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I. FINITE DETORMATION ANALYSIS OF CRACK TIP OPENING IN ELASTIC-PLASTIC
MATERIALS AND IMPLICATIONS FOR FRACTURE INITIATION =
Summary Analyses of the stress and strain fields around smoothly blunting
crack tips in both non-hardening and hardening elastic-plastic materials,
uﬁder contained plane strain yielding and subject to mode I opening loads,
have been carried out by a finite element method suitably formulated to
admit large geometry changes. The results include the crack tip shape and
near-tip defofmation field, and the crack tip opening displacement has been
related to a parameter of the applied load, the J-integral. The hydro-
stétic stresses near the crack tip are limited due to the lack of con-
straint on the blunted tip, limiting achievable stress levels except in a
very small region around the crack tip in power law hardening materials.
The J-integral is found to be path independent except very close to the

crack tip in the region affected by the blunted tip. Models for fracture

"are discussed in the light of these results including one based on the growth

of voids. The rate of void growth near the tip in hardening matérials seems
to be little different from the rate in non-hardening materials when measured
in terms of crack tip opening displacement, which leads to a prediction of
higher toughness in hardening materials. It is suggested that improvement
éf this model would follow from better understanding of void-void and
void-crack coalescence and void nucleation, and some criteria and models

for these are discussed. The implications of the finite element results

for. fracture criteria based on critical stress, strain or both is discussed
with respect to transition of fracture mode and the angle of initial crack
growth. Localization of flow is discussed as a possible fracture model and

as a isrodel for void-crack coalescense.

hThis is a chapter of the author's Ph.D. thesis at Brown University, June
1877. The section has already bezen issued as Technical Report E(11-1)3084/uu,
Division of Engineering, Brown University,Providence, Rhode Island, May 1976.



I1I. PATH DEPENDENCE OF THE J-INTEGRAL AND THE ROLE OF Jl
AS A PARAHEIER CHARACTERIZI;\IG‘ THE NEAR TIP FIELD *

Abstract The J-integral has significant path dependence immediately adjacent
to a blunted crack tip under small scale vielding conditions in an elastic-
plastic material subject to mode I loads and plane strain conditions. Since
the J-integral, evaluated on a contour remote from the crack tip, can be used
as the one fracture mechanics parameter required to represent the intensity
of the load when small scale yielding conditions exist, J retains its role
as a parameter eharacterizing the crack tip strese fields, at least for
materials modelled by the von Mises flow theory. Some results obtained using
both the finite element method and the slip line theorf are suggestive of a
situation in which an outer field parameterized by a path-~independent value
of J contrqls the deformation in an inner or crack tip field in which J
is path dependent. The outer field is basically the solﬁtion to the crack
problem when large deformation effects involved in the blunting are ignored.
Thus, the conventional small strain approaches in which the crack tip’defor—
mation is represented by a singularity have been successful in characterizing
such features as the crack tip opening displacement in terms of a value of the
J-integral on a remote contour. An interesting deduction concerns a non-
linear elastic material with characteristics in monotonic stressing similar
to an‘elastic-plastic material. Since J is path independent everywhere in
such a material, the stress and strain fields near the crack tip in such a
material must differ greatly from those arising in the elastic-plastic materials
so far studied. This result is of significance because it is believed that .
such non-linear elastic eonstitutive laws can represent the limited strain-
path independence‘suggested by models for plastic flow of polycrystalline

aggregates based on crystalline slip within grains.

¥,

S

This is a chapter of the author's Ph.D. thesis at Brown University, June 1977.



INTRODUCTION

The utility of the J-integral (Rice [1]) in fracture mechanics
would seem to depend on its role as a parameter characterizing the near
tip field. If the value of J , computed on'a contour remote from the
crack tip, directly controls the near tip stress and strain distribution
and magnitudes before the onset of fracture, then J can be used to
characterize the mechanics of fracture initiation. Apart from linear
elastic materials, the most obvious cases in which J parameterizes the
near tip field are power law hardening deformation plastic materials as
analyzed by Rice and Rosengren [2] and Hutchinson [3]. 1In these cases,
the crack tip is modelled as a singular point for strain. The strength
of the singularity is determined by the hardening characteristics and
the amplitude of the singularity is controlled by the path independent
J. The angular characteristics of the stress and strain fields are
basically determined by the hardening characteristics.

These analyses would seem to be quite accurate models for the near
tip behavior in incrementally plastic materials. Thus, the near tip
- strain in incrementally plastic materials has a singular behavior dependent
on tte hardening characteristics of the material, which also sets the
angular stress and strain distribution. The amplitude of the singularity
is governed by a value of the J-integral evaluated on a contour shrunk
onto the tip. Since there is no guarantee of path-independence of J in
incrementally plastic materials, there would seem to be no certainty that
a value of J computed on a remote contour would control the near tip
stress and strain state in these materials. If, however, the tip value
of J were equal to the remote value, i.e., path-independence of J

actually does occur, or if the tip value were some constant function of



the remote value, then the near tip field would be characterized by a remote
value of J . According to the small strain finite element analyses of
Rice and Tracey [4] and Tracey [5] using singular crack tip elements and
flow theory plasticity, the J-integral is path-independent, at least
under conditions of small scale yielding. There is some uncertainty in
this work concerning the path-dependence of J in the crack tip elements.
However, Parks [10] has analyzed the same problems by the same methods,
but using a deformation theory of plasticity. He also found J to be
path-dependent in the crack tip element, despite the non-linear elastic
constitutive law he used. In view of this, it would seem that there is
a defect in the‘crack tip element as far as path-independence of J in
the deformation theory'is concerned., This does not rule out the'possi-
bility of a path dependence of J very close to the crack tip in the flow
theory materials when conventional small strain assumptions are made.
However, according to the results of Rice.and Tracey [4,5], if J is
path-dependent, the tip value of J is a numerical constant times the
remote value of J , at least in small scale yielding. The reéults for
small scale yielding are, in general, in agreement with the well known,
one parameter characterization of fracture initiation that is the plane
strain fracture toughness.

However, a recent finite element study of the blunting of crack
tips in elastic-plastic materials in small scale yielding by McMeeking [6]
has revealed a significant path dependence of J very close to the crack
tip, on contours of radius comparable in size to a few times the crack tip
opening displacement. There would seem to. be no functional dependence of
the tip J values on the remote J values. Indeed, the tip value would

appear to be zero. If the one parameter characterization of the initiation



of fracture in small scale is dependent on the remote value of the J-
integral controlling the tip value of the J-integral, and on this in turn
controlling the tip stress and deformation state, then one parameter
characterization of the initiation of fracture in small scale yielding
should not work. It would appear, however, that an outer field, char-
acterized by a path-independent value of J , controls the deformation
in an inner, or crack tip field in which J is path dependent. Thus,
the remote value of J parameterizes the near tip field while the tip
value of J 1is possibly zero.

The comments about the flow theory materials have been restricted
to the case small scale yielding. The more important questions about
the role of J as a parameter characterizing the near tip field concern
the cases of large scale yielding and fully plastic conditions as has
been investigated by Begley and Landes [12]. With .continuous hardening,
as in a power law hardening material, it seems likely that a characteris-
tic near tip field, similar to the Hutchinson [4], Rice-Rosengren [3] near
tip field, arises, at least when conventional small strain assumptions
are used. Since this field is dependent on the tip value of the J-
integral, it would be of value, as far as characterizing fracture initia-
tion is concerned, to understand the way the tip value of J depends on
the remote value of J 1in flow theory materials in conditions of large
scale yielding or full plasticity. If there is no hardening at all, there
is known to be a gross non-uniqueness of crack tip stress and deformation
fields in full plasticity of flow theory materials, as illustrated by
the slip line solutions discussed by McClintock and Irwiﬁ (3]. 1In terms
of the analysis of the mechanics of fracture initiation; it is desirable

to know how soon beyond small scale yielding conditions the non-uniqueness



sets in. Once the non-uniqueness arises, it is impossible for the

J-integral to uniquely characterize fracture initiation. Similarly,

it is desirable to understand the relationship between fully plastic
solutions for non-hardening materials and solutions for materiéls

which have some hardening, but which eventually experience a saturation

to a constant flow stress after large strain.




DEFINITION OF THE J-INTEGRAL

In view of the large deformations which occur near the tip of a blunted

crack, it is necessary to define the J-integral,following Eshelby [13], as

J=f[de2—g.%Lds] , (1)
iy 1

where T is a path in the undeformed state of the material from the bottom
surface of the notch through material to the upger surface of the notch, X

is the position of a material point in the undeformed configuration, u is
displacement, T = n.t where n is the outward normal to the integration path
and t is'the nominal (lst Piola-Kirchhoff) stress tensor as in

tij = lFlopj'BXi/axp , where |F| is the ratio of the volume of a material

" element in the deformed state to its volume in the undeformed state, g is the
true stress and x=u+ X . In addifion, ds is an element of path length
and

jaui/axj
W= o tjid(auilaxj) .

Note that the definition of W means that it can also be expreﬁsed as
t
J.f |Flo,.D,.dt
o ij7ij .
where t 1is a loading parameter which is zero in the undeformed configuration
and t_ in the deformed state for which W is to be computed. The tensor D

b3

is the rate of deformation tensor with components given by

_ 1
Dij =3 (Bvilaxj + avj/axi) ,

where v is velocity. The explicit loading history of the material point for



which W is to be calculated is used in the computation, although this
requirement becomes immaterial in a non-linear elastic material. The
J-integral is path independent in elastic materials when defined according
to (1). The definition of J coincides with the usual small strain definition
when the difference between deformed andlundeformed configurations can be

neglected.




PATH DEPENDENCE OF THE J-INTEGRAL

Path dependence of the J-integral was detected when a finite
deformation analysis of plane strain notch tip opening with contained
yielding was carried out using the finite element method [6]. A notch
with a semi-circular tip was opened up until the width of the notch at
the tip, b , was about five times bo » the undeformed width of the
notch. The J-integral was computed on various contours around the notch
tip at several levels of notch tip opening. The results are plotted in
fig. 1, in which J_ 1is the value of the J-integral computed on a con-
tour remote from the crack tip. As indicated in the figure, the results
are for three, Prandtl-Reuss type, elastic-plasfic materials with the
same ratio of yield stress in tension, g, to Young's modulus, E. The
materials, however, have differing hardening properties as characterized
by N . The term N is the hardening exponent in'a power law hardening
relationship of the form

&ro )N = /0 + 36Ple,

s T is the Kirchhoff stress deviator,

3.l
2 "i3%iy * °

1 = |Flo , G is the elastic shear modulus and &f = J<2- p?,pP )l/th s

3 "ijij

is the plastic part of D - The non-hardening material has

As can be seen in fig. 1, the J-integral is only significantly

path dependent when the contour is less than about 5 deformed notch widths

from the notch tip. Indeed, further from the notch tip than about 10 current

notch widths, J 1is path-independent. The value of J in this area of
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path independence is J_ and the current notch width has bzen shown
as a function of J_ for each material in fig. 2. A very approximate

fit to the lines in Tig. 2 is

J, = (b-b )Eo (2)

where b is greater than about 2bo . The term fN is a non-zero
constant chosen to match the gradient of the line for each hardening
i . = = ) =
material; (fo 1.8 , f.l 2.4 and f.2 3.7).
On the other hand, the values of J in fig. 1 for R/b < 0.5

are very dependent on path. It would appear that a very rough fit to the

results for J/J°° < 0,5 1is

Ji/J°° = zn(b/bo)/[(b/bo—l)fo] s (3)

where Ji is just a value of J very close to, but not on, the crack
tip surface, and R = .66bo for all the points with J/J_ < 0.5.
Presently, there will be an attempt to give some physical basis for this
result. Firstly, attention will be paid to the implications of the
result for very large values of b/bo .

An important feature of the finite element solution is that for
values of b/bo larger than about 3, a self-similar sequence of solutions
develops. This is reflected in the fact that fig. 3, a plot of the near
tip stress and deformation states for one particular material, is based
on results from several steps of deformation. The crack tip similarly
develops into a steady stéte shape and the influence of the original
shape becomes negligible. As a result, when b/bo is sufficiently large,
the solution serves as an approximation to the smooth blunting of a sharp

crack in an elastic-plastic material in contained yielding conditioms.




In particular, if the solution for the opening of the notch were pro-
cessed to arbitrarily large amounts of opening, the approximation
could, presumably, be driven arbitrarily close to the solution for
the sharp crack. If opening the notch to 5 times its original width
is sufficient to indicate the trend as b/bo + o , then the limit of
(3) as b/bo + o would seem to give the solution for the tip value

of J for a sharp crack. It is simple to see from (3) that

lim J./d_=0 .
b/bo .

The chafacteriétic length in the self similar solution is b .
However, according to (2), b = bo + (Jm/oo)fn . It seems reasonable
to use this rélationship with bo = 0 as the relationship between
J_, and b for an originally sharp crack (McMeeking [61). Thus, the
length Jw/co is a length parameter which characterizes the stress
and deformation field around a blunted crack tip, even although the

tip value of the J-integral seems to be zero.




PATH DEPENDENCE OF THE J-INTEGRAL IN A RIGID-PLASTIC MODEL

As a confirmation of the path dependence of J , the rigid-
perfectly plastic, deeply cracked, double edge-notched, thick specimen
was studied using slip line theory. Thefe is no unique flow field for
this specimen. The field of slip lines and the state of stress near
the crack tip is unique, however, and is shown in fig. 4. The term
T, is the flow stress in shear and T, = 00//5 . The field of dis-
placements chosen from among thz non-unique flow fields for this
specimen is shown in fig. 5. This field was chosen bzcause there are
no discontinuities of velocity at the slip line separating A and C,
and C and B. This means that with respact to this and to the.near tip
stress field, the léft-hﬁnd notch experiences the same conditions as
the notch in small s:ale yielding analyzed through the slip line
method by Rice;ti]. The velo;ities near the tip in the fans above and
below the left-hand notch in the fully plastic double edge notched panel
are not the same as the veloéities near the tip deduced by Rice for
the crack in small scale yielding. However, the velocities are not very
differenf,.and the results o} a contour integral calculation of J
very close to the tip in the double edge notched panel will be of some
relevance to the reéult for small scale yielding. Notable features of
the strain fiesld chosen ‘for thé double edge notched panel are ‘that the
regions A, B, D and E are non-deforming and there is a tangential
velocity discontinuity at the slip line between B and E.

At the scale of figs. y and 5, the details of the notch tip are
obscured. This would be so as long as b/a << 1 , where a 1is the

ligament between the notch tips. Attention is henceforth restricted

to values of A/a small enough for this to remain true. It then
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follows that there are negligible differences between the deformed
and undeformed positions of material points near the top of fan C.
Thus, the conventional small strain definition of the J-integral may
be used on a circular contour near the top éf the fan. Following
Rice's.[lu] calculation of J in this flow field, the value of J

around the left-hand notch tip on a contour remote from the tip is

J_ = 2(2+w)TOA . 4)

In order to compute J on a contour on the notch tip, we need
the details of the slip line field around it as given by Rice and
Johnson [7]. The details are shown in fié. 6. On the scale of fig. 6,
fan C is non-centered and area B is not adjacent to the notch tip.
Adjacent to the notch tip is a region of spiral slip lines, in which
intense strains occur. The normal velocity on the slip lines from
S to the notch tip is just the radial velocity in the fan C, and so
is A sin 0 . Using this boundary condition, Rice and Johnson solved
the slip line equations numerically for the displacements on the notch
tip in terms of A and the original notch shape. In particular, the
équivalent plastic strains e? on the notch tip can be computed.

The definition of the J-integral on a contour on a semi-circular

notch tip of diameter bo is

Ll
, b, | 2
2 — 1,
Jtip 5 W(B)cos 6 dO , (5)
gt
2

where 0O 1is the polar angle from the X-axis, based on an origin at
the centre of the undeformed semi-circular notch tip. For a rigid-

perfectly plastic von Mises type material, W = /§.TOEP . Using the



equivalent plastic strains on an originally semi-circular notch tip from

the Rice and Johnson solution, a value Jtip for the. J-integral on thes

notch tip may be computed. For example, when b =5b , J . = 3.77lrob0 .

o tip
Noting that A = (b—bo)/u » J, 1is seen to have a value of 10.28310b°

when b = Sbo , and Jtip/Jw = ,367 . As b/bo is increasad, the value
Jtip/Jw drops. In addition, the ratios are similar to the results for
Ji/Jm obtained by finite elements at the same b/bo , although allow-
ance has to be made for ths fact that the contour for Ji did not lie
on the tip. As before Jtio/J“ + 0 as b/bo + o , but this condition
is subject to a/b +» = o

A feature of the solution is that the shape of the notch tip can
be obtained from the shape of a sharp crack blunted by the same amount,
A , by adding the original notch shape to the sharp crack blunted shape.
This procedure is equivalent to the superposition in Henky nets, dis-
cussed by Hill [8]. As a result, the solution for the blunt notch
approaches the solution for the sharp crack arbitrarily closely as
b/bo is made arbitrarily large. The solution for the originally sharp
crack is a sequence of self-similar states in which all lengths scale
according to b (Rice and Johnson‘[7]). For example, the point S
lies 1.9b from the crack tip surface. Since b = 4A 1in the case of an
originally sharp crack, it follows that in the self-similar solution all
lengths scale by Jw/'to , or equivalently leoo + As before, the
value of J on a remote contour characterizes the near tip field,
while Jtip seems to be zero.

0f course, these comments concerning J as a'characterizing

parameter in fully plastic rigid-plastic materials must be treated

with care. In the right-hand notch in fig. 5, thé contributions to the
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J-integral arise entirely from the discontinuities in displacement between
B and E. The value of J-integral on a remote contour is, as before,
2(2+w)ToA . However, the flow field around this notch tip is very
different from that around the left-hand notch tip, so J_ only
characterizes thaz left-hand notch from one state of deformation to
another in‘the given flow field. It does not necessarily characterize
one notch as compared to another. For example, a single edge notch in

a fully plastic specimen would even have a different stress state at the
notch tip compared with the double edge notched specimen (McClintock

and Irwin [8]). This difficulty is not present in the small scale
yielding of elastic-plastic materials. Since the rigid-plastic madel

is the limiting behavior of an elastic-plastic material, the question
of the extent to which J uniénely characterizes the deformation and
stress around any notch as small scale yielding conditions are exceeded

is important to J-fracture toughness testing.
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CRACK AND NOTCH TIP BLUNTING

It would.seem that when a proper account is taken of the blunting
of créck or notch tips, a path dependence of the J-integral can be de-
tected. This is illustrated quite readil& by the rigid-plastic model
so‘far discussed. If the crack or notch tip is modelled by a point
centering fans carrying singular shear strains above and below the tip,
then the J-integral is path-independent all.the way into the crack or
notch tip. This would apply to the rigid-plastic model with the flow
field given by fig. 5, and this type of field is discussed in a more
general way by Rice [1]. However, when thzs analysis takes account of -
blunting, as in the work of Rice and Johnson [7] and illustrated in fig. 6,
the path dependence of J 1is detected. The path dependence of J would
seam to be associated with .the area near the blunted crack tip in which
large strains occur. This inner field of large deformations is
surrounded by tha outer field, as deduced using the crack tip as a point
of singlular strain. The J-integral is path-independent in the'outef
field, as long as the contour on which it is computed is sufficiently
far away from the crack tip. Note that so far no analysis has been
carried out in the region between remote contours and crack tip contours
in the rigid-plastic model.

The same features of inner and outer field are present in the
finite element results concerning blunting of a notch tip with contained
yielding (McMeeking [6]). Sufficiently far away from the notch tip,
the stresses and deformations become similar to those dg@uced by Rice

and Tracey [4] and Tracey [5] for the same problem. They modelled

the crack tip as a singular point for strain, using special crack tip
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finite elements. Parks [10] has noted that the J-integral was path-
independent in the solutions of [4 and 5] except in the crack tip
elements., However, this path dependence of J <in the crack tip
element persisted when a deformation plastic material was analyzed,
suggesting that the path dependence was a defect in the crack tip
singular element.

Path dependence of J arises in the region of intense defor-
mations near the notch tip in the solution of notch blunting by
finite eléments, and J becomes path-independent away fvoﬁ the
notch tip in the region of the solution where the Rice and Tracey
results are approached.

These results are suggestive of a situation in which an outer
field in which J is path-independent with value J_ controls the
deformation on an inner field in which 'J is path dependent. The
outer field is basically the sélution to the crack problem when large
deformation effects involved in the blunting are ignored. For this
reason, the approaéhes to crack problems such as those of those of
Rice [1] for non-hardening deformation plastic materials, Rice and
Rosengren [2] and Hutchinson [3] for deformation, plastic power law
hardening materials, Rice and Tracey [4] for non-hardening elastic-
plastic materials and Tracey [5] for power law hardening elastic-plastic
materials, have been successful in characterizing, say, the crack tip
opening displacenent.in terms of a value of the J-integral on a remote

contour, although they ignore the effect of blunting.
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DEFORMATION NEAR NOTCH TIPS
IN INCREMENTAL AND DEFORMATION THEORY MATERIALS

We have noted that in the incremental theory of elastic-plastic materials,
a path dependence of the J-integral can arise at thz notch tip. However, no
such path dependence of J can arise in a deformation theory, since these
materials are actually non-linear elastic. This implies some difference
between the crack tip deformations of these two materials.

If the stretch ratio tangential to the notch tip surface of material
lying on the notch tip surface is A , then VW is approximately 200(2nx)//§
after strains large compared to yield and dilational strain have accumulated
on the notch tip in a non-hardening material. This applies to both the incre-

mental and deformation theories of plasticity. It follows from (5) that |

J nk(e) cos 6 d0 (6)

tip /-

r\)|=l ISIE]

on a contour lying on the tip of an originally semi-circular notch of diameter:-
b .
o

Recalling from (2) and (3) that in an incremental theory the value of the

J-integral on a contour close to the crack tip in a non-hardening material seems

to be approximated well by

J; = b o, 2n(b/b ) (7)

when b/bo is sufficiently large, we note that if (7) applies approximately to
) A

the contour on the notch tip, then

™
2 [R,n)\(e)] cos 6 d6 = /3 ln(b/bo) .
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6ne way in which this relationship could arise is if A(0) were equal
to b/bO everywhere on the notch tip; the approximation would then
involve the difference bétween 2 and Y3 . Indeed, the true strains
on the notch tip in the finite element solution seem to agree very
roughly with this, being about zn(b/bo) at 06 = 0 and falling to

1/2 Zn(b/bo) at 0 =1w/2 .

Turning now to the deformation theory material, we note that the
J-integral must be path-independent, and according to the finite element
results, eqn. (2) the value would seem to be l.8(b-bo)o'o for the non-
hgrdening material when b/bo is sufficiently large. Of course, this
value for J was computed on a contour remote from the notch tip in
an incremental theory material. However, the experience of Parks [10]
in comparing the deformation theory with the incremental theory in the
outer field is that the deformations and,streéées are ‘the same. Hence,
we will assume that the value of J in the outer field of the analysis
including the effects of blunting will be given by (2). This value is-
equated with the expression for J on a contour on the notch tip, and

SO

[znA(O)]cos 6 d6=3.12 (b/b_-1) .

o= NI

Thus, the notch tip strains in the deformation theory material must
differ from thosz of the incremental theory material. In addition, the
strains on the notch tip in both materials must be compatible with the
opening rat;o b/b0 .

This result for deformation plastic materials is important, because

of the relationship between deformation theory plasticity and models for




polycrystalline multi-slip during almost radial straining. For example, the

~

model of Batdorf and Budiansky tlS] leads to an exact equivalence with defor-
mation theory under moderately non-radial loading. In this model, the sfrain
rate of the polycrystai is computed'as the average, over all orientations,

of the strain rate in a‘single'crystal subject to the-macroscopic stress
state. On the other hand, the self-cqnsistent model of Hutchinson [11] leads
to aﬁ appfoximate equivalence with deformation theory. In this model,
individual crystais are modelied as spheres lying within homogeneous material
which has the net constitutive properties of the polycrystal. The stress
state in the polycrystal is computed as the average stress rate in the
crystal over all orientations of crystal relative to the homogenous material.
Applying this self-consistent model to uniaxial tensile stressing of an
elastically isotropic, non-hardening, polycrystalline, fcc material,
Hutchinson found that the moduli for subsequent increments of shear strain
fall as strain is accumulated. In an incremental macroscopic theory for
plasticity, the moduli for increments of shear strain due to uniaxial stress
are constant. This is because a shear strain rate is tangential to the

yield surface representing a state of uniaxial stress. In the polycrystalline
model, Hutchinson found that the drop in the moduli for subsequent shear
strains is approximated well by the appropriate moduli in a deformation
theory of~plasti§ity.

These models imply a deformation theory constitutive law only when the
loading is at the most moderately non-radial. But near the blunting crack
tip there can be very non-radial loading., However, it seems reasonable to
aésume that the polycrystalline models for slip will lead to a macroscopic

flow theory somewhat intermediate to von Mises.flow theory and deformation

plasticity.
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In that case, the near tip deformations would be significantly differen
from those already worked out for an incremental theory of plasticity by

McMeeking [6] and Rice and Johnson [7].
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III SEPARATION ENERGY RATE FOR A FINITE CRACK GROWTH STEP FROM A
PLUNTED MONOTONICALLY LOADED CRACK TIP IM AN ELASTIC-PLASTIC MATERIAL *

Summary  The energy released by relaxing simultaneously to zero the tractions
on the new surface created by a finite step of crack growth from a loaded blunt
crack in an elastic-plastic material has been calculated using a finite element
method suitable for large deformations. The energy released per unit length
of crack growth is non-zero when the unloading occurs in this manner, in -
contrast to continuous crack growth in elastic-plastic materials, whepe the
energy release rate is zero, The trend of the finite element results fof

the energy release rate for finite growth steps is in agreement with the zero
energy relz=ase rate for continuous crack growth. The growth steps in the
current investigation are of order a few times the crack tip opening displace-
ment at the onset of growth, at the end of the monotonic loading, and are
smaller compared to plastic zone dimensions than the growth steps studied in
previous work [1,2]. The results agree quite well with the calculations for
initial growth step in this previous work. Although most of the results here
are for the initial growth step, some calculations were carried out for sub-
sequent growth steps. The energy release rates for subsequent growth steps
differs from that for the initial growth step. This is discussed in the

context of the stress state prior and subsequent to crack growth.

D ———
w

This is a chapter of the author's Ph.D. thesis at Brown University, June 1977.
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INTRODUCTION

A paradox arises when a Griffith-type energy balance is applied to

continuous crack growth in an elastic-plastic material with a stress-strain
relationship which saturates to a finite flow stress at large strain. One

may show that thes work done by external loads during such a process equals

the energy absorbed by ﬁaterial deformation in plastic flow [3]. In‘
particular, no surplus energy is available for the work of separation. The
essential reason for this is that thsre is no singularity in recoverable
energy density at the crack tip in these materials. It seems likely that

the paradox would arise also in a material with a power-law or linear harden-
ing behavior with parameters typical of structural metals, and Kfouri and .
Miller {1] have partially confirmed this.

By using the concept of .a finite fracture zone, and thus a finite crack
growth step, Kfouri and Miller [1] have shown that a surplus of energy can
arise at the crack tip in a material with a linear hardering law. They modelled
the fracture event in a center cracked panel loaded into the plastic range by
releasing the crack tip node in their finite element mesh and relaxing the
foréé on that node to zero. This produced a finite growth step of one nodal

Ay

spacing. The energy release associated with unloading the tip node allows
calculation of the energy release per unit length of finite crack growth, GA .
As expected, the results indicate that in the limit of infinitesimal crack
A
growth, G > 0 .
However, the smallest growth step studied by Kfouri and Miller is many
times the crack tip opening displacement. In that case, modelling the crack

tip before fracture as a point should be quite accurate. This is because the

energy released during a finite growth step of this size is associated dominantly
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with material unaffected by blunting of the crack tip. However, if the
finite growth step was about the same size as the crack tip opening dis-
placement, then the crack would be growing iﬁto the material heavily affec-
ted by prior érack tip blunting. A more precise modelling of the crack tip
prior to crack growth is necessary. This is available in the finite element
results presented by McMeeking [7], concerning the smooth blunting of a crack
in an elastic-plastic material. By allowing crack growth in the same program,
it was possible to study the separation energy Qate associated with growth
steps which were similar in size to the crack tip opening displacement.

Most of the results are for the onset of fracture and agree with the results
of Kfouri et al. [1,2]. In addition some calculations were made for growth
steps .subsequent to fracture initiation. This computation was restricted

to a series of very small steps.compared to the crack tip opening displace-
ment. In these, GA rises with each addiéional growth step, in contrast

to calculations by Kfouri et al. [1,2], who observed that GA fell during
subsequent growth steps. It is proposed that the difference in behavior is
associated with the state of stress around a blunted crack tip, and perhaps

it is inherent to the small step size or to the small amount of total growth

distance covered in the program of growth steps studied here.




FINITE ELEMENT CALCULATIONS OF SEPARATION ENERGY RATE
The calculation of the separation energy.rate was carried out based on
the results of McMeeking [7]. He analyzed the stresses and deformations
around a crack tip in an elastic-plastic material smoothly blunted open by
mode I opening loads. The deformation is plane strain and the results are
limited to containad yielding about the crack tip. The constitutive law

used was the Prandtl-Reuss equation with a hardening law of the form

- Ny Lo, =D
(t/a ) = t/o + 3Ge log,
_‘ 3 ! 1 '
where T2 = §-Tijrij s T is the Kirchhoff stress deviator, <t = |F|o

where |F| is the ratio of volume of a material element in the current state

to its volume in the undeformad state, ¢ is the true stress tensor, CR is

~

the tensile yield stress in terms of Kirchhoff stress, G is the elastic

shear modulus. Note that e = I( %_ngng)l/th , where DP is the plastic
part of the rate of deformation tensor Dij = (airi/axj + avjlaxi)/2 , where

v is velocity, x 1is the current material position and t is time. The
particular material properties which were used for the calculation of
separation energy rate were- N = 0.1, oolE = 1/300 , where E 1is Young's
modulus, and a Poisson's ratio of 0.3. The near tip stress and deformation
state is shown in fig. 1, which is taken from [7].

In McMeeking's finite element calculations, the mesh was semi-circular,
with the crack represented by unconstrained nodes along half of the non-
circular side of the mesh. The remaining nodes on the non-circular side of
the mesh,lying in front of the crack tip, were constrained to remain on an

axis of symmetry for mode I loading. To carry out the separation energy

rate calculations, the boundary conditions were reformulated so that the
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positions of all nodss on the outer ring rémained fixed. Then the con-
straint on the nodas to be inoaded was replaced by a force boundary
_condition just sufficient for equilibrium. Thereafter, the nodes were
relaxed proportionatey in five increments until they transmitted no forces.
The energy released by each node was computed by integrating the force-
displacement record for the five increments using a trapezoidal rule. The
separation energy rate, GA » was computed by dividing the energy released
by Aa , the new length of crack created. This calculation was carried out
for several values of Aa . The crack growth calculations were processed
with the notch already blunted open monotonically to about 5 times its
original width.

Crack tip shapes after an initial step of finite growth, The initial

step of growth of the crack from the blunted tip surface always involved
the relaxation of four or more nodes simultaneously. Thus the shapes
achieved after complete relaxation would appear to be relativelyAaccurate
records, as compared to the shapes determined by Kfouri et al. [1,2]. Since
Kfouri et al. included only one ﬁode to model the crack growth initiation
step and used straight-sided elements, they were limited to producing new
crack surfaces in a wedge shape. Since the growth steps from the blunted
crack were produced with one node representing the new crack tip, they have
the same wedge shaped tip as the crack growth segments produced by Kfouri
et al. However, the extra nodes along the flank produce a better fit to
the shape of growth steps compared to the wedge shapes of Kfouri. A

growth step, which is produced by simultaneously reléxing 9 nodes, is
illustrated in fig. 2. The newly created crack has nearly parallel flanks,

except near the new tip, which is modelled by one point. The original
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blunted crack tip moves alﬁost rigidly during the relaxation. Some details
of the shapes of the new crack segments produced by finite growth steps are
tabulated. In the table there is listed the width of the new crack at the
blunted tip surface (point A in fig. 2) and at its widest point. These
quantities are normalized by the lehgth of the growth step. In addition,
the growth step length is listed in units of Japp/oo s (K/co)2 and the
crack tip opening displacements prior to crack growth.

The shapes of the growth steps are possibly significant to the phe-
nomenon of the retardation of fatigue crack growth after a cycle of'overload.
This phenomenon has beenldiscussed, for example, by Schijve [4]. "Paris [5]
has suggested that the retardation effect is produced as a result of material
behind the crack tip interfering and holding the crack tip closed during
load cycling subsaquent to overload. For the purpose of a discussion of fhis
idea, let the previously blunted crack tip in fig. 2 be the tip shape pro-
duced by a single cycle of tensile overload. So-that an exact equivalence
between the model for fatigue cfack-growth retardation and fig. 2 applies,
assume that a finite amount of crack growth occurs at the peak of the over-
load cycle. This will occur with the shape as in fig. 2. When the crack
is unloaded, it is likely that the crack surface near the blunt tip produced
by the cycle of overload will interfere, producing the closure of the crack
tip in Paris' model. When the loads are cycled at the normal level thereafter,
the crack tip is open during only part of the cycle. A reduced amount of
crack growth results. When the growth has proceeded sufficiently, the crack
surfaces no longer interfere and the crack tip is open for more of the cycle.
The situation returns to that which prevailed prior to overload and crack

growth returns to its previous rate.
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The assumption, that there is the occurrence of a finite amount of cracl)
growth which is large compared to the previous cyclic growth steps, is not
supported by striation measurements as made, say, by Hertzberg [8]. Rather,
it appears that the crack growth after the overload is in step sizes that
would be produced By the subsequent cycling. It would thus seem more likely
that the interference effects are due to the closing up of the blunted crack
tip produced by the ovérload.

Separation energy rates for an initial step of finite growth. The value

of GA/Japp is plotted against S = Aa/(K/co)2 in fig. 3‘using both the
results of the present study and the results presented in [2] for an initial
step of growth. The term K is the stress intensity factor after monotonic
loading, before any crack growth, b is the crack tip opening displacement

and the distance Aa is the undeformed size of the growth step, before any

load was applied to the crack. The value of >Japp is the value of the J-

ingetral (Rice [9]) on a remote contour prior to any crack growth. The plastic

zone size prior to crack growth is proportional to (K/oo)2 so that S is
a measure of the growth step size relative to the size of the plastic zone.
As can be seen, all the results follow a trend of increasing GA/Ja for

PP
increasing S . It would appear that the results in fig. 3 fall into two

.segments. For small values of S , the value of GA/Japp rises quite

steeply with increasing S and appears fairly linear. At larger values of
S the results rise less steeply and the gradient decreases with increasing
S.

Note from fig. 1 that the stress magnitude in front of the crack rises
to a peak level some distance from the blunted crack surface and then steadily

falls off as one goes further from the crack tip. The peak stress lies at
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approximately 2.5b from the crack tip. In the chosen configuration just
prior to crack growth, b = .5 Japp/oo and thus the peak stress lies at

about .004 (K/oo)2 from the crack tip. Thus the sharp changs in the

gradient of the results of fig. 3 takes place around about the point where

the crack growth step size coincidss with the distance from the crack tip

to the point of psak stress. A physical explanation may be that as the

crack growth step size is increased from zero up to the point of peak stress
it absorbs new points which éarry greater stress prior to separation than
points already included in the growth step. When the growth step is extended
beyond the peak stress point, each new point encompassed by the growth step
is stressed to a lower level than some points already included. If the
potential for energy release at a point is dependent on the traction prior
to relaxation, which seems very likely, then GA/Japp will rise as S
increases from zero, and then change over to a less steep rise once the
peak stress point is included in the growth step. No attempt is made here,
however, to explain why the results in fig. 3 should form the straight line
at small S . Indeed, the results do not indicate so clearly any such rela-
tionship when ¥ = Japp/GA is plotted against ¢ = Sx = (l-vz)cozAa(BGA) .
as in fig. 4. The straight line corresponding to that in fig. 3 has been
included. It should be noted that one result, namely (.404,1220) has been
omitted from fig. 4. If it were not for this point, one might conclude
that the line 7 = .075 fits the results quite well for the higher values
of x in fig. 4. When plotted in the manner of fig. 4, the results of
Kfouri et al. do not agree quite so clearly with the results obtained here.
In any case, some reservation must be made about putting the results of
Kfouri et al. [1,2] for linearly hardening materials together with results

for a power law hardening material and drawing too many conclusions. However,



- 39 -

the trend of the results is in agreement, and together the result would seem
to indicate that GA/Japp > 0 as S~ 0. This result is of some interest
in view of the fact that the materials in this investigation and Kfouri's
do not have limited flow stresses at large strains. The conclusion that
elastic-plastic materials with ultiﬁately infinite flowzstresses may involve
an energy release rate that is»zero in continuous crack growth may be drawn.
The point is by no means.proved. The infinite strains at the crack tip
were not modelled exactly by the finite element methods used here and by
Kfouri et al. So, it would seam that the infinite flow stresses at the

A

crack tip do not actually get into the calculations of G- .

Stress ahead of the crack tip. The stress ahead of the crack tip

both prior to initiation of finite crack growth and subsequent to crack
growth for two values of Aa is shown in fig. 5. Note that X is the
position of the point prior to blunting of the original crack. The two

examples of the stress after crack growth shown in the figure are typical

in that the stress in the element just ahead of the new crack tip is greater

after crack growth than before. As can be seen, the change in the stress

is not a long range effect, and at about a distance Aa beyond the new

crack tip; the stress state is virtually unaltered. In the two examples
shown 4a/b = .21 and 1.0% , so that the crack is growing into an area

of increasing stress. When the steps of crack growth are Jarger, the stress
in the element just ahead of the new tip is still raised above its previous
level. It is difficulﬁ to estimate the gradients of stress in these last
cases, because the near tip element and the element beyond are too far apart
to be useful. Better estimates of near tip stress gradients after crack
growth could be obtained with a mesh,'which is more refined just ahead of the

crack growth step. This information would be useful to the better undemstanding
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J
of stable cracking in hardening materials.

The new crack tip that is formed after the finite step of growth is
sharp, since it is represented by a point. It acts as a point of singular
strain, and, as a consequence, the stress near the crack tip is high in the
power-law hardening material investigated. Rice [6] has analyzed steady-
state continuous crack extension in perfectly plastic plane strain. He
found that the strain is singular with strength 1log(l/r) , where r is
the distance from the moving crack tip. It seems reasonable that the strains
near a crack tip produced by a finite growth step in a power-law hardening
material would be similaf. The stress in the element neafest the crack tip
after créck growth is elevated, but the mesh is not designed well enough
to give any more definite information about the near tip stress state.

Separation energy rates for a few small steos of consecutive finite growth.

In the case of the smallest initial step of finite crack growth, three
further steps of finite crack growth were carried out. The growth step

4 -y
, 3.55 x 10",

sizes,in units of (K/co)2, were 3.31 x 107 , 4,40 x 107
4,97 x 10'“ , where X 1is the stress intensity factor prior to any crack
growth. Alternately, the step sizes were .21b, .28b, and .23b and .32b.

The values for GA/Japp computed for these four finite growth steps were

* 3 3 and 1.45 x ].0"2 respectively.

8.20 x 10 ' , 5.71 x 10 ~ , 8.34% x 10
These small values reflect the fact that the step sizes are small relative
even to the width of the nofch. ‘However, it is interesting that GA/Japp
rises consistently with each subsequent step of growth, even although the
size of the finite growth step does not increase with each step of growth.
The explanation seems to lie with the increasing stress level immediately
in front of the monotonically loaded blunt notch tip. Each subsequent step

of growth occurs into material stressed to a higher level than the material
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into which the previous step grew. If, as discussed previously, the energy
released is dependent on the stress level, as seems likely, GA will rise
with each new step. Once crack growth passes beyond the stress peak in front
of the monotonically loaded blunt tip, then GA, could be expected to fall
with each new step of growth.

When Kfouri and Miller [1] carried out a similar calculation, they
found that the value of GA fell with each new step of growth until a
steady value was reached after three or four steps of growth. Their growth
step sizes were many times greater than the steps for which calculations
were carried out here. In the case of Kfouri and Miller's analysis, each
new step of growth occurs into material stressed to a lesser degree than
the material into which the previous step grew, at least based on the stress
state bafore any growth at all. But as the crack grows, it sets up a new
near'tip field, basically involving the log(l/r) strain singularity pre-
viously discussed. Judging from the results of Kfouri and Miller, after
a few steps of growth, this field eventually shows little dependence on
the deformation and stress field that existed prior to any crack growth at
all. This last point of view is based on the fact that GA "does settle
down to a steady value. The very small steps of growth studied in this
paper do not appear to be sufficient to establish this steady state near
tip field. This may be due to the individual steps beiﬂg too small, or
the total amount of growth being toé small. It was not poséible to resolve
this'point because of the configuration of the finite element mesh used.
Kfouri and Rice [2] constructed a model that allowed them to extrapolate
the steady values of GA in Kfouri and Miller's work for large steps of

crack growth into the region of small steps of crack growth. The model
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was based on the cohesive zone model of crack tip yielding, but also in-
volved some fitting to the finite element results of Kfouri and Miller [1].
In view of the results just discﬁésed, the model would appear not to be
useful for steps of growth that are comparable in size with the crack tip
opening displacement. Because of the localized effects of crack tip blunting
under monotonic loading, as discussed by McMeeking [7] and not accounted for
in the calculations of Kfouri and Miller, there may be some lower limit in

terms of S to the extrapolation based on Kfouri and Rice's model.
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CONCLUDING DISCUSSION

In discussing the physical interpretation of their results, Kfouri
et al. [1,2] note that a particular feature of material behavior can be
predicted. This feature is the transition of fracture mode with tempera;
ture. For simplicity, assume that Aa and GA are fixed material
parameters. This is equivalent to saying that fracture always occurs
over some fixed microstructural distance and requires a given energy
release rate. (As Kfouri and Rice [2] point out, Aa and GA may be
functions of temperature, but in that case, the principles of the sub-
sequent discussion would still apply). Since Aa and GA are fixed
for a material, the parameter r represents the "condition" of the
material, and will vary with temperature through the dependence of C
on temperature. Referring now to fig. 4, assume that there is some
unique "fracture initiation locus" line through the results. Consider
material in state y = .1. If a specimen of this material is loaded,
the value of x will increase and fracture initiation can occur when
the point (.1l,x) on the g,X plane reaches the fracture initiation |

S

locus. If the material is heated so that o, fg;ls and ¢ = .05, then
no matter how much load is applied, fracture initiation cannot occur

in the mode parameterized by the given values of Aa and GA * This

could correspond to the brittle-ductile transition, and it is suggested

that the value for ¢ at transition is about .07.
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CONCLUSIONS

When crack growth occurs in a finite step of growth from a previously
blunted crack in an elastic-plastic material, a non-z2ro separation enargy
release rate results. Judging from the results for various sizes of steps
of initial crack growth ffom the blunted crack obtained using the finite
element method, the energy release rate for an infinitesimal step of growth
is zero. The results computed here are generally in agreement with those
previously computed by Kfouri et al. [1,2]. In tais prsvious work, the crack
configuration prior to crack growth was modelled using one nodal point as the
crack tip, and the steps of growth were many times larger than any intensely
strained region that would arise if the original crack werz allowed to have
a blunt tip. The results obtained here are for growth step sizes about the
same size as the region affected by the blunting of the original crack tip.
ADifferences between the results here and those of Kfouri et al. [1,2] seem most
easily explained in terms of the differences in stress prior to crack growth

in the regions in which the crack growth occurred.
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2
Aa/(K/oo) Aa/(Jq}p/co) Aa/b Wt/Aa W/Aa

-y -2 -2
3.31 x 10 .109 .230 2.48 % 10 2,48 x 10

-3 ~ -2 -2
1.62 x 10 . 535 1.13 4.30 x 10 5.16 x 10

-3 -2 -2
3.94 x 10 1.30 2.74 3.74% % 10 5.21 x 10

-3 -2 -2
6,10 x 10 ) 2,01 4,23 3.17 = 10 L.47 % 10

) -3 -2
l.24 x 10 4,10 8.64 2,20 x 10 3.58 x 10

TABLE Showing size of initial step of finite crack>growth, Aa’, in

units of (K/oo)2 s J/oo

and the width,

b 5 prior to crack

growth of the monotonically loaded, blunted notch. Also

shown is the distance between the surfaces created by the

growth step at the tip of the monotonically loaded, blunted

notch (Wt) and at the widest point between the surfaces

(W).
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List of Figure Captions

Figure 1. Plot of stress oee/oo and plastic strain around the
monotohically loaded blunted crack tip for OO/E = 1/300
and N = 0.1. Note a, is the yield stress in tension

and R and O are defined for the position of the

material in the undeformed configuration.

Figure 2. Typical shape of crack tip after a complete finite

growth step.

Figure 3, Separation energy rates for initial step of finite

growth for various amounts of crack growth.

Figure 4, Dependence of x on S for initial step of finite
growth.
Figure 5, Stress ahead of the crack tip, both prior to and sub-

sequent to the initial step of crack growth.
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.

IV, BLUNTING OF A PLANE STRAIN CRACK TIP INTO A SiAPE WITH VERTICES:.

Summary When monotonically increasing tensile opening loads are
applied to a cracked, plane strain, elastic-plastic body, the crack tip
will blunt until fracture occurs. At least within the rigid-plastic
model for non-hérdening material, the shape of the blunted tip is not
unique. The blunted tip shape may have two or more sharp corners, or
be smoothly curved. When the shape involves corners, the opening is
predominantly accommodated by shearing of the material at the corners.
This shearing transports material from the interior of the body onto
the crack surface. In contrast, the smoothly blunted crack tip involves
no such transfer of material points from the interior. However, the
smoothly blunted crack, which was origindlly sharp, involves infinite
strains on the crack tip surface. The crack with corners on the tip has
large but finite strains on the crack tip surface.

The stress and deformation field in front of a crack with two corners
and with three corners on the tip, as calculated using the slip line
method, is presented for the non-hardening, fully plastic, deeply cracked,
double edge-notched thick panel. As in the case of ths smoothly bluntad
crack tip [1], the elevated stress between the crack tips cannot be
maintained very close to the crack tip, due to a lack of constraint.

The stress distribution in the case of the crack tip with vertices on

it differs from that of the smoothly blunted crack tip case. In particular,
immediately in front of the crack tip with three corners, the stress is
higher than that immediately in front of thaz smoothly blunted crack tip.

An approximation for a power law hardening material indicates that the
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maximum stresses near the blunted crack tip is much the sams for a crack
with vertices on the.tip as for a smoothly blunted crack tip. The de-
‘tails of the stress distribution, though, will depend on the mechanism
by which the crack blunts. These results for stress and strain and

some calculations of the growth of voids near the crack tips indicate
the same fracture process could lead to different fracture toughnessss,

depending on the type of mechanism by which the crack bluats.

—
This is a chapter of the author's Ph.D. thesis, Brown University, June 1977.



INTRODUCTION

Hany ductile fracture processes are known to take place within a
region near the crack tip that is intensely strained or sheared as the
crack tip blunts open [1]. It would thus seem to be important to work
out the details of the near tip stress and strain fields around the crack
tips that are opened up by tensile loads. McClintock [4] has given slip
line fields that arise around CPack tips that blunt by localized shearing
at corners on the crack tip. The corners on the crack tip are connected
by straight segments of crack tip surface and McClintock has worked out
slip fine fields for crack tips with two and with three corners on the
crack tip. McClintock [4] has observed the opening of a macroscopic
notch by a mechanism of shearing at two corners, while Clayton and
Knott [5] have observed localized shearing at many corners on a
macroscopic notch tip. Although the observations were made on notches,
the examples are considered to be relevant 'to blunting crack tips. On
the other hand, Rice and Johnson [1] have suggested that the blunting can
take place by a general stretching of material on the crack tip. They
also worked out the details of the stress and deformation near these
smoothly blunted crack tips by using the slip line method. Their
results were for the case of small scale yielding, and for the fully
plastic deeply cracked double edge-notched specimen. Their results, at
least for the case of small scale yielding, have been confirmed by
Mcteaking [11], who investigated the smooth blunting of the crack tip
in an elastic-plastic material using the finite element method. Rawal
and Gurland [12] have observed the smooth mechanism of blunting in
the opening of a pre-fatigued crack in spheroidized steel. The type of

blunting which arises in a specific case may depend on considerations




of strain hardening and stability [4#]. The tendency for deformation
to localize at, say, asperities on the tip surface may be important
in this respect [4].

Apart from the shape, the main difference between the smoothly
blunted crack tip case and the case with sharp corners is that the sharp
corners are the focus of fans with singular shear strain rates. It is
these that largely accommodate the crack opening by transporting material
from the interior to create new surface. The result is a strain of order
unity on and near the crack tip surface. In contrast, near a smoothly
blunted crack tip, an area can be found in which the average plastic
strain greatly exceeds unity. Since achieving a critical plastic strain
over a critical finite area is a candidate fracture criterion, there
could be some significant differences between smooth and vertex blunting
of crack tips as far as fracture behavior is concerned. A similar situ-
ation arises for stress. In small scale yielding or in the fﬁlly plastic
yielding of a double edge-notched, deeply cracked panel, the triaxiality .
in front of the créck tip cannot be maintained near the crack tip when
any kind of blunting occurs. However, the distance over which the mean
normal stress falls from its elevated level to the lower level near the
crack tip depends on the kind of blunting that occurs. Taking as a
candidate fracture criterion the achievement of a critical stress over
a critical area, one sees that significant differences between the
blunting mechanisms are possible as far as fracture is concerned. This
carries over to a fracture mechanism involving voids near the crack tip,
since void growth is dependent on plastic strain and hydrostatic stress

[2,3] and the rate of void growth relative to the rate of crack opening

will be influenced by the type of blunting which is occurring.
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NON SMOOTH BLUNTING OF CRACKX TIPS

The method, by which the details of the near tip field fér a
blunted crack with vertices on the tip are obtained, is the approach used
by Rice and Johnson [1]. They viewed near tip rigid-plastic slip line
solutions as good approximations to the behavior of elastic-plastic
materials, when elastic strains are neglectad cémpared to plastic strains.
They concentrated on the cases of the contained yielding of a plane
strain, non-hardening specimen (CY specimen), and the fully plastic
yielding of a deeply cracked, double edge notched, thick panel of
noh—hardening material (DEN panel). One approach to both these problems
iS to view the crack tip as a point of singular shear strain, and the
slip line field of Fig. 1 arises.in this case. In the DEN panel, Fig. 1
is the near. tip reéion of the Prandtl punch type plastic zone that arises
for full scale yielding [6]. The CY specimen has the slip line field of
Fig. 1 only in a near tip region that is small compared to the plastic
zone as discussed by Rice [7]. A stfaight slip line in region C transmits
a constant velocity parallel to itself. This velocity was deduced to be

approximately

v, = ét[cos(¢—n/4) -kcos2(¢-n/4)]ﬂ?/§) (1)

for the CY specimen by Rice [7], guided by some etching studies. This
seems to be approximately consistent with Rice and Tracey's [13] elastic-
plastic finite element results. These indicate that the singular shear
strain rate in the fan has'a strength which, when expressed as a function
of ¢ , is symmetric about ¢ = w/2 and nearly vanishes at the limits

of the fan. On the other h;nd, when there are no discontinuities of

velocity on the slip lines between A and C, and between C and B in the
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DEN panel, the velocity on the slip lines in C is
v, = 6t[sin(¢-ﬂ/4)]/(2/§) s (2)

as noted by Rice and Johnson [1].

Rice and Johnson [1] noted that when the crack blunts, the fans of
singular shzaring above and below the crack tip woula becone non-centered'
above and below a region of intense stretching adjacent to‘the blunted
crack tip as in Fig. 2. Whan viewed on the size scale of the plastic zone,
this whole region of intense stretching still appears as a point, so the
velocities (1) and (2) still serve as approximations to the norﬁal velo-
cities on the outer slip lines of the intensely stretched zone. UNote that
(1) and (2) were chosen so that the point (a =0 , 8 = 0) is stationary.
Consequently, Rice and Johnson used these velocities as boundary conditions
to solve the slip line equations (Hill (8], pp. 128-140) for the velocity
in D. >

These equations are

ava/aa - Vg = BVB/BB v, = o ., (3)

where Vo is the component of velocity parallel to lines of constant B8
and v. is the component of velocity parallel to lines of constant a .

8
The solution for va(a,B) s vB(a,B) was obtained by finite difference

integration along the characteristics or slip lines a = constant and
B = constant. Note that the position of (a¢,8) in the physical (x,y)
plane was then unknown. However, Rice and Johnson [1] showed that the

position of the crack tip, relative to the point @« =0 , 8 =0 , can



be worked out once the velocities on the crack tip are known, as long as

the velocities on the tip of the blunted crack remained constant, as
in the CY specimen and DEN panel. Once the tip shape was established,

the equations

%%é%%-z - g;;g: = tan (a+B+m/4) (%)

were integrated by finite difference method along the characteristics
to establish the position of tHe slip line intersection (a,B) in the
physical plane. The result is shown in fig. 3. Note the similarity
in the results for the CY specimen and the DEN panel.

Tha crack tip shapes and slip lines for the case of blunting with
two corners on the tip and with three cornérs on the tip are shown in
figs. 4 and 5. These figures show the situation for the DEN panel,
which should presumably be similar to the CY results. The DEN case
was worked out because the included angles of the fans of slip lines
can be simply deduced, following ﬁcClintock [4]. To obtain the
shapes in figs. 4 and 5, some of the results for velocity obtained by
Rice and Johnson can be utilized directly. The velocities that can be
used are the Vo and Vg components for points lying in the hatched
region of the characteristic E,B plane in figs. 4 and 5. The
normal velocities on the boundaries of the hatched regions provide
boundary conditions for the adjacent regions in the physical (x,y)
plane. These adjacent regions contain one family of straight slip lines
normal to the boundaries between the region with the straight slip

lines and the region hatched in the characteristic plane. A straight

slip line carries a constant velocity component, vp » parallel to itself.
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The positive sanse of vp in the regions containing ons family of
straight slip lines is defined so that positive vp is directed away
from the focus or involute of the straight slip lines, The component
of velocity normal to the straight slip lines is vt', with a positive
sense that is w/2 radians-from the positive sense of vp . The
governing equation for velocities in the regions with one family of

straight slip lines is

dvt(O)/ do + vp(e) =0 R (5)

where O is the angle the straight slip line makes with the x-axis.
The equation (5) may be integrated subject to a boundary condition of
known v, on one side of the region with one family of straight slip
lines. In the flat nosed case, fig. 4, and in the case of the regions.
with one family of straight slip lines not attached to G in fig. 5,
the boundary condition for integrating (5) is the appropriate value
of v, taken from (2). The boundary condition for the fans attached
to G in fig. 5 comes from the results of the integration of (5) for
‘the non-centered fan between regions I and II. The remaining regions,
with two families of straight slip lines, are non-deforming.

That the deduction copcerning the included angles of the fans
of slip lines in figs. 4 and 5 was correct may be checked by noting
that there are no velocity discontinuities at any of the slip lines
in regions A, BAand C of fig. 1. Thus, there will be no velocity
discontinuities on any slip lines in the regions near the crack tip
with cornérs, equivalent to region D in fig. 2. Since the velocities

are calculated by two different methods on either side of the slip

lines separating the regions with one family of straight slip lines
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from the regions hatched in the characteristic plane,‘agreement
between the velocities computed on either side of these slip lines
means that the deduction was correct.

The net results obtained are the constant velocities of each
straight surface segment on the crack tip. The component of this
velocity normal.to the straight surface segment, say Vngt , May be
integrated in time to give the position of the straight surface segment.
The position, measured relative to axes attached to the point with
@ =0 , B =0, is such that the length of the normal from the segment to
the original position of the crack tip is 'Vndt. Now that the position
of the crack tip is known, the configuration of the slip lines in
front of the crack can‘be worked out. In regions in which there is at

,
least one family of straight slip lines, consider any two straight
segments of slip line running between thes same two members of the other
family of slip lines. According to Hill ({8], p. 138), these straight
segments have équal length. In particular, this means that the cen-
tered fans of slip lines in figs. 4 and 5 are segmepts of a circle,
and the radius can be calculated from the geometfy of the crack tip.
This establishes the shape of two intersecting sides of the region
containing two families of curved slip lines, not touching the x-axis.
These shapes may be used as boundary conditions for the finite differ-
ence integration of (4) along the characteristics. Now the shape of
one curved side of the region containing one family of non-focused
straight slip lines is known, as well as the length of one of the
straight sides of this region. This sefves to establish the shape of

two intersecting sides of the remaining region of curved slip lines,
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and (4) may be integrated once more to complete the shape of the

near tip slip lines.

were established.

In this way, the exact shapes of figs. 4 and 5



STRAIN AHEAD OF THE CRACK TIP

The strain on the x-axis ahead of the tip of the cracks of

Figs. 4 and 5 may be computed from the numerically known velocity and
position of material péints. Following Rice and Johnson [1], the paramefer
¥ 1is introduced for representing the velocity and position on the x-axis
in the regions with two families of curved slip lines. This parameter is

defined as
vV=u/2-28 on a+B8=0 . (6)

The x-axis is, of course, the line o + B = 0. Note that ¢ ; /2 at
the point A, figs. 4 and 5, in both the flat nosed and the sharply tipped
case. In the flat nosed case, ¢ = 0 at D and in the sharply tipped
case, V¥ = w/6 at F . The velocity in the x-direction on the x-axis

in the ragions of interest may be written

v (x,0) = () (7)

.and similarly the position of the point represented by ¢ is known

numerically in the form

X = GtF(w) . (8)

Following [1], eq. (8) may be differentiated with respect to time and equated

to (7) to give
' .
F(p) + 8. F (I3p(X,8,.)/38, = V(¥) (9)
where X 1is the position of a material point before any deformation. This

equation may be integrated by noting that the crack tip opening it the time

when a point A reaches X 1is X/F(w/2); that is, when the small aeformations
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occurring to the right of point A are neglected. The result of the integra-

tion is [1]
2 e )
_ _ w F (y)dy
X = dtH(w) where H(y) = F(§> exp { -J{ FOIV) ( (10)
7

The deformation gradient is thus
| 1 1
9x(X,8,)/3X = &.F (9)3p(X,8,)/3% = F (¥)/H (¥) . = (11)

tr tr

Defining the true strain s:r as log(3x/3X) and noting that ey te, = o,
it can be seen that
() "2y' (4)a |
tr H (¥ vV (p)dy
= = - . 12
ey = E jiTﬁ—w-v o o a»

This derivation illustrates the manner in which the strain at a material point
is accumulated as the near tip slip line field expands, and causes the material
point to move, figuratively, from point A towards point D in Fig. 4, and

from point A towards point F in Fig. 5. Once the material point enters the
region between D and E or between G and F, the deformation ceases and the
strain is constant in these regions.

The true strain calculated from (12) is plotted in Fig. 6 against
undeformed position calculated from (10), and the strain in the non-deforming
regions is plotted as well. The stretches on the X¥axis remain relatively
;mall compared to the larger values near the tip of a smoothly blunted crack.
Note, however, tﬁat in the region where 1 < X/6t < 2.5 , a slightly more
_severe strain state is achieved in the cases where the crack has blunted by
the sharp corner mechanism. In terms of a fracture process that occurs
when a critical strain is achieved over a critical length, the crack tip

opening displacement at fracture would be slightly greater in the smoothly
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blunted case compared to the sharp nos=d case; that is, if the X-axis
strain is typical. Note that the material on the X-axis from X = 0

to X = 0.49 is currently lying on the crack tip surface. The sharp
nosed case would show a slightly larger Gt at fracture compared to

the flat nosed case, at least based on crack growth occurring on the
x-axis. If the critical true fracture strain is greater than 0.25,

there will be no fracture in that particular mode which involves rupture
along the X-axis at a sharp nosed crack. Similarly, if the critical

true fracture strain is greater than 0.625, no fracture in the associated
mode along the X-axis would occur at a flat nosed crack. It would seem
to be very likely that in the model for blunting involving shearing at
.sharp corners there will be strains off the X-axis that are greater than
the strains achieved on the X-axis. Since a point currently lying in

the non-deforminé regions will have experienced different strain histories
depending on their positions within the non-deforming region, the strains
in the non-deforming regions are not uniform. However, the strains
everywhere will be finite, although rising to magnitudes of order unity

in the regions adjacent to the crack tip.

In addition to the stretching of material in front of the crack tip,
there are shear strains that arise on the crack tip surface. These are due
fo the fans of singular shearing attached to the crack tip. The total plastic
strain due to the shearing may be worked out as follows. Consider a fan
wifh constant orientation and included angle. The fan origin is, however, being
tfansported at a constant velocity, v° , relative to point A. Simultaneously

~

the radius of the fan increases, although this is not immediately relevant.
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An origin is attached to the focus of the fan, and polar co-ordinates (r,0)
are defined relative to this origin. The quantity of interest is the plastic
strain accumulated at a material point which is first enveloped by the fan
at co-ordinates (PO,OO) , where r, is less than the outer radius of ‘the
fan. Attention will be restricted to the situation where the fan lies in
the area where © > Oo . This restriction is trivial, since the fan lying
either above or below the x-axis may be chosen to meet this condition. In
the fan, the velocity of points is known numerically in terms of the polar

£ f

components, vr s V@ .

only on the current value of O at the point of interest. Thus, the velocity

These velocities are relative to point A, and depend

the point currently at (r,0) in the fan is gP(O) = Yf(O) - Yo

i

o
relative to the moving focus of the fan. In particular, the relative

angular velocity is

0 = (vg(o) - vg)/r (13)A

The rate of change of plastic strain ép = JQDEjDEj/s s

2Dij = (Bvi/axj + avj/axi) is

. _ f f
ep(e)- Lav (e)/30 - ve(o)]/(r/§) . (14)

Equation (14) may be divided by (13) and the result integrated from 90 to

O »where 0. 1is the angular co-ordinate when the point leaves the fan.

f

This gives the total plastic strain accumulated in the fan by the material

point. The result is

o £ £
e, (0g) = £ (8.) =s f [av,(0)/d0 - vp(e)lde | (35,

% ALy ) -1



“This quantity is independent of the radius, ro o at which the material
point enters the fan. Therefore, it is the plastic strain accumulated
by any material point that passes through the fan, including material
that passes through the tip of the fan. The point that passes through
the tip is deposited on the crack tip surface.

The integral (15) was calculated numerically for material
passing through the tip of the fan attached to corner C in fig. 4, and
for material passing through the tiﬁ of the upper fan attached to
point G in fig. 5. In the flat nosed case, the material passing though
the tip of the fan accumulates a plastic strain of 1,003. This material
passes from a non-deforming region above and below the crack tip into the
tip of the fan at C. In general, it will have accumulated some plastic
strain while it lay in the non-centered fan of slip lines abové and below
the crack tip, that is, before it entered the non-deforming region.
However, the points on the crack surface just above and below E will have
experiencéd negligible deformation before passing through the fan ﬁttached
to C. Thus, around point E, on the crack surface, there is a plastic
strain of 1.00. In the sharp nosed case, the material that passes through
the tip of the fan attached fo G picks up a plastic strain of .760 while
in the fan. This material has already been stretched to a plastiec strain
of .278, so that plastic strain of points on the crack surface adjacent
to the point G is 1.04. These strains have been plotted in the appropriate

manner in fig. 6.



- 70 -
STRESSES AHEAD OF A BLUNTED CRACK

As noted by Rice and Johnson [1], the mean normal stress ahesad of

the crack tip is

g = [1+w+2(a-3)]oo//3_ (16)

in the regions containing two families of curved slip lines. The term R
is the yield stress in uniaxial tension. On the x-axis, there is also a
' . ] '

purely deviatoric stress of oy = oo//5 > O = —oo//g' . The total
stress, oy/oo‘= (c; + c)/co , has been plotted as the full line in
Figs. 7, 8 and 9,for the smoothly blunted crack tip, the blunted crack tip
with two corners,and with three corners respectively. In the last two
cases, use has been made of the fact that the regions with two families
of straight slip lines are regions of constant stress state, the stress
state being the same as that for the immediately adjacent regions. It
can be seen that the stress state in the region further from the crack tip
than X = ’2.66t is the same for all three cases. In the two cases where
the crack tip cuts the x-axis at 90°, the stress, cy ,» 1s the same on the
crack surface with a value equal to the yield stress in plane str;in
tension. Where a corner on the crack tip lies on the x-axis, the stress
Uy on the x-axis at the crack tip is elevated above the plane strain
tensile yield stress.

Following Rice and Johnson [1], an approximation to the stress for
power law-hardening materials was obtained. Essentially, the technique
is to assume that the plastic strain distribution is accurate ahead of

the crack tip. This assumption is quite appropriate, according to the

results of McMeeking [11]. The flow stress, and consequently the deviatoric



stress, can be calculated from the plastic strain according to the power

law relationship assumed. Then the equilibrium equation,

acxx/ax + chy/ay =0 , (17)

can be integrated along the x-axis to provide the hydrostatic part of the
stress. The term aoxylay is evaluated from the curvature of the slip
lines as they cross the x-axis, and the necessary boundary condition is
provided at the traction free surface of the crack. However, on the
free surfacé on the X-axis, there is a vanishingly thin layer of ele-
vatad plastic strain in the cases of blunting with corners on the tip.
Furthermore, in the case with three cérners on the tip, there is the
complication of the singular shearing at the corner on the x-axis. If
one assumes that the region between D and E in fig. 4 is still one in
which Oux = 0 , then oyy may be calculated there as 1.15 times the
uniaxial tensile flow stress at a plastic strain of .727, which is the
plastic strain for points lying between D and E. Similarly, using the
stress levels between G and F in ‘the non-hardening material as a guide,
the boundary condition chosen for G in fig. 5 to integrate (5) for a
hardening material was that cyy .should be 1.76 times the uniaxial
tensile flow stress calculated for the plastic strain at points between
G and F. These boundary conditions are essentially those that would be
obtained in the absence of elevated plastic strain on the tip surface.

The power law relationship that was used in the integration’
6? (17) was

o = co(s E/oo+l) s (18)

where o(= V3 (oyy-oxx)/Q on the x-axis) 1is the uniaxial tensile flow

- tr . . . s s
stress, ep(=2£y /Y3 on the x-axis) is the total plastic true strain in
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uniaxial tension and E is Young's modulus. This law differs in form from

that of Rice and Johnson [1], who used
G =0 (8/g )" (19)
) 0 i

where € is the trus strain in uniaxial tension. They set € = QE;P//g; on
the x~-axis. The difference 1s simply one of interpretation. Rice and Johnson
regarded the strain on the x-axis as an approximation to the total strain there
(elastic plus plastic strain). The difference between total strain and plastic
strain only becomes significant near point A , where the elastic strains, if
they were calculated, would be similar in magnitude to the plastic strains.
Since e;r =0 at A , as in Fig. 6, the approximation that Rice and Johnson
used is really for a continuously hardening material with zero yield stress,
and no allowance was made for elastic strains around point A . However, if
(18) is used, the flow stress at point A 1is the yield stress in uniaxial
tension, with the idea that strains of order GO/E are present to the right
of point A in fig. 3, At the point A, and for some distance to the left of
point A, Rice and Johnson regarded the singular, small strain results of
Hutchinson [9],vand Rice and Rosengren {10] for the stress near the crack tip
in a power law hardening material to be more accurate. In addition, the dis-
crepancy»in qy. between using (18) and using (19) amounts to greater than 2%
within a distance of 0.26t from point A. As a result, it is not really of
much significance whether (18) or (19) is used to obtain results for the CY
specimen., However, at point A, the discrepanpy is of the same si;e as the
stress itself. To épply the Hutchinson, Rice and Rosengren result to the

near tip region of the fully plastic DEN panel and relate it to the work

here, one needs some information concerning the relationship between Gt
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and J/oo for the hardening materials, where J 1is the J-integral of
Rice [7]. 1In the absence of this information, and short of a complete
‘solution, the approximation obtained by integrating (17) subject to (18)
is probably the most accurate way of obtaining the stress state around
point A in the elastic-plastic DEN panel in the fully plastic condition.
‘At least, this result is the most accufate approximation for the rigid-
plastic DEN panel made of a power law hardening material with a finite,
rather than zero, yield stress.

The results of this approximation are shown as the broken lines in
figs. 7, 8 and 9, where the effect of both hardening exponent and initial
yield stress on the stress level can be seen. In the smoothly blunted
case, the stress rises to a higher level in the fully plastic DEN panel
then in the CY specimen [1]. Thus, if the results are adjusted down fo
account for this difference in the CY specimen, the stresses for blunting
with corners on the crack tip in the CY specimen would seem to be siightly
smaller than those in the smoothly blunted crack in the CY specimen.

The differences in magnitude would not seem to be significant in view of
the approximations involved. The rise and fall of stress occurs over a
shortér distance, when measured in terms of crack tip opening displace-
ments. In terms of a fracture event controlled by a critical stress

that must apply over a critical distance, specimens with smoothly blunted
crack tips would appear to be marginally less tough than those which have
cracks blunted by the sharp corner mechanism. Again, the difference
would be small enough to compare with the inaccuracies of the analysis.
Note, however, that the stress state near the corner on the x-axis of

the three cornered crack tip is high compared to the stress state near
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the crack tip in the other two cases with different blunting mechanisms.
It is possible that this stress, combined with the intense shearing at
the corner, provides a destabilizing effect which promotes fracture.
Assuming that the stresses plotted in figs. 7-9 for the power-law
hardening materials are reasopable approximations to the correct result
for the hardening fully plastic DEN panel, then the net force required to
deform the panel may be calculated. Taking the case of N = 0.1 and
co/E = .0075, since one might expect thét the approximations involved
in obtaining the stress plots in figs. 7-9 for this material would be
least, one may work out the y-direction net force across the x-axis
due to the near tip stress state as plotted in figs. 7-9. It turns
out that the force for the crack with the three cornered tip is .92
times the force for the smoothly blunted crack. Similarly, the force
for the crack with the two cornered tip is .86 times the force for
the smoothly blunted tip. The stress state beyond a distance 2'56t
from the crack tip is independent of the type of blunting. To find
the net force on the panel, one would sum the force due to the near
tip field and the force in the area between the near tip fields. Thus,
the difference in the net force on the panel, between a panel with
smoothly blunting crack tips and a panel with cracks with corners on
the tips, arises entirely from the near tip field. It follows that
less force is required to deform the panel with cracks that are
blunting by the vertex mechanism, and least is required to deform
the crack tip with two on the tip, all compared at the same level of
opening, &, . Similarly, the rate of work of the loads on the panel

t

would be least if the crack blunts into a shape with the two corners on



the tip, at least within the idealization that the surfaces remote from
the crack bound rigid regions. The development suggests the application
of the plastic limit theorems (Prager [14#]), to predict a most favored
deformation, but these theorems can only be applied to specimens

which have identical boundary geometries in the deforming region. 'As

a result, no inference can be made about which type of blunting is
favored. It should be stressed once more that the inaccuracies in-
volved in obtaining the stresses for hardening materials may be so
great as to invalidate the estimates of the difference in net force

on the panel. Finally, the stress plots in figs. 7-9 would involve

a reduction of the net force on the panel as Gt is increased, since
the near tip field would envelop a continually increasing area. It

is to be imagined that the tests are being carried out under displace-

ment control, so that no unstable deformation would occur.
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GROWTH OF A VOID HEAR THE. CRACK TIP

As discussed by Rice and Johnson [l]; a model for ductile fracture
involves the growth and coalescence of holes. The same model for void
growth will be adoptéd hers as‘was used by Rice and Johnson [1] and later
by McMeeking [11]. This model shows the heavy dependence of void growth
on‘pléstic étrain and hYdfostatic stress, as notad by McClintock [2].
The model was developed by Rice and Tﬁacey (3], and is sfrlctly applL
cable to an 1solated spherical void growing in a remoLe, unlfo”m stress
and deformation field in a rigid-plastic non-hardening materlal.r Rice
and Johnson [1] adopted the model, replacing the remote field by the
local field of stress and deformation at tﬁe current void site in their
results for the smooth blunting of a crack. As in Rice and Johmson [1],
thevequations reﬁresénting‘the growth of a hole on the.x-axisvahead~

of the crack tip in the inset of fig. 10 are

da/a = 0.322de;rexp(3c/oo) .
da /3 = -2de." + da/a (20)
X y
- - tr o
da_/a = 2d¢_~ + da/a ,
y y
where a_  and a, are the major and minor diameters of the ellipsoidal void,

and a is the mean diameter of the void. In terms of the angle parameter ahead

of the crack tip, o = (1+2¢)co//5 and E;P is given by (12) so that

N2 ] '
30 /e, J explY3(1+29)/2IV (¥)
by

F9) = V(D) d"’} > (2D

exp { 0.322
/2

where a, is the original diameter of the hole. In this, the void is assumed -
to grow once point A vreaches its position. Thus, hole nucleation is assumed

to have taken place by the time point A coincides with the position of the
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particle from which the void arose. The growth computation can be continued
until the void site reaches the crack surface in the case of the smoothly
blunting crack tip or until it reaches a non-deforming region in the other

cases.

The two principal dimensions of a void growing on the x-axis ahead of
the crack tip are shown in Fig. 10 for each of the three types of blunting
analyzed. The positive direction along the horiéontal scale can be viewed
as a relative measure of time. When point A coincides with the spherical
void, it begins to grow in each case. The void in front of the flat nosed
crack tip grows most stronglyAat first, while the void in front of the smoothly
blunted crack tip grows at a slower rate than fhe other two voids. As noted,
the voids in front of the non-smoothly blunted crack tios cease growing when
‘they enter the non-deforming regions between D and E in Fig. % and
between G and F- in Fig. 5. Thereafter, the size of the void in front of
the smoothly blunted crack tip catches up with and overtakes the other void
sizes, in terms of the relative time scale Gt/Xo . As Rice and Johnson have
noted, the model for void growth adopted here ignores any influence of
neighboring free surfaces. This means that the influence of the crack tip
surface on the growth of the void is not accounted for.

In terms of fracture initiation from the existing crack tip, involving
voids lying on the X-axis, basically the specimen with the larger holes at
a given distance from the crack tip will be least tough {1]. Consequently,
if fracture ipitiation occurs in the range 1 < ay/ao < 5.5 , the specimen
with the flat nosed crack tip will be less tough in terms of thxo than
the specimen with the smoothly blunted crack tip, at least based on the

behavior of voids on the x-axis.
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If the material requires void growth beayond ay/ao = 5.5 before
fracture initiation occurs, then the specimen with the flat nosed
crack tip wilL experience no fracture at all along the X-axis.
Similarly, the specimen with a sharp nosed crack tip will experience
no fracture initiation along the X-axis, if void growth beyond the
level ay/ao = 3.2 1is required to initiate the fracture process.
This possible difference in fracture behavior between rupture from
smoothly and noh—smoothly blunted cracks would appear to be important,
.because many of the materials which fracture by void growth'associated
processes, discussed by Rice and Johnson [1] and McMeeking [11], for
example, lie in the range of toughness 0.5 < cSt/XO < 1.5 . The
different void growth rates could lead to significant differences in
predicted toughness, and may help to explain some of the data discussed
in [1] and [11]. Of course, knowledge of the predominant mode of
blunting in eéch material would be required.

The validity of the discussion above depends on the behavior of
the voids on the x-axis being typical of behavior of voids elsewhere.
The situation is likely to be somewhat different for fracture involving
voids not lying on the x-axis, since the strains may be somewhat higher
for points not lying on the x-axis, at least for cracks that blunt by
the sharp'corner mechanism. McMeeking [11] has shown that when smooth
blunting occurs in small scale yielding, not much difference of growth
rate arises between differently positioned voids. In addition, plastic
strains everywhere around the crack tip blunted by the corner
mechanism are limited. This means that the size of voids around such
crack tips is limifed, but possibly quite large, compared to undeformed

size. The maximum size of voids positioned on the x-axis may be different

from the maximum size of voids elsewhere.
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CONCLUSIONS

The slip line fields around a crack in a rigid-plastic deeply
cracked double edgejnotched thick specimen, blunting by the vertex
mechanism, is similar to the slip line field around a smoothly blunted
crack in the same specimen. In the first case, the crack opening is
partly accommodated by singular shearing at the corners on the crack
tip, whereas in a smoothly blunted case, the crack opening is accomm-
odated by intense stretching around the crack tip. Intense stretching
still occurs where blunting is by the vertex mechanism, but the strain
levels are limited, by comparison to the infinite strains that result
on the tip of a smoothly blunted crack tip which was originally sharp.
The shearing at the corners, however, leaves a plastic strain of order
unity on the crack tip surface and in regions nearby.

As in the smoothly blunted case, the triaxial stress induced by
the crack cannot be maintained near the surfaces of the tip blunting by the
sharp corner mechanism. The stress at the tip is higher on the x-axis
in the case of a crack blunting Qith three corners on the tip than in
both the flat nosed case and smoothly blunted case. In both cases of
blunting by vertex mechanism studied, there is a constant stress region
next to the crack tip on the x-axis. The stress rises from the tip
region value to the elevated value away from the crack tip over a
shorter distance compared to the distance for the stress to rise to its
maximum value when smooth blunting is involVea. When an approximation
to account for strain hardening is introduced, the maximum stresses away

from the tip surfaces when blunting by the vertex mechanism occurs are



- 80 -

close in magnitude to the maximum stresses away from the tip surfaces
when smooth blunting is involved.

Void growth rates near crack tips with corners on them are ini-
fially larger than the rates of void growth near smoothly blunted
crack tips. However, the sizes of the voids near crack tips with
corners on them are limited, because plastic strain levels are limited.
This means that possibly the specimen with a crack with corners on the
tip will have a fracture toughness different from the specimen with
a smoothly blunted crack tip. Similarly, differences in fracture
behavior due to the type of blunting involved will arise if the
fracture process is controlled by either a critical stress or a

critical strain that must be applied over a characteristic distancs.
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FIGURE CAPTIONS .

Near tip stress state and slip line configuration araund
the crack tip (Rice and Johnson [11]).

(a) Slip line field around smoothly blunted crack tip,
(b) Map of region D into characteristic plane (Rice and
Johnson [1]).

Deformed shape of crack tip and outer slip line of region
D for a smoothly blunted crack tip.

Deformed shape of crack tip and near tip slip line field
when crack blunts by mechanism of two vertices. The slip
line from A to B is equivalent to the outer slip line of
region D. Also shown is the characteristic plane.

Deformed shape of crack tip and near tip slip line field
when crack blunts by mechanism of three vertices. The slip
line from A to B is equivalent to the outer slip llne region
D. Also shown is the characteristic plane.

True strain on line ahead of crack, for each type of blunting,
as a function of position X of a material p01nt before de-
formation.

Solid line shows tensile stress ahead of a smoothly blunted
crack tip in a fully plastic non-hardening double edge-notched
thick specimen. Non-solid lines are approximate stresses in
the same specimen made of a power law hardening material with
tensile yield strain UO/E and power law exponent N .

Same as fig. 7, but for a crack fip blunted by the two
vertex mechanism.

Same as fig. 7, but for a crack tip blunted by the three
vertexr mechanism.

Plot of dimensions of a void growing near the crack tip on
the X axis versus crack -tip opening displacement. The crack-
is in the double edge-notched thick specimen and the results
are shown for each type of blunting.
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V. LOCALIZATION OF PLASTIC FLOW AT A CRACKX TIP
AS A MECHANISM FOR THE INITIATION OF PLANE.STRAIN DUCTILE FRACTURE %

-

Summary An unstable localization of plastic flow into a narrow band
emenating from a crack tip can arise due to nucleation and the growth
of voids. When this occuré, the initiation of fracture follows quite
rapidly as the band breaks down. This model for fracture is studied
using a macroscopic~elastic-plastic constitutive law that accounts for
the plastic dilation due to void growth in a hardening material. The
localization of plane strain flow occurs when the matrix hardening

is no longer sufficient to compensate for the softening due to veoid
growth, and a macroscopic sample of the material reaches a non-
hardening state. The hardening rate and mean normal stress of
material around a mode I loaded, blunted crack tip in elastic-plastic
plane strain may be used to determine the current volume fraction of
holes which will allow localization to occur. The current volume
fraction of holes may be conQerted to a volume fraction of void
nucleating particles through calculations of the void growth rate near
the crack tip. The results indicate that the localization will occur
on or near a plane at 45° to the plane of the crack exzcept when the
volume fractions of void nucleating particles is small (say, less than
0.01). When the analysis is applied to the fracture behavior of a
material, the identification is required of a characteristic distance
over vhich the localization takes place. It would seem to be likely
that a lower bound to this distance would be one interparticle spacing

of the second phase from which the voids nucleate.

S
This is a chapter of the author's Ph.D., thesis, Brown University, June 1977,




INTRODUCTION

It is well established that.plastic flow can lozalize into a
narrow band of shearing which eventually ruptures. For example,
Rogers [1] and Bluhm and Morrisey [2] have observed narrow bands of
deformation in the necks of copper tensile specimen -just pfior to
rupture. These bands form in a region that is quite porous. Berg [3]
has discussed localization of flow in such porous regions. He suggested
that localization would occur when the hardening due to deformation of
the matrix is insufficient to overcome the softening due té‘increasing
porosity, and a net macroscopic non-hardening behavior arises. If
this mechanism is responsible for the flow localization, it seems
likely that the conditions of elevated triaxial stress and substantial
plastic strain, that produce localization in necking elastic-plastic
tensile specimens, would also cause localization near the tip of a
blunted oben_plane strain crack. Of course, the localization of plastic
flow will only occur if no other process of rupture, such as cleavage
or gradual coalescence of a neighboring void with the crack, has
already taken place. The analysis follows the Berg approach, but is
derived from a special case of the work of Rudnicki and Rice [6] on
localization of flow in pressure sensitive materials. In this,
localization in shear is viewed as a constitutive instability, and the
conditions for localization are expressed in terms of the parameters
of a constitutive law that can represent plastic dilation. Such a
constitutive law has beesn daveloped by Gurson [7] for the macroscopic
behavior of a material with voids that dilate during plastic flow under

the action of a hydrostatic tension. In the absence of the voids, the




- 96 -

constitutive law is the classical Prandtl-Reuss form.

The proper approach to the problem of localization in porous
material near a plane strain crack tip would be to formulate the
analysis of the near tip deformation with constitutive relations that
include the effects of the growing voids. This has not yet been done,
even at the approximate level that is represented by Gurson's consti-
tutive law. What is available is McMeeking's [16] analysis of near tip
deformation, including the effects of tip blunting, for a plane strain
crack tip with contained yielding. The analysis is based on the
Prandtl-Reuss constitutive law. If the volume fraction of voids is not
too great, McMeeking's results will serve as a reasonable approximation
to the state of the matrix of a porous near tip field. Gurson's consti-
tutive law allows one to work out the macroscopic strain hardening
rate for a certain volume fraction of hoies, when the matrix hardening
rate and the hydrostatic stress are known or approximated as just
described. By setting the macroscopic hardening rate to zero; which
is the appropriate localization condition under the plane strain
conditions prevailing near the tip, the current volume fraction of
holes .necessary to cause localization can be worked out. The void
growth rates, as calculated by lcMeeking [16] based on the model for
void growth of Rice and Tracey [8] and Rice and Johnson [9]; can be
used to estimate the volume fraction of void nucleating particles
(taken identical to the initial volume fraction of holes) that would cause
a given%current volume fraction of holes. In this way, the model fér ductile
rupturs can be tied to the microscopic features of the material,

subject to knowledge of which family of particles provide the voids
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involvad in the localization process, and over what size scale the
localization takes place.

The discussion above, and the development of the model in the
next few sections, is based on the idea that a pre-existing porésity
leads to a localization of flow when the>macroscopic hardening rate
of the voided material falls to zero, at least in a state of plane
strain. Another, quite separate, point of view may be taken. Rice [4]
has suggasted that the localization of flow may possibl& take place,
in the absence of prior hole_nucleation and growth, as an inherent
instability in the plastic flow process. If the flow localization occurs
in the absence of prior hole nucleation and growth, then it is likely
that voids will nucleate from particles Qithin the band of intense
deformation. These holes would grow and possibly coalesce to cause a

rupture in the band. This situation s=zems to arise in a plastically

deformed AISI 4340 steel observed by Cox and Low [5]. A band of intense

deformation containing small cavities runs between two larger cavities.
There are no signs of porosity on the scale of the smaller cavities
on either side of the band of deformation. As shown, for example, in

micrographs by Green and Knott [10], localized shearing occurs near

crack and notch tips. But, as far as localization of flow of any kind
leading to ductile rupture from crack tips is concerned, there is not
the same clear direct evidence of it as is available for rupture follow-
ing localization in tensile specimens as presented by Rogers [1], Bluhm
and Mor»isey [2] and Cox ana Low [5]. However, Rice and Johnson [9]
have developed a modei for ductile rupture at crack tips due to hole
growth which involves the gradual thinning down to zero of the ligament

between the crack tip and the void. Fracture data taken from some
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materials fits the model quite well, while in other cases the model
overpradicts the frécture toughness [9,10,16]. Hahn and Rosenfield
[11] and Green and Knott [10] have suggested that in the materials
where the fracture toughness is overpredicted, a localization of de-
formation between the void or an array of voids and thes crack tip sets
in before the iigament between the void and the crack tip is narrow
enough to start thinning down.. In addition, Hahn and Rosenfield have
noted that in éertain aluminum alloys, which have fracture ductilities

less than predicted by the model of Rice and Johnson, there is a

tendanecy for plane strain deformation to localize into bands. This
localization of flow is presenf to some extent in all the materials

studied by Hahn and Rosenfield.
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CONDITION FOR LOCALIZATION OF PLANE STRAIN
FLOW IN A PRESSURE SENSITIVE MODEL

The form of constitutive law which can be used to represent pressure
sensitivity and plastic dilation is

v 1 y
%15 7 Fijke (Pyq - hoPk!Z,Orscrs> , (1)

V ) . . . .
where o 13 the Jaumann rate of trus stress, D 1is the rate of daformation,

~ -

E is the tensor of elastic moduli assumed here to correspond to isotropic

-~

response with shear modulus G and Poisson ratio v , ho is the rate of har-

dening,
' . -
Py = ls'oij/zc + (e,/:a)csij .
' -
Qij = /3_oij/2o + (11/3)6:.Lj .

1 -2 3
where o is the true stress deviator and o = 5

oijoij . Thé term w is
the rate of increase with pressure of the flow stress in shzar. Note that

if uw =8 =0, the constitutive law is the classical Prandtl-Reuss form as
discussed by McMeeking and Rice [12].

The approach that Rudnicki and Rice [6] took to the problem of localization
was to assume that deformation priof to localization was everywhere homogeneous.
The inception of localization was assumed to take place when the strain rate
in a narrow planar band could be different from elsewhere. They worked out the
kinematic and dynamic conditions for this. This localization can take place
even under very constrained boundary conditions [4], so that the bifurcation
may be viewed as a constitutive instability rather than a bifurcation of the
solution to the governiﬁg’equations of a finite body deformed by a given set
of boundary conditions. But the fact that localization conditions are met

does not mean that it will occur. The condition basically allows the growth

of a perturbation. The localization condition can be stated as the attainment
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of a critical value the hardening modulus, and its value depends on
tﬁe orientation of the plane of localization relative to the principal
stress directions in the homogensous field. As the material deforms
homogeneously prior to localization, the hardening modulus will fall.
Thus, the first possible localization is on.the plane with the highest
associated critical hardening modulus. In plane strain, the Qalue of
the hardening modulus that will permit localization of flow is [4]

(l+\))2 (u- 2

h /G = u-8) , . (2)
18(1-v) -

o
where G is the elastic shear modulus and v 1is Poisson's ratio for an
isotropic material. - Note that in'deriving'this;‘Rudnicki and Rice neglected
rotational effects on the stfess rate. This condition, strictly speaking,
applies to a plane lying in a homogeneous deformation and stress field. But
it seems plausible to apply it to an infinitesimal segment of a curved
surface lying in a non-homogeneous field. If the condition for localization

is met everywhere on the curved surface, then it would seem possible that

localization could arise on the curved surface.
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CONSTITUTIVE LAW FOR ELASTIC-PLASTIC MATERIAL WITH VOIDS

Thz constitutive law developed by Gurson [7] is simply a yield
surface and an associated flow rule, but one in which the equivalent
yield stress depends on pressure. QGurson utilized a number of approx-
imate flow fields around voids to find approximations to the pressure
sensitivity of the yield surface. Gurson's yiz2ld surface that will be

.

used here is

! 1

3
= J. T g 2
(0. .,5. F) = 2L 4 or cosh<;lﬁg)- (1+£) = 0,  (3)
l]’A 62 2g .
A A

where Uij is the macroscopic state of stress, N is the volume

average tensile flow stress in the matrix material and f is the

volume fraction of holes. During a sustained process of plastic flow

+ 2520
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which follows from the consistency condition '($ = 0) . The macro-

scopic rate of stress working per unit volume, oijDij » where D

is the macroscopic rate of deformation, is equal to the rate of

stress working in the matrix material. The average equivalent strain

rate in the matrix material may be approximated by GA/h » where h

is the volume average hardening rate of the matrix material. Then the

rate of stress working per unit macroscopic volume is EA A(l-—f)/h
and so [7]
. ho,.D..
0, (1-£)

When one takes note of the kinematic relation

f = (.1-f)Dkk .
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and that Berg [3] and Gurson [7] following Bishop and Hill [17], have

argued that a flow rule of the form

9
DI.). = A _—‘—80¢ s
1] ij

where DY is the plastic part of D , may bz applied to a macro-

scopic element of porous material, it follows that

P =Ll 3 3 ¥
. o - el X ’
i] H aoij aokl k& (6)
where
(o] o] 2
i o]
H = [fsinh(%}(-)(_}f‘_j + (1+F2) - 2of COSh< }jk>:, < 4h

o (6]
+ §££E£2£- [cosh <f¥k> - %]sinh <;§E>
%A 20p 20,

Notz that 3¢/3oij has exactly thas form of Pij and Qij to within
scalar multiplying factors. All that is required to get (6) into the
form of (1) is to add an elastic reponse to (6) and rearrange terms. It
is then obvious that in this constitutive law Pij = Qij . As a
consequence u = B , and ho = 0 in (2) will permit localization of flow
to take place. This means that H = 0 1is a condition that permits

the localization of flow in plane strain for the materials with yield

given by (3). In terms of the matrix hardening rate, the localization

condition is

g g
6(1-f)2 £ |cosh —gk- - f| sinh —%E
' h 2. 2¢ 2'.4-
. crxt Y A I R (7)

- o a o 2
‘A [2(1+f2) - uf cosh<—}f—k—> + =K £ sinn <—’—fl<->:|
’ 20A Op 20,
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/

This relationship has been plotted in fig. 1l as h versus

crit 0A 0kk

for various volume fractions of holes, f . The larger the value of
hCrit vis, the earlier, in terms of strain, the loéalization will take
place. The material with a larger volume fraction of holes is less
stable, and the more hydrostatic tension that is applied; the sooner
localization will take place.

The development in this section is taken from an earlier dis-

cussion by Rice [18].

/o

A
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LOCALIZATION AT A CRACK TIP
The result (7) may be used to calculate ths volume fraction of

holes required to allow localization to take place near a loaded crack

(]

" tip in containasd plane strain yielding. The results of the finite

element solution of McMesking [16] are suitable for providing the near:
tip stress and daformation field around a blunted crack tip. This
analysis was carried out using the Prandtl-Reuss equations, and a

hardening law of the form

(fr/do)l/N :'(Q/oo) + BGEP/UO ,

= 3 ! B fs .
where T2 = E'TijTij s T 1s the Kirchhoff stress dsviator, Tt = [FIO

where |F| is the ratio of volume of a material element in the current

state to its volume in the undeformed state, o 1is the true stress

tensor, O is the tensile yield stress in terms of Kirchhoff stress

2

and G is the elastic shear modulus. lote that e&° = f(%—Dingj)l/zdt

where DP is the plastic part of the rate of deformation tensor

Dij = (avi/axj+avj/axi)/2 , where v 1is velocity, x is the current

material position and t is time. The results for the material with

N = 0.1 and oo/E = 1/300 , where E 1is Young's modulus, was chosen
for the localization analysis. The near tip stress and plastic strain
for this case is shown in fig. 2, which is taken from [16].

The terms and h_ in (7) will be simply equated

%k * %A

to the sum of the normal stresses, the flow stress and the hardening rate

it

(known as a function of local egquivalent plastic strain or stress Oy )
in the finite element solution. This is somewhat approximate, but in
the absence of the solution that takes into account the presence of

the holes, it will suffice. With all other terms known, f may be
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evaluated in (7) by a trial and error approach. The values of f that
will allow localization to occur around the crack tip are shown in fig. 3
where the loci are drawn in the undeformed configuration. As can be
szen, the closer a point is to the crack tip,with distance phrased as
multiples of the current crack tip opening displacement, b , the
smaller the volume fraction of holes that is required to allow local-
ization to take place. This reflects the fact that there is an area

of high triaxial stress and large plastic strain near the crack tip,

as discussed by Rice and Johnson [9] and McMeeking [16].

Since the near tip stress and deformation field does not change
in magnitude, after sufficient opening, but spreads out as the crack
tip opening displacement is increased, localization can occur for very
small crack tip opening displacements, unless the conditions for
localization are required to prevail over a characteristic finite
distance before the failure takes place. That means that localization
would occur at an angle of about 45° to the X-axis if the current
(versus initial) volume fraction of voids were fairly evenly ;pread
over the- crack tip region. For localization to occur on the plane of
symmetry, there would have to be a much greater concentration of voids
there than elsewhere.

An approximate c;lculation of the volume fraction of voids in the
unde formed configuratién, before load is applied to the cracked body,
may be made using fig. 4, which is taken from [16]. This figure is the
result of using the void growth model of Rice et al. [8,9] to célculate

the ratio of deformed to undeformed size of an originally spherical

void growing in the near tip region. Only information for the X-axis
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and the line at 45° to the X-axis is available from fig. 4. The
horizontal scale in fig. 4 is the inverse of the distance of the
position of the void in the undeformed configuration from the

crack tip, measured.in units of current crack tip opening displacements.
In addition, the ratio of current void volume fraction to unde formed
volume fraction.

_ 2.3/2
f/fo = (ala2/ao) s

since the void is deformed into an ellipsoid with dimensions a
a, and Vala2 . Using this, fig. 3 may be converted into anothar

L

diagram of the same type, but concerned with £ rather thaﬁ F, if
fuller information on void growth rates was available. instead,
fig. 5 has been drawn, which is a plot of the crack opening dispiacement
at the time localization can first occur, measured in units of the
characteristic distance over which localization takes place, as a
function of the volume fraction of holes in the undeformed configuration
for the two void positions for which results are available. The void
growth calculations in [16] are for a void which starts growing as soon
as it enters the plastic zone. That means that fo in fig. 5 can be
interpreted as the critical volume fraction of particles which nucleate
cavities around themselves after negligible amounts of plastic déformation.
As such, the usefulness of fig. § is somewhat restricted, and an improve-
ment would come from incorporating a nucleation criterion in the cal-
culations.

It is of interest that over most of the range of fo plotted in
fig. 5, the localization is predicted to occur at or'near 45°% to the axis
of symmetry. This means that the first amount of crack growth due to

this type of ductile rupture in materials with a volume fraction of void



nucleating particles larger than about .01 is predicted to be

angled crack growth. It is only at the lower volume fractions of

void nucleating particles that a changeover to straight ahead growth -
occurs. It is difficult to estimate where the changeover takes place
in terms'of fO and it will, of course, be spread over some range of
fo as the crack growth direction gradually approaches the axis of
symmetry. Bergz [3] has indicated that localization of flow in a
porous material is a mechanism by which an advancing crack can zig-zag.
Van den Avyle [13] has observed zig-zag crack growth in fracture
toughness specimens of 4340 and maraging 300 steel. He notéd that the

wavelength of the zig-zag growth could be correlated with K. . This

Ic

[}

would seem to fit in with the concept of-ductile rupture due to lo-

localization of flow initiating over a characteristic distance once

the crack tip opening displaéement is large enough. Of course, once .

' the crack has grown out of the region near the blunted open crack tip,

the analysis just described is not relevant. Another point is that

Van den Avyle observed no general porosity, so it is not clear what

role porosity plays in the fracture process in these steels. However,

Cox and Low [5] have observed the nucleation of holes, their growth

and coélescence in the same alloys. But the observations are not con-

clusive.as to what mechanism causes the localization of flow in such

materials (that is, it.is not clear whether porosity or some instability

of the plastic flow within the unvoided matrix causes the localization).
The development so far has concerned only one value of the har-

dening exponent, N . To properly compare the behavior of different

materials, the dependence of the behavior on the hardening exponent

should, of course, be taken into account. That the localization of flow




due to pre-existing porosity depends on the hardzning rate is obvious
by considering a matrix material that doss not harden. In that case,
a macroscopic element containing growing voids will experience strain
softening. It follows that the condition for localization of flow in

plane strain, namely, that the macroscopic hardening rate be zero or

less, will be met as soon as voids start to grow. Thus, a non-hardsning

'matrix material would allow rupture from a crack tip due to localized
flow as soon as eﬁough voids were nucleated around the crack tip to
give rise to a macroscopic porosity. The critical crack tip opening
displacément at the onset of fracture would probably be much smaller
in a specimen in which the matrix material is non-hardening compared
to the critical COD in a specimen made from a matrix material that
hardens. To fully establish the depzndence of fracture toughness on
the strain hardening exponent in this model would require results
intermediate to N = 0 and N = 0.1. The cdeduction from the results
fof N=0 and N = 0.1. fits in with the suggestion by Krafft [19]
that the plane strain fracture toughness correlates directly with N
in a number of materials that fail by ductile rupture. His corre-
lation involves a zero toughness when N = 0 , a somewhat unreasonabile
result, but it presumably really indicates a dramatic reduction of the

toughness in the non-hardening materials. ‘



- 109 -

COMPARISON OF LOCALIZATION MODEL RESULTS
WITH SOME DATA FOR ALUMINUM ALLOYS

Van Stone, Merchant and Low [14] have carried out an extensive
metallographic analysis of some 2000 and 7000 series high strength
aluminum alloys. They also provided some mechanical properties of the
alloys, such as plane strain fracture toughness, yield strength and
hardening exponent. Van Stone et al. observed that rupture in these
alloys commenced with voids nucleating from a family of large particles.
These voids grew and eventually coalesced, and they would presumably
coalesce with the crack tip if they were sufficiently near, constituting
the ductile rupture that is suggested by'the fracture surface appearance.
Rice [20] has calculated the critical crack tip opening displacement. at
fracture from the data of Van Sfone et al., and concluded that it is
approximately equal to the average nearest neighbor spacing of the
particles which first nucleate voids. McMeeking [16] has used the data
~in [14,20] to plot the critical crack tip opening displacement at fracture
versus the spacing of the void nucleating particles. The critical COD
is normalized by the spacing of the void nucleating particles, and on
the other scale the spacing of the void nucleating particles is nofmalized
by their diameter. According to a model due to Rice and Johnson [9]
involving the growth of voids and their gradual coalescence with. the
crack tip, the COD to particle spacing ratio can be related to the
spacing to diameter ratio. But the model overestimates the critical COD
by a factor of about 2 in the 7000 series aluminums while it predicts the
critical COD for the 2000 series quite well. Hahn and Rosenfield [11]

have suggested that a localization of flow in the near tip region, leading
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to rupture, intervenes in the 7000 séries alloys before the void starts
to gradually coalesce with the crack tip. As a result, the critical COD
at the onset of fracture is less than that predicted by the model of
Rice and Johnson.

It is possible that the localization of flow is porosity induced.
To aid an investigation of this, some data for the alloys have been
tabulated. Some of the data is based on the model for ductile rupture
due to porosity induced flow localization, as represented by fig. 5.
This model is based on results for a material with power law hardening
exponent N , of 0.1 and a uniaxial tensile yield strain of 1/300. As
such, the development below takes no account of the influence of the
different hardening properties of each alloy, although hardening pfo-
perties would seem to play an important, if not dominant role in the
rupture caused by porosity induced flow localization.

In the Table, the alloys are listed along with fo s the volume
fraction of particles that Van Stone et al. observed to nucleate voids.
From fo s the ratio of crack tip opening displacement to characteristic
distance, b/Xo » at the first possibility of localization of
flow due to porosity can be inferred from fig. 5 and the results are
entered in the Table. Finally, the ratio of crack tip opening dis-
placement at fracture, b , to the planar nearest neighbor spacing
of the particles from which the holes nucleate, D , can be
calculated from the data in [14]. This allows calculation of ’XélD .
the ratio of the inferred characteristic distance for localization to
occur to the planar nearest neighbor spacing of the particles. As can
be seen from the Table, the inferred characteristic distance in the
2000 series alloys is 2 to 3 times the planar nearest neighbor spac-

ing of the particles from which voids nucleate. However, the
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7000 series alloys suggest a smaller number, of the order of the planar
nearest neighbor spacing. Additionally, since Rice [20] deduced the
three dimensional nearest neighbor spacing of the void nucleating
particles to be approximately equal to the critical crack tip opening
displacement, the inverse of the predicted b/Xo »values in the Table
gives the ratio of Xo to the three dimensional nearest spacing

of the particles. This means that the inferred characteristic distance
is approximately 2 to 3 times the three dimensional nearest neighbor
spacing of tﬁe void nucleating particles. It is not clear which spacing
of the particles, planar or three dimensional, would be significant

to the localization process. However, if it is asgumed that a local-~
ization of flow can take place if the conditions for localization are
met over an area including, very roughly, 2 to 3 three dimensional
interparticle spacings,then localizatisn of flow due to pre-existing
porosity could have caused the rupture in both the 2000 and 7000 series
alloys. Similarly, the behavior of the 2000 series alloy could be
predicted if localization conditions had to be met over two planar
interparticle spacings before rupture takes place. But this would
overestimate the toughness of the 7000 series alloys. The conclusion
would seem to be that localization of flow of the Berg type is unlikely
to be causing the rupture in both 2000 series and 7000 seris alloys,

if indeed it causes the rupture in either one or the other series of
alloys. Of course, these comments are based on a model which, as yet,
takes no account of the differences in yield strength and hardening
behavior of the different alloys. As discussed already, the hardening

properties of the alloy would influence the localization behavior quite
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significantly. The 2000 series alloys that Van Stone et al. used in
their study all have hardening exponents that are smaller than the
hardening exponenté of the 7000 seris alloys, which were closer to 0.1.
Since smaller hardening exponents would probably lead to earlier
localization, the fracture behavior of tha alloys is more difficult to
resolve with a porosity-localization model than the tablulated data
suggest. As a result, it seems fair to conclude that if localization
of flow does explain the fracture behavior of the aluminum alloys
discussed, the localization does not arise due to porosity in both
series of alloys. If localization of flow due to the porosity'
mechanism éccurs in either type of alloy, it would seem only possible
that it occurs in the 2000 series alloys. If localization of Flow
occurs in the 7000 series alloys, it would appear that it arises from

some instability of the plastic flow not due to "porosity softening.”



CONCLUSIONS

An approximate approach to incorporating the effect of porosity
on the macroscopic hardening rate of material nzar a hlunted crack
tip, loaded by mode I type loads, indicates that localization of flow
can occur near the crack tip. The localization of floy will cause
some crack growth at an angle to the plane of the crack by preference
to straight-ahead growth, at least for a certain range of volume
fractions of void nucleating particles. The hardening properties of
the material will greatly influence the tendency for localization of
flow due to porosity to occur. If the matrix material is non-
hardening, the localization could occur as soon as plastic straining
occurs if voids are already present. This would seem to be in agree-
ment with an observed correlation of increasing toughness with

increzsing hardening exponent.
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TABLE

Alloy £ b/X b/D X /D
(0] ] (o]

2014-T6 .029 .28 .62 2.2
. 2024-T851 ©,027 .29 .77 2.7
2124-T851 .010 42 .87 2.1
7075-T7351 .00k .61 .85 1.4
7079-T651 .00L .61 .62 1.0
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LIST OF FIGURE CAPTIONS

Fig.

Fig.

Fig.

Fig.

Sm

1

n

5

The volume average rate of hardening of the matrix in a
material with voids that allow localization of flow into a
narrow band as a function of the sum of the normal stresses,
ckk’ and of the volume fraction of holes, based on Gurson's

[7] constitutive law.

Plot of stress /00 and plastic strain around the loaded

o
00 )
blunted crack tip for GO/E = 1/300 and ¥ = 0.1 . Note . 9
is the yield stress in tension and R and O are dgfined'
for the position of the material in the undeformed configu-

ration.

Current volume fraction of voids, f , that is sufficien?ly
large to allow the localization of flow in the stress and
deformation field around a blunted notch tip of width b .
The material has a tensile yield étraiﬁ of 1/300 and a
hardening exponent of 0.1. The loci are drawn in the un-

deformed configuration.

Plot of dimensions of a void, growing in the near tip field
in the material with oO/E = 1/300 and N = 0.1 , versus
the crack tip opening displacement. The void starts growing

as soon as it enters the plastic zone.

Ratio of crack tip opening displacement b to characteristic
distance Xo over which localization occurs as a function of
the volume fraction of particles fo s, which nucleate the

holes that induce localization of flow near the crack tip.
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