LA-6341-T MAS@

Thesis UC-32

A 77/

Issued: February 1977

A Metric Graph Structure for Information Retrieval

by

Karl Jerry Melendez

of the University of California
LOS ALAMOS, NEW MEXICO 87545

/ \

An Affirmative Action/Equal Opportunity Employer

UNITED STATES
ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
CONTRACT W-7405-EjyG. 36

'DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

This thesis was accepted by the University of New Mexico, Albuquerque,
NM, Mathematics and Statistics Department in partial fulfillment of the
requirements for the degree of Doctor of Philosophy. It is the independent
work of the author and has not been edited by the Technical Information
staff.

Printed in the United States of America. Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
Price: Printed Copy $4.50 Microfiche $3.00

Thi> report was prepared as an account of work sponsored
by the I'niled States (lovernment. Neither the United States
nor the United States Knemv Research and Development Ad-
ministration. nor anv of their employees, nor any of their con-
tractors. subcontractors, or their employees, makes any
warranty, express or implied, or assumes any leRal liability or
responsibility for the accuracv. completeness, or usefulness of
any information, apparatus, product, or process disclosed, or
rgp}:cscms that its use would not infringe privately owned
rights.

TABLE OF CONTENTS

Section Page
INTRODUCT ION 4 ittt ittt et ettt ettt ettt ettt e teeeeeeeeeenenes |
THE DOCUMENT SPACE . ittt ittt i ittt ettt 2
PROGRESSIVE GRAPHS .ttt ittt ittt i ittt et enenenens 3
PROGRESSIVE GRAPHS AND INFORMATION RETRIEVAL 10
OPTIMAL PROGRESSIVE GRAPHS ...ttt ettt ittt ieneenenneas 18
BUILDING PROGRESSIVE GRAPHS @ ..ttt ittt eeeeenanas 26
ENUMERATION OF GRAPHS @ ..ttt t ittt et i et eeeeeseeneaneas 37
ORDER MA T R I CE St ittt ettt ettt et o eseeseeesesesassnssassnss 39
CONCLUS TON S . 4 i ittt ettt et eae e teeeeaeeteeeeaaeeeeeeaaenens 58
APPENDIX | - Madcap 6 PrOTraAlSeeeeeeeeneesoenesesenns 59

APPENDIX 2 - List of terms for sample problem........ 65
ACKNOWLEDGMENT S . & i i ittt ettt ettt eeeeeeeaeenananasas 0O

REFERENCES. ¢ v ittt ittt ittt i it eiee e 67

NOTIC
This report was prepared as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Energy
Research and Development Administration, nor any of
their employees, nor any of their contractors,
subcontractors, or their employees, makes any
warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not
infringe privately owned rights.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITE'

LIST OF FIGURES

figure page
1 Progressive path in the Euclidean plane 4
2 Regressive path in the Euclidean plane 5
3 The neighborhood N(r,X) in a progressive graph. . 11

4 Progressive graphs with a minimum

number Of arCS. ...ttt ittt ittt 22
5 Number of documents vs. average degree........... 33
6 Logarithmic fit of the average degree data. - - . 34
7 Number of documents vs.average DWPL................ 35
8 Logarithmic fit of the average degree data. - - . 36
9 (N+1)x (N+1) ordermatrix 50

10 r step cycle N+l ,m, j,,.. . ,k,N+1 , r........... ..., 52

table

1

2

3

4

LIST OF TABLES

page
Results for unoptimized graph 30
Results for optimized graphc.ciiiiieen.. 31
Enumeration of labeled graphscciiiieeee.. 37

4x4 semi-canonical order matrices

...............

ABSTRACT

Document retrieval systems accept a user request for
information and respond with a list of documents which
contain information relevant to the request. When the
documents (or abstracts of the documents) are stored in a
computer memory, a function can be defined which estimates
the semantic distance between documents. If this function
together with the set of documents forms a metric space, a
graph, which I call a progressive graph, can be constructed
to aid the search for the documents with relevant
information

Progressive graphs are studied and the search
algorithms which use this graph structure are presented.
The search algorithms always perform correctly on any
progressive graph, but the presence of the progressive
property in a graph is not sufficient to insure that the
algorithms will work efficiently. The characteristics of a
progressive graph which will optimize the search algorithms
are discussed and algorithms to build and optimize
progressive graphs are given. The results of a small
problem show that the search process using the graph created
by these algorithms can be very efficient. Finally, the
distance function property which determines when a graph is

a progressive graph is isolated and studied.

INTRODUCTION

When information 1is required from a large document
library, the first problem is to formulate a qgquery which
describes the nature of the information desired. After the
query 1is formulated, the next problem is to find the
documents which contain relevant information. Furthermore,
if the number of documents with relevant information 1is vwvery
large, the documents with the most relevant information must
be identified. This suggests that a measure of the
similarity between the query and the documents must be
performed. In addition to measuring the similarity Dbetween
the query and the documents it 1is sometimes useful to measure
the similarity between documents.

One such measure 1is correlation. Correlation between
documents increases as the documents become semantically
alike. On the other hand, if the measure becomes smaller as
the documents become semantically alike, then the measure can
be considered a distance. When the distance function
satisfies the properties of a metric, then the documents may
be considered to be in some metric space.

Any qgquery may be considered as a point in this metric
space, and using the properties of the distance function the
following gquestions can be answered.

(1) Which document is closest to the query?
(2) Which documents are within distance 'r' of the query?

(3) Which are the 'n' closest documents
(given 1in order of increasing distance)?

-1-

THE DOCUMENT SPACE

A general document space 1is a set of documents and a
distance function or a correlation function. The function
must measure the semantic similarity between documents. The
distance between documents may be determined by manually
scanning the information. However, unless the number of
documents 1is very small, this task is much too time
consuming

Burd and Morrison investigated the usefulness of
computing lexicographical correlation using the PATRICIA
indexing algorithm|-" j. Lexicographical correlation was
computed between five documents of approximately the same
length. Their results showed that the correlation between
related documents was about twice the correlation between
unrelated documents.

Correlation and distance can also be computed for
document pairs by representing the documents as vectors and
then computing the correlation or distance between the
corresponding vector pairs. The vector representation of a
document using t index terms is

Di = "dil’di2’ e*xe’dit’

ft 7o
where d~© represents the weight of the j

term in the ith
document. The cosine of the angle between vector pairs can

be used as a correlation measurement and the angle itself can

be used as a distance functionj-"j.

PROGRESSIVE GRAPHS

When one knows how to measure the semantic closeness
between two documents or between a document and a query, the
questions posed in the introduction can be answered by
comparing the query with each document in the library. This
process may be very time consuming. One method of reducing
the amount of work to answer these questions 1is to cluster
the documents into groups of related documentsﬂ%, pa 32%3.
Then one needs only to compare the query with documents 1in
clusters which may contain relevant documents. I am
investigating an alternate method which requires that the
distance function be a metric. A distance function is a
metric if it satisfies the following conditions for arbitrary
documents X, Y and Z.

(1) d(X,Y)>0 and d(X,Y)=0 iff X=Y

(2) d(X,Y = 4d(Y,X]

(3) d(X,Y < d(X,z)+d(zZ,Y)

A distance function can be used to construct a graph which
will help in the search for relevant documents. The points
in the metric space correspond to descriptions of documents
or queries, while the nodes in the graph correspond to
descriptions of documents which have been catalogued.

The following definitions classify finite graphs whose

nodes are points in a metric space. A finite graph (S,L) 1is

a finite set of nodes S and a set L of arcs between nodes in
S. If the nodes in S are points in a metric space with a

distance function d, then (S,d) will be a finite metric

space. An arc in L between two nodes X and Y will be denoted
by the unordered pair [X,Y]. In this case we say that X is
adjacent in L to Y and Y is adjacent in L to X. (S'.L1l] 1is a

subgraph of (S,L) if S' is a subset of S and L' 1is a subset
of L. For any subset S' of S the induced subgraph <S'> of
(S,L) 1is the subgraph (S'.L') where L* contains all arcs in L
between points in S'. A path from X to Y in (S,L) 1is a
sequence of nodes X=X",X=,...,Xn=Y with the property that X~
is adjacent to X+ for i=1,...,n-1. The following two
special kinds of paths depend on both the graph and the
distance function.

DEFINITION: (Progressive Path) A path X=XQ, >X>XX=—"X

in a graph (S,L) 1is progressive with respect to the

distance function d if and only if i<j implies that

d(Xx.,Y) > d(Xj,Y).

Traveling along a progressive path, the distance to the last

node in the path is getting progressively smaller.

Figure 1.
Progressive path in the Euclidean plane.

DEFINITION: (Regressive Path) A path X=X0,X1,...,Xn=Y
in a graph (S,L) 1is regressive with respect to then

distance function d if and only if i<j implies that
d(Xi, X < d(Xj,X).

Traveling along a regressive path, the distance from the

first node in the path is getting larger.

Figure 2.
Regressive path in the Euclidean plane.

Progressive and regressive graphs can now be defined as
follows.
DEFINITION: (Progressive Graph) A graph (S,L) 1is
progressive with respect to the distance function d
if and only if for every pair of nodes X and Y in S
there exists a progressive path from X to Y.
DEFINITION: (Regressive Graph) A graph (S,L) 1is
regressive with respect to the distance function 4 if
and only 1if for every pair of nodes X and Y in S
there exists a regressive path from X to Y.
The following lemma shows the relationship between a
progressive path and a regresssive path.
LEMMA 1: A path Xo,X.d,...,Xn 1is progressive 1if and only if
the path xn'xn -]»ese* X0 regressive

PROOF: 1In any regressive path, the distance from the

first node in the path must increase as the number of

steps from the first node increases. The path
Xn,Xn-j, ..., X0 has indices which decrease as the number
of steps from Xn increases. It follows that

Xn,Xn-,...,X0 1s regressive
if and only if
j>1 implies that d(Sj,Xn] < AdU"~X"
if and only if
i<j 1implies that d(Xi,Xn) > d(XJ,Xn)
if and only if
X0,X1,...,¥Xn 1is progressive
A path is progressive or regressive depending on which
direction you are traveling. The following theorem says that
the progressive and regressive properties for graphs are
equivalent.
THEOREM 1: A graph (S,L) 1is progressive with respect to the
distance function d if and only if (S,L) 1is regressive with
respect to the distance function d.
PROOF: Let X and Y be arbitrary nodes in (S,L). By
lemma | we know that a path from X to Y is progressive
if and only if the reverse path from Y to X is
regressive
The complete graph is a graph in which every node 1is
adjacent to every other node. It is progressive with respect
to any distance function, because a one step path exists
between every pair of nodes. Every progressive graph must be
a subgraph of the complete graph. Theorem 2 shows that arcs
between closest neighbors must always be in every progressive

graph.

THEOREM 2: Let the graph (S,L) be progressive with respect to
the distance function d. Let X be an arbitrary node in S.
If Y is a node in S such that X * Y and d(X,Y) < d(X,Z) for
all nodes Z/X, then Y is adjacent to X.
PROOF: Let X and Y be arbitrary distinct nodes in S with
the property that d(X,Y) < d(X,Z) for all 7Z/X. Since
(S,L) 1is progressive with respect to d, (S,L) must also
be regressive with respect to d. Therefore, there
exists a regressive path X=Xo,...,X =Y from X to Y. If
n > 1 , then d((X,X") < d(X,Y). This contradicts the
assumption that d(X,Y) < d(X,Z) for all Z"X.
Therefore, the regressive path from X to Y is X=XQ,X"=Y.
This shows that X 1is adjacent to Y.
Theorem 2 tells us which arcs must be in every

progressive graph, but the existence of these arcs 1is not

sufficient to show that a graph is progressive. The
following theorem gives a criterion by which one can
determine if a graph is progressive.

THEOREM 3: (First Step Rule) A graph (S,L) 1is progressive
(and hence regressive) with respect to a distance function d
if and only if for every pair of nodes X and Y in (S,L) the
following holds:

(I) There exists Z in (S,L) such that Z is adjacent to X and
is closer to Y than X is to Y (i.e., d(Z,Y)<d(X,Y]).

PROOF: Let (S,L) be a progressive graph with respect to

the distance function d. Let X and Y be arbitrary nodes

-7-

in (S,L). Since (S,L) 1is progressive, there exists a
progressive path X=Xo,X1l,...,Xn=Y. By the definition of
progresive path, X! is adjacent to X and d(X1l,Y)<d(X,Y).
Hence, condition (I) holds.

Conversely, assume that condition (I) holds. Let X
and Y be arbitrary nodes in (S,L). Condition (I) says
that there exists a node X! such that d(X1fY) < d(X,Y).
If X* = Y, then X=Xg,X"=Y is a one step path from X to
Y. In general, let X=Xg,...,Xk be a path such that i>j
implies that d(X.,Y) < d(X.,Y). For k=1, I have shown
that such a path exists. If Xk=Y, then X=XQ,...,Xk=Y is

a progressive path from X to Y. If XW ~ Y, then there

exists Xk+1 such that d((Xk+1,Y) < d(Xk,Y). Thus,
X=XQ.... Xk,Xk+l is a path of length k+l with the same
property. If the terminal point of the path is Y, it 1is

a progressive path from X to Y. Otherwise, the path

length can be increased by one. Since (S,L) has a

finite number of nodes, this process must end with a

progressive path from X to Y. Therefore, the graph

(S,L) 1is progressive with respect to the distance

function d.

The following example shows a case where the set of arcs
between the closest neighbors is sufficient to make the graph

progressive

Example 1:
S = {1,2,3,4}
L = { [1,2],12,31,1[3,4]
The distance function is the normal distance function on the
integers.

d(x,Yy) = [|X-Y

PROGRESSIVE GRAPHS AND INFORMATION RETRIEVAL

Each document in the library must have a description
with sufficient information to calculate the distance between
two documents or between a document and a query. The points
in the metric space correspond to these descriptions. The
nodes 1in the graph correspond to the entries in the library
catalogue. Therefore, in addition to a 1list of adjacent
nodes, each node in the graph must contain a description of
the document and any other information a catalogue must
contain. Since the node contains all the necessary
information, the following two functions will be trivial,
des(location) - Given the location of a node in the graph,
return the description of the document,

adj (location] - Given the location of a node in the graph,
return the set of all node locations which
are adjacent to this node.

The properties of a progressive graph can be used to
find the location of the node corresponding to a document
description. If (S,L) 1is a progressive graph with respect to
the distance function d, then Theorem 2 says that for any two
nodes X and Y in S there exists a node adjacent to X which is
closer to Y than X 1is to Y. The closer node may be Y itself.
Thus, to find a node Y in (S,L) one needs only to start at
any arbitrary node X in (S,L) and examine all nodes adjacent
to X. One of these nodes must be Y or must be closer to Y

than X 1is to Y. This suggests the following algorithm to

-10-

find any node in (S,L).

ALGORITHM 1: (Given a description of a document Y,
find the location of the node corresponding to this

document.)

function loc (Y)
description Y
location X

X := location of any node in (S,L)
while des(X) "~ Y do
X:= location of the node which is closest to Y
among all nodes adjacent to X

loc := X

return

end

the ball

Figure 3.

The neighborhood N(r,X) in a progressive graph.

-11-

Algorithm | must terminate because each iteration 1is a
step 1in a progressive path, and there are only a finite
number of documents. At each step in this path, the adjacent
node closest to the terminal node is chosen as the next step.
The work performed to find a location is proportional to the
sum of the degrees of the nodes in the path.

The next problem is to find all nodes which are within a

fixed distance 'xr' of X. See Figure 3. This set of nodes
will be denoted by N(r,X). In the metric space (S,d), N(r,X)
is a ball of radius 'r' with center at X. The following

theorem shows that the induced subgraph <N(r,X)> is not only
connected, but that regressive paths exist from its center to
every other point.
THEOREM 4: If (S,L) 1is progressively connected with respect
to the distance function d, then the induced subgraph
<N (r,X)> contains a regressive path from X to every other
point in N(r,X).
PROOF: For every node Y in N(r,X) there exists a
regressive path X=XQ,X1l,...,Xn=Y in (S,L) from X to Y.
By the definition of regressive path, d(X.X")<d(X,Y)<r.
Thus, each node X* is in the neighborhood N(r,X) and the
path is in the subgraph <N (r,X)>.
To find all the nodes in N(r,X) it is sufficient to use the

subgraph <N (r,X)>. Let Y be the nth closest point to X in

N(r,X). There exists a regressive path in <N(r.X)> from X

-12-

to Y. Therefore, by Lemma ! the reverse of this path is a
progressive path from Y to X. Since a progressive path
exists from Y to X, Y must be adjacent to X or adjacent to
one of the n-1 closer nodes. Thus, having found the n-1
closest nodes, one need only search through nodes which are
adjacent to X or the n-1 closest. This 1is the same property
that assures the correctness of algorithms to find the
shortest path through a network” ~oo Since Algorithm 2
finds all the documents in the neighborhood N(r,X) in order
of increasing distance from document X, it can easily be
modified to find the closest 'n' documents.

ALGORITHM 2: (Given r and X, find the documents in
N(r,X) 1in order of increasing distance from X.)

function NRX (r,X)

sequence NRX

nodes X,nth,a

number r

sets Frontier,Periphery ,A

NRX := <> "Initalize NRX to a null sequence."
Frontier := { a jjn adj(X) : d(a,X) ~ r}
Periphery := { a in adj(X) : d(a,X) > r}

until Frontier = TT df

nth := (closest node in Frontier)
NRX := NRX,nth "Append nth to NRX."
A := adj(nth) - (NRX .union. Frontier .union. Periphery)
Periphery := Periphery .union. f{a in A : d(a,X) > r}
Frontier := Frontier .union. {a in A : d(a,X) r}
Frontier := Frontier - {nth} -
return
end
After the closest k nodes have been found, the (k+1)St
closest node must be in the Frontier. The (k+1) closest

node can be found by a simple search of the nodes in the

-13-

Frontier. This search can be eliminated by keeping the
Frontier as a list in increasing order of distance from X.
An alternative algorithm is to simply find all nodes in
N(r,X) which are one step away from X, then all nodes which
are two steps away from X, etc. When the complete
neighborhood has been found, it can then be sorted in
increasing distance from X. In any case the number of
comparisons required to sort the nodes in increasing order of
their distance from X depends only on the number of documents
in the neighborhood.

When a node is added to the neighborhood, any of its
adjacent nodes which have been reached before can be
discarded. A node has been reached before if it is already
in the neighborhood N(r,X), the Frontier, or the Periphery.
If each node 1is marked when it 1is placed in any of these
lists, the 1lists will not need to be searched to determine
when a node has been reached before. At the end of the
algorithm, all marks must be removed.

Algorithm ! finds only nodes which are in the graph. A
query will not be a node in the graph, but the properties of
a progressive graph can be used to find the document node
which 1is closest to a query. If a node X in (S,L) has no
adjacent nodes which are closer to the query g, then X is
locally closest to q. If there exist nodes in (S,L) which

are closer to g they will be members of the neighborhood

-14-

N(2*d (X, q),X). Suppose X 1s locally closest, but is not the
closest node to q. Then there exists a node Y such that
da(y,q) < d(X,q). Using the triangle inequality

d(X,Y) < d((X,g + d(g,Y)

d(X,q) + d (Y, q]

< dX,g + d(X,g = 2*d(X,q)
If d(X,q) 1is large, the neighborhood N(2*d(X,q) .X| may
contain many nodes. Therefore, if X has no adjacent nodes
which are closer to g it is sufficient to find any node in
N (2*d(X,q),X] which is closer to q. In this case Algorithm 3
finds all nodes in N(2*d(X,q),X) which are one step away from
X, then all nodes which are two steps away from X and so on
until a closer node 1is found or until all nodes in
N (2*d(X,q),X] have been found. Only arcs in the induced
subgraph <N(2*d(X.qg),X)> need to be examined, because
<N (2*d(X,qg),X)> has progressive paths from X to every node
and 1is therefore connected.

Algorithm 3 is a combination of algorithms ! and 2.
Algorithm ! is wused until a locally closest node 1is found.
Then, a modification of Algorithm 2 is used to verify that
the current location is the closest or to find a closer
location. If a closer location 1is found. Algorithm 1 is

again used to step closer to the query.

-15-

ALGORITHM 3: (Algorithm to find the document
closest to a query.)

function closest (q)
description g

sets A,OF,NF, NRX

locations closest,f,x,x0,a,n
numbers r

boolean closer

closer := true
x := any location in S
while closer = true do

"Check all locations adjacent to x
for locations closer to the query g."
"If any exist, choose the location closest to g."

xO 1= X
for all a in adj(x) do
if d(des(a),q) < d(des(x),q) then x := a

if x = xO then
"If no points adjacent to x are closer to g,
check a neighborhood of radius 2*d(x,q) for
closer documents."

r = d(x,9)
NRX := ({x}
OF := ({x}
until OF=0 or x"x0 do
NE = {}
for all f in. OF while x=x0 do
A := adj(f) - NRX
NRX := NRX .union. A

for all a in A do

if d(des(a),q) < r then x:=a
(x)

if d(des(a),des (x)) < 2*r then NF := NF.union, {a}
OF := NF
if x=xO then closer := false
closest := x

return

By finding successively larger neighborhoods of the
closest document, the following algorithm will find the 'n*
closest. If Y is the closest document to the query g and Z
is the KL closest document to g, then the neighborhood
N(d(zZ2,q)+d(Y,qgq) ,Y) will contain all the k-1 closest
documents. This follows from the fact that the neighborhood

N(d(Z,q),q9) 1is contained in N (d(z,q)+d(Y,q),Y)

-16-

ALGORITHM 4: (Algorithm to find the 'n' closest
documents to a query.)

function findn (n,q)
"At stage k, all the k closest nodes have been found."

"findn - A list of the k closest nodes <N(),...,N(k)>"
"NBR - Nodes in the neighborhood N(r,N(1l)) but
not 1in findn. r= d(N(k),N(1)) + d(N(1),q)"

"PER - Nodes adjacent to a node in NBR or findn which
are not already members of NBR or findn."
sequence findn
description ¢
numbers n,dqy,count,total
locations vy,z,p,a
sets NBR,OF,NF, PER, IN, NEW

findn := <>
if n £ 0 return
y := closest(qg]
dgy := d(des(y),q)
findn := <y>
count := |
total := n
PER := | p in adj(y)
until PER= {T~or count >total do
NBR := | element in PER which is closest to y |}
until NBR={} of count >total dc>
z := (element in NBR which 1is closest to vy)
r := d(des(z),q + dgy
OF := {z} .union, {p in PER : d(des(p),des(yl) < r}
PER := PER - OF
until OF={} do
NE = {}
NBR := NBR .union. OF

for all f ijn OF do

A:=1ia in adj(77}-{elements in NF,NBR,PER, or findn}

IN := Ta il A : d(desla).des(y)) < r |
NF := NF .union. IN
PER := PER .union. (A-IN)

OF := NF

"At this point NBR must contain all nodes which are not

already in findn but are closer to g than z is."
"If d(des(a),q) < d(des(z),q) , then
d(des (a),des(y7) < d(des(a).qg) + d(des(y).q)
< d(des(z),g) + dgy = r."

NEW := {a in NBR : d(des(a),q) < d(des(z),q) |
NBR := NBR - NEW
"Sort the elements in NEW and append them to findn."
findn := append(findn,<sorted elements of NEW>)
count := count + (number of elements 1in NEW)
return
end

-17-

OPTIMAL PROGRESSIVE GRAPHS

The complete graph is a graph in which every node 1is
adjacent to every other node. Such a graph is clearly

progressive since a one step progressive path exists between

any two nodes. However, a simple sequential search is more
efficient than using algorithms | through A on the complete
graph.

Given any two distinct nodes X and Y in a complete graph
with n nodes, Algorithm ! will make n-1 distance calculations
to find Y starting at node X. Since the graph is complete, X
has degree n-1 and Algorithm ! will sequentially search all
n-1 adjacent nodes for the closest node to Y. Since Y is
adjacent to X, Algorithm ! will find Y during this search. A
sequential search of a file would reguire at most n distance
calculations and the average number of distance calculations
a sequential search makes 1is n/2.

The difficulty Algorithm | encountered with the complete
graph was that the degree of each node was very large. One
may come to the conclusion that all Algorithm | requires 1is a
progressive graph with the smallest number of arcs possible.
However, consider the case of a path graph. A path graph
(P,L) is a set of nodes {X* ; i=1,2,...,n} and a set of arcs
ANXi'Mi+lr 0 i=T1 *eeeon—1J Progressive graphs must first
be connected, and any connected graph with n nodes must have
at least n-1 arcs”™j. Therefore, no progressively connected

graph can have fewer arcs than a path graph. If the path

-18-

graph (P,L) 1s progressively connected (see example 1) then
Algorithm ! will make 2k-3 distance calculations to find
starting at . There are k-1 steps and every step requires

two distance calculations except the first step, which

requires only one distance calculation. The average number
of distance calculations to find X~ , k=2,3....n will be
[1+ £ (2k=-3)] / (n-1) = (n-1).
k=1

Thus, although the path graph has the smallest number of arcs
possible for a connected graph, the average number of
distance calculations required by Algorithm ! is proportional
to the total number of documents in the graph.

This indicates that both high node degrees and long
search paths will cause Algorithm | to be inefficient. The
following definition incorporates Dboth these measurements.

DEFINITION: (degree weighted path length) The degree
weighted path length of a path X=XQ....X =Y is
g;- degree (X).
i=0 1
Starting at any node X in a progressively connected graph.
Algorithm | will follow a unique path searching for the node
Y. At each step X* in the path Algorithm ! will make
degree (X") distance calculations to determine the next step.
Thus, the degree weighted path length of this path from X to
Y is the total number of distance calculations Algorithm

makes to find Y starting at X. The degree weighted path

length of this unique path from X to Y will be denoted by

-19-

DWPL (X, Y) . I have already shown that for a complete graph
DWPL (X, Y) = n-1 if X/Y and for the path graph DWPLU"X" =
2k-3.

Algorithm | 1is a search algorithm which will start at a
location X and find the location of a node Y which may be
unrelated to X. On the other hand, Algorithm 2 starts at a
node location X and finds all locations within a given
distance from X, 1i.e., all locations in the neighborhood
N(r, X) . To find a neighborhood N(r,X) Algorithm 2 will make

at most

~ ~degree (Y

N(r.X)

comparisons of the distance to X and the radius of the
neighborhood 'r*. If the graph is the complete graph, then
Algorithm 2 must determine if d(X.Y) < r for all Y adjacent
to X. This requires degree(X) = n-1 distance calculations
where n 1is the total number of nodes in the graph. However,

if X is a node in a path graph. Algorithm 2 will make at most
~ ~degree (Y] < 2 * tfN(r,X)

N (r, X)

distance calculations, where #N(r,X) is the number of nodes
in N(r,X). The number of distance calculations in the
complete graph is proportional to the total number of nodes
in the graph while the number of distance calculations in a
path graph is proportional to the number of nodes in the

neighborhood N(r,X). Therefore, the complete graph is

-20-

undesirable for both algorithms | and 2, and a path graph is
undesirable only for Algorithm 1. In general it 1is clear
that Algorithm 2 requires progressive graphs whose nodes have
low degree.

Let S' be the set of all graphs on the set of nodes S
which are progressive with respect to a distance function d.
A partial order can be defined on S' by:

(S,Ll) < (S,L2)

if and only if

is contained in L2
The minimal elements in this partial order are the
progressive graphs of interest. If (S,L) 1is a minimal
element, then the removal of any line will cause the graph to
lose the progressive property. Minimal progressive graphs
can be found by removing unnessary lines from a graph which
is already progressive. Theorem 3 gives a criterion to
determine when an arc is unnecessary. Theorem 3 says that an
arc [X,Y] 1is unnecessary if its removal does not cause X or Y
to fail the first step requirement. A much harder problem is
to find a minimal progressive graph with the property that no
other progressive graph has fewer arcs. Such a graph must

exist, but the following example shows that it 1is not unique.

-21-

Example 2:
S = 1 X1=(0,0) , X2=(0.4) , X3=(3.8) , X4=(3,0)
~o= o0 [Xhyx2l o [X1L,X4] 0 [X2,X3] 0 [x2,X4])

A2 LA RN toEX2 X4, [X3,X4] |

Figure 4.
Progressive graphs with a minimum number of arcs.

Both I. and have the same number of arcs and are
progressive with respect to ordinary Euclidean distance.
Furthermore, no progressive graph can have fewer than 4 arcs
on this set of nodes.

Since graphs in S' with the smallest number of arcs are
not unique, it follows that the intersection of two graphs in
S' may not be a graph in S'. However, by Theorem 2 it
follows that the intersection of two graphs in S' cannot
result in a graph with no arcs. The following set of arcs
must be in every progressive graph.

X 1is a closest node to Y

{ [X,Y] in S or)
Y is a closest node to X

-22-

When two nodes A and B are equidistant to a third node X
and no other nodes are closer to X, then A and B are closest
to X. Any progressive graph must contain both arcs [A,X] and
[B,X], However, 1if the distance function does not measure A
and B as exactly equidistant to X, then only the closest node
may need to be adjacent to X.

A distance function d will be called an isosceles
distance function on the set S if there exist three points X,
Y and Z in S such that d(X,Y) = d(X,Z2). Otherwise, the
function will be called non-isosceles. The triangle with
vertices at X, Y and Z will be an isosceles triangle if
distance is measured with an isosceles distance function.

If d is an isosceles distance function on the set S and
a:sS-—->{1,2,...,n} 1s a one to one function from S onto

{1,2,...,n}, then a non-isosceles distance function da can be

defined by
0 if X=Y

da (X"Y) d(X,Y) + e*[a(X)+a(Y)] if X/Y
where
P - min {]d(X,Y)-d(X,Z)i : d(X,Y)*d(X,Z))
2n

To. show that the triangle inequality holds, assume that X, Y

and Z are arbitrary points in S. Then,

-23-

da(X,Z) = d(X,2) + e*[a(X)+a(Z2)]
< d(X,Y) + d(Y,Z) + e*[a(X)+a(Z)]
< d(X,Y) + d(Y,z) + e*[a(X)+2a(Y)+a(z)]
= d(X,Y) + e*[a(X)+a(Y)] + d(Y,Z) + e*la(Y)+a(Z)]
= da(X,Y) + da/(Y,2)
The following theorem shows that ds is a non-isosceles
distance function on S.
THEOREM 5: For any three points X, Y and Z in S,
i) d(X,Y)<d(X,Z) implies that da_ (X,Y) < dé_,(X,Z)
i1) d(X,Y)=d(X,Z) implies that
dd (X,Y)<da~ (X,Z) if and only if a(Y)<a(2)
PROOEF':
Assume that d(X,Y) < d(X,2).
dd (X,Y) = d(X,Y) + e*l[a(X)+a(Y)]

< d(X,Y) + 2ne

d(X v) + 2n min{ld(r.s)-d(r,t) ! : d(xr,s)"~d(xr,t)}
! 2n

< d(X,Y) + 2n

= d(X,Y) + [|d(X,2)-d(X,Y)!

= d(X,Y) + d(X,2z2)-d(X,Y) since d(X,Y)<d (X, 2]

d (X, Z)
< d(X,Z) + e*la(X)+a(z2)]
= da (X, 2)

This proves 1i). Now assume d(X,Y)=d(X,2z).

-24-

da (X,Y)

dX, Y + e*l[a(X) +ta(Y)]
= diX,Z + e*[a(X)+a(Y)] since d(X,Y)=d(X,2Z)
= d(X,z2) + e*l[la(X)+a(Z)+a(Y)—-a(Z)]

= d(X,Z2) + e*la(x)+a(2)] + e*[a(Y)-a(z)]

da(X,Z) + e*[a(Y)-a(z)]
This proves ii).

This theorem shows that d uses the function 'a' to resolve

any ties that d may encounter when measuring distances from a

common point. Thus, any progressive path with respect to d

will be a progressive path with respect to d3.

COROLLARY: Let a:85-->{1,2,...,n} be a one to one function

from S onto {1,2,...,n}. If (S,L) 1is a progressive graph

with respect to a distance function d, then (S,L) is a

progressive graph with respect to d3.
In the study of progressive graphs it 1is convenient to

use a non-isosceles distance function, as it avoids

troublesome special cases caused by pairs of points

equidistant from a third point. In the remainder of this

paper I shall use only non-isosceles distance functions.

-25-

BUILDING PROGRESSIVE GRAPHS

The previous algorithms illustrate how progressive
graphs can be useful in document retrieval. Now I turn my
attention to the problem of building a progressive graph. A
progressive graph can be built by initializing the graph to
contain one document and no arcs. Then, the rest of the
documents can be added one at a time with a sufficient number
of arcs to insure that the graph will remain progressive.
Theorem 3 tells us that a graph is progressive if and only if
there exists a first step in a progressive path from each
node to every other node. Therefore, when a new node X is
added to a progressive graph, it 1is sufficient to insure that
for every old node Y there exists a first step in a
progressive path from Y to X and from X to VY. Recall that a
first step in a progressive path from X to Y exists if there
is a node 7 adjacent to Xsuch that d(z,Y)<d(X,Y).

When a new node X 1is added to a progressive graph, it
will initially be isolated from the rest of the graph, i.e.,
it will not have any adjacent nodes. Therefore, it 1s best
to start by insuring that there exists a first step from each
old node to the new node. If a first step does not exist for
some node Y, then one can insure a first step by adding the
arc [Y,X] to the graph. If Y is the closest old node to X,
then Yo cannot have an adjacent node which is closer to X.
The arc [Y"X] must therefore be added to the graph. Thus,

after a first step 1is assured from all the old nodes to the

-26-

new node X, then X will no longer be isolated.
Next, one must insure that a first step exists from the
new node X to every old node, If a first step does not exist

for some node Y, then a first step can be insured by adding

the arc [X,Y] to the graph.

ALGORITHM 5: (Add a document to a progressive graph.)

subroutine addl (x)

"addl (x) adds one more node to a progressive graph
to create a new progressive graph.”

description x,y,z
location locx,locy,locz
global Graph

set Frontier

"Create a new node for the new document."
"Save the location of the new node in locx."
locx := create(x)

"Check for progressive paths to locx."
for locy in. Graph do.

y := des(locy)
if [for all locz in adj(locy) : d(y,x)<d(des(locz),x)] do
call tie(locx,locy] "form the arc [locx,locyl]"

for locy in Graph do
"Check for a first step in a progressive."
"Path from locx to locy."

y := des(locy)
if [for all locz in adj(locx) : d(x,y)fd(des(locz),y)] do
call tie(locy,locx] "form the arc [locy,locx]"
return

£nd
When a progressive graph is built by adding documents
one at a time, the final graph will depend on the sequence in
which the documents are added to the graph. The following

algorithm will use the first step rule to eliminate

-27-

unnecessary lines from the graph.
ALGORITHM 6: (Optimization)

function removable(x,vVy)

boolean removable,stepxz,stepyz
locations x,y,z,a

global Graph

removable := true
"Check for a first step from x to every other location."
for z Iji Graph while removable=true do
stepxz := false
if z=x then stepxz := true
else "Check for a first step which is not y."
for a in adj(x) while stepxz=false do
if a”y and d(a,z)<d(x,z) then stepxz := true
removable := stepxz

"Check for a first step from y to every other location."

AN

for z in Graph while removable=true "o
stepyz := false
if z=y then stepyz := true
else "Check for a first step which is not x ."
if a”x and d(a,z)<d(y,z) then stepyz := true
removable := stepyz
return

end

subroutine optimize
"acc(x) 1s a function which will return
the accession number of the location z."
"untie(x,y) 1is a subroutine which will remove
x from adj(y) and y from adj(x)."
locations x,y
sets X,Y

X := {all locations}

for all x in X do
Y = {y in adj(x)]
for all y in Y such that acc (x])>acc (y) do
if removable(x,y] then call untie(x.y)
return
end

Subroutine 'optimize' wuses the function 'removable' to

-28-

determine which arcs can be removed without causing the graph
to lose the progressive property. When an arc can be
removed, subroutine 'untie' 1is used to remove the arc from
the graph. After all arcs which can be removed are
eliminated, the graph will be a minimally progressive graph.

The function 'removable' uses the first step rule to
determine when an arc can be removed without the loss of the
progressive property. An arc [X,Y] can be removed if for
every node 1in the graph, there exists a first step from X
which is not Y and a first step from Y which is not X.

These algorithms were applied to a small problem with
200 documents. The documents were program abstracts from the
program library maintained by the Computer Science and

Services Division of the Los Alamos Scientific Laboratory.

Each document was represented by a 266-dimensional wvector
Di = (dil 'di2.... di2b6]

where dij:1 if term 1 occurred in document i, otherwise

d"~roO. See Appendix 2 for a list of the terms. The angle

between the document vectors was used as the distance
measurej-"7j. The graph was initalized by setting S={D"} and
L={}. Algorithm 5 was used to add the rest of the documents
t<5 the graph one at a time. At each multiple of 10, the

following values were computed.

-29-

n
average degree = (1/n) “2 degree(D.)
i=1 1

P
average DWFL = (1/n") E E DWPL(D.,D .)
i=1 j=1 1 J
maximum DWPL = max { DWPL(D",Dj) : 1i,3 = 1,2,...,n |
Table | summarizes the results.
er of average average maximum
ments degree DWPL DWPL
10 2.60 5.74 13
20 3.90 10.21 24
30 5.27 13.50 33
40 5.30 15.99 40
50 5.48 18.18 54
60 5.53 19.80 50
70 5.63 21.01 55
80 6.05 23.12 6!
90 6.42 24 .98 69
100 6.80 26.33 73
110 7.11 27.41 75
120 7.75 28.86 77
130 8.20 29.94 80
140 8.66 30.92 83
150 8.99 32.46 91
160 9.44 33.69 101
170 9.40 34.53 102
180 9.54 35.45 103
190 9.70 36.35 104
200 10.12 37.38 109
Table 1.

Results for unoptimized graph.

When a document is added to the graph with Algorithm 5,
arcs which were essential to keep the graph progressively
connected may not be essential after the addition of the new
document. Table 2 summarizes the results of using Algorithm
6 to optimize the graph. At each multiple of ten, the graph
was optimized and average degree, average DWPL and maximum

DWPL were computed.

-30-

number of average average maximum

documents degree DWPL DWPL
10 2.40 5.56 14
20 3.20 9.15 21
30 4.07 11.81 29
40 4.30 14.30 38
50 4.72 16.01 45
60 4.70 18.34 53
70 4.77 19.38 58
00 4.88 20.64 63
90 5.61 22.13 67
100 5.52 23.31 75
110 5.76 24.24 94
120 6.07 25.28 85
130 6.38 26.27 100
140 6.60 26.97 103
150 6.72 27.56 105
160 7.11 28.80 101
170 7.14 29.45 103
180 7.34 30.27 104
190 7.38 30.92 107
200 7.78 31.90 111
Table 2.

Results for optimized graph

Figure 5 shows that the average degree for

unoptimized graph is increasing at a faster rate than the

average degree of the optimized graph.

squares method

data,

However, when a least

is used to fit the equation A+I"1log”CX) to the

it is apparent that the average degree of both the

optimized graph and the unoptimized graph is

increasing at a

rate proportional to the log of the number of documents. The
data points from 100 to 200 were used in order to estimate
the rate of increase when the graph is large. The best fit
fdr the unoptiraized graph was

-15.1 + 3.3*1log2 (X)
and the best fit for the optimized graph was

-8.93 + 2.2*log2 (x)

-31-

Figure 6 shows how well these functions fit the data. In
this range, the average degree 1is 1increasing at a rate
proportional to the log of the number of documents.

Figure 7 shows that the average degree weighted path
length 1is also increasing at a faster rate for the
unoptimized graph than for the optimized graph, but the rate
of increase for both graphs is proportional to the log of the
number of documents. The best fit for the unoptimized graph
is

-48.74 + 11.24*1og2 (X)
and the best fit for the optimized graph is
-33.32 + 8.48*1log2 (X).

Figure 8 shows how well these functions fit the data.

-32-

AVERAGE DEGREE

LEGEND

o= UNOPTIMIZED GRAPH
O= OPTIMIZED GRAPH

80 120

160

NUMBER OF DOCUMENTS

FIGURE 5 .
NUMBER OF DOCUMENTS VS .

-33-

AVERAGE DEGREE

AVERAGE DEGREE

LEGEND

o= UNOPTIMIZED GRAPH
O= OPTIMIZED GRAPH

:0 140 160 U
NUMBER OF DOCUMENTS

FIGURE 6 .

LOGARITHMIC FIT OF THE AVERAGE DEGREE DATA.
SOLID LINE IS THE LOG CURVE .

-34-

35 40- 0

AVERAGE DWPL
20 O 25 0 30 0

0

LEGEND

o= UNOPTIMIZED GRAPH
O= OPTIMIZED GRAPH

80 120 160
NUMBER OF DOCUMENTS

FIGURE 7 .
NUMBER OF DOCUMENTS VS . AVERAGE DWPL.

-35-

AVERAGE DWPL

LEGEND

o= UNOPTIMIZED GRAPH
O= OPTIMIZED GRAPH

:0 140 160 If
NUMBER OF DOCUMENTS

FIGURE 8 .

LOGARITHMIC FIT OF THE AVERAGE DWPL DATA.
SOLID LINE IS THE LOG CURVE .

-36-

ENUMERATION OF GRAPHS

A progressive graph on a document space with n documents
will be a labeled graph of order n. Harary and Palmer give
the following formulas for the enumeration of labeled

graphs”j. The total number of labeled graphs of order n is

G _ 2(n’2)
n

Where (n,2) 1is the binomial coefficient.
(n,2) = n! / (n-2) 2! = n(n-1)/2
The number of connected labeled graphs of order n is
Cn = 2<n’2) - O/n) E K*(n,k)*Ck*Gn.k.
k=1

The number of labeled trees with n points 1is

T = n(n 2).
5 _

The following table shows the number of each kind of graph

for n < 8.

n T G
n n

1 1 1
2 1 1 2
3 3 4 8
1 16 38 64
5 125 728 1024
6 1296 26704 32786
7 16807 1866256 2097152
8 262144 251548592 268435546

Table 3.
Enumeration of labeled graphs.

Table 3 shows the magnitude of the problem if one were to

make an exhaustive search for progressive graphs. The large

-37-

number of connected graphs makes it impractical to search all

connected graphs for progressive graphs with the smallest

number of arcs. A tree 1is a connected graph with a minimal
number of arcs. Any progressive graph 1s connected and must
contain a spanning tree as a subgraph. A minimal progressive

graph can be found by starting with one of its spanning trees
and adding a sufficient number of arcs to make the graph
progressive. However, the number of trees on n nodes grows
exponentially as n increases. Thus, it is also impractical
to find a progressive graph with the smallest number of arcs

possible by adding arcs to the set of trees.

-38-

ORDER MATRICES

A graph (S,L) 1s progressively connected with respect to
a distance function d if and only if there exists a first
step 1in a progressive path from each node in the graph to
every other node. A first step in a progressive path from A
to B exists if there is a node C which is adjacent to A and
d(Cc,B)<d(Aa,B). Therefore, the relationship of all pairs of
distances d(A,B) and d(C,B) for arbitrary A, B and C is
sufficient information to determine when a metric graph is
progressively connected. When the points in the set S are
labeled , - - -and d is a non-isosceles distance
function, this information can be organized in an NxN matrix
0. The ith row 0(i,1),0(i,2),...,0(i,N) will be a
permutation of the set of integers {0,1,...,N-1} such that
0(i,j) 1s the rank of the distance dCX"X.) among all
distances d(XI’XK) for k=1,2,...,N. Thus, the matrix 0 will
have the property that 0(i,i) =0 and O (i,J)<0(i,k] if and only
if d(Xf’Xf)<d(Xﬁj§;)' I will call matrices of this form,
order matrices.

DEFINITION: (Order Matrix) An NxN order matrix 1is a
matrix with zero diagional and rows that are
permutations of the set of integers {0,1,...,N-1}.

Every NxN order matrix defines a relation r on the set
of unordered pairs {(i,3j) : i,j=1,2,...,N} by the following
rule. (i,3) r (i,k) if and only if 0(i,3j) < 0(i, k). Thus,
two pairs are unrelated unless they have one point in common

At
and the il row of the order matrix determines how (i,3j) and

-39-

(i,k) are related. I will call a sequence XN, .00, Xk oan

r step sequence if (X* 7, X") r (X*,X"+7) for all

i=1,2, ... , k-1 Since two pairs are unrelated by r unless
they have one point in common, any cycle will be of the form
(Xo. X" r (XxX2) £ ... r ("k.Xu r (XQ.X". This 1is
equivalent to the r step sequence XQ,X",X2,...,X", XQ,X",
Thus, any r step sequence whose first two points and last
two points are equal will be called an r step cycle. If 0
is the matrix where 0(i,j) 1is the rank of the distance
d(Xi'Xﬁ) among all distances dlxziéi) in some finite metric

space, then d(Xi’Xj) < d(X.

le] implies that (i,3) r (i,k).

DEFINITION: (Compatible order matrix) The NxN order
matrix 0 1is compatible with a finite labeled metric
space ({X ..., X },d)y if it is true that
d(XY’XJ)<d(Xif%;; if and only 1if (i,3J)r(i,k).
Given a set of three points. S={1,2.3}, there are only
six ways the distances d(1,2), d(1,3) and d(2,3) can be

related when d is a non-isosceles distance function.

(1) d(l,2) < d(!,3) < d(2,3)

S
Q.
=
-
[\)
VAN

d(2.3) < d(1,3)

(3) d(l,3) < d(l.2) < d(2,3)

=
Q
w
/N

d(2,3) < df(1,2)
(5) d(2,3) < d(1.2) < d(1,3)
(6) d(2,3) < d(1,3) < d(1.2)
FEach relation corresponds to one of the six different ways a

three point metric space can be labeled. The following six

-40-

order matrices are compatible with any three point metric

space whose distances satisfy relations (1) through (6)

respectively
(1) (2) (3) (4) (5) (6)
0 1 2 0 1 2 0 2 1 0 2 1 0 1 2 0 2 |
L0 2 10 2 102 2 0 1 2 0 1 2 0 !
1 20 2 10 2 0 120 2 10 2 10
There are 2 —d Ways ., arrange the rows of a 3x3 order
matrix. The following two order matrices are not listed
above,
(7) (6]
01 2 0 2 |
2 0 1 10 2
2 0 2 1 0

Order matrix (7) defines the following relation on the
unordered pairs.

(1.2) r (1,3)

(2.3) r (2,1)

(3,D r (3,2)
Since the pairs are unordered, this relation has the
following cycle.

(1,2) r (1,3)=¢(3,1) r (3,2)=(2,3) r (2,1)=(1,2)

If order matrix (7) were compatible with some metric space,
then this would imply that d (Xl ,Xz2]<d (Xj, X£). Since this
cannot be true for any metric space, order matrix (7) cannot
be compatible with any three point metric space. Similarly,
order matrix (b) cannot be compatible with any three point

metric space because the relation defined by order matrix (8)

-41-

has the following cycle.

(1,3) r (1L,2)=¢(2,1) ¢ (2,3)=(3,2) r (3.D=(1,3)
Order matrices (1) through (6) are all compatible with the
same three point metric space. This 1is true because each of
the relations (1) through (6) corresponds to one of the six
different ways a three point metric space can be labeled.
The following definition gives a semi-canonical form for
order matrices which will eliminate most reorderings.

DEFINITION: (Semi-Canonical order matrix) An NxN order

matrix 0 is semi-canonical if

1) 0(1,1i) = 1i-1 for i=1,2,...,N

2) 0(2,1) I
3) 0(3,1) < 0(3,2)

Order matrix (1) 1s a 3x3 semi-canonical order matrix. A
semi-canonical order matrix 1is compatible with a metric space
which has been labeled such that points 2 through N are
labeled in increasing order of their distnace from point 1,
points ! and 2 are mutually closest, and d(l ,3)<d(2,3). In a
three point non-isosceles metric space there is a unique
labeling which satisfies these conditions. This unique
labeling is the labeling which specifies that
d(l,2)<d(1,3)<d(2,3).

DEFINITION: (Consistent order matrix) An NxN order

matrix 1is consistent 1if the relation r defined by 0

on the unordered pairs does not contain any cycles.
If the relation defined by an order matrix does not contain

any cycles, then it can be embedded in a linear order.

Knuth’s topological sort algorithm can be used to check an

—42-

order matrix for consistency”™ p 2557 the order matrix
is consistent, the topological sort algorithm will find a
linear order which contains the relation r. If the order
matrix 1is inconsistent, the topological sort algorithm will
find a cycle in r. Matrices (1) through (6) are consistent
while matrices (7) and (8) are inconsistent.
THEOREM 6: Every non-isosceles metric space can be labeled so
that it is compatible with a consistent semi-canonical order
matrix. Conversely, every consistent semi-canonical order
matrix 1is compatible with some non-isosceles metric space.
PROOF: Let (S,d) be a non-isosceles metric space
with N points. Since there are only a finite number of
points, there exist two points X and Y such that d(X,Y)
is a minimal distance. Let be the second closest

point to X and Zy be the second closest point to Y. One
of the following inequalities must hold.

d(zx,X) < d(zZx.Y)

or

dZy.,Y) < d2Zy,X)
If neither inequality holds, then the following cycle
will occur.

d(zx,Y) < d(zx,X) < d(z2y,X) < d(zZy,Y) < d(Zx,Y)

This contradicts the fact that <« is a partial order on
the real numbers. If d(z X)<d(zwv,Y) then 1label X as

one, Y as two, and Zx as three. Otherwise, 1label Y as

one, X as two and Zy as three. Having labeled points

one through three, the remaining nodes are labeled 1in
increasing order of their distance from point one. If 0
is the order matrix with 0(i,j) equal to the rank of the
distance d(i,j) among all distances d(i, k), then 0 is
compatible with the metric space and 0 will have the
following properties.

0(1, kl=k-1 k=1,2.... N

0(2,1)=1 since d(l1,2) was minimal

0(3,1)<0(3,2) since d(3,1)<d(3,2)
This shows that 0 is semi-canonical. Conversely,

suppose 0 is an NxN consistent semi-canonical order

matrix. Since 0 is a consistent order matrix, the
relation defined by 0 does not contain any cycles. This
relation on the M=N(N-1)/2 pairs {(i,]J) : 1"jl1 can be

embedded in a linear order pl<P=<...<pM. Define a

distance function 4d:{1,...,N}x{1l,...,N}-->{real numbers}
by

d(i,i) =0 for i=1,2,.. .,N

d(i,j) = 1 + k/M for i/j and (i,3j) 1is the

k™ pair in the linear

order pl<p2<...<pM
This distance function satisfies the triangle inequality
since all distances are less than or equal to two and
the sum of any two distances 1is strictly greater than

two. The order matrix 0 1is compatible with the metric

-44-

space ({1,2,...,N},d).

Two metric spaces (S7.d”) and (S*.d") are isometric if
there exists a one to one function f£iS*-"S” which preserves
distances (i.e., d"Ca.b) = d"™(f(a),f(b))). A more general
morphism is one that only preserves the order relation on the
distances. (S~d”) 1is order isomorphic to (S2>d=) if for all
a, b, ¢ and d in , it is true that

dl (a,b)<dl(c,d) dimplies d2(f(a),f(b))<d2(f(c),£(d)).
Order isomorphic metric spaces will be compatible with the
same order matrix when the order isomorphism f maps the i~"
point in one metric space to the ithi point in the other
metric space. The following theorem shows that every finite
metric space 1is order isomorphic to a Euclidean metric space.
It follows by Theorem 6 that every consistent order matrix 1is
compatible with some Euclidean metric space.

THEOREM 7: Let (S,d) be any finite non-isosceles metric space
with n points. Then there exists a subspace of Euclidean
n-space which 1is order isomorphic to (S,d).

PROOF: Label the metric space (S,d) so that its
corresponding order matrix 1is semi-canonical. I will
show that there exists a set of vectors in
Euclidean n-space such that for some real number e>0,

IX.-X3! = 1 + e*d(4i,]).
If such a set of vectors exists, then the function

f:S-->{X"} defined by f£(i)=X" 1is an order isomorphism

-4 5-

because

d(i,j)<d(n,m) implies | + e*d(i,j) < | + e*d(n,m)

implies IX"Xj! < iXn-Xral!.
The following proof constructs a set of n vectors close

to the n scaled unit vectors

((1/2)1/2, 0O, O, 0, -ee]
(0,(1/2)1/2, 0O, o ...]
(0, 0,(1/2)1/2, o ...]

Define the vector functions
Xi(e) = (Xil(e) Xii(e))
by the following recursive process. First set

Xl 1(e)=(1/2)1/2

Suppose that for all i<i, Xi(e) is defined and

T

continuous on some interval [0,t” .|] such that,
i) 'Xj(e)-Xk(e)! = 1 + e*d (3, k)
ii) X (e)i2 = 1/2
iii) XAEU = (0,0,...,(1/2)1/2)

A vector function X" (e) must be defined such that it 1is

continuous on some interval [0,t”] and satisfies

condtions i) through iii). X"~e) can be defined 1in
terms of {X*(e):jJ=1,...,1i-1}. In order to satisfy
condition i), X" (e) must be a solution to the following

equation for all j<i.

-46-

[1 + e*d(i,J)]12 = Xi(e)-Xj(e)!2
= k2, [xik™) -
(e)) + IXj(e¢)! +2 Mk Met gk et
k-1
In order to satisfy condition ii), X"(-e) must be a
solution to these equations with the constraint that
I1X"(e)i=1/2. Using this constraint, the system of i-1
equations becomes,
£ Xik(e)*Xik(e) = - e*d(i,])] - e2*d2(i,]j)/2.
k=1 Ik
Since Xj3”(e)=0 for all k>j, this 1is a triangular system
of i-1 equations and will have the following solution
everywhere Xjj(e)”0 for all j<i,
. .. a-1
- e*d(i,]) - e2*d2(i,j)/2 - B Xiu(e)*X. (e
k=1 1K Lk
XJj (e)

Since X (0)=(1/2)1X2 for all j<i, there exists an
0

interval [0,t] in which X., (e)>0. Thus, all the X.-Ce)

are defined and continuous on [0,t]. As long as x""(e)

is chosen such that !Xi(e)!2=1/2, Xi(e) will satisfy

condition 1). Since, X., (0)=(1/2)1/2 and X-, (0)=0 for
JJ JK

all k<j, it is clear that X*3(0)=0. Finally, x""(e) can

be defined by:

X"~Ce)
11 . IK

I
=
~
N
I
><
)
1
o
—
~
N

For all k<j, X**(e) 1s continuous on [0,t] with

-47 -

XX (0)=0. Therefore, function XXX(e) is defined and
continuous on some possibly smaller interval [0,t"].
By the definition of X”Ce), it 1is clear that X~"Ce)
satisfies conditions 1i) and 1iii) and 1s continuous
on the interval [0,t"].
In the paragraphs that follow, a recursive method is
given for constructing all NxN consistent semi-canonical

. N+1 . . .
order matrices. If 0 is an (N+1)x(N+1l) order matrix, 1is

the NxN matrix generated by eliminating the Nth row and Nth
column an order matrix? In general the resulting NxN
submatrix will not be an order matrix because its rows will
not be a permutation of the integers {0,1,...,N-1}. The
following theorem describes how to generate an NxN order
matrix from an (N+1)x(N+1l) order matrix.

N+1 . .
THEOREM 8: Let 0 be an (N+1)x(N+1l) matrix, define the

mapping to an NxN matrix ON by:

N
° (173) ~ 1 , N+

0 (1,3) - 1 otherwise
N+1
If 0 is a consistent semi-canonical order matrix then so
is ON. In fact, ON is compatible with the labeled metric
space formed by deleting the point +1 from a labeled metric
N+1

space which 1is compatible with 0

N+1
PROOF: It is sufficient to show that 0 (i.3) <

ON+1(i,k) dimplies that ON(i,j) < ON(i,k). This shows

, N+1 N) ,
that both matrices 0 and 0 define the same relation

-48-

on pairs of the first N points.

Suppose that ON+1(i,j) < ON+1(i,k). If ON+1(i,N+1)

is less than both ON+1(i,j) and ON+1(i,k) then ON(i,])
ON+1(i,j)-1 < ON+1(i,k)-1 = ON(i,k). If ON+1(i,N+1) 1is
greater than both ON+1(i,j) and ON+1(i,k) then ON(i,3) =
ON+1(i,J) < ON+1(i,k) = ON(i,k). If ON+1(i,N+1) 1is
greater than ON+1(i,j) but less than ON+1(i,k) then
ON(i,3) = ON+1(i,j) < ON+1(i,k)-1 = ON (i, k).

The mapping --> Q" is not one to one. There may be

more than one (N+1)x(W+1l)] order matrix which maps into the
same NxN order matrix by this process. When a consistent
semi-canonical NxN order matrix 1is known, it 1is of interest
to find all the consistent semi-canonical (N+1)x(N+1l) order
matrices which map into it. The following theorem

characterizes these matrices.

THEOREM 9: Let O"+" be an (N+1)x(N+1l) order matrix which maps

into a consistent NxN order matrix ON, is consistent 1if

and only 1if the relation defined on the unordered pairs by

0 does not contain any r step cycles of the form
N+1,4i,...,N+1,1i

PROOF: If the relation defined by O0%+" has an r

step cycle N+1,i,...,N+1,i , then by definition it is
inconsistent.
M+ |
Conversely, assume that 0 is inconsistent.

Then, the relation defined by ON+1 contains an r step

-49-

cycle. By the proof of theorem 8, we know that 0"+

N
0" define the same relation on pairs of the first N
. . N . .
points. Since 0 1s consistent, there are no r step

cycles in the first N points. Therefore, the r step

cycle which exists must contain the (N+1)st point.

starting at the (N+1)st point the cycle has the form

N+1,i,...,N+1,1.

Let A be a permutation and B a sequence of the integers

{1,2,...,N=1}. Define a matrix ON+; by:
ON+1 (N+1,N+1) = 0
ON+1 (N+1,i) = A (i)
ON+1 (i,N+1) = B (i)
ON(1i,3) if ON (i, J)<B (i)
ON+1 (i,j) =
ON(i,73) + 1 if ON(i,3)>B(1)
B (1)
B (2)
ON
ON+1 modified
J B(N)
A(l) A(2) AN] 0
Figure 9. ON4+I

(N+1)x(N+1) order matrix

-50-

Every (N+1)x(N+1) order matrix which maps into O" will be of

this form. Thus, to find all the consistent semi-canonical
(N+1)x(N+1) order matrices which map into 0%, it is
sufficient to find all permutations A and sequences B such

that ON, A and B define a consistent semi-canonical order

matrix.

If ON+1 is semi-canonical, then 07+"(1,N+1)=N and

oN+1(2,1I) -P Therefore, the sequence B must have B(l)=N and

B(2) > 2. If B(i) is set to N for all i, then

(i, N+1)=B(i)=N > ON(i, k) for all k. This implies that

N+1,i,k cannot be an r step sequence for any k. Therefore,

ON+1 1is a consistent semi-canonical order matrix regardless

of what permutation is chosen for the (N+1)st row. Since

there are N! permutations of {1,2,...,N}, there are at least

N! consistent semi-canonical order matrices which map into

o\\

The previous discussion shows that B(m)=N is a
sufficient condition to assure that N+1,m,...,N+1,m is not an
r step sequence. A necessary and sufficient condition is

that B(m) > OW(m,j) for all j such that there is an r step

sequence of the form m,j,...,N+1. If B(m) < ON(m,j) for some
j such that m,j,...,N+1,m is an r step sequence, then
N+1,m,J,...,N+1,m is an r step cycle. This 1is because

B(m) < 0"(m,j) dimplies that 0+ (m,N+1) < O"+''(m,J).

-51-

(k N+1 | r (N+1 , m) (N+1,m) r (m,J)

» . Figure 10.
r step cycle N+1.m,3j,...,k,N+1,m

Conversely, assume that B(m) > for all j such that
m,j,...,N+1,m is an r step sequence. Let N+1,m,3j,...,N+1,m
be any sequence. If m,3,...,N+1,m is not an r step
sequence, then N+1,m.j,...,N+l1,m cannot be an r step cycle.
On the other hand, if m,j,...,N+1,m is an r step sequence,
then B(m) > ON(m,j). This implies that (m,]Jj)r(m.N+1), so
j,m,N+1 1is an r step sequence. Therefore, N+1,m,j 1is not

an r step sequence, and the complete sequence
N+1,m,Jj,...,N+1,m cannot be an r step cycle.

Given a consistent semi-canonical order matrix OIlJ, the
following algorithm generates all consistent semi-canonical
(N+1)x(N+1) order matrices which map into ON, For each
permutation A, the algorithm generates all possible sequences
B such that ON, A and B define a consistent semi-canonical
order matrix ON+;. Let S be a permutation such that A(S(i))=1i
for all i (i.e., S(i) 1is the index of i in permutation A).
Th.e algorithm uses the fact that if S(m),Jj....N+1.S(m) is an
r step sequence then there exists k<m such that
S(m),Jj,.,-,S(k),N+1,S(m) 1is an r step sequence. Therefore,
B(S(m)) must be greater than ON(S(mﬂ,j) for all j such that

S(m),Jj....S(k),N+1 1is an r step sequence for some k<m. It

-52-

is possible that j=S(k) in this sequence.

ALGORITHM 7: (Generate all (N+1)x(N+1l) consistent
serai-canonical order matrices from an NxN
consistent semi-canonical order matrix)

subroutine genorder(n,0)
"0 is an NxN order matrix.”
sequence S,A,B
array O0(N,N),K(N,N)
number i,k
S := A := <1,2,...,N>
until A=<> do
for i=1,2,...,N do
for j=1,2,...,N do
k{i,j) = 0
call or'der (1, K)
"Subroutine order generates all sequences B
such that 0, A and B define a (N+1)x(N+1)
consistent semi-canonical order matrix."

A := nextperm(A)

" Nextperm generates the next permutation 1in
lexicographical order. If the input permutation
is <N,N-1,...,1> then nextperm returns the null
sequence <>."

S := gradeup (A)
" gradeup generates a sequence where A(S(i))=1i."
return
end

-53-

subroutine order (m,K)
"For all i<m, B(S(i)) has Dbeen defined such that cycles
of the form N+1,S(O DI —+1,S (i) cannot occur."

"K is an NxN array with the property that K(i,j)=1

if there exists an r step sequence i,j,...,S(k),N+1
for some k<m. Otherwise, K(i,3)=0."
global N,0,S,B
"0 - The NxN matrix being expanded."
"S - A permutation such that A(S(i))=i."
"B - The sequence specifying the (N+1)s column."
sets F',NF

number N n,i,j,m,r,t
array K(N,N), 0 (N,N)

if m < N then

n := | + max{ O(S(m),3J)*K(S(m),]jl : j=1,2,...,N}
"n 1s the smallest wvalue B(S(m)) can
assume and assure that there cannot be
any cycles N+1,S(m),...,N+1,S(m)."
if S(m)=1 then n := N "B(l) must be N."
if S(m)=2 then n := max{n,2}"B(2) must be greater than 1."
for n < t < N do
B(S(m)) := t
Fo:= { <S(m),3j> : O0(S(m),3)<B(S(m)) and K(j,S(m))=0}
"Put in F all <S(m),j> such that j,S(m),N+1 is an
r step sequence and K(j,S(m))=0. If tC(j,S (m)) =1
then all r step sequences ending in j,S(m),...,N+!
have been found before.”
until F= {} dp.
NE = {}
for <i,j> in F do
K(3,1) =:= 1
NF := NF.union.{<j,r>:0(j,xr)<0(j,i) and K(r,j) =0}
"0(j,xr)<0(j,1i) implies that r,3j,i,...,S(m),N+!
is an r step sequence. If K(r,3j)=0,
then an r step sequence r,J,...,S(k),N+1
has been found before for some k<m."
F := NF

call order (m+1l,K)
"B(S(m)) has been defined such that r step

cycles N+1,S(m),...,N+1,S(m) cannot occur."
"K has been updated so that K(i,j)=1 when
there 1is an r step sequence i,j,...,S(m),N+1."
return
else
"If n>N then every element B(i) has been defined
so that cycles of the form N+1,i,...,N+1,1

cannot occur."
"By theorem 9, 0,A, and B define an (N+1)X(N+1)
consistent semi-canonical order matrix."

end

-54-

After B(S(i)) has been defined for all i<m, procedure
order generates an order matrix for every permissible wvalue
of B(S(m)). Thus, every (N+1)x(N+1l) order matrix must be
generated by Algorithm 7. Since each NxN matrix generates
at least N! (N+1)x (N+1) order matrices, the number of
semi-canonical order matrices 1s a very rapidly growing
function of N. Table 4 lists all the 4x4 semi-canonical
order matrices in the order they were generated by Algorithm
7 from matrix (1) listed on page 41. Recall that this 1is the

only 3x3 semi-canonical order matrix.

(1) (2) (3) (4) (5) (b)
01 2 3 0 1 2 3 0 1 2 3 0 1 2 3 01 2 3 01 2 3
0o 3 2 I 0 3 2 10 2 3 10 3 2 10 2 3 10 2 3
1 3 0 2 1 2 0 3 I 2 0 3 130 2 3 0 2 12 0 3
12 30 1 2 3 0 12 3 0 13 2 0 3 2 0 1320

(7) (8) (9) (10) (11) (12)

0 1 2 3 0 1 2 3 01 2 3 0 2 3 0 1 2 3 01 2 3
I 0 3 2 10 3 2 10 2 3 10 3 2 10 2 3 10 3 2
I3 0 2 12 0 3 12 0 3 2 3 0 1 2 3 0 1 13 0 2
2 1 30 2 1 30 2 1 30 2 3 10 2 3 10 2 3 10
(13) (14) (15) (1b) (17) (18)
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 01 2 3 0 1 2 3
10 2 3 I 0 2 3 1 0 3 2 10 3 2 10 3 2 10 2 3
I 3 0 2 I 2 0 3 2 3 0 1 I 30 2 120 3 12 0 3
2 3 10 2 3 10 31 2 0 31 2 0 31 2 0 3120
(19) (20) (21) (22) (23)
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
I 0 3 2 10 2 3 10 3 2 10 2 3 i 0 2 3
2 3 0 | 2 3 0 1 1 3 0 2 1 30 2 12 0 3
2 10 32 10 32 10 32 10 32 10
Table 4.

4x4 semi-canonical order matrices.

-55-

Since there was only one 3x3 semi-canonical order
matrix, a three point metric space 1is compatible with a
unique semi-canonical order matrix. The following discussion
will show that there exist some four point metric spaces
which are compatible with two semi-canonical order matrices.

Let 0 be an order matrix which is compatible with an .N
point labeled metric space. If the ith and jth labels are
interchanged in the metric space, then the order matrix O
which is compatible with this modified labeling is simply
matrix 0 with the i”h and rows interchanged and the ith
and columns interchanged. Since any permutation of the
labels 1is a product of transpositions, the order matrix
compatible with a relabeling of this metric space can be
generated by a series of interchanges of the rows and columns
of order matrix 0. A series of interchanges of the rows and
columns is equivalent to the transformation

T

POP

. . . T .
where P 1s a permutation matrix and P 1s the transpose of

P. Thus, 1if there exists a permutation matrix P such that
T . . .

O' = P 0 P, then 0' and 0 are compatible with a relabeling

of the same metrix space. In particular, order matrices (7)

and (17) in Table 4 are compatible with a relabeling of the
same metric space. The following transformation shows that
if labels one and two are interchanged and labels three and

four are interchanged in a metric space compatible with order

-56-

space will be compatible with

then the metric

(17),

matrix

(7).

order matrix

-57-

CONCLUSIONS

Porgressive graphs are useful when they have been
constructed so that the average degree weighted path length
and average degree are small. The graphs constructed in the
test problem have the property that both degree weighted path
length and average degree are increasing at a rate
proportional to the number of nodes in the graph. This
implies that the amount of work the search algorithms must
perform is proportional to the log of the number of nodes.
However, the time required to construct the graphs is
increasing at a rate approximately proportional to the square
of the number of nodes, and the time to optimize the graphs
was approximately proportional to the cube of the number of
nodes,

The consistent order matrices contain all the
information about compatible metric spaces which is relevant
to the study of progressive graphs. Therefore, progressive
graphs can be studied relative to order matrices. Although
only the non-isosceles metric spaces can be compatible with
an order matrix, this restriction to non-isosceles distance
functions 1is not significant. Any isosceles distance
function in a finite metric space can be converted to a
non-isosceles distance function without changing the relative

distances in any non-isosceles triangle.

-58-

APPENDIX

Madcap 6 programsib'lQ]

ALGORITHM 1:

1 OC ¢- oc
1 : descrjption

X * location
2 1 location

X *1 seed! oc
while desCX)*Y

B + adj (X)
Tor 2€ft a dist(des(2).Y)

< distCdes (X).Y) x<-Z

<return”® X

-590-

ALGORITHM 2:

ana *—

r @ real

x : location
<a,£> location

NBR * real

set “ne i ghberrhood”

PER " realset <pertpheryC

IF¥ * real
OF - real

MBR » O
PER " O
OF « tx>

unt i 1 #QF
NE 7
NBR *
for

OF <«

set "new fr ©ntierxr C
set <eld fromtiexr™

= 0
O

NBR u OF
f € OF

0 « 'Ca: a®”adjCf)> ~ (NBRuNFuPER)

IN ¢ £ a : a€fi while true *
dist (des(a),des(x)) < r >

NF NE u IN
PER ¢ PER u (P-IN)

NF

“"return” NBR

-60-

ALGORITHM 3:

SiXQ8i¢ il »~ 4
3 : description

'"'S.£.K" « location
<U3B>9E,yE> - realset

C ¥ real

£12SS£ * true
x - seed loc

while closer Anodes are founds
Kfi ¢ x

~“checK nodes adjacent to)
For aeadjCx) a dist(des(a).q)<dist(desCx).q)

X«-a

iIF x=xO : CchecR a neighborhood of radius 2rC
r ¢ dist(desCx).q)
(NBR, OF) 4-Cx>
until #OF=0 ~ x*xO
NF ¢+ O
For F€OF while x=xO :
0 « Xa:a€adj(H)> NBR

NBR « NBR u ft
if t 3 AHdist(des(a),q) < r 3}
O

x*-a

else:

IN faraeft while true a
dist(des(a).desCx)) £ 2 r

NF ¢ NF u IN

Vv

OF ¢ NF

if x=xO : closer ¢ false
freturn™ x

-61-

ALGORITHM 4:

£Ansin * 2

Q ¢ real i i
J : description

<a.£.£> ¢ localion
C closestg_)

Jigy * distC(ies(y).q)

111t <y>

AStal - n]

PtB * Cp:p€3dj(y)>

CflliDi |
until #PER=0 v count”tetal
LEB I “nearest(des(y) ,PER{>
until "NBR=0 ~ count™~total
Z i- near est(des(y;, NBR)
£ # dist(des(z),q dqy
BE ¢ Cp:pERER while true a
dist(des(p).des(y)) ii r > u Cz>
PER PER ~ OF
until «OF=0
t"F + Ereal: (0 items>
NBR ¢ NBR u OF
for fEOF
B = faiaeadjCf) while true a
1 (a€1iSt ~ a€ENBR v a€PER v

a€NF) |

Xﬁ' ¢ (fg:a€ft nglile(t)l;ue_ a

1 st es<<a).des i r >
NF « NF u IN) Y

PER « PER u (R~IN)

OF ¢ NF
fcJEy -CaraeNBR while true a
dist (des<a) 'EVQ/ A dist(des(z).q >
NBR « NBR ~ N

~sort the elements in NEW and append”
¢them to 1lists
list ¢ append(1i st setsort(qvNEW))
count « count + «NEW

ercturn£list

-62-

ALGORITHM 5:

ASIfil JL
5 description
+- description
< ~ location
~Create a new node for the new document.C
N <Ides:<real:0 items>;iadj:<real:0 items))
desTN « x

)ocx ¢ dgraph
graph append (graph, <N>)

for OSlocy<Jocx) .
Check for a first step in a progressive pathC
from all old documents to the new document.
y « des (1 ocy)
it [H A .dist(y.x) 1 dist(des(z). x)]
tie(locx,1locy)
for O5locy<locx)
check for a first step in a progressive path”
from the new document to all old documents™

y « des(l ocy)
z€adj(locx) dist(x.s‘f) £ dist(des (). y); :

tie(locx.locy)
graph

-63-

algorithm 6:

&E£>i»jLm_L.s.«a
* location

C£03y3!'115 © «
.y) : location
¢ location
H @ «<£,a):location ; dist(desC x). des (y) »r
~0S2<«graph|
z=x " t3a€aaj(x) **« - d(a.,2)<<d(x.z)]
> z=a v [Ba€adj(lj) «*> - d(a.z)<d<B.,z)]

for O£x<#graph
for y€adj(x) a y>x

if remouable(x.y) : untie(xay)

-64-

APPENDIX 2

List of terms for sample problem.

PE PELE PESO PC PCTE PGE PL
=1L S PN PNGE PNGL PNDT PNS PF PP PP
MPE PP*31] PPLY HPPP PPr PT PTE PT ID
ft'JTD EPSE EE EESS EDUN EY CPLC CPLL
CE CM CHPP CHEC CLDC CDPE CDEF CDMF
CDNT CDPY CDS 1 PPTP PPTE PPT PP PECO
t'EPIL PETE P I ME PISP PMF >: PDUE PPPM PUMP
ET' EIGE EL EM ENP ENT ENTS EDUP
EP EPPD EPS ES EST ESTS ETP1 EL-
El-'i=iL EXCH EXPD FPCT FPST FICI FILE FILM
F I NIi F IPS FLDP FDP FDPM FDPT FDUP FROM
FUNC GENE GU-'E GPPL GPPP GPIP GT HEP
HE PM HTS I PGD IPL I PE I EP IFIE IN
INT'E I NE INFD I NG INTE INTO INUE I DN
I DNS IS ISID ITIP IX K INP LPNG LPPG
LFiY LCM LE LEPS LEX L IER L INE L.DG
LUTE LY MPIN MPTP MPX I MENT MICP MM
MPDS MUM NPL NPME NPTU NP NPIN NS
NENT NG NOM I NSID NT NUME MU NXPL
NUEC DF IL DL IC DM DN DNPL DNE DPT I
DP DPPE DPS DUTP DUTS DM D> IM FPSS
FLDT FDIN PDLY F DPT FDSI FPEC PPDP FPDG
DUIC PPP 1 PPL PPM PPN PPNP PPTE PE
PEMP PEPL PELP PEDU PES PETU PMPT PMIN
PN PNS PDDT RDUT PF DL PS PSE PY
SCPL SCM SEPP SECD SELE SEP I SET SFDP
SINE S I NG SDL* SDPT SDUP SPEC SFL SDUP
r-s STPT ST DP STP 1 ST ME SYMM SYST TP EL
TMIN TP TE TH THPN THE TIME TING
T IDN TI11'E TD TD°S TPPN TRIP TS TMD
TYPE UPTE UCES UCT UES ULPT UNIT tiS
USE USEP USIN uT UTE I/PLU -"PP I /PT1
VE i.'ECT ME 1G HHIC MHDS MINpP MITH MDPP
HPIT ZEPD

-65-

ACKNOWLEDGMENTS

The research reported in this dissertation was done
while I was employed by the Los Alamos Scientific Laboratory.
Support was provided by the U.S. Energy Re-search and Develop-
ment Administration unaer contract with the Laboratory. I am
grateful to both Administration and the Laboratory for their
assistance

Very special thanks are due to Professor Donald R.
Morrison of the University of New Mexico for his advice,
guidance, and encouragement while supervising this research.

I would also like to thank the other members of my committee,
Professors John W. Ulrich and Cleve B. Moler, for their
personal and professional interest.

I wish to thank my friends and colleagues at the

Laboratory for helpful comments and suggestions.

-66-

REFERENCES

Burd, William C. and Donald R. Morrison, "Lexicographic
Correlation of Documents," Proc. of the NSF-CBMS Regional
Research Conf. on Automatic Information Organization and
Retrieval, The University of Missouri-Columbia. July
1b-2U0, 1y73. pp. 1-20.

Dantzig, George B., "On the Shortest Route Through a

Network," Management Science, Volume 6, no. 2, January,
19bU.

Dijkstra, E.W., "A Note on Two Problems in Connection
With Graphs," Numer. Math., Volume 1, 1959, pp. 269-271.

Harary, Frank and Edgar M. Palmer, Graphical Enumeration
Academic Press. New York, 1973.

Knuth, Donald E.. The Art of Computer Programming
Volume 1, Addison-Wesley Publishing Co., lyod.

Morris, J.B. and Mark B. Wells, "The Specification of
Program Flow in Madcap b," SIGPLAN Notices, Volume 7,
no. 11. November. 1ly72, pp. 28-35.

Salton, Gerald, "A Vector Space Model for Automatic
Indexing," Communciat ions of the ACM, Volume 18, no. 11,
November, 1975. pp. 813-b2U.

Salton, Gerald, Dynamic Information and Library

Processing Prentice-Hall. Inc., Englewood Cliffs. New
Jersey. 1970.

Stein, Paul R., "Introductory Lectures on Graph Theory,"
unpublished

Wells, Mark B. and Fred L. Cornwell, "A Data Type
Encapsulation Scheme Utilizing Base Language Operators,"
Proc. of Conference on Data: Abstraction, Definition and
Structure, Volume 8, no. 2, 1978, pp. 170-178.

U.S. GOVERNMENT PRINTING OFFICE 1977-777-018/18

