distance function j-^ j.

term in the ith

vector pairs can

e angle itself can

-2-

PROGRESSIVE GRAPHS

When one knows how to measure the semantic closeness

between two documents or between a document and a query, the

questions posed in the introduction can be answered by

comparing the query with each document in the library. This

process may be very time consuming. One method of reducing

the amount of work to answer these questions is to cluster

the documents into groups of related documentsrQ -.on.Lo, p« 323J
Then one needs only to compare the query with documents in

clusters which may contain relevant documents. I am

investigating an alternate method which requires that the

distance function be a metric. A distance function is a

metric if it satisfies the following conditions for arbitrary

documents X, Y and Z.
(1) d(X,Y)>0 and d(X,Y)=0 iff X=Y

(2) d(X,Y) = d(Y,X)

(3) d(X,Y) < d(X,Z)+d(Z,Y)

A distance function can be used to construct a graph which

will help in the search for relevant documents. The points

in the metric space correspond to descriptions of documents

or queries, while the nodes in the graph correspond to

descriptions of documents which have been catalogued.

The following definitions classify finite graphs whose

nodes are points in a metric space. A finite graph (S,L) is

-3-

a finite set of nodes S and a set L of arcs between nodes in

S. If the nodes in S are points in a metric space with a

distance function d, then (S,d) will be a finite metric

space. An arc in L between two nodes X and Y will be denoted

by the unordered pair [X,Y]. In this case we say that X is

adjacent in L to Y and Y is adjacent in L to X. (S'.L1) is a

subgraph of (S,L) if S' is a subset of S and L' is a subset

of L. For any subset S' of S the induced subgraph <S'> of

(S,L) is the subgraph (S'.L') where L* contains all arcs in L

between points in S'. A path from X to Y in (S,L) is a

sequence of nodes X=X^,X2,...,Xn=Y with the property that X^

is adjacent to X^+^ for i=1,...,n-1. The following two

special kinds of paths depend on both the graph and the

distance function.

DEFINITION:(Progressive Path) A path X=XQ,XX=Y
in a graph (S,L) is progressive with respect to the
distance function d if and only if i<j implies that

d(X.,Y) > d(Xj,Y).
Traveling along a progressive path, the distance to the last

node in the path is getting progressively smaller.

Figure 1.
Progressive path in the Euclidean plane.

-4-

DEFINITION: (Regressive Path) A path X=X0,X1,...,Xn=Y
in a graph (S,L) is regressive with respect to then
distance function d if and only if i<j implies that

d(Xi,X) < d(Xj,X).
Traveling along a regressive path, the distance from the

first node in the path is getting larger.

Figure 2.
Regressive path in the Euclidean plane.

Progressive and regressive graphs can now be defined as

follows.

DEFINITION: (Progressive Graph) A graph (S,L) is
progressive with respect to the distance function d
if and only if for every pair of nodes X and Y in S
there exists a progressive path from X to Y.

DEFINITION: (Regressive Graph) A graph (S,L) is
regressive with respect to the distance function d if
and only if for every pair of nodes X and Y in S
there exists a regressive path from X to Y.

The following lemma shows the relationship between a

progressive path and a regresssive path.

LEMMA 1: A path Xq,X.j , . . . ,Xn is progressive if and only if

the path xn * xn_-]»•••* xq regressive«

PROOF: In any regressive path, the distance from the

first node in the path must increase as the number of

steps from the first node increases. The path

Xn , Xn_-j , . . . , Xq has indices which decrease as the number

of steps from Xn increases. It follows that

-5-

Xn,Xn_-| , . . . ,Xq is regressive

if and only if

j>i implies that d(Sj,Xn) < dU^X^

if and only if

i<j implies that d(X.,X) > d(X.,X)i n J n
if and only if

X0,X1,...,Xn is progressive

A path is progressive or regressive depending on which

direction you are traveling. The following theorem says that

the progressive and regressive properties for graphs are

equivalent.

THEOREM 1: A graph (S,L) is progressive with respect to the

distance function d if and only if (S,L) is regressive with

respect to the distance function d.

PROOF: Let X and Y be arbitrary nodes in (S,L). By

lemma 1 we know that a path from X to Y is progressive

if and only if the reverse path from Y to X is

regressive.

The complete graph is a graph in which every node is

adjacent to every other node. It is progressive with respect

to any distance function, because a one step path exists

between every pair of nodes. Every progressive graph must be

a subgraph of the complete graph. Theorem 2 shows that arcs

between closest neighbors must always be in every progressive

graph.

-6-

THEOREM 2: Let the graph (S,L) be progressive with respect to

the distance function d. Let X be an arbitrary node in S.

If Y is a node in S such that X ^ Y and d(X,Y) < d(X,Z) for

all nodes Z/X, then Y is adjacent to X.

PROOF: Let X and Y be arbitrary distinct nodes in S with

the property that d(X,Y) <. d(X,Z) for all Z/X. Since

(S,L) is progressive with respect to d, (S,L) must also

be regressive with respect to d. Therefore, there

exists a regressive path X=Xq,...,X =Y from X to Y. If

n > 1 , then d(X,X^) < d(X,Y). This contradicts the

assumption that d(X,Y) < d(X,Z) for all Z^X.

Therefore, the regressive path from X to Y is X=Xq,X^=Y.

This shows that X is adjacent to Y.

Theorem 2 tells us which arcs must be in every

progressive graph, but the existence of these arcs is not
sufficient to show that a graph is progressive. The

following theorem gives a criterion by which one can

determine if a graph is progressive.

THEOREM 3: (First Step Rule) A graph (S,L) is progressive

(and hence regressive) with respect to a distance function d

if and only if for every pair of nodes X and Y in (S,L) the

following holds:

(I) There exists Z in (S,L) such that Z is adjacent to X and
is closer to Y than X is to Y (i.e., d(Z,Y) <d(X,Y)).

PROOF: Let (S,L) be a progressive graph with respect to

the distance function d. Let X and Y be arbitrary nodes

-7-

in (S,L). Since (S,L) is progressive, there exists a

progressive path X=Xq,X1,...,Xn=Y. By the definition of

progresive path, X1 is adjacent to X and d(X1,Y)<d(X,Y).

Hence, condition (I) holds.

Conversely, assume that condition (I) holds. Let X
and Y be arbitrary nodes in (S,L). Condition (I) says

that there exists a node X1 such that d(X1fY) < d(X,Y).

If X^ = Y, then X=Xg,X^=Y is a one step path from X to
Y. In general, let X=Xg,...,Xk be a path such that i>j
implies that d(X.,Y) < d(X.,Y). For k=1, I have shown

that such a path exists. If Xk=Y, then X=XQ,...,Xk=Y is
a progressive path from X to Y. If X, ^ Y, then therenv
exists Xk+1 such that d(Xk+1,Y) < d(Xk,Y). Thus,

X=XQ.... Xk,Xk+1 is a path of length k+1 with the same

property. If the terminal point of the path is Y, it is

a progressive path from X to Y. Otherwise, the path

length can be increased by one. Since (S,L) has a

finite number of nodes, this process must end with a

progressive path from X to Y. Therefore, the graph

(S,L) is progressive with respect to the distance

function d.

The following example shows a case where the set of arcs

between the closest neighbors is sufficient to make the graph

progressive.

-8-

Example 1:

S = {1,2,3,4}

L = { [1,2],[2,3],[3,4] }

The distance function is the normal distance function on the

integers.

d(X,Y) = |X-Y!

-9-

PROGRESSIVE GRAPHS AND INFORMATION RETRIEVAL

Each document in the library must have a description

with sufficient information to calculate the distance between

two documents or between a document and a query. The points

in the metric space correspond to these descriptions. The

nodes in the graph correspond to the entries in the library

catalogue. Therefore, in addition to a list of adjacent

nodes, each node in the graph must contain a description of

the document and any other information a catalogue must

contain. Since the node contains all the necessary

information, the following two functions will be trivial,

des(location) - Given the location of a node in the graph,

return the description of the document,

adj(location) - Given the location of a node in the graph,

return the set of all node locations which

are adjacent to this node.

The properties of a progressive graph can be used to

find the location of the node corresponding to a document

description. If (S,L) is a progressive graph with respect to

the distance function d, then Theorem 2 says that for any two

nodes X and Y in S there exists a node adjacent to X which is

closer to Y than X is to Y. The closer node may be Y itself.

Thus, to find a node Y in (S,L) one needs only to start at

any arbitrary node X in (S,L) and examine all nodes adjacent

to X. One of these nodes must be Y or must be closer to Y

than X is to Y. This suggests the following algorithm to

-10-

find any node in (S,L).

ALGORITHM 1: (Given a description of a document Y,
find the location of the node corresponding to this
document.)

function loc(Y)
description Y
location X
X := location of any node in (S,L)
while des(X) ^ Y do

X:= location of the node which is closest to Y
among all nodes adjacent to X

loc := X
return
end

the ball

Figure 3.
The neighborhood N(r,X) in a progressive graph.

-11-

Algorithm 1 must terminate because each iteration is a

step in a progressive path, and there are only a finite

number of documents. At each step in this path, the adjacent

node closest to the terminal node is chosen as the next step.

The work performed to find a location is proportional to the

sum of the degrees of the nodes in the path.

The next problem is to find all nodes which are within a

fixed distance 'r' of X. See Figure 3. This set of nodes

will be denoted by N(r,X). In the metric space (S,d), N(r,X)

is a ball of radius 'r' with center at X. The following

theorem shows that the induced subgraph <N(r,X)> is not only

connected, but that regressive paths exist from its center to

every other point.

THEOREM 4: If (S,L) is progressively connected with respect

to the distance function d, then the induced subgraph

<N(r,X)> contains a regressive path from X to every other

point in N(r,X).

PROOF: For every node Y in N(r,X) there exists a

regressive path X=XQ,X1,...,Xn=Y in (S,L) from X to Y.

By the definition of regressive path, d(X.X^)<d(X,Y)<r .

Thus, each node X^ is in the neighborhood N(r,X) and the

path is in the subgraph <N(r,X)>.

To find all the nodes in N(r,X) it is sufficient to use the
subgraph <N(r,X)>. Let Y be the nth closest point to X in

N(r,X). There exists a regressive path in <N(r.X)> from X

-12-

to Y. Therefore, by Lemma 1 the reverse of this path is a

progressive path from Y to X. Since a progressive path

exists from Y to X, Y must be adjacent to X or adjacent to

one of the n-1 closer nodes. Thus, having found the n-1

closest nodes, one need only search through nodes which are

adjacent to X or the n-1 closest. This is the same property

that assures the correctness of algorithms to find the

shortest path through a network^ ^] • Since Algorithm 2
finds all the documents in the neighborhood N(r,X) in order

of increasing distance from document X, it can easily be

modified to find the closest 'n' documents.

ALGORITHM 2: (Given r and X, find the documents in
N(r,X) in order of increasing distance from X.)

function NRX(r,X)
sequence NRX
nodes X,nth,a
number r
sets Frontier,Periphery ,A

NRX := <> "Initalize NRX to a null sequence."
Frontier : = { a jjn adj(X) : d(a,X) ^ r}
Periphery := { a in adj(X) : d(a,X) > r}
until Frontier = TT d£

nth := (closest node in Frontier)
NRX := NRX,nth "Append nth to NRX."
A := adj(nth) - (NRX .union. Frontier .union. Periphery)
Periphery := Periphery .union. {a i_n A : d(a,X) > r}
Frontier := Frontier .union. {a i_n A : d(a,X) r}
Frontier := Frontier - {nth}

return
end

s tAfter the closest k nodes have been found, the (k+1)

closest node must be in the Frontier. The (k+1) closest

node can be found by a simple search of the nodes in the

-13-

Frontier. This search can be eliminated by keeping the

Frontier as a list in increasing order of distance from X.

An alternative algorithm is to simply find all nodes in

N(r,X) which are one step away from X, then all nodes which

are two steps away from X, etc. When the complete

neighborhood has been found, it can then be sorted in

increasing distance from X. In any case the number of

comparisons required to sort the nodes in increasing order of

their distance from X depends only on the number of documents

in the neighborhood.

When a node is added to the neighborhood, any of its

adjacent nodes which have been reached before can be

discarded. A node has been reached before if it is already

in the neighborhood N(r,X), the Frontier, or the Periphery.

If each node is marked when it is placed in any of these
lists, the lists will not need to be searched to determine

when a node has been reached before. At the end of the

algorithm, all marks must be removed.

Algorithm 1 finds only nodes which are in the graph. A

query will not be a node in the graph, but the properties of

a progressive graph can be used to find the document node

which is closest to a query. If a node X in (S,L) has no

adjacent nodes which are closer to the query q, then X is

locally closest to q. If there exist nodes in (S,L) which

are closer to q they will be members of the neighborhood

-14-

N(2*d(X,q),X). Suppose X is locally closest, but is not the

closest node to q. Then there exists a node Y such that

d(Y,q) < d(X,q). Using the triangle inequality

d(X,Y) < d(X,q) + d(q,Y)

= d (X , q) + d (Y , q)

< d(X,q) + d(X,q) = 2*d(X,q)

If d(X,q) is large, the neighborhood N(2*d(X,q).X) may

contain many nodes. Therefore, if X has no adjacent nodes

which are closer to q it is sufficient to find any node in

N(2*d(X,q),X) which is closer to q. In this case Algorithm 3

finds all nodes in N(2*d(X,q),X) which are one step away from

X, then all nodes which are two steps away from X and so on

until a closer node is found or until all nodes in

N(2*d(X,q),X) have been found. Only arcs in the induced

subgraph <N(2*d(X . q),X) > need to be examined, because

<N(2*d(X,q),X)> has progressive paths from X to every node

and is therefore connected.

Algorithm 3 is a combination of algorithms 1 and 2.

Algorithm 1 is used until a locally closest node is found.

Then, a modification of Algorithm 2 is used to verify that

the current location is the closest or to find a closer

location. If a closer location is found. Algorithm 1 is

again used to step closer to the query.

-15-

ALGORITHM 3: (Algorithm to find the document
closest to a query.)

function closest(q)
description q
sets A,OF,NF,NRX
locations closest,f,x,xO,a,n
numbers r
boolean closer
closer := true
x := any location in S
while closer = true do

"Check all locations adjacent to x
for locations closer to the query q."

"If any exist, choose the location closest to q."
xO : = x
for all a in adj(x) do

if d(des(a),q) < d(des(x),q) then x := a
if x = xO then

"If no points adjacent to x are closer to q,
check a neighborhood of radius 2*d(x,q) for
closer documents."

r := d(x,q)
NRX := {x}
OF := {x}
until 0F=O or x^xO do

NF := {}
for all f in. OF while x = xO do

A := adj(f) - NRX
NRX := NRX .union. A
for all a in A do

if d(des(a),q) < r then x:=a
if d(des(a),des (x)) <. 2*r then NF := NF.union, {a}

OF := NF
if x=xO then closer :•= false

closest := x
return

By finding successively larger neighborhoods of the

closest document, the following algorithm will find the 'n*

closest. If Y is the closest document to the query q and Z
x.is the kL closest document to q, then the neighborhood

N(d(Z,q)+d(Y,q) ,Y) will contain all the k-1 closest

documents. This follows from the fact that the neighborhood
N(d(Z,q),q) is contained in N(d(Z,q)+d(Y,q),Y).

-16-

ALGORITHM 4: (Algorithm to find the 'n' closest
documents to a query.)

function findn(n,q)
"At stage k, all the k closest nodes have been found."

"findn - A list of the k closest nodes <N(1),...,N(k)>"
"NBR - Nodes in the neighborhood N(r,N(1)) but

not in findn. r= d(N(k),N(1)) + d(N(1),q)"
"PER - Nodes adjacent to a node in NBR or findn which

are not already members of NBR or findn."
sequence findn
description q
numbers n,dqy,count,total
locations y,z,p,a
sets NBR,OF,NF,PER,IN,NEW

findn := <>
if n £ 0 return
y := closest(q)
dqy := d(des(y),q)
findn := <y>

count := 1
total := n
PER := { p in adj(y) }
until PER= {T~or count_>total do

NBR := { element in PER which is closest to y }
unti 1 NBR={} 0£ count_>total dc>

z := (element in NBR which is closest to y)
r := d(des(z),q) + dqy
OF := {z} .union, {p i_n PER : d(des(p), des(y)) < r}
PER := PER - OF
until 0F={} do

NF := {}
NBR := NBR .union. OF
for all f ijn OF do

A: = ia in adj(77}-{elements in NF,NBR,PER, or findn}
IN := Ta _iri A : d (des (a). des(y)) < r }
NF := NF .union. IN
PER := PER .union. (A-IN)

OF := NF
"At this point NBR must contain all nodes which are not
already in findn but are closer to q than z is."

"If d(des(a),q) < d(des(z),q) , then
d(des(a),des(y7) < d(des(a).q) + d(des(y).q)

< d(des(z),q) + dqy = r."
NEW := {a _in NBR : d(des(a),q) < d(des(z),q) }
NBR := NBR - NEW
"Sort the elements in NEW and append them to findn."
findn := append(findn,<sorted elements of NEW>)
count := count + (number of elements in NEW)

return
end

-17-

OPTIMAL PROGRESSIVE GRAPHS

The complete graph is a graph in which every node is

adjacent to every other node. Such a graph is clearly

progressive since a one step progressive path exists between

any two nodes. However, a simple sequential search is more

efficient than using algorithms 1 through A on the complete

graph.

Given any two distinct nodes X and Y in a complete graph

with n nodes, Algorithm 1 will make n-1 distance calculations

to find Y starting at node X. Since the graph is complete, X

has degree n-1 and Algorithm 1 will sequentially search all

n-1 adjacent nodes for the closest node to Y. Since Y is

adjacent to X, Algorithm 1 will find Y during this search. A

sequential search of a file would require at most n distance

calculations and the average number of distance calculations

a sequential search makes is n/2.

The difficulty Algorithm 1 encountered with the complete

graph was that the degree of each node was very large. One

may come to the conclusion that all Algorithm 1 requires is a

progressive graph with the smallest number of arcs possible.

However, consider the case of a path graph. A path graph

(P,L) is a set of nodes {X^ ; i=1,2,...,n} and a set of arcs

^Xi’^i+1^ : i=1*•••♦n-1J• Progressive graphs must first

be connected, and any connected graph with n nodes must have

at least n-1 arcs^j. Therefore, no progressively connected

graph can have fewer arcs than a path graph. If the path

-18-

graph (P,L) is progressively connected (see example 1) then

Algorithm 1 will make 2k-3 distance calculations to find

starting at . There are k-1 steps and every step requires

two distance calculations except the first step, which

requires only one distance calculation. The average number

of distance calculations to find X^ , k=2,3.... n will be
[1 + £ (2k-3)] / (n-1) = (n-1).

k= 1
Thus, although the path graph has the smallest number of arcs

possible for a connected graph, the average number of

distance calculations required by Algorithm 1 is proportional

to the total number of documents in the graph.

This indicates that both high node degrees and long

search paths will cause Algorithm 1 to be inefficient. The

following definition incorporates both these measurements.

DEFINITION: (degree weighted path length) The degree
weighted path length of a path X = XQ.... X =Y is

n-1
£ degree(X).
i = 0 1

Starting at any node X in a progressively connected graph.

Algorithm 1 will follow a unique path searching for the node

Y. At each step X^ in the path Algorithm 1 will make

degree(X^) distance calculations to determine the next step.

Thus, the degree weighted path length of this path from X to

Y is the total number of distance calculations Algorithm 1

makes to find Y starting at X. The degree weighted path

length of this unique path from X to Y will be denoted by

-19-

DWPL(X,Y). I have already shown that for a complete graph

DWPL (X, Y) = n-1 if X/Y and for the path graph DWPLU^X^ =

2k-3.

Algorithm 1 is a search algorithm which will start at a

location X and find the location of a node Y which may be

unrelated to X. On the other hand, Algorithm 2 starts at a

node location X and finds all locations within a given

distance from X, i.e., all locations in the neighborhood

N(r,X). To find a neighborhood N(r,X) Algorithm 2 will make

at most
^ ^degree(Y)

N(r.X)
comparisons of the distance to X and the radius of the

neighborhood 'r*. If the graph is the complete graph, then

Algorithm 2 must determine if d(X.Y) <_ r for all Y adjacent

to X. This requires degree(X) = n-1 distance calculations

where n is the total number of nodes in the graph. However,

if X is a node in a path graph. Algorithm 2 will make at most
^ ^ degree (Y) <. 2 * tfN(r,X)

N (r , X)
distance calculations, where #N(r,X) is the number of nodes

in N(r,X). The number of distance calculations in the

complete graph is proportional to the total number of nodes

in the graph while the number of distance calculations in a

path graph is proportional to the number of nodes in the

neighborhood N(r,X). Therefore, the complete graph is

-20-

undesirable for both algorithms 1 and 2, and a path graph is

undesirable only for Algorithm 1. In general it is clear

that Algorithm 2 requires progressive graphs whose nodes have

low degree.

Let S' be the set of all graphs on the set of nodes S

which are progressive with respect to a distance function d.

A partial order can be defined on S' by:

(S,L1) < (S,L2)
if and only if

is contained in L2

The minimal elements in this partial order are the

progressive graphs of interest. If (S,L) is a minimal

element, then the removal of any line will cause the graph to

lose the progressive property. Minimal progressive graphs

can be found by removing unnessary lines from a graph which

is already progressive. Theorem 3 gives a criterion to

determine when an arc is unnecessary. Theorem 3 says that an

arc [X,Y] is unnecessary if its removal does not cause X or Y

to fail the first step requirement. A much harder problem is

to find a minimal progressive graph with the property that no

other progressive graph has fewer arcs. Such a graph must

exist, but the following example shows that it is not unique.

-21-

Example 2:

S = l X1=(0,0) , X2=(0.4) , X3=(3.8) , X4=(3,0) }
^1 = ^ [X ^,X2] , [X1,X4] , [X2,X3] , [X2,X4] }

^2 = ^ ^ 1 »^2 ^ ’ ^1 * tX2, X^] , [X3,X4] }

Figure 4.
Progressive graphs with a minimum number of arcs.

Both L1 and have the same number of arcs and are

progressive with respect to ordinary Euclidean distance.

Furthermore, no progressive graph can have fewer than 4 arcs

on this set of nodes.

Since graphs in S' with the smallest number of arcs are

not unique, it follows that the intersection of two graphs in

S' may not be a graph in S'. However, by Theorem 2 it

follows that the intersection of two graphs in S' cannot

result in a graph with no arcs. The following set of arcs

must be in every progressive graph.

X is a closest node to Y
{ [X,Y] in S or

Y is a closest node to X
}

-22-

When two nodes A and B are equidistant to a third node X

and no other nodes are closer to X, then A and B are closest

to X. Any progressive graph must contain both arcs [A,X] and

[B,X], However, if the distance function does not measure A

and B as exactly equidistant to X, then only the closest node

may need to be adjacent to X.

A distance function d will be called an isosceles

distance function on the set S if there exist three points X,

Y and Z in S such that d(X,Y) = d(X,Z). Otherwise, the

function will be called non-isosceles. The triangle with

vertices at X, Y and Z will be an isosceles triangle if

distance is measured with an isosceles distance function.

If d is an isosceles distance function on the set S and

a:S-->{1,2,...,n} is a one to one function from S onto

{1,2,...,n}, then a non-isosceles distance function da can be

defined by

da(X’Y) 0 if X=Y
d(X,Y) + e*[a(X)+a(Y)] if X/Y

where
p - min {|d(X,Y)-d(X,Z)i : d(X,Y)*d(X,Z)}

2n

To. show that the triangle inequality holds, assume that X, Y

and Z are arbitrary points in S. Then,

-23-

da(X,Z) = d(X,Z) + e*[a(X)+a(Z)]

< d(X,Y) + d(Y , Z) + e*[a(X)+a(Z)]

< d(X,Y) + d(Y , Z) + e*[a(X)+2a(Y)+a(Z)]

= d(X,Y) + e*[a(X)+a(Y)] + d(Y,Z) + e*[a(Y)+a(Z)]

= da(X,Y) + da(Y,Z)

The following theorem shows that d is a non-isosceless
distance function on S.

THEOREM 5: For any three points X, Y and Z in S,

i) d(X,Y)<d(X,Z) implies that d (X,Y) < d„(X,Z)
a. a.

ii) d(X,Y)=d(X,Z) implies that

d (X,Y)<d (X,Z) if and only if a(Y)<a(Z)d a.
PROOF:

Assume that d(X,Y) < d(X,Z).

d (X,Y) = d(X,Y) + e*[a(X)+a(Y)]d
< d(X,Y) + 2ne
_ d(X y) + 2n min{ld(r.s)-d(r,t) ! : d(r,s)^d(r,t)}

’ 2n

< d(X,Y) + 2n

= d(X,Y) + |d(X,Z)-d(X,Y)!

= d(X,Y) + d(X,Z)-d(X,Y) since d(X,Y)<d(X,Z)

= d (X, Z)
i

< d(X,Z) + e*[a(X)+a(Z)]

= da(X,Z)

This proves i). Now assume d(X,Y)=d(X,Z).

-24-

since d(X,Y)=d(X,Z)

da(X,Y) = d(X , Y) + e*[a(X) + a(Y)]

= d(X , Z) + e*[a(X) + a(Y)]

= d(X,Z) + e*[a(X)+a(Z)+a(Y)-a(Z)]

= d(X,Z) + e*[a(x)+a(Z)] + e*[a(Y)-a(z)]

= d (X,Z) + e*[a(Y)-a(Z)]a
This proves ii).

This theorem shows that d uses the function 'a' to resolve

any ties that d may encounter when measuring distances from a

common point. Thus, any progressive path with respect to d

will be a progressive path with respect to d .
3

COROLLARY: Let a:S-->{1,2,...,n} be a one to one function

from S onto {1,2,...,n}. If (S,L) is a progressive graph

with respect to a distance function d, then (S,L) is a

progressive graph with respect to d .3
In the study of progressive graphs it is convenient to

use a non-isosceles distance function, as it avoids

troublesome special cases caused by pairs of points

equidistant from a third point. In the remainder of this

paper I shall use only non-isosceles distance functions.

-25-

BUILDING PROGRESSIVE GRAPHS

The previous algorithms illustrate how progressive

graphs can be useful in document retrieval. Now I turn my

attention to the problem of building a progressive graph. A

progressive graph can be built by initializing the graph to

contain one document and no arcs. Then, the rest of the

documents can be added one at a time with a sufficient number

of arcs to insure that the graph will remain progressive.

Theorem 3 tells us that a graph is progressive if and only if

there exists a first step in a progressive path from each

node to every other node. Therefore, when a new node X is

added to a progressive graph, it is sufficient to insure that

for every old node Y there exists a first step in a

progressive path from Y to X and from X to Y. Recall that a

first step in a progressive path from X to Y exists if there
is a node Z adjacent to X such that d(Z,Y)<d(X,Y) .

When a new node X is added to a progressive graph, it

will initially be isolated from the rest of the graph, i.e.,

it will not have any adjacent nodes. Therefore, it is best

to start by insuring that there exists a first step from each

old node to the new node. If a first step does not exist for

some node Y, then one can insure a first step by adding the

arc [Y,X] to the graph. If Y^ is the closest old node to X,

then Yq cannot have an adjacent node which is closer to X.
The arc [Y^X] must therefore be added to the graph. Thus,

after a first step is assured from all the old nodes to the

-26-

new node X, then X will no longer be isolated.

Next, one must insure that a first step exists from the

new node X to every old node,

for some node Y, then a first

the arc [X,Y] to the graph.

ALGORITHM 5: (Add a document

subroutine addl(x)

If a first step does not exist

step can be insured by adding

to a progressive graph.)

"addl(x) adds one more node to a progressive graph
to create a new progressive graph.”

description x,y,z
location locx,locy,locz
global Graph
set Frontier

"Create a new node for the new document."
"Save the location of the new node in locx."
locx := create(x)

"Check for progressive paths to locx."
for locy in. Graph do.

y := des(locy)
if [for all locz in adj(locy) : d(y,x)<d(des(locz),x)] do

call tie(locx,locy) "form the arc [locx,locy]"

for locy in Graph do
"Check for a first step in a progressive."
"Path from locx to locy."

y := des(locy)
if [for all locz in adj(locx) : d(x,y)£d(des(locz),y)] do

call tie(locy,locx) "form the arc [locy,locx]"

return
£nd

When a progressive graph is built by adding documents

one at a time, the final graph will depend on the sequence in

which the documents are added to the graph. The following

algorithm will use the first step rule to eliminate

-27-

unnecessary lines from the graph.

ALGORITHM 6: (Optimization)

function removable(x,y)
boolean removable,stepxz,stepyz
locations x,y,z,a
global Graph

removable := true
"Check for a first step from x to every other location."
for z Iji Graph while removable = true do

stepxz := false
if z=x then stepxz := true
else "Check for a first step which is not y."

for a in adj(x) while stepxz=false do
if a^y and d(a,z)<d(x,z) then stepxz := true

removable := stepxz

"Check for a first step from y to every other location."
for z i_n Graph while removable = true ^o

stepyz := false
if z=y then stepyz := true
else "Check for a first step which is not x ."

if a^x and d(a,z) <d(y,z) then stepyz := true
removable := stepyz

return
end

subroutine optimize
"acc(x) is a function which will return

the accession number of the location z."
"untie(x,y) is a subroutine which will remove

x from adj(y) and y from adj(x)."
locations x,y
sets X,Y

X := {all locations}

for all x in X do
Y := {y i_n ad j(x)}
for all y i_n Y such that acc (x) >acc (y) do

if removable(x,y) then call untie(x.y)
return
end

Subroutine 'optimize' uses the function 'removable' to

-28-

determine which arcs can be removed without causing the graph

to lose the progressive property. When an arc can be

removed, subroutine 'untie' is used to remove the arc from

the graph. After all arcs which can be removed are

eliminated, the graph will be a minimally progressive graph.

The function 'removable' uses the first step rule to

determine when an arc can be removed without the loss of the

progressive property. An arc [X,Y] can be removed if for

every node in the graph, there exists a first step from X

which is not Y and a first step from Y which is not X.

These algorithms were applied to a small problem with

200 documents. The documents were program abstracts from the

program library maintained by the Computer Science and

Services Division of the Los Alamos Scientific Laboratory.

Each document was represented by a 266-dimensional vector

Di = (di1 ’di2.... di2b6)

where d. . = 1 if term i occurred in document i, otherwise ij
d^rO. See Appendix 2 for a list of the terms. The angle

between the document vectors was used as the distance
measurej-^j. The graph was initalized by setting S={D^} and

L={}. Algorithm 5 was used to add the rest of the documents

t<5 the graph one at a time. At each multiple of 10, the

following values were computed.

-29-

average degree = (1/n)
n
^2 degree(D .)
i = 1 1

P n n
average DWFL = (1/n^) E E DWPL(D . , D .)

i=1 j=1 1 J

maximum DWPL = max { DWPL(D^,Dj) : i,j = 1,2,...,n }

Table 1 summarizes the results.

er of average average maximum
ments degree DWPL DWPL
10 2.60 5.74 13
20 3.90 10.21 24
30 5.27 13.50 33
40 5.30 15.99 40
50 5.48 18.18 54
60 5.53 19.80 50
70 5.63 21.01 55
80 6.05 23.12 6 1
90 6.42 24.98 69
100 6.80 26.33 73
110 7.11 27.41 75
120 7.75 28.86 77
130 8.20 29.94 80
140 8.66 30.92 83
150 8.99 32.46 91
160 9.44 33.69 10 1
170 9.40 34.53 102
180 9.54 35.45 103
190 9.70 36.35 104
200 10.12 37.38 109

Table 1.
Results for unoptimized graph.

When a document is added to the graph with Algorithm 5,

arcs which were essential to keep the graph progressively

connected may not be essential after the addition of the new

document. Table 2 summarizes the results of using Algorithm

6 to optimize the graph. At each multiple of ten, the graph

was optimized and average degree, average DWPL and maximum

DWPL were computed.

-30-

number of average average maximum
documents degree DWPL DWPL

10 2.40 5.56 14
20 3.20 9.15 21
30 4.07 11.81 29
40 4.30 14.30 38
50 4.72 16.61 45
60 4.70 18.34 53
70 4.77 19.38 58
00 4.88 20.64 63
90 5.61 22.13 67
100 5.52 23.31 75
110 5.76 24.24 94
120 6.07 25.28 85
130 6.38 26.27 100
140 6.60 26.97 103
150 6.72 27.56 105
160 7.11 28.80 101
170 7.14 29.45 103
180 7.34 30.27 104
190 7.38 30.92 107
200 7.78 31.90 111

Table 2.
Results for optimized graph.

Figure 5 shows that the average degree for

unoptimized graph is increasing at a faster rate than the

average degree of the optimized graph. However, when a least
squares method is used to fit the equation A+I^log^CX) to the

data, it is apparent that the average degree of both the

optimized graph and the unoptimized graph is increasing at a

rate proportional to the log of the number of documents. The

data points from 100 to 200 were used in order to estimate

the rate of increase when the graph is large. The best fit

fdr the unoptiraized graph was

-15.1 + 3.3*log2(X)

and the best fit for the optimized graph was

-8.93 + 2.2*log2(x) .

-31-

Figure 6 shows how well these functions fit the data. In

this range, the average degree is increasing at a rate

proportional to the log of the number of documents.

Figure 7 shows that the average degree weighted path

length is also increasing at a faster rate for the

unoptimized graph than for the optimized graph, but the rate

of increase for both graphs is proportional to the log of the

number of documents. The best fit for the unoptimized graph

is

-48.74 + 1 1.24*log2(X)

and the best fit for the optimized graph is

-33.32 + 8.48*log2(X).

Figure 8 shows how well these functions fit the data.

-32-

A
V

ER
A

G
E D

EG
RE

E
o

LEGEND
□ = UNOPTIMIZED GRAPH
0= OPTIMIZED GRAPH

80 120 160
NUMBER OF DOCUMENTS

FIGURE 5 .
NUMBER OF DOCUMENTS VS . AVERAGE DEGREE

-33-

A
V

ER
A

G
E D

EG
RE

E
o

LEGEND
□ = UNOPTIMIZED GRAPH
0= OPTIMIZED GRAPH

:0 140 160 U
NUMBER OF DOCUMENTS

FIGURE 6 .
LOGARITHMIC FIT OF THE AVERAGE DEGREE DATA.
SOLID LINE IS THE LOG CURVE .

-34-

A
V

ER
A

G
E D

W
PL

•0

20
 0

25
 0

30
 0

35
 0

40
-o

LEGEND
□ = UNOPTIMIZED GRAPH
0= OPTIMIZED GRAPH

80 120 160
NUMBER OF DOCUMENTS

FIGURE 7 .
NUMBER OF DOCUMENTS VS . AVERAGE DWPL.

-35-

A
V

ER
A

G
E D

W
PL

o

LEGEND
□ = UNOPTIMIZED GRAPH
0= OPTIMIZED GRAPH

:0 140 160 If
NUMBER OF DOCUMENTS

FIGURE 8 .
LOGARITHMIC FIT OF THE AVERAGE DWPL DATA.
SOLID LINE IS THE LOG CURVE .

-36-

ENUMERATION OF GRAPHS

A progressive graph on a document space with n documents

will be a labeled graph of order n. Harary and Palmer give

the following formulas for the enumeration of labeled

graphs^j. The total number of labeled graphs of order n is
G _ 2(n’2)
n

Where (n,2) is the binomial coefficient.

(n,2) = n! / (n-2)! 2! = n(n-1)/2

The number of connected labeled graphs of order n is

Cn = 2<n’2) - O/n) E K*(n,k)*Ck*Gn.k.
k= 1

The number of labeled trees with n points is
T = n(n_2).
n

The following table shows the number of each kind of graph

for n <. 8.

n Tn G n
1 1
2 1
3 3
4 16
5 125
6 1296
7 16807
8 262144

1
1
4

38
728

26704
1866256

251548592

1
2
8

64
1024

32786
2097152

268435546

Table 3.
Enumeration of labeled graphs.

Table 3 shows the magnitude of the problem if one were to

make an exhaustive search for progressive graphs. The large

-3 7-

number of connected graphs makes

connected graphs for progressive

number of arcs. A tree is a conn

number of arcs. Any progressive

contain a spanning tree as a subg

graph can be found by starting wi

and adding a sufficient number of

progressive. However, the number

exponentially as n increases. Th

to find a progressive graph with

possible by adding arcs to the se

it impractical to search all

graphs with the smallest

ected graph with a minimal

graph is connected and must

raph. A minimal progressive

th one of its spanning trees

arcs to make the graph

of trees on n nodes grows

us, it is also impractical

the smallest number of arcs

t of trees.

-38-

ORDER MATRICES

A graph (S,L) is progressively connected with respect to

a distance function d if and only if there exists a first

step in a progressive path from each node in the graph to

every other node. A first step in a progressive path from A

to B exists if there is a node C which is adjacent to A and

d(C,B)<d(A,B). Therefore, the relationship of all pairs of

distances d(A,B) and d(C,B) for arbitrary A, B and C is

sufficient information to determine when a metric graph is

progressively connected. When the points in the set S are

labeled ,...and d is a non-isosceles distance

function, this information can be organized in an NxN matrix
0. The ith row 0(i,1),0(i,2),...,0(i,N) will be a

permutation of the set of integers {0,1 , . . . , N-1} such that

0(i,j) is the rank of the distance dCX^X.) among all

distances d(X.,X) for k=1,2,...,N. Thus, the matrix 0 will1 K
have the property that 0(i,i) = 0 and 0(i,j)<0(i,k) if and only

if d(X.,X .)<d(X.,X). I will call matrices of this form,i j ik
order matrices.

DEFINITION:(Order Matrix) An NxN order matrix is a
matrix with zero diagional and rows that are
permutations of the set of integers {0,1,...,N-1 }.

Every NxN order matrix defines a relation r on the set

of unordered pairs {(i,j) : i,j = 1 ,2 , . . . ,N } by the following

rule. (i,j) r (i,k) if and only if 0(i,j) < 0(i,k). Thus,

two pairs are unrelated unless they have one point in common
A. t_and the iL row of the order matrix determines how (i,j) and

-39-

(i,k) are related. I will call a sequence .X^ , .. . ,Xk an

r step sequence if (X^ ^,X^) r (X^,X^+^) for all

i = 1 ,2, . .. ,k-1. Since two pairs are unrelated by r unless

they have one point in common, any cycle will be of the form

(Xq.X^ r (XrX2) f ... r (^k.Xu) r (Xq.X^. This is

equivalent to the r step sequence XQ,X^,X2,...,X^,XQ,X^.

Thus, any r step sequence whose first two points and last

two points are equal will be called an r step cycle. If 0

is the matrix where 0(i,j) is the rank of the distance

d(X.,X.) among all distances d(X.,X) in some finite metrici j ik
space, then d(X.,X.) < d(X.,X) implies that (i,j) r (i,k).

1 J IK

DEFINITION:(Compatible order matrix) The NxN order
matrix 0 is compatible with a finite labeled metric
space ({X ...,X },d) if it is true that
d(X.,X .)<d(X.,X ; if and only if (i,j)r(i,k).

1 J IK

Given a set of three points. S={1,2.3}, there are only

six ways the distances d(1,2), d(1,3) and d(2,3) can be

related when d is a non-isosceles distance function.

(1) d(1,2) < d(1 ,3) < d(2,3)

(2) d(1 ,2) < d(2.3) < d(1,3)

(3) d(1,3) < d(1.2) < d(2,3)

(4) d(1 , 3) < d(2,3) < d(1,2)
(5) d(2,3) < d(1.2) < d(1,3)

(6) d(2,3) < d(1,3) < d(1.2)

Each relation corresponds to one of the six different ways a

three point metric space can be labeled. The following six

-40-

order matrices are compatible with any three point metric

space whose distances satisfy relations (1) through (6)

respectively.

(1) (2) (3) (4) (5) (6)
0 1 2 0 1 2 0 2 1 0 2 1 0 1 2 0 2 1
1 0 2 1 0 2 1 0 2 2 0 1 2 0 1 2 0 1
1 2 0 2 1 0 1 2 0 1 2 0 2 1 0 2 1 0

There are 2^=d ways to arrange the rows of a 3x3 order

matrix. The following two order matrices are not listed

above.

(7) (6)
0 1 2 0 2 1
2 0 1 10 2
1 2 0 2 1 0

Order matrix (7) defines the following relation on the

unordered pairs.

(1.2) r (1,3)

(2.3) r (2,1)
(3,D r (3,2)

Since the pairs are unordered, this relation has the

following cycle.

(1,2) r (1, 3) = (3,1) r (3,2) = (2,3) r (2,1) = (1,2)

If order matrix (7) were compatible with some metric space,

then this would imply that d (X1 , X2) <d (X.j , X£). Since this

cannot be true for any metric space, order matrix (7) cannot

be compatible with any three point metric space. Similarly,

order matrix (b) cannot be compatible with any three point

metric space because the relation defined by order matrix (8)

-41-

has the following cycle.

(1,3) r (1 ,2) = (2,1) r (2,3) = (3,2) r (3.D = (1,3)

Order matrices (1) through (6) are all compatible with the

same three point metric space. This is true because each of

the relations (1) through (6) corresponds to one of the six

different ways a three point metric space can be labeled.

The following definition gives a semi-canonical form for

order matrices which will eliminate most reorderings.

DEFINITION:(Semi-Canonical order matrix) An NxN order
matrix 0 is semi-canonical if

1) 0(1,i) = i-1 for i = 1,2,...,N
2) 0(2,1) = 1
3) 0(3,1) < 0(3,2)

Order matrix (1) is a 3x3 semi-canonical order matrix. A

semi-canonical order matrix is compatible with a metric space

which has been labeled such that points 2 through N are

labeled in increasing order of their distnace from point 1 ,

points 1 and 2 are mutually closest, and d(1 ,3)<d(2,3). In a

three point non-isosceles metric space there is a unique

labeling which satisfies these conditions. This unique

labeling is the labeling which specifies that

d (1 ,2) <d(1,3)<d(2,3).

DEFINITION:(Consistent order matrix) An NxN order
matrix is consistent if the relation r defined by 0
on the unordered pairs does not contain any cycles.

If the relation defined by an order matrix does not contain

any cycles, then it can be embedded in a linear order.

Knuth’s topological sort algorithm can be used to check an

-42-

order matrix for consistency^ p 255]’ the order matrix

is consistent, the topological sort algorithm will find a

linear order which contains the relation r. If the order

matrix is inconsistent, the topological sort algorithm will

find a cycle in r. Matrices (1) through (6) are consistent

while matrices (7) and (8) are inconsistent.

THEOREM 6: Every non-isosceles metric space can be labeled so

that it is compatible with a consistent semi-canonical order

matrix. Conversely, every consistent semi-canonical order

matrix is compatible with some non-isosceles metric space.

PROOF: Let (S,d) be a non-isosceles metric space

with N points. Since there are only a finite number of

points, there exist two points X and Y such that d(X,Y)

is a minimal distance. Let be the second closest

point to X and Zy be the second closest point to Y. One
of the following inequalities must hold.

d(Zx,X) < d(Zx.Y)
or

d(Zy,Y) < d(Zy,X)

If neither inequality holds, then the following cycle

will occur.

d(Zx,Y) < d(Zx,X) < d(Zy,X) < d(Zy,Y) < d(Zx,Y)

This contradicts the fact that <. is a partial order on

the real numbers. If d(Z X)<d(Zv,Y) then label X as

one, Y as two, and Zx as three. Otherwise, label Y as

one, X as two and Zy as three. Having labeled points

one through three, the remaining nodes are labeled in

increasing order of their distance from point one. If 0

is the order matrix with 0(i,j) equal to the rank of the

distance d(i,j) among all distances d(i,k), then 0 is

compatible with the metric space and 0 will have the

following properties.

0 (1 , k) = k- 1 k= 1,2.... N

0(2,1)=1 since d(1,2) was minimal

0(3,1)<0(3,2) since d(3,1)<d(3,2)

This shows that 0 is semi-canonical. Conversely,

suppose 0 is an NxN consistent semi-canonical order

matrix. Since 0 is a consistent order matrix, the

relation defined by 0 does not contain any cycles. This

relation on the M=N(N-1)/2 pairs {(i,j) : i^jl can be

embedded in a linear order p 1 <P2<...<pM. Define a
distance function d:{1,...,N}x{1,...,N}-->{real numbers}

by

d(i,i) = 0 for i=1,2,.. .,N

d(i,j) = 1 + k/M for i/j and (i,j) is the
k^ pair in the linear

order p1<p2<...<pM

This distance function satisfies the triangle inequality

since all distances are less than or equal to two and

the sum of any two distances is strictly greater than

two. The order matrix 0 is compatible with the metric

-44-

space ({1,2,...,N},d).

Two metric spaces (S^.d^) and (S^.d^) are isometric if

there exists a one to one function fiS^-^S^ which preserves

distances (i.e., d^Ca.b) = d^(f(a),f(b))). A more general

morphism is one that only preserves the order relation on the

distances. (S^d^) is order isomorphic to (S2>d2) if for all

a, b, c and d in , it is true that

d1(a,b)<d1(c,d) implies d2(f(a),f(b))<d2(f(c),f(d)).

Order isomorphic metric spaces will be compatible with the
same order matrix when the order isomorphism f maps the i^

t hipoint in one metric space to the i point in the other

metric space. The following theorem shows that every finite

metric space is order isomorphic to a Euclidean metric space.

It follows by Theorem 6 that every consistent order matrix is

compatible with some Euclidean metric space.

THEOREM 7: Let (S,d) be any finite non-isosceles metric space

with n points. Then there exists a subspace of Euclidean

n-space which is order isomorphic to (S,d).

PROOF: Label the metric space (S,d) so that its

corresponding order matrix is semi-canonical. I will

show that there exists a set of vectors in

Euclidean n-space such that for some real number e>0,

IX.-Xj! = 1 + e*d(i,j).

If such a set of vectors exists, then the function

f:S-->{X^} defined by f(i)=X^ is an order isomorphism

-4 5-

because

d(i,j)<d(n,m) implies 1 + e*d(i,j) < 1 + e*d(n,m)

implies IX^Xj! < iXn-Xra!.

The following proof constructs a set of n vectors close

to the n scaled unit vectors
((1/2)1/2, 0, 0, 0, ...)
(0,(1/2)1/2, 0, 0, ...)
(0, 0,(1/2)1/2, 0, ...)

• • • •
• • • •
• • • •

Define the vector functions

Xi(e) = (Xi1(e).... Xii(e))

by the following recursive process. First set
X1 1(e)=(1/2)1/2.

Suppose that for all j<i, X.(e) is defined andvJ
continuous on some interval [0,t^_.|] such that,

i) !Xj(e)-Xk(e)! = 1 + e*d(j,k)
ii) !X (e) i2 = 1/2

J
iii) X^O) = (0,0,...,(1/2)1/2)

A vector function X^(e) must be defined such that it is

continuous on some interval [0,t^] and satisfies

condtions i) through iii). X^e) can be defined in

terms of {X^(e):j=1,...,i-1}. In order to satisfy

condition i), X^(e) must be a solution to the following

equation for all j<i.

-46-

[1 + e*d(i,j)]2 = !Xi(e)-Xj(e)!2

= k?, [xik^) -

:: ! (e) j + ! Xj (e) ! +2 ^ik ^e ^ jk ^e ^
k — 1

In order to satisfy condition ii), X^(-e) must be a

solution to these equations with the constraint that

!X^(e)i=1/2. Using this constraint, the system of i-1

equations becomes,

£ Xik(e)*Xik(e) = - e*d(i,j) - e2*d2(i,j)/2.
k= 1 ‘jk

Since Xj^(e)=0 for all k>j, this is a triangular system

of i-1 equations and will have the following solution

everywhere Xjj(e)^0 for all j<i,

- e*d(i,j) - e2*d2(i,j)/2 - E Xiu(e)*X . (e).i-1

Xij(e) = K=1 ik ljk

XJj(e)

Since X (0) = (1/2)1X2 for all j<i, there exists an
O

interval [0,t] in which X.,(e)>0. Thus, all the X.-Ce)

are defined and continuous on [0,t]. As long as x^^(e)
is chosen such that ! Xi(e) ! 2=1/2, Xi(e) will satisfy

condition i). Since, X . , (0) = (1/2)1/2 and X-, (0)=0 for
J J J K

all k<j, it is clear that X^j(0)=0. Finally, x^^(e) can

be defined by:

i-1X^Ce) = [1/2 - E X?- (e)] 1/2
ll k- 1 IK

For all k<j, X^^(e) is continuous on [0,t] with

-47-

X.. (0)=0. Therefore, function X..(e) is defined andX XX
continuous on some possibly smaller interval [0,t^].

By the definition of X^Ce), it is clear that X^Ce)

satisfies conditions ii) and iii) and is continuous

on the interval [0,t^].

In the paragraphs that follow, a recursive method is

given for constructing all NxN consistent semi-canonical
N + 1order matrices. If 0 is an (N+1)x(N+1) order matrix, is

the NxN matrix generated by eliminating the Nth row and Nth

column an order matrix? In general the resulting NxN

submatrix will not be an order matrix because its rows will

not be a permutation of the integers {0,1 , . . . ,N-1}. The

following theorem describes how to generate an NxN order

matrix from an (N+1)x(N+1) order matrix.
N + 1THEOREM 8: Let 0 be an (N+1)x(N+1) matrix, define the

Nmapping to an NxN matrix 0 by:

N , . ..° (1’j) ~ I „N+1
0 (i,j) - 1 otherwise

N + 1If 0 is a consistent semi-canonical order matrix then so
N Nis 0 . In fact, 0 is compatible with the labeled metric

space formed by deleting the point + i from a labeled metric
N + 1space which is compatible with 0

N + 1PROOF: It is sufficient to show that 0 (i.j) <
0N+1(i,k) implies that 0N(i,j) < 0N(i,k). This shows

that both matrices 0N + 1 and 0 N define the same relation

-48-

on pairs of the first N points.
Suppose that 0N+1(i,j) < 0N+1(i,k). If 0N+1(i,N+1)

is less than both 0N+1(i,j) and 0N+1(i,k) then 0N(i,j) =

0N+1(i,j)-1 < 0N+1(i,k)-1 = 0N(i,k). If 0N+1(i,N+1) is

greater than both 0N+1(i,j) and 0N+1(i,k) then 0N(i,j) =

0N+1(i,j) < 0N+1(i,k) = 0N(i,k). If 0N+1(i,N+1) is

greater than 0N+1(i,j) but less than 0N+1(i,k) then

0N(i,j) = 0N+1(i,j) < 0N+1(i,k)-1 = 0N(i,k).

The mapping --> O1'* is not one to one. There may be

more than one (N+1)x(W+1) order matrix which maps into the

same NxN order matrix by this process. When a consistent

semi-canonical NxN order matrix is known, it is of interest

to find all the consistent semi-canonical (N+1)x(N+1) order

matrices which map into it. The following theorem

characterizes these matrices.
THEOREM 9: Let 01^+'' be an (N+1)x(N + 1) order matrix which maps

into a consistent NxN order matrix 0N. is consistent if

and only if the relation defined on the unordered pairs by

0 does not contain any r step cycles of the form

N+1,i,...,N+1,i.
PROOF: If the relation defined by 0^+^ has an r

step cycle N+1,i,...,N+1,i , then by definition it is

inconsistent.
M+ 1Conversely, assume that 0 is inconsistent.

Then, the relation defined by 0N+1 contains an r step

-49-

cycle. By the proof of theorem 8, we know that 0^ + "' and
N0 define the same relation on pairs of the first N

Npoints. Since 0 is consistent, there are no r step

cycles in the first N points. Therefore, the r step
cycle which exists must contain the (N+1)st point. By

starting at the (N+1)st point the cycle has the form

N+1,i,...,N+1,i.

Let A be a permutation and B a sequence of the integers

{1,2,...,N-1}. Define a matrix 0
0N+1(N+1,N+1) = 0

0N+1(N+1,i) = A(i)

0N+1(i,N+1) = B(i)

N + 1 by:

0N+1(i,j) =
0N(i,j)

0N(i,j) + 1 if 0N(i,j)>B(i)
if 0N(i,j)<B(i)

0N+1
0 N

modified

B (1)

B (2)

J B(N)

A(1) A(2) ... A(N) 0

Figure 9.
(N+1)x(N+1) order matrix 0N+1

-50-

Every (N+1)x(N + 1) order matrix which maps into O1^ will be of

this form. Thus, to find all the consistent semi-canonical
(N+1)x(N+1) order matrices which map into 0^, it is

sufficient to find all permutations A and sequences B such
Nthat 0 , A and B define a consistent semi-canonical order

matrix.
If 0N+1 is semi-canonical, then 0^+^(1,N+1)=N and

qN + 1(2,i)_-|> Therefore, the sequence B must have B(1)=N and

B(2) > 2. If B(i) is set to N for all i, then
(i,N+1)=B(i)=N > 0N(i,k) for all k. This implies that

N+1,i,k cannot be an r step sequence for any k. Therefore,
0N+1 is a consistent semi-canonical order matrix regardless

of what permutation is chosen for the (N+1)st row. Since

there are N! permutations of {1,2,...,N}, there are at least

N! consistent semi-canonical order matrices which map into

o“.
The previous discussion shows that B(m)=N is a

sufficient condition to assure that N+1,m,...,N+1,m is not an

r step sequence. A necessary and sufficient condition is
that B(m) > 0W(m,j) for all j such that there is an r step

sequence of the form m,j,...,N+1. If B(m) < 0N(m,j) for some

j such that m,j,...,N+1,m is an r step sequence, then

N+1,m,j,...,N+1,m is an r step cycle. This is because
B(m) <. 0^(m,j) implies that 0^ + ^(m,N + 1) < 01^ + ''(m,j).

-51-

(k , N +1) r (N +1 , m)
------ >o-------

N + 1

(N+1,m)r(m,j)
----- >o-----

m

k j 9

■■ ■ ■ ■ — 11 ■ 1 ■ - — • • • ^--

Figure 10.
r step cycle N+1.m,j,...,k,N+1,m

Conversely, assume that B(m) > for all j such that

m,j,...,N+1,m is an r step sequence. Let N+1,m,j,...,N+1,m

be any sequence. If m,j,...,N+1,m is not an r step

sequence, then N+1,m.j,...,N+1,m cannot be an r step cycle.

On the other hand, if m,j,...,N+1,m is an r step sequence,
Nthen B(m) > 0 (m,j). This implies that (m,j)r(m.N + 1), so

j,m,N+1 is an r step sequence. Therefore, N+1,m,j is not

an r step sequence, and the complete sequence

N+1,m,j,...,N+1,m cannot be an r step cycle.
Given a consistent semi-canonical order matrix OlJ, the

following algorithm generates all consistent semi-canonical
N(N+1)x(N+1) order matrices which map into 0 . For each

permutation A, the algorithm generates all possible sequences
NB such that 0 , A and B define a consistent semi-canonical
N + 1order matrix 0 . Let S be a permutation such that A(S(i))=i

for all i (i.e., S(i) is the index of i in permutation A).

Th.e algorithm uses the fact that if S(m),j.... N + 1.S(m) is an

r step sequence then there exists k<m such that

S(m),j,.,.,S(k),N+1,S(m) is an r step sequence. Therefore,
NB(S(m)) must be greater than 0 (S(rn),j) for all j such that

S(m),j.... S(k),N+1 is an r step sequence for some k<m. It

-52-

is possible that j=S(k) in this sequence.

ALGORITHM 7: (Generate all (N+1)x(N+1) consistent
serai-canonical order matrices from an NxN
consistent semi-canonical order matrix)

subroutine genorder(n,0)
"0 is an NxN order matrix.”

sequence S,A,B
array 0(N,N),K(N,N)
number i,k
S := A := <1,2,...,N>
until A=<> do

for i=1,2,...,N do
for j = 1,2,...,N do

k (i,j) : = 0
call or'der (1 , K)

"Subroutine order generates all sequences B
such that 0, A and B define a (N+1)x(N+1)
consistent semi-canonical order matrix."

A := nextperm(A)
" Nextperm generates the next permutation in
lexicographical order. If the input permutation
is <N,N-1,...,1> then nextperm returns the null
sequence <>."

S := gradeup(A)
" gradeup generates a sequence where A(S(i))=i."

return
end

-53-

subroutine order(m,K)
"For all i<m, B(S(i)) has been defined such that cycles
of the form N +1,S(iN+1,S(i) cannot occur."

"K is an NxN array with the property that K(i,j)=1
if there exists an r step sequence i,j,...,S(k),N+1
for some k<m. Otherwise, K(i,j)=0."

global N,0,S,B
"0 - The NxN matrix being expanded."
"S - A permutation such that A(S(i))=i."
"B - The sequence specifying the (N+1)s column."

sets F,NF
number N , n,i,j,m,r,t
array K(N,N),0(N,N)

if m <. N then
n := 1 + max{ 0(S(m),j)*K(S(m),j) : j=1,2,...,N}

"n is the smallest value B(S(m)) can
assume and assure that there cannot be
any cycles N+1,S(m),...,N+1,S(m)."

if S(m)=1 then n := N "B(1) must be N."
if S(m)=2 then n := max{n,2}"B(2) must be greater than 1."
for n < t < N do

B(S(m)) := t
F := { <S(m),j> : 0(S(m),j)<B(S(m)) and K(j,S(m))=0}

"Put in F all <S(m),j> such that j,S(m),N+1 is an
r step sequence and K(j,S(m))=0. If tC(j , S (m)) = 1 ,
then all r step sequences ending in j,S(m),...,N+1
have been found before."

until F= {} dp.
NF := {}
for <i,j> in F do

K(j ,i) := 1
NF := NF.union.{<j,r>:0(j,r)<0(j,i) and K(r,j) = 0}

"0(j,r)<0(j,i) implies that r,j,i,...,S(m),N + 1
is an r step sequence. If K(r,j)=0,
then an r step sequence r,j,...,S(k),N+1
has been found before for some k<m."

F := NF
call order(m+1,K)

"B(S(m)) has been defined such that r step
cycles N+1,S(m),...,N+1,S(m) cannot occur."

"K has been updated so that K(i,j)=1 when
there is an r step sequence i,j,...,S(m),N+1."

return

else
"If n>N then every element B(i) has been defined
so that cycles of the form N+1,i,...,N+1,i
cannot occur."
"By theorem 9, 0,A, and B define an (N+1)X(N+1)
consistent semi-canonical order matrix."

end

-54-

After B(S(i)) has been defined for all i<m, procedure

order generates an order matrix for every permissible value

of B(S(m)). Thus, every (N+1)x(N+1) order matrix must be

generated by Algorithm 7. Since each NxN matrix generates

at least N! (N+1)x(N+1) order matrices, the number of

semi-canonical order matrices is a very rapidly growing

function of N. Table 4 lists all the 4x4 semi-canonical

order matrices in the order they were generated by Algorithm

7 from matrix (1) listed on page 41. Recall that this is the

only 3x3 semi-canonical order matrix.

(1) (2) (3) (4) (5) (b)
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
1 0 3 2 1 0 3 2 1 0 2 3 1 0 3 2 1 0 2 3 1 0 2 3
1 3 0 2 1 2 0 3 1 2 0 3 1 3 0 2 1 3 0 2 1 2 0 3
1 2 3 0 1 2 3 0 1 2 3 0 1 3 2 0 1 3 2 0 1 3 2 0

(7) (8) (9) (10) (11) (12)
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
1 0 3 2 1 0 3 2 1 0 2 3 1 0 3 2 1 0 2 3 1 0 3 2
1 3 0 2 1 2 0 3 1 2 0 3 2 3 0 1 2 3 0 1 1 3 0 2
2 1 3 0 2 1 3 0 2 1 3 0 2 3 1 0 2 3 1 0 2 3 1 0

(13) (14) (15) (1b) (17) (18)
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
1 0 2 3 1 0 2 3 1 0 3 2 1 0 3 2 1 0 3 2 1 0 2 3
1 3 0 2 1 2 0 3 2 3 0 1 1 3 0 2 1 2 0 3 1 2 0 3
2 3 1 0 2 3 1 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0

(19) (20) (21) (22) (23)
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
1 0 3 2 1 0 2 3 1 0 3 2 1 0 2 3 i 0 2 3
2 3 0 1 2 3 0 1 1 3 0 2 1 3 0 2 i 2 0 3
3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

Table 4.
4x4 semi-canonical order matrices.

-55-

Since there was only one 3x3 semi-canonical order

matrix, a three point metric space is compatible with a

unique semi-canonical order matrix. The following discussion

will show that there exist some four point metric spaces

which are compatible with two semi-canonical order matrices.

Let 0 be an order matrix which is compatible with an .N
point labeled metric space. If the ith and jth labels are

interchanged in the metric space, then the order matrix 0’

which is compatible with this modified labeling is simply
matrix 0 with the i^h and rows interchanged and the ith

and columns interchanged. Since any permutation of the

labels is a product of transpositions, the order matrix

compatible with a relabeling of this metric space can be

generated by a series of interchanges of the rows and columns

of order matrix 0. A series of interchanges of the rows and

columns is equivalent to the transformation
TPOP

Twhere P is a permutation matrix and P is the transpose of

P. Thus, if there exists a permutation matrix P such that
TO' = P 0 P , then O' and 0 are compatible with a relabeling

of the same metrix space. In particular, order matrices (7)

and (17) in Table 4 are compatible with a relabeling of the

same metric space. The following transformation shows that

if labels one and two are interchanged and labels three and

four are interchanged in a metric space compatible with order

-56-

matrix (17), then the metric space will be compatible with

order matrix (7).

0 1 2 3 0 1 0 0 0 1 2 3 0 1 0 0
1 0 3 2 1 0 0 0 * 1 0 3 2 * 1 0 0 0
1 3 0 2 = 0 0 0 1 1 2 0 3 0 0 0 1
2 l 3 0 0 0 1 0 3 1 2 0 0 0 1 u

-57-

CONCLUSIONS

Porgressive graphs are useful when they have been

constructed so that the average degree weighted path length

and average degree are small. The graphs constructed in the

test problem have the property that both degree weighted path

length and average degree are increasing at a rate

proportional to the number of nodes in the graph. This

implies that the amount of work the search algorithms must

perform is proportional to the log of the number of nodes.

However, the time required to construct the graphs is

increasing at a rate approximately proportional to the square

of the number of nodes, and the time to optimize the graphs

was approximately proportional to the cube of the number of

nodes.

The consistent order matrices contain all the

information about compatible metric spaces which is relevant

to the study of progressive graphs. Therefore, progressive

graphs can be studied relative to order matrices. Although

only the non-isosceles metric spaces can be compatible with

an order matrix, this restriction to non-isosceles distance

functions is not significant. Any isosceles distance

function in a finite metric space can be converted to a

non-isosceles distance function without changing the relative

distances in any non-isosceles triangle.

-58-

APPENDIX 1

Madcap 6 programs j-b ^ 1 q j

ALGORITHM 1:

1 O C ♦- oc
1 : descr j ption
X *- location
2 *■ location
X *■ seed 1 oc
while desCX)*Y :

B ♦- adj(X)
Tor 2€ft a dist(des(2),Y)

< distCdes(X).Y) : x<-Z
<return^ X

-59-

ALGORITHM 2:

ana *- ~ r : real
x : location
<a,£> location

NBR ^ rea1 set ^ne i ghberrhood^
PER ^ r ea1s et <pertpheryC
(IF *- r e a 1 s e t ^ new f r ©ntier C
OF - r e a 1 s e t < e 1 d frontier^

MBR ^ O
PER ^ O
OF «- t x>

unt i 1 #QF = 0 #
•

NF ^ O
NBR ^ NBR u OF
for f € OF :

0 «- “Ca: a^adjCf)> ~ (NBRuNFuPER)
IN ♦- {. a : a€fi while true ^
dist(des(a),des(x)) < r >

NF NF u IN
PER ♦- PER u (P-IN)

OF <- NF
^return^ NBR

-60-

ALGORITHM 3:

Si X Q Si &. Si !L ^ ^
3 : description

^ 5. £. K ^ «- location
<U3B>9E,yE> - realset
C ♦- real

£l2SS£ *“ true
x - seed 1oc

while closer Anodes are founds :
Kfi ♦- x

^checK nodes adjacent to
For aeadjCx) a dist(des(a),q)<dist(desCx).q) :

x«-a

iF x=xO : CchecR a neighborhood of radius 2rC
r ♦- dist(desCx).q)
(NBR,0F)4-Cx>
unti1 #0F=O ^ x*xO :

NF ♦- O
For F€0F while x=xO :

0 «- £a:a€adj(f)> NBR

NBR «- NBR u ft

if t 3 dist(des(a),q) < r 3 :o ^ H

x*-a

else:
IN faraeft while true a

d i st(des(a).desCx)) £ 2 r >

NF ♦- NF u IN

OF ♦- NF

if x=xO : closer ♦- false
freturn^ x

-61-

ALGORITHM 4:

£. A. n si n *- ^
Q : real
j : description

<a.£,£> ♦* local i on
«- closest (q)

Jjgy *- distC(ies(y),q)
liit <y>
AStal - n
PtB *- Cp:p€3dj(y)>

CflliDi 1
until #PER=0 v count^tetal :

liEB *■ ^nearest (des (y) , PER) >
until ^NBR=0 ^ count^total :

i i- near est (des (y), NBR)
£ ♦* d i st (des (z) , q) dqy
BE ♦* Cp:p€RER while true a

d i st (des C p). des (y)) ii r > u Cz>
PER PER ~ OF
until «OF=0 :

t^F +- Ereal: 0 items>
NBR ♦- NBR u OF
for f€OF :

B *- faiaeadjCf) while true a
1 (a€1iSt ^ a€NBR v a€PER v

a€NF) }
Xy ♦* fa:a€ft while true a

di st(des<a).des(y)) i r >
NF «- NF u IN
PER «- PER u (R~IN)

OF ♦- NFfcJEy -CaraeNBR while true a dist(des<a),q) ^ dist(des(z).q) >
NBR «- NBR ~ NEW
^sort the elements in NEW and append^
♦them to 1ist♦
list ♦* append (1 i st, set sort (q v NEW))
count «- count + «NEW

♦return£1ist

-62-

ALGORITHM 5:

ASlfil JL
J5 : description

♦- descr i pt i on
< ^ location

^Create a new node for the new document.C
N < I de s: < r e a 1 : 0 i t ems >; iad j : < r e a 1: 0 items))
desTN «- x
)ocx ♦- dgraph
graph append (graph, <N>)

for 0Slocy<Jocx :
❖Check for a first step in a progressive pathC
❖from all old documents to the new document.❖

y «- des (1 ocy)

if [H ^ .dist(y.x) i d i st (d e s C z). x)] :

tie(1ocx,1ocy)

for 051ocy<locx :
❖check for a first step in a progressive path^
❖from the new document to all old documents^

y «- des(1 ocy)

. ,, dist(x.y) £ d i st (des (z). y)] : z€adj(locx) J * J
tie(1ocx.1ocy)

graph

-63-

algorithm 6:

&£>i»jLm_L.s.«a
•“ location

C£03y3!ll5 ^ «
.y) : location

< ♦* locat i on

H *■ «<£,a): 1 ocat i on ; d i st (desC x). des (y) >»►

^0S2<«graph(

z=x " t3a€aaj(x) **« - d(a,2)<d(x.z)]

> z=a v [3a€adj(!j) «*>• - d(a.z)<d<B,z)]

for 0£x<#graph :

for y€adj(x) a y>x :

if remouab1e(x.y) : untie(xay)

-64-

APPENDIX 2

List of terms for

PE PELE PESO
•=iLS PN PNGE PNGL
mpe P P *31J PPL Y HPPP

ft'JTD EPSE EE E E S S
CE CM CHPP CHEC
CD NT CDPY CDS I PPTP
t'EPI PETE P I ME P I SP
ET' E I GE EL EM
EP EPPD EPS ES
El.-'i=iL EXCH EXPD FPC T
F I NIi F IPS FLDP FDP
FUNC GENE GU-'E GPPL
HE PM HTS I PGD I PL
INI'E I NE INFD I NG
I DNS I S ISID I T I P

L Fi Y LCM LE LEPS

LUTE LY MP I N MPTP

MPDS MUM NPL NPME
NENT NG NOM I NS I D

NUEC DF IL DL IC DM
DP DP PE DPS DUTP

FLDT F D I N PDLY F DPT

DU I C PPP I PPL PPM

PEmP P E PL PELP PEDU

PN PNS PDDT RDUT

SC PL SCM SEPP SECD

SINE S I NG SDL * • SDPT
r-5 ST P T ST DP STP I
Tm I N TP TE TH
T IDN T 11 ’ E TD TD°S
TYPE UPTE UCES UCT

USE USEP US I N UT
VE i.'ECT ME IG HH I C
HP I T ZEPD

sample problem.

PC PCTE PGE PL
PNDT PNS PF PP PP
PPr PT PTE PT ID
ED UN EY CPLC CPLL
CLDC CD PE CDEF CDMF
PPTE PP T PP PECO
PMF >: PDUE PPPM PUMP
ENP ENT ENTS EDUP
EST E S T S ETP I El.-'
FPST F IC I FILE FILM
FDPM FDPT FDUP FROM
GPPP GP I P G T HEP
I PE I EP I F IE I N
I N T E INTO INUE I DN
I X K INP LPNG L PPG
LEX L I ER L INE L.DG
MPX I MENT M I CP MM
NPTU NP N PIN NS
NT NUME MU NX PL
DN DNPL DNE DPT I
DUTS DM D >: IM FPSS
FDSI FPEC PPDP FPDG
PPN PPNP PPTE PE
PES PETU P M P T PM I N
PF DL PS PSE PY
SELE SEP I SET SFDP

SDUP SPEC SFL SDUP
ST ME SYMM SYST TP EL
THPN THE TIME TING
TPPN TRIP TS TMD
UES ULPT UN I T t.iS

UTE l/PLU l.- 'PP I l/PT I
MHDS M I N p M I TH MDPP

-65-

ACKNOWLEDGMENTS

The research reported in this dissertation was done

while I was employed by the Los Alamos Scientific Laboratory.

Support was provided by the U.S. Energy Re-search and Develop­

ment Administration unaer contract with the Laboratory. I am

grateful to both Administration and the Laboratory for their

assistance.

Very special thanks are due to Professor Donald R.

Morrison of the University of New Mexico for his advice,

guidance, and encouragement while supervising this research.

I would also like to thank the other members of my committee,

Professors John W. Ulrich and Cleve B. Moler, for their

personal and professional interest.

I wish to thank my friends and colleagues at the

Laboratory for helpful comments and suggestions.

-66-

REFERENCES

[1] Burd, William C. and Donald R. Morrison, "Lexicographic
Correlation of Documents," Proc. of the NSF-CBMS Regional
Research Conf. on Automatic Information Organization and
Retrieval, The University of Missouri-Columbia. July
1b-2U , 1y73. pp. 1-20.

[2] Dantzig, George B., "On the Shortest Route Through a
Network," Management Science, Volume 6, no. 2, January,
19bU.

[33 Dijkstra, E.W., "A Note on Two Problems in Connection
With Graphs," Numer. Math., Volume 1, 1959, pp. 269-271.

[4] Harary, Frank and Edgar M. Palmer, Graphical Enumeration.
Academic Press. New York, 1973. ..

[5] Knuth, Donald E.. The Art of Computer Programming.
Volume 1, Addison-Wesley Publishing Co., lyod.

[6] Morris, J.B. and Mark B. Wells, "The Specification of
Program Flow in Madcap b," SIGPLAN Notices, Volume 7,
no. 11. November. 1y72, pp. 28-35.

[7J Salton, Gerald, "A Vector Space Model for Automatic
Indexing," Communciat ions of the ACM, Volume 18, no. 11,
November, 1975. pp. 813-b2U.

[8] Salton, Gerald, Dynamic Information and Library
Processing. Prentice-Hall. Inc., Englewood Cliffs. New
Jersey. 197o.

[9] Stein, Paul R., "Introductory Lectures on Graph Theory,"
unpublished.

[10] Wells, Mark B. and Fred L. Cornwell, "A Data Type
Encapsulation Scheme Utilizing Base Language Operators,"
Proc. of Conference on Data: Abstraction, Definition and
Structure, Volume 8, no. 2, 1978, pp. 170-178.

☆ U.S. GOVERNMENT PRINTING OFFICE 1977-777-018/18

