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ABSTRACT 

The purpose o f  the ORNL Fusion Power 

Demonstration Study (Demo study)  i s  t o  develop 

a p lan  f o r  demonstrating, i n  th.is century, the  

commercial f e a s i b i l i t y  o f  fus ion  power based 

on the  tokamak concept. The two-year study 

was i n i t i a t e d  i n  FY 1976, and t h i s  i n t e r i m  

r e p o r t  summarizes the r e s u l t s  f o r  FY 1976. 

Major r e s u l t s  inc lude:  

1 )  the o u t l i n e  o f  a three-phase p lan  f o r  

demonstrating the commercial f e a s i b i l i t y  of 

tokamak fus ion  power i n  t h i s  century; 

2 )  a parametr ic ana lys is  o f  tokamak costs  

which provides the  economic bas is  f o r  the demon- 

s t r a t i o n  plan; and 

3 )  a c r i t i c a l  eva lua t ion  o f  the technolog- 

i c a l  d i r e c t i o n s ,  design approaches, and plasma 

c h a r a c t e r i s t i c s  which serve as the  technica l  

bas is  f o r  the demonstration plan. 



1. SUMMARY 

Don S te iner  

1.1 INTRODUCTION 

The purpose o f  the ORNL Fusion Power 

Demonstration Study i s  t o  develop a p lan  fo r  

demonstrating, i n  t h i s  century, the commercial 

f e a s i b i l i t y  o f  f u s i o r ~  power based on the 

tokanlak concept. The Fusion Power Demonst.ra- 

t i o n  Study (Demo study)  was i n i t i a t e d  i n  FY 

1976 as a two-year study. This  i n t e r i m  r e p o r t  

summarizes the r e s u l t s  o f  the  Demo study f o r  

FY 1976. A f i n a l  r e p o r t  w i l l  be issued a t  

the conclusion o f  FY 1977. 

I n  order  t o  demonstrate commercial fea- 

s i b i l i t y ,  the techn ica l  and economic feas i -  

b i l i t y  o f  the tokamak concept f o r  power gen- 

erat ion '  must be c l e a r l y  establ ished through , 

successful operat ion o f  demonstration f a c i l i -  

t i e s  under p r a c t i c a l  u t i l i t y  condi t ions.  A 

p lan  f o r  demonstrating commercial f e a s i b i l i t y  

must be based on technologica l  d i r e c t i o n s ,  

design approaches, and plasma c h a r a c t e r i s t i c s  

which insure the economic competi t iveness o f  

the  tokamak concept as a power generat ion 

system. However, n o t  on ly  must tokamak fu -  . 

s ion  power be perceived as a des i rab le  goal,  

b u t  a l so  the cos t  and r i s k  o f  achiev ing t h a t  

goal must be viewed as acceptable. Thus, the  

cos t  o f  the  technology and the  f a c i l i t i e s  r e -  

qu i red  For demonstrating commercial f e a s i b i l -  

i t y  must represent acceptable r i s k s  t o  p u b l i c  

and p r i v a t e  groups. I f  commercial f e a s i b i l -  

i t y  i s  t o  be r e a l i z e d  i n  t h i s  century, i t  i s  

our  judgment t h a t  the number o f  new technolo- 

g ies  and the  number o f  f a c i l i t i e s  requ i red  

f o r  demonstration must be minimized. I n  

c a r r y i n g  ou t  the Demo study, we are emphasiz- 

i n g  the  a p p l i c a t i o n  o f  c u r r e n t  and near-term 

technologies. I t  i s  our op in ion  t h a t  such an 

approach wi 11 enhance the acceptabi 1 i t y  o f  

the p lan f o r  demonstrating commercial f e a s i -  

b i l i t y  w i thou t  compromising the economic 

p o t e n t i a l  o f  fus ion  p6wer systems. 

As a f i n a l  p o i n t ,  i t  must be emphasized 

t h a t  the re  i s  no unique se t  o f  technologica l  

d i r e c t i o n s ,  engineering designs, o r  plasma pa- 

rameters which o f f e r s  promise f o r  the demonstra- 

t i o n  o f  commercial f e a s i b i  1 i t y .  Several such 

sets, no doubt, do e x i s t .  I n  t h i s  study we seek 

t o  d e f i n e  one promising s e t  o f  techr~ologies,  

design approaches, and plasma c h a r a c t e r i s t i c s .  

Thus, our  o b j e c t i v e  i s  t o  develop a plan, n o t  

the plan, f o r  demonstrating commercial f e a s i -  

b i l i t y .  

1.2 ECONOMICS CONSIDERATIONS AND PLASMA 
IMPLICATIONS 

I n  order  t o  e s t a b l i s h  the  economic poten- 

t i a l  o f  tokamak power p lants ,  we a re  focus ing 

on both the p l a n t  costs  and the  operat ion and 

maintenance costs .  The p l a n t  costs  a r e  being 

s tudied us ing a systems cos t ing  model. With 

t h i s  model we a re  examining the  illlpact o f  tech- 

nology, engineering design, and plasma opera t ing  

c h a r a c t e r i s t i c s  on tokamak p l a n t  costs .  I n  t h e  

area o f  operat ion and maintenance costs, our 

approach i s  t o  d e f i n e  and pursue those engineer- 

i n g  design opt ions which w i l l  maximize the r e l i -  

a b i l i t y  o f  key components and f a c i l i t a t e  the 

maintenance o f  the  tokamak system. 

On the  basis  o f  our  p l a n t  cos t  studies, i t  

appears t h a t  the tokamak concept can achieve 

c a p i t a l  costs  which a re  i n  the range o f  those 

p red ic ted  f o r  the Liquid-Metal Fast Breeder 

Reactor (LMFBR). Moreover, u n c e r t a i n t i e s  w i t h  

regard t o  the economic p o t e n t i a l  o f  tokamak 

power p lan ts  a re  associated p r i m a r i l y  w i t h  un- 

c e r t a i n t i e s  i n  the expected plasma physics per-  

formance and n o t  w i t h  foreseeable l i m i t a t i o n s  

i n  the areas o f  technology and engineering. The 

tokamak can achieve economic competi t iveness 

w i t h  the  LMFBR i f  the f o l l o w i n g  se t  o f  plasma 

physics c r i t e r i a  i s  s a t i s f i e d ;  again i t  i s  em- 

phasized t h a t  the  f o l l o w i n g  s e t  o f  c r i t e r i a  rep-  
resents a promising s e t  b u t  n o t  a unique one. . 



1. S ize sca l ing .  The tokamak plasma 

should be capable o f  ach iev ing  i g n i t i o n  w i t h  

plasma r a d i i  i n  t h e  range 1-2 m and f o r  associated 

t o r o i d a l  f i e l d s  on ax is  i n  the  range 4.5-3.0 T. 

Th is  range o f  s i z e s  and f i e l d s  requ i res  a s i ze  

s c a l i n g  performance about an o rder  o f  magni- 

tude b e t t e r  than t h a t  p red ic ted  by f u l l  

t rapped p a r t i c l e  sca l ing  and i s  c o n s i s t e n t  

w i t h  i g n i t i o n  requirements p red ic ted  by empir- 

i c a l  s c a l i n g  r e l a t i o n s h i p s .  

2. Beta. Under opera t inq  cond i t i ons .  

p o i n t  model c a l c u l a t i o n s  i n d i c a t e  t h a t  t h e  

plasma average beta would have t o  be about 

10-15%. The p o i n t  model c a l c u l a t i o n s  do n o t  

account f o r  d e n s i t y  and temperature p r o f  i 1 e 

e f f e c t s .  When such e f f e c t s  a r e  inc luded,  the 

requ i red  value o f  average beta may be s i g n i f i -  

c a n t l y  l e s s  than ~10-15%,  perhaps ~ 5 - 1 0 % .  

Such values o f  beta are s t i l l  h igh  compared t o  

values obta ined i n  cu r ren t  experiments b u t  are 

compat ib le  w i t h  recent  c a l c u l a t i o n s  o f  h igh  

beta tokamak operat ion.  

I n  a d d i t i o n  t o  s i ze  s c a l i n g  and beta, 

successfu l  s o l u t i o n s  i n  t h e  areas o f  i m p u r i t y  

c o n t r o  1 ,  plasma heating, and piasma f u e l i n g  

a r e  c r i t i c a l  t o  t h e  economic competi t iveness 

o f  tokamak power systems. I n  t h e  Demo studies, 

we have assulllrd t h a t  successful s o l u t i o n s  t o  

these problems car1 be achieved. However, we 

a r e  cons ider ing  the  impact o f  d i v e r t o r s  on the 

o v e r a l l  engineer ing design and the  economics 

o f  the  tokamak power p lan t .  

Assuming t h a t  the precedinq plasma phy- 

s i c s  c h a r a c t e r i s t i c s  can be achieved, then a 

commercial tokama k fus ion  power p l a n t  would 

c o n s i s t  o f  mu1 t i p l e  (2-5) tokamak r e a c t o r  

u n i t s  shar ing a number o f  common elements. 

Two key elements shared by these m u l t i p l e  

u n i t s  would be t h e  pulsed power suppl ies f o r  

d r i v i n g  the  plasma cur ren t  and t h e  pulsed 

power suppl ies which prov ide the plasma supple- 

mental heat ing.  Each r e a c t o r  u n i t  might  pro-  

duce about 2000 MW o f  thermal ou tpu t  power; 

t h e  p rec ise  value o f  the thermal output  o f  

each u n i t  would be determined both by plasma 

phys ics considerat ions and by cns t  o p t i m i z a t i o n  

considerat ions.  The f o l l o w i n g  po in ts  are noted 

w i t h  regard t o  the commercial tokamak fus ion  

power p l a n t .  

1. The c a p i t a l  cos t  t rends f o r  tokamak 

power systems i n d i c a t e  tha t ,  a t  a  f i x e d  value o f  

beta, u n i t  c a p i t a l  costs  decrease w i t h  decreas- 

i n g  p l a n t  s i ze .  This  t rend  i s  con t ra ry  t o  the  

cos t  trends o f  f i s s i o n  reac to rs  f o r  which u n i t  

c a p i t a l  costs  favor  increased p l a n t  s ize.  

2. The plasma c h a r a c t e r i s t i c s  requ i red  f o r  

t . h ~  rommcrcial u n i t s  a r c  essentially the  same U S  

those requ i red  fo r  an ign i t . i nn  demonstratinn de- 

v ice.  Thus, many o f  the  components developed 

f o r  i g n i t i o n  demonstrat ion w i l l  be p r o t o t y p i c a l  

o f  the  components requ i red  f o r  commercial power. 

This  i s  an impor tant  observat ion and, as w i l l  be 

noted l a t e r ,  con t r ibu tes  t o  the  p o s s i b i l i t y  o f  

min imiz ing the numbcr o f  f a c i l i t i e s  requ i red  f o r  

demonstrating commercial f e a s i b i l i t y .  

3. The mot i va t ion  f o r  pursu ing a power 

p l a n t  c o n s i s t i n g  o f  m u l t i p l e  r e a c t o r  u n i t s  t i e d  

i n t o  a common pulsed e l e c t r i c a l  system i s  based 

on our  cos t  s tud ies which show t h a t  the pulsed 

e l e c t r i c a l  system o f  t h e  tokamak represents 

about 25% o f  the t o t a l  p l a n t  cos t .  This con- 

t r a s t s  w i t h  f i s s i o n  power p lan ts  i n  which the 

e l e c t r i c a l  p l a n t  system cos t  represents on ly  

about 5% o f  the  t o t a l  p l a n t  cost .  The pulsed 

e l e c t r i c a l  equipment i s  requ i red  t o  i n i t i a t e  the  

plasma cur ren t  and achieve plasma hca t ing  and 

operates f o r  on ly  a f r a c t i o n  o f  each cyc le.  For 

example, w i t h  a 20-min burn t ime and a 1-r ' in  

downtime, the  pulsed equipment would be oprr .a t iny  

fo r  on ly  about 1% o f  the  cyc le.  I t appears t h a t  

t h i s  pulsed equipment could be economical ly and 

convenient1 y  shared among several u n i t s .  

4. The p l a n t  c o s t  s t u d i ~ s  i n d i c a t e  t h a t  

neutron w a l l  loadings i n  the  v i c i n i t y  o f  2-4 MW/ 
2 m w i l l  r e s u l t  i n  near-optimum p l a n t  costs. Such 

w a l l  loadings must a l s o  lead t o  acceptable p l a n t  

a v a i l a b i l i t y  and costs  o f  operat ion and mainte- 

nance. I n  our studies, we have reached the  pre- 

l i m i n a r y  conclusion t h a t  w a l l  l i f e t i m e s  o f  25  

years w i l l  n o t  s i g n i f i c a n t l y  impact the p l a n t  

a v a i l a b i l i t y .  Therefore, i t  appears t h a t  i n t e -  
2  g r a l  w a l l  loadings o f  about 10-20 MW-yrlm should 



be acceptable f o r  the s t r u c t u r a l  mate r ia l  

performance. 

1.3 TECHNOLOGICAL CONSIOERATIONS 

On the basis  o f  our studies, i t  appears 

t h a t  the  technologica l  requirements fo r  com- 

merc ia l  tokamak fus ion  power can be s a t i s f i e d  

w i t h  the f o l l o w i n g  technology base. 

1. The b lanket  s t r u c t u r a l  mate r ia l .  It 

i s  our judgment t h a t  some type o f  a u s t e n i t i c  

s t a i n l e s s  s tee l  w i l l  be capable o f  achiev ing 

the des i red 10-20 ~ ~ - ~ r / m ~  i n t e g r a l  w a l l  load- 

ing .  Moreover, the unique hel ium product ion 

reac t ions  associated w i t h  n icke l -bear ing  

a l l o y s  i n  thermal neutron f luxes  a l low an ex- 

c e l l e n t  s imu la t ion  o f  fus ion  reac to r  neutron 

r a d i a t i o n  e f f e c t s  i n  e x i s t i n g  f i s s i o n  reactors.  

Although much a d d i t i o n a l  work w i l l  be requ i red  

t o  qua1 i f y  an a u s t e n i t i c  s t a i n l e s s  s t e e l  f o r  

use i n  commercial fus ion  power p lants ,  we are 

very en thus ias t i c  about the prospects f o r  

such an a l l o y .  A t  the same t ime we recommend 

continued work on r e f r a c t o r y  metals, e s p e c i a l l y  

niobium- and vanadium-base a l l o y s .  

2. The b lanket  coolant.  I n  pursuing the 

choice o f  coolant,  major emphasis was placed 

on the coolant  c i r c u i t  being capable o f  opera- 

t i n g  a t  low pressure. On t h i s  basis, i t  

appears t h a t  sodium-potassium s a l t s  ( o f  which 

n i t r a t e - n i t r i t e s ,  hydroxides, and ch lo r ides  

are candidates) o f f e r  the most promise. The 

n i  t r a t c - n i  tri t e  s a l t  mix tures have been used 

most ex tens ive ly  i n  i n d u s t r i a l  app l i ca t ions ,  

and there fo re  they have been recommended f o r  

pr imary considerat ion.  These s a l t  mix tures 

e x h i b i t  r e l a t i v e l y  low me1 t i n g  po in ts  ( ~ 1 5 0 ~ ~ )  

and a lso  they a re  r e l a t i v e l y  inexpensive 

( -$ l /kg) .  The s a l t  thermal s t a b i l i t y  and 

c o m p a t i b i l i t y  w i t h  i ron-base a l l o y s  seem ac- 

ceptable t o  temperatures o f  %50o0c. A dcvcl - 
opment program w i l l  be requ i red  t o  determine 

the u l t i m a t e  a c c e p t a b i l i t y  o f  these s a l t s  i n  

a fus ion  reac to r  environment. We recommend 

t h a t  hel ium and l i q u i d  l i t h i u m  be pursued 

concurrent ly  as p o t e n t i a l  b lanket  coolants. 

3. The breeding m a t e r i a l .  I t appears t h a t  

l i q u i d  l i t h i u m  o f f e r s  the g rea tes t  p o t e n t i a l  f o r  

the breeding m a t e r i a l .  L i th ium y i e l d s  the h igh-  

e s t  f l e x i b i l i t y  w i t h  regard t o  t r i t i u m  breeding. 

I t  has good thermal p roper t ies  and acceptable 

chemical c o m p a t i b i l i t y .  Much f u r t h e r  work i s  

s t i l l  requ i red  i n  the  areas o f  t r i t i u m  recovery 

and MHD e f f e c t s .  

4. The power conversion system. The rec -  

ommended power conversion system would cons is t  

of a pr imary and in termediate s a l t  loop coupled 

t o  a conventional steam cyc le.  The primary pur-  

pose o f  the  in termediate heat t r a n s p o r t  loop i s  

t o  prevent p ressur i za t ion  o f  the low pressure 

b lanket  by h igh  pressure steam should there be a 

tube leak  i n  the  steam generator.  Assuming a 

pr imary loop s a l t  e x i t  temperature o f  about 450°c, 

a steam cyc le  thermodynamic e f f i c i e n c y  o f  -35% 

can be achieved w i t h  t h i s  power conversi0.n sys- 

tem. The tokamak operates i n  a c y c l i c  mode 

(e.g., a 20-min burn t ime fo l lowed by a 1-min 

downtime, y i e l d i n g  a du ty  c y c l e  f a c t o r  o f  95%). 

S a l t  storage tanks coupled t o  the in termediate 

heat t ranspor t  loop would prov ide the  necessary 

thermal storage t o  insure continuous power t o  

the l i n e  dur ing  t h e  e n t i r e  tokamak operat ing 

cyc le .  

5. The c o i l  system. I t appears t h a t  super- 

conduct ing c o i l  requirements fo r  the  tokamak 

power p l a n t  can be s a t i s f i e d  w i t h  NbTi as the  

superconducting m a t e r i a l .  Moreover, i t  appears 

t h a t  normal conduct ing c o i l s  may a l s o  be f e a s i b l e  

and des i rab le  under c e r t a i n  cond i t i ons .  For ex- 

ample, the  a p p l i c a t i o n  o f  normal conduct ing c o i l s  

i s  n o t  f e a s i b l e  f o r  the  t o r o i d a l  f i e l d  system o f  

tokamak reactors which operate a t  low power den- 
3 s i t y  (-1 MW/m i n  the  plasma) because, a t  low 

power densi ty ,  the  f u s i o n  power ou tpu t  would be 

comparable t o  the ohmic power losses i n  the c o i l  

system. I n  order  t o  get  an acceptable power 

balance, the thermal f u s i o n  power re lease should 

be a t  l e a s t  an order  o f  magnitude g rea te r  than 

the ohmic heat ing losses i n  the c o i l  system. I f  

t'okamaks can operate a t  h igh  power dens i t y  

( ~ 5 - 1 0  Plw/m3 i n  the  plasma) and i f  the  requ i red  

f i e l d  on ax is  i s  i n  the range %3.0-4.5 T, then i t  



appears t h a t  normal conduct ing t o r o i d a l  c o i l s  

may be p r a c t i c a l  i n  some a p p l i c a t i o n s  f o r  r e -  

a c t o r  systems. ~ h & ,  i t  i s  our  conclus ion 

t h a t  t h e  major t h r u s t  o f  a superconduct ing 

magnet development program should be d i r e c t e d  

t o  NbTi and t h a t  ser ious cons idera t ion  should 

be g iven  t o  the  a p p l i c a t i o n  and development of 

normal conduct ing c o i l s  f o r  use i n  tokamak r e -  

a c t o r  systems. Work should, o f  course, con- 

t i n u e  'on advanced superconducting mate r ia l s .  

6. The pulsed e l ~ c t r i c a l  svstem.. I t  

appears t h a t  the  pr imary energy s torage r e -  

quirements o f  the  p o l o i d a l  f i e l d  d r i v i n g  sys- 

tem and the  plasma hea t ing  system can be sa t -  

i s f i e d  w i t h  motor-generator f lywheel  s e t s  

which are s i m i l a r  t o  those being proposed f o r  

t h e  Tokamak Fusion Test Reactor (TFTK). Ad- 

vanced energy s torage concepts, such as homo- 

p o l a r  generators and superconducting energy 

s torage devices, have been proposed f o r  t h e  

energy storage needs o f  tokamak f u s i o n  reac- 

t o r s .  However, our  s tud ies  i n d i c a t e  t h a t  the 

more conventional and c u r r e n t l y  a v a i l a b l e  

technology o f  motor-generator f lywheel  se ts  

w i l l  be acceptable both on the  bas is  o f  engi -  

neer ing  and economics considerat ions.  The 

advanced energy storage concepts should be 

pursued, b u t  they do no t  appear t o  be neces- 

sa ry  f o r  commercial f e a s i b i l i t y .  

I n  order  ' t o  maximize the  re1 i a b i l  i t y  o f  

key r e a c t o r  components and t o  f a c i l i t a t e  the 

maintenance o f  the  tokamak power reac to r ,  we 

a r e  pursuing the  f o l  lowing engineer ing design 

opt ions.  

1 Blank~A..f!.r.st-.w~_1.~ ?!es.~.c1~~~. A major 
i ssue  associated w i t h  the  quest ion o f  f u s i o n  

power p l a n t  a v a i l a b i l i t y  a r i s e s  from a con- 

s i d e r a t i o n  o f  the  r e l i a b i l i t y  o f  t h e  b lanke t  

f i r s t  w a l l .  The i n t e g r i t y  o f  the  f i r s t  w a l l  

w i l l  be determined by s t r u c t u r a l  design c r i -  

t e r i a  which w i l l  account f o r  probable f a i l u r e  

modes caused by hydrau l i c  and therma l l y  i n -  

duced s t ress .  To prov ide a system w i t h  h igh  

re1  i a b i l  i t y ,  the  design margin ( t h e  d i f f e r e n c e  

between actual  s t ress  and a l lowable s t r e s s )  

should be maximized. Moreover, s ince the  e f f e c t s  

o f  r a d i a t i o n  damage (such as loss  of d u c t i l i t y )  

are q u i t e  s e n s i t i v e  t o  the  operat ing temperature, 

i t  appears t h a t  the f i r s t  w a l l  r e l i a b i l i t y  may 

be s i g n i f i c a n t l y  improved by opera t ion  a t  some- 

what lower temperatures (e.g., %400°c) than the 

bu lk  o f  the  b lanket  (e.g., %500°c). The design 

approach pursued i n  the  Demo study w i t h  regard 

t o  the  b lanket  f i r s t  w a l l  the re fo re  has been t o  

minimize thermal and hydrau l i c  stresses i n  the 

f i r s t  wa l l  and t o  operate the f i r s t  wa l l  a t  

such a temperature t h a t  d u c t i l i t y  l o s s  w i l l  n o t  

be a ser ious l i m i t a t i o n ,  w h i l e  a t  the  same t ime 

achiev ing acceptable thermodynamic ef f ic iency.  

2 .  Blanket modular approach. I n  order  t o  

minfml ze downtime and f a c i l i t a t e  ~ ~ ~ a l r ~ t e n a n c e ,  

the b lanket  design phi losophy has been t o  seek a 

modular approach which eases the  problems o f  re -  

mote maintenance. Thus, relllul;e I I I ~  l r ~ l e r ~ d r ~ ~ e  11dh 

been i d e n t i f i e d  as a major o b j e c t i v e  and design 

considerat ion i n  the development o f  the engineer- 

i n g  design f o r  the b lanket  con f igu ra t ion .  I n  

t h i s  context,  we a re  s t ress ing  small ,  e a s i l y  r e -  

placed i n d i v i d u a l  b lanket  modules. 

3. The vacuurrl topology. I n  tokamak reac to r  

designs, i t  i s  commonly assumed t h a t  the  f i r s t  

w a l l  a l s o  serves d5 1111: i~la\ i l~i '  VdCUUll l  boundary 

between the  plasma and atmospheric pressure. 

This  usua l l y  requ l res  t h a t  the f i r s t  w a l l  con ta in  

hundreds t o  thousands o f  1 i n e a l  meters o f  welds. 

Should a p inho le  leak  develop i n  a r a d i o a c t i v e  

f i r s t  w a l l ,  i t  i s  r l o ~ u h t f ~ ~ l  that. it. can he r e -  

pa i red  w i thou t  unreasonable d i f f i c u l t y .  There- 

fore,  we a re  proposing t h a t  the tokamak reac to r  

system be enclosed i n  a vacuum b u i l d i n g .  This  

completely changes the  character  o f  the  f i r s t  

wa'l'l surface .from one r e q u i r i n g  absolute vacuum 

i n t e g r i t y  and an extremely long l i f e  expectancy 

t o  one t h a t  need have o n l y  h igh  pumping impedance 

( i t  can be s l i g h t l y  leaky because the pressures 

on e i t h e r  s ide  are about t h e  same) and a shor te r  

l i f e  requirement because i t  comes apar t .  I t i s  

our opfr i lon t h a t  such an approach has s l  yn l  Plcanl: 

as3enibly, disassembly, and r c p a i r  advantages 

over the vacuum f i r s t  w a l l  approach. 



4. The a p p l i c a t i o n  o f  normal c o n d u c t i n g  

c o i l s .  As a l r e a d y  discussed, i t  may be p o s s i -  

b l e  t h a t  normal conduc t i ng  c o i l s  can be ap- 

p l i e d  i n  tokamak systems w i t h o u t  s i g n i f i c a n t  

economic p e n a l t y  due t o  power ba lance cons id-  

e r a t i o n s .  Assuming t h a t  t h e  p l a n t  c o s t s  asso- 

c i a t e d  w i t h  normal c o i l s  a r e  acceptab le ,  i t  

appears t h a t  normal c o i l s  may o f f e r  c e r t a i n  

eng inee r i ng  advantages r e l a t i v e  t o  supercon- 

d u c t i n g  c o i l s ,  e s p e c i a l l y  w i t h  rega rd  t o  sys- 

tem maintenance and r e p a i r .  F o r  example, no r -  

mal c o i l s  m i g h t  be p laced  around t h e  n e u t r a l  

beam i n j e c t o r  p o r t s .  T h i s  wou ld  g r e a t l y  ease 

s h i e l d i n g  problems a t  these p o s i t i o n s  r e l a t i v e  

t o  t h e  s i t u a t i o n  w i t h  superconduct ing  c o i l s .  

Moreover, t h e  normal c o i l s  c o u l d  be b u i l t  i n  

segments wh ich  c o u l d  he disassembled r a t h e r  

s imp ly .  T h i s  t y p e  o f  p rocedure  would a l l o w  

r e l a t i v e l y  r a p i d  access i n t o  t h e  i n t e r i o r  o f  

t h e  tokamak system. I n  such a scheme, t h e  

m a j o r i t y  o f  t h e  t o r o i d a l  f i e l d  c o i l s  would be 

superconduct ing ,  and o n l y  a f r a c t i o n  o f  t h e  

t o t a l  c o i l  s e t  would be normal.  We suggest 

t h a t  t h e  a p p l i c a t i o n  o f  normal conduc t i ng  

c o i l s  i n  tokamak r e a c t o r s  may, i n  c e r t a i n  

s i t u a t i o n s ,  o f f e r  s i g n i f i c a n t  eng inee r i ng  ad- 

vantages r e l a t i v e  t o  superconduct ing  c o i l s ,  

and t h e r e f o r e  such a p p l i c a t i o n s  shou ld  be 

pursued f u r t h e r .  

1.5 A PLAN FOR DEMONSTRATING COMMERCIAL , 

FEASIBILITY 

On t h e  b a s i s  o f  o u r  s t u d i e s ,  we recommer~d 

t h e  f o l l o w i n g  p l a n  f o r  demonst ra t ing ,  i n  t h i s  

century ,  t h e  commercial f e a s i b i l i t y  o f  f u s i o n  

power based on t h e  tokamak concept.  Commer- 

c i a l  f e a s i b i l i t y  demons t ra t i on  would i n v o l v e  

t h r e e  phases beyond t h e  TFTR: ( 1 )  an i g n i t i o n  

demonst ra t ion  phase, ( 2 )  a power techno logy 

demonst ra t ion  phase, and ( 3 )  a commercial 

p r o t o t y p e  demonst ra t ion  phase. 'I'he p r i m a r y  

theme o f  t h e  recommended p l a n  i s  t h a t  a g i ven  

s i t e  and f a c i l i t y  shou ld  be developed t o  dem- 

o n s t r a t e  s e q u e n t i a l l y  t h e  i g n i t i o n ,  power 

technology, and commercial p r o t o t y p e  phases. 

I n i t i a l l y  t h e  program would be d i r e c t e d  t o  

t h e  c o n s t r u c t i o n  o f  an e lec t romagne t i c  f a c i l i t y  

( c o i l s ,  power supp l i es ,  e t c . )  wh ich  would serve 

a l l  phases o f  t h e  demonst ra t ion  program. The 

purpose o f  t h e  f i r s t  phase would be t o  examine 

i g n i t i o n  ope ra t i on .  Thus, t h i s  phase would n o t  

be concerned w i t h  power conve rs ion  and t r i t i u m  

b reed ing  and recovery .  I n  t h e  second phase o f  

t h e  program, power techno logy demonst ra t ion  i s  

t h e  main goa l ;  t h i s  goal  i s  s i m i l a r  t o  t h a t  o f  

t h e  C l i n c h  R i v e r  Breeder Reactor P r o j e c t .  T r i -  

t i u m  b reed ing  and power conve rs ion  components 

would be added t o  t h e  b a s i c  f a c i l i t y .  F o l l o w i n g  

success fu l  o p e r a t i o n  o f '  t h i s  phase, a d d i t i o n a l  

tokamak power u n i t s  would be added a t  t h e  same 

s i t e  and t i e d  i n t o  t h e  s i n g l e  e l e c t r i c a l  p l a n t .  

Du r i ng  t h i s  phase, t h e  f a c i l i t y  would be demon- 

s t r a t i n g  commercial p r o t o t y p e  ope ra t i on .  

We f e e l  t h a t  such a program i s  r a t i o n a l  

because t h e  plasma requ i rements  f o r  i g n i t i o n  

a r e  e s s e n t i a l l y  t h e  same as those  assoc ia ted  

w i t h  commercial p l a n t  o p e r a t i o n .  Tha t  i s ,  

plasma phys i cs  does n o t  i n d i c a t e  t h a t  succes- 

s i v e l y  l a r g e r  dev i ces  must be c o n s t r u c t e d  p ro -  

ceed ing f r o m  i g n i t i o n  t o  power demons t ra t i on  

and then t o  p r o t o t y p e  cohmerc ia l  demonst ra t ion .  

Based on o u r  c o s t  es t imates ,  i t  appears t h a t  

such a program c o u l d  be implemented i n  t h i s  cen- 

t u r y  w i t h  a t o t a l  f a c i l i t y  c o s t  o f  app rox ima te l y  

$2-3 b i l l i o n  ( i n  FY 1976 d o l l a r s ) .  T h i s  does 

n o t  i n c l u d e  eng inee r i ng  and con t i ngency  costs ,  

n o r  does i t  i n c l u d e  development c o s t s .  

1.G CONCLUSIONS 

The ORNL Fus ion Power Demonst ra t ion  Study 

has thus y i e l d e d  two i m p o r t a n t  conc lus ions .  

1 ) Given success fu l  r e s o l u t i o n  o f  seve ra l  

plasma phys i cs  problems, t h e  tokamak concept  can 

l e a d  t o  a power p l a n t  w i t h  economic p o t e n t i a l  

comparable t o  t h a t  o f  t h e  LMFBR. 

2 )  The program r e q u i r e d  f o r  demons t ra t i ng  

commercial f e a s i b i l i t y  can be ach ieved i n  t h i s  

c e n t u r y  and seems t o  be accep tab le  i n  terms o f  

r i s k  and c o s t  when viewed r e l a t i v e  t o  o t h e r  p ro -  

grams f o r  a l t e r n a t e ,  l ong - te rm energy sources. 
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2. ECONOMICS 

H. L. Reid 

2.1 INTRODUCTION fus ion  systems were more represen ta t i ve  o f  power 

The economic p o t e n t i a l  o f  tokamak power systems than the TNS est imates. Estimates f o r  

conventional power system components were based 
systems depends on technology, engineering,,  

on pressur ized water reac to r  (PWR) cos t  est imates. 
and plasma operat ing c h a r a c t e r i s t i c s .  I n  

Sects. 4 through 9 o f  t h i s  repor t ,  we i d e n t i f y  
The assumptions adopted w i t h  regard t o  component 

technologica l  d i r e c t i o n s  and engineering ap- 
technology and engineering, scal ing, and cos t  

proaches which enhance the  economic p o t e n t i a l  
normal izat ion are summarized below; the  cos t  

and the near-term f e a s i b i l i t y  o f  the tokamak 
equat ions 'are presented i n  the appendix. 

concept. On the  basis  o f  these technologica l  

d i r e c t i o n s  and engineering approaches, we have 

formulated a  model t o  i n v e s t i g a t e  the c a p i t a l  

cos t  trends o f  tokamak power systems as a  

func t ion  o f  plasma operat ing c h a r a c t e r i s t i c s .  

I n  t h i s  sec t ion  we discuss the cost  model, i t s  

r e s u l t s ,  and the  conclusions drawn from these 

resu l t s .  

2.2 THE MODEL 

The model formulated t o  i n v e s t i g a t e  the 

c a p i t a l  cos t  trends of tokamak power systems 

i s  composed o f  two par ts ,  a  component cos t  

sca l ing  p o r t i o n  and a  plasma parameter sca l ing  

por t ion .  The essen t ia l  features o f  the  model 

are described below. 

2.2.1 Component Cost S c a l i n g  

This p o r t i o n  o f  the model determines cos t  

as a fu i?ct ion o f  system geometry and 

c h a r a c t e r i s t i c s .  E x i s t i n g  cos t  est imates were 

used t o  determine normal iz ing fac to rs  f o r  the 

var ious components o f  the tokamak power system. 

I n  p a r t i c u l a r ,  extensive use was made o f  the 

recent  cos t  est imate by Westinghouse Fusion 

Power Systems D i v i s i o n  f o r  the TNS (The Next 

Step) reactor .  This est imate was h e a v i l y  re -  

l i e d  upoil because (1 )  31: i s  t i e d  t u  d nedr- 

term device (scheduled f o r  the 19801s), (2 )  

i t  draws upon the Tokamak Fusion Test Reactor 

(TFTR) cos t  est imate i n  many cases, ( 3 )  i t  i s  

a  d e t a i l e d  est imate, and (4)  i t  i s  a  w e l l -  

documented est imate. For some components i t  

was judged t h a t  cos t  est imates f o r  o ther  

2.2.1.1 Toro ida l  f i e l d  (TF) c o i l s  

The t o r o i d a l  f i e l d  c o i l s  a re  assumed t o  be 

superconducting ,' l a y e r  wound c o i  1  s  cooled by 

forced- f low s u p e r c r i t i c a l  helium. Depending on 

the  maximum f i e l d  requi red,  the conductor might  

be a  composite o f  m u l t i f i l a m e n t a r y  NbTi super- 

conductor i n  a  Cu m a t r i x  o r  Nb3Sn superconductor 

i n  a  CuSn matr ix .  The winding would be supported 

by i n t e r l a y e r  s t a i n l e s s  s t e e l  s t r u c t u r e  p lus an 

ou te r  case. For the  model, the  cross-sect ion 

area o f  the winding was determined based on an 
2 average cur ren t  dens i t y  o f  1800 A/cm . The case 

thickness was conservat ive ly  s i zed  t o  c a r r y  a l l  

the hoop s t ress  developed i n  the winding. The 

cos t  o f  the  c o i l  system was scaled as. the e i g h t -  

tenths power o f  the  s tored magnetic energy and 

makes no d i s t i n c t i o n  between a l t e r n a t e  conductors. 

The e igh t - ten ths  power r e l a t i o n s h i p  was suggested 

i n  Ref. 2. Cost est imates taken from studies o f  

l a r g e  TF c o i l s  by General ~ l e c t r i c ~  and Westing- 
4 house tend t o  v e r i f y  t h i s  s c a l i n g  parameter. 

The TF c o i l  cos t  was normalized t o  the TNS c o s t  

e ~ t i m a t e , ~  which assumes NbTi as the  supercon- 

ductor.  

1. Note t h a t  normal conduct ing TF c o i l s  are a l s o  

Ire-ing cons~der~ed  (see S e ~ 1 .  7).  

2 .  'M. S. Lube11 e t  al . ,  The Economicn 0 6  Lahge 

Supehconducting Tohod& Magn- doh Funion 

ReacXohs, ORNL/TM-3927, Oak Ridge Nat ional  

Laboratory, Oak Ridge, Tennessee (August 

1972). 



3. Conceptual SXutudies 06  .Totoidd Fidd Mag- 

n u 2  doh .the T o h a k  (Fusion) Expcmhentae 

Powen Reactoh, Final Repoht, Contract  Num- 

ber  E(40-1)-5154, General E l e c t r i c  Co., 

Energy System Programs Department, Sche- 

nectady, New York (~ovember 1976). 

4. Concep.laR S . t u d i u  0 6  Tohoidd Fidd Mag- 

n u 2  doh Rhe Tokamak Expahen ta t  Powa 

Reactoh, F i n a l  Repoht, Contract  Number E 

(40-1 )-5153, Westinghouse E l e c t r i c  Corp., 

Large Rota t ing  Apparatus D i v i s i o n ,  East 

P i t t sburgh ,  Pennsylvania (October 1976). 

5. W. R .  Wond (IICC-ND Engineering S t a f f ,  Oak 

Ridge, Tennessee), "TNS Cost Estimate," 

p r i v a t e  communication, September 16, 1976. 

2.2.1.2 Polo ida l  f i e l d  (PF) c o i l s  

The ohmic heat ing (OH) c o i l s  were assumed 

t o  be superconducting (NbTi ). The e q u i l  i b r i u m  

f i e l d  c o i l s  and d i v e r t o r  c o i l s  were assumed t o  

be water-cooled copper c o i l s .  Cost was scaled 

as a f u n c t i o n  o f  c o i l  volume, which f o r  a con- 

s t a n t  c u r r e n t  dens i t y  v a r i e s  as the  product  o f  

t h e  major rad ius  and the  plasma cur ren t .  The 

PF c o i l  cos t  was normalized t o  the TNS c o s t  

est imate.  6 

2.2.1.3 Po lo ida l  f i e l d  d r i v i n g  system 

Motor-generator f lywheel  sets  were as- 

sumed as the  d r i v i n g  system f o r  the  PF c o i l s .  

Cost was scaled as plasma v o l t  seconds and 

was normalized t o  the 'TNS cos t  est imate. 5 

2.2.1.4 Blanket 

The b lanke t  s t r u c t u r e  was assumed t o  be 

an a u s t e n i t i c  s t a i n l e s s  s t e e l .  L i q u i d  l i t h i u ~ l l  

was taken as the  t r i t i u m  breeding medium, and 

a mol ten s a l t  was taken as the coolant .  Cost 

was scaled as a f u n c t i o n  o f  b lanke t  volume. 

Blanket  cos t  was normalized t o  an ORNL e s t i -  

mate f o r  the  b lanket  designs discussed i n  

Sect. 4 (see Ref. 6). 

6. E. S. B e t t i s  (Oak Ridge Nat ional  Laboratory, 

Oak Ridge, Tennessee), "Demo Blanket  and 

Heat Transfer  Systems Cost ," p r i v a t e  

, communication, December 8, 1976. 

2.2.1.5 Sh ie ld  

The sh ie ld ,  located between the  b lanket  a r~d  

the TF c o i l s ,  was assumed t o  be water-cooled and 

composed o f  s t a i n l e s s  s t e e l ,  lead, and borated 

water. Cost was scaled as s h i e l d  volume and was 

normalized t o  the  Argonne Nat ional  LaboratWy 

(ANL) Experimental Power Reactor (EPR) est imated 

s h i e l d  cost .  7 

7. Westor1 M. Stacey, Jr., e t  a l . ,  T o h a k  Ex- 
pmimentae Powen Ru&a Cunceph.d Design, 

ANL/CTR-76-3, Argonne Nat ional  Laboratory, 

Argonne, I 1  1 i n o i s  (August 1976). 

2.2.1.6 Neutra l  beams 

Thc n c u t r a l  bcamc a re  o f  tho p o s i t i v e  o r  

negat ive i o n  type a t  energy l e v e l s  i n  the range 

o f  100-200 keV. The beams are used on ly  t o  heat 

the plasma t o  the  i g n i t i o n  temperature. Pu'lscd 

power i s  suppl ied t o  t h e  beam i n j e c t o r  once each 

cyc le  by the motor-generator f lywheel  sets. 

Beam cos t  was scaled as the  thermonuclear power 

o f  the  plasma ( t h e  power associated w i t h  the  

14.1-MeV neutrons and 3.5-MeV alpha p a r t i c l e s )  

and normalized t o  the  TNS cos t  e ~ t i m a t e . ~  

2.2.1.7 ,Vacuum system 

The vacuum syst.em was assumed t o  c o n s i s t  of 

pr imary pumps s i m i l a r  i n  design t o  e x i s t i n g  

commercially a v a i l a b l e  c ryosorp t ion  pumps 

(a1 though much l a r g e r )  and conventional roughing 

pumps. Cost was scaled as the torus sur face 

area, as suggested i n  Ref. 8. The vacuum system 

cos t  was normalized t o  the  ANC EPR cos t  e s t i -  

mate. 7 



8. J. S h e f f i e l d  and A. Gibson, Nucl. Fusion 

15, 677 (1975). . - 

2.2.1.8 T r i t i u m  system 

The t r i t i u m  system was assumed t o  cons is t  

o f  equipment (1  ) t o  p u r i f y  and recyc le  t r i t i u m  

and deuterium f o r  the plasma f u e l  cyc le  by the 

use o f  uraniulll beds and (2)  t o  recover t r i t i u m  

from the l i t h i u m  i n  a breeding b lanket  by the 

use o f  metal sorbents. Cost was assumed t o  

scale as the torus surface area. The cos t  o f  

the t r i t i u m  system was normalized t o  the ANL 

EPR cos t  est imate. 7  

2.2.1.9 Heat t ranspor t  system 

The heat t ranspor t  system cons is ts  nf a 

steam generator; two molten s a l t  loops (a p r i -  

mary l o o p . t o  remove the heat from the b lanket  

and an in termediate loop t o  i s o l a t e  the low 

pressure b lanket  from the  h igh pressure steam), 

and an energy storage system. The energy 

storage system, which consis ts  o f  Lanks t o  

s t o r e  h o t  and c o l d  s a l t ,  a l lows a constant 

power i n p u t  t o  the steam generator over the 

e n t i r e  tokamak operat ing cyc le  (see Sect. 9 ) .  

The cos t  o f  the heat t ranspor t  system was 

scaled as a f u n c t i o n  o f  the thermal power out -  

p u t  o f  the  reactor .  Thermal power cons is ts  o f  

the thermonuclear power o f  the plasma (14.1- 

MeV neutrons p lus  3.5-MeV alpha p a r t i c l e s )  

p lus  exothermic react ions i n  the b lanket  due 

t o  neutron capture ( ~ 4 . 8  MeV per  fus ion  event) .  
6  Cost was normalized t o  an ORNL estfalate made 

f o r  the heat t ranspor t  system described i n  

Sect. 9. 

2.2.1.10 Turbine 

The turbine-feedwater system i s  o f  con- 

vent ional  design. The system consls ts  o f  d 

high and low tandem compound t u r b i n e  sect ion, 

feedwater heaters, a  steam condenser, and a 

mechanical d r a f t  coo l ing  tower. Turbine and 

steam system cos t  was scaled as the thermal 

power output  nf the reac to r  t o  the e i g h t -  

tenths power.' The cos t  was normalized t o  the 

cos t  est imate f o r  a  3285-MW(t) [ I 1  50-MW(e)l 

P W R . " ~  A thermal e f f i c i e n c y  o f  approximately 

35% was taken as. t y p i c a l  o f  PWR's. 

9. CONCEPT - A Computm Code dot  Concep2ua.t CobX 

E6R;imcLteb 0 6  Steam-Ete&c Powm Plants ,  

Phase IV Ubm'b Manuat, ERDA-108 (June 1975). 

10. Costs normalized us ing computer code de- 

scr ibed i n  Ref. 9. 

2.2.1 .ll Conventional e l e c t r i c  p l a n t  

The conventional e l e c t r i c a l  p l a n t  i s  assumed 

t o  c o n s i s t  o f  equipment s i m i l a r  t o  t h a t  i n  a PWR 

power p l a n t .  This equipment inc ludes switchgear, 

p r o t e c t i v e  equipment, w i r i n g  containers, and 

power and c o n t r o l  w i r i n g .  The cos t  o f  the  con- 

vent ional  e l e c t r i c a l  p l a n t  was scaled as the  

thermal power output  of the  r e a c t o r  t o  the  s i x -  

tenths power.' The c o s t  was normalized t o  an 

est imate f o r  a  3285-MW(t) [I 150-MW(e)] PWR." 

2.2.1.12 Inst rumentat ion and con t ro l  ( I&C) 

Inst rumentat ion and c o n t r o l  cost  was assumed 

t o  be composed o f  a  fus ion-re la ted I&C cos t  p lus  

the  I&C cos t  associated w i t h  a conventional PWR 

power p l a n t .  For t h e  cos t  model, the I&C cos t  

was he ld  f i x e d  ( i  .e., independent o f  power ou t -  

p u t )  and taken t o  be equal t o  the  sum o f  the  I&C 
5 cos t  f o r  the TNS c o s t  est imate and the cos t  

est imate f o r  a  3285-MW(t) [1150-MW(e)] PWR. 
10 

2;2.1.13 A u x i l i a r y  systems 

A u x i l i a r y  systems were assumed t o  be those 

/ associated w i t h  fus ion  power p lus  the conven- 

t i o n a l  a u x i l i a r i e s  o f  a  PWR p lan t .  Fusion- 

r e l a t e d  a u x i l i a r i e s  inc lude  r a d i o a c t i v e  waste 

hand1 i n g  equipment, remote s e r v i c i n g  systems, 

and v e n t i l a t i o n  systems. Conventional a u x i l i a -  

r i e s  inc lude  a i r ,  water, and &'earn se rv ice  sys- 

tems, coo lan t  volume c o n t r o l  systems, e tc .  The 

cos t  o f  the a u x i l i a r y  system was he ld  f i x e d  and 

taken equal t o  the  sum o f  the  cos t  est imate fo r  
5  the TNS a u x i l i a r y  system and the cos t  est imate 

f o r  a  3285-MW(t) [1150-MW(e)] PWR. 



2.2.1.14' B u i l d i n g s  

B u i l d i n g s  were assumed t o  c o n s i s t  o f  an 

evacuated f a c i l i t y  which would serve as t h e  

r e a c t o r  containment b u i l d i n g  and o t h e r  con- 

ven t iona l  b u i l d i n g s  associated w i t h  a PWR power 

p l a n t .  Ttle cos t  o f  t h e  containment b u i l d i n g  

was h e l d  f i x e d  a t  $70 m i l l i o n .  Th is  i s  the  

est imated c u r r e n t  value o f  t h e  Plum Brook 

Vacuum F a c i l i t y  i n  Sandusky, Ohio, which i s  a  

b u i l d i n g  o f  the  approximate s i z e  necessary t o  

house t h e  tokamak systems under considerat ion.  

T h i s  c u r r e n t  va lue i s  based on average esca la t ion  

r a t e  o f  6.5% annual ly  a p p l i e d  t o  t h e  o r i g i n a l  

1962 cos t  o f  ~ $ 3 0  m i l l i o n . "  The cos t  o f  the  

o t h e r  b u i l d i n g s  ( i  .e., tu rb ine ,  admin is t ra t ion ,  

e tc . ) ,  was scaled as t h e  e igh t - ten ths  power 

o f  t h e  thermal power ou tpu t  o f  t h e  r e a c t o r  9  

and normal ized t o  the c o s t  est imate o f  a  

3285-MW(t) [I 150-MW(e)] PWR. 

I n  a l l  c o s t  normal izat ions,  engineer ing 

and contingency costs  were excluded. I n  some 

cases the  c o s t  normal izat ions represent  costs  

f o r  components const ructed on a noncommercial 

bas is  (e.g., the magnet c o i l s  and t h e  n e u t r a l  

beam i n j e c t i o n  systems); i n  o ther  cases, t h e  

c o s t  norma l i za t ions  represent  costs  f o r  com- 

ponents const ructed on a conmercial bas is  (e.g., 

t h e  turbine-steam systems and t h e  b u i l d i n g s ) .  

Thus, the  c a p i t a l  costs generated by the  model 

should be viewed as l y i n g  i n  the cost  range . 

spanned by systems constructed on a noncommercial 

bas is  and systems constructed on a commercial 

bas is .  

n. R. W .  Werner, ORNL Fudion  POW^ Demonbzh- 

&ion S.tudy: Ahgumem doh a Vacuwn B&ding 
i n  Wkich 20 Endobe a F a i o n  Reactoh, ORNLI 

IM-3921, Oak Ridge Nat ional  Laboratory, Oak 

Ridge, Tennessee (October 1976). 

2.2.2 Plasma Parameter Sca l ing  

I n  t h i s  p o r t i o n  o f  t h e  model, a  plasma 

phys ics model determines t h e  plasma rad ius  and 

f i e l d  on a x i s  requ i red  f o r  i g n i t i o n  and opera- 

t i o n ,  g iven s p e c i f i c  values of neutron w a l l  

loading, beta, aspect r a t i o ,  plasma elongation, 

and Zeff. The model equations are presented i n  

the  appendix. For the  purposes o f  t h i s  study, 

i n i t i a ' l  c a l c u l a t i o n s  were performed us ing the  

trapped p a r t i c l e  plasma physics model described 

i n  Ref. 12. I t i s  noted t h a t  t h i s  model i s  a  

zero-dimensional model and does n o t  accour~t  cor-  

r e c t l y  f o r  dens i t y  and temperature p r o f i l e  e f -  

fects. This  p o i n t  i s  espec ia l l y  important when 

consider ing beta and i t s  r e l a t i o n s h i p  t o  f u s i o n  

power generat ion and i s  discussed i n  d e t a i l  i n  

Sect. 3. When p r o f i l e s  are accounted f o r ,  the 

value o f  the average beta requ i red  f o r  a  g iven 

fus ion power output  may be s i g n i f i c a n t l y  less  

than t h a t  determined by a zero-dimensional model 

(see Refs. 13 and 14). 

The plasma s c a l i n g  r e l a t i o n s h i p s  were nor-  

mal ized t o  TNS design values presented i n  Ref, 

15. The major rad ius i s  determined from the  c a l -  

cu la ted  plasma rad ius  and the s p e c i f i e d  aspect 

r a t i o .  The TF c o i l  r a d i i  are def ined from the  

ca lcu la ted  plasma radius and speci f ied values o f  

(1)  the  d is tance from the  plasma edge t o  the  TF 

c o i l  and (2) the  TF c o i l  elongation, which i s  

the  r a t i o  o f  t h e  v e r t i c a l  t o  the hor i zon ta l  bore. 

Thermonuclear power dur ing  the  burn (14.1-MeV 

neutrons p lus  3.5-MeV a1 p h ~  p a r t i c l e s )  i s  d e t c r -  

mined from w a l l  loading, plasma radius,  major 

rad ius,  and plasma e longat ion.  Burn t ime i s  

scaled as a f u n c t i o n  o f  plasma v o l t  seconds, 

plasma res is tance,  plasma current ,  and the f l u x  

swing c a p a b l l l t y  o f  the  OH c o i l .  The f l u x  swing 

of t h e  OH c o i l  depends on the  s p e c i f i e d  f i e l d  I n  

the  c o i l  ( s e t  a t  7  T f o r  t h i s  study) and the  bore 

o f  t h e  OH winding, whit11 i r ~  t u rn  depends on the  

major rad ius  and T r  mi! undiub. Cyclc average 

thermal power i s  computed from the burn time, the  

thermal power dur ing  the  burn (thermonuclear 
' 

power p lus exothermic reac t ions  i n  the  b lanke t ) ,  

and an assumed downtime o f  1  min between cyc les.  

See Sect. 3  f o r  a  more d e t a i l e d  d iscuss ion o f  

the  duty  cyc le  assumptions.. 



12. D. G. McAlees e t  a1 . , P W m a  E n g i n e d n g  .. 

i n  a D&&-Thitiwn F u d e d  Tokamak, 

O R N ~ I T M - ~ ~ ~ ~ ,  Oak Ridge National Labora- 

to ry ,  Oak Ridge, Tennessee (October 1976). . 

13. J. Kesner and R. W. Conn, Space Dependent 
E66eots on .the Lawdon Chitehh, .the Igni -  

' 

t i o n  Cond i t i on ,  and T h m d  Equ i l i bh ia  i n  
Tohamah, UWFDM-155, Nuclear Engineering 

Department, l l n i v e r s i  t y  o f  Wisconsin; 

Madison, Wisconsin (December 1975). 

14. Y-K. M. Peng and J. A. Holmes, E n a g y  

Balance EdLimlLfen doh TNS, t o  be pub- 

l i s h e d  as an ORNLITM. 

15. TNS Engineehing . Phogheb6 Repoht doh .ththe 
Month 06 August 1976,  WFPS-TN-025, , 

Westinghouse E l e c t r i c  Corp., Fusion 

Power Systems D iv is ion ,  P i t tsburgh,  

pennkyl vania (September 1976). 

2.3 RESULTS 

2.3.1. Cost Comparison wi l;h Pub1 ished 
Cost Estimates ' 

The component cos t  s c a l i n g  p o r t i o n  o f  the 

model was used to 'generate co'sts for the ANL 

and the General Atomic Co. (GA) EPR' designs ' 

f o r  which cos t  est imates are a v a i l a b l e  (Refs. 

7 and 16). These cos t  comparisons, l i s t e d  i n  

the subsystems format o f  the  ANL and GA'cost 

estimates, are shown i n  Table 2.1. Note t h a t  

these cos t  ost lmatcs nnt inc lude  engineer- 

i n g  and contingency costs. 

As shown i n  Table 2,1, the  costs pre- 

d i c t e d  by the model are approximately 25% 

greater  than the ANL est imate and approximate- 

l y  45% greater  than the  GA est imate. The ob- 

served d i f fe rences  i n  t o t a l  cos t  are due p r i -  

m a r i l y  t o  d i f fe rences  i n  the  areas o f  magnet 

cos t  and e l e c t r i a l  p l a n t  cos t .  The ORNL 

model p red ic ts  magnet costs greater  than 

e i t h e r  the ANL o r  GA est imates by about a 

f a c t o r  o f  two. A t  present, t h i s  d i f f e r e n c e  i s  

n o t  understood because d e t a i l s  are n o t  a v a i l -  

ab le on the ANL and GA est imates. The model 

a lso  p r e d i c t s  h igher  cost  f o r  the e l e c t r i c a l  

p lan t ;  t h i s  v a r i a t i o n  i s  p a r t i a l l y  a t t r i b u t e d  t o  

the  technology assumed. The ORNL e l e c t r i c a l  

p l a n t  cos t  i s  based on motor-generator f lywheel  

sets  f o r  which a reasonably f i r m  cos t  base 

e x i s t s ,  w h i l e  the ANL and GA e l e c t r i c a l  p l a n t  

cos t  est imates are based on the more advanced 

concept o f  homopolar generators, which are as- 

sumed t o  be l e s s  expensive than the  motor- 

generator f lywheel sets .  However, the re  i s  no 

establ ished cos t  base f o r  homopolar generators. 

16. E x p e h m e W  Fusion  POW^ Reactoh Concep- 

Denign S M y ,  GA-A14000, General ' 

Atomic Co., San Diego, C a l i f o r n i a  ( J u l y  

1976). 

2.3.2 Parametr ic Results 

Using the  plasma sca l ing  p o r t i o n  o f  the 

model t o  generate plasma r a d i i  and f i e l d s  on 

ax is ,  the model was exerc ised t o  examine the 

v a r i a t i o n  o f  p l a n t  cos t  as a f u n c t i o n  o f  tokamak 

design parameters f o r  i g n i t e d  plasmas.' The 

r e s u l t s  are presented i n  F igs .  2.1 through 2.14. 

The f o l l o w i n g  operat ing plasma parameters were 

held f i x e d  throughout t h i s  study and a r e  s im i -  

l a r  t o  T'NS design values: 
15 

1 ) sa fe ty  f a c t o r  q = 3.0, 

2)  e l e c t r o n  temperature Te = 14.6 keV, 

3.) i o n  temperature Ti = 13.5 keV, 

4)  feff = 1 . 1 .  

I n  t h i s  phase o f  the  Demo study we have focused 

on the  v a r i a t i o n  o f  p l a n t  costs  w i t h  neutron w a l l  

loading, beta, aspect r a t i o ,  and plasma elonga- 

t i o n .  I n  the next  phase o f  t h i s  study, we w i l l  

i n v e s t i g a t e  the s e n s i t i v i t y  o f  p l a n t  costs t o  

o ther  system parameters. Note t h a t  the  cos t  

est imates are presented on the  bas is  o f  d o l l a r s  

per  k i l o w a t t  thermal ins tead  o f  do1 l a r s  per k t l 0 -  

wa t t  e l e c t r i c .  Thermal power was adopted be- 

cause the  e f f i c i e n c y  o f  t h e  power conversion 

system (Sect. 9)  has y e t  t o  be demonstrated. I t 

i s  a l s o  noted t h a t  the  e f f i c i e n c y  o f  power con- 

vers ion systems f o r  a l t e r n a t i v e  advanced power 



Table 2.1. Cost s c a l i n g  comparisona 

ANL EPR 

ORNL model AN L 
p r e d i c t i o n  est imate 

GA EPR 

ORNL model G A 
p r e d i c t i o n  est imate 

B u i l d i n g s  

Blanket  

W i e l d  

Magnet zyztem 

Neut ra l  beams 

Vacuum system' and Lt . i t  iu111 
f a c i l i t i e s  

Heat t r a n s p o r t  system 

I &C 

A u x i l i a r y  systems 

Turb ine p l a n t  

E l e c t r i c a l  p l a n t  

'I OTAL 

a A l l  amounts a re  given i n  m i l l i o n s  o f  d o l l a r s .  

systems, such as t h e  LMFBR and s o l a r  systems, 

has y e t  t o  be demonstrated'. 

F igures 2.1 through 2.7 were generated w i t h  

t h e  f o l l o w j n g  parameters h e l d  constant :  

1)  aspect r a t i o  A = 4.0 ( s i m i l a r  t o  TNS), 

2 )  plasma e l o n g a t i o n - a  = 1.6 ( s i m i l a r  
P 

t o  TNS), 

3)  d i s tance  from t h e  plasma edge t o  t h e  

TF c o i l  a = 2.0 m ( c o n s i s t i n g  o f  a  

10-cm plasma scrape-of f  space, a  75-cm 

blanket ,  a  30-cm space between the  

b lanke t  and the sh ie ld ;  a  60-cm sh ie ld ,  

and a 25-cm space between t h e  s h i e l d  

and t h e  TF c o i l ) ,  

4 )  TF c o i l  e longa t ion  ( v e r t i c a l  bore/ 

' .  h o r i z o n t a l  bore) aTF = 1.35. 

F igurc  2.1 shows the  e f f e c t  o f  beta and 

neutron w a l l  l oad ing  on p l a n t  c a p i t a l  cos t  per  

k i l o w a t t  o f  thermal output  ( i  .e., u n i t  c a p i t a l  

c o s t )  du r ing  t h e  burn p o r t i o n  o f  t h e  tokamak 

cyc le.  

F igure 2.2 shows t h e  e f f e c t  of beta and neu- 

t r o n  wa l l  loading on u n i t  c a p i t a l  cost  averaged 

over the  tokamak cyc le.  

F igure 2.3 shows duty  f a c t o r  (burn t ime/ 

cyc le  t ime) as a f u n c t i o n  o f  neutron wa l l  loading 

and beta. This  f i g u r e  i s  based on the  assumption 

LtldL burr1 t ime I s  I l m i t e d  on ly  by the  v o l t  second 

c a p a b i l i t y  o f  t h e  OH c o i l .  

F igure 2.4 shows requ i red  plasma rad ius  as a 

funct ion o f  beta and neutron w a l l  loading.  

F igure 2.5 shows reac to r  thermal power as a 

funct ion o f  beta and neutron w a l l  loading. Both 

the cyc le  average power (dashed 1 i n e )  and the  

power dur ing  t h e  burn ( s o l  i d  l i n e )  a re  presented. 

Cycle average power i s  t h e  product o f  the  power 

dur ing  the burn and the duty  f a c t o r  o f  Fig. 2.3. 

F iyu re  2.6 shows u n i t  c a p i t a l  cos t  as a 

f u n c t i o n  o f  power l e v e l  and beta. 

F igure 2.7 shows requ i red  f i e l d  on a x i s  as a 

f u n c t i o n  o f  beta and neutron w a l l  loading. 

Figures 2.8 and 2.9 show the  e f f e c t  o f  
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N E U T R O N  W A L L  LOADING M W / ~ '  

F ig .  2.1. U n i t  c a p i t a l  cost  (based on 
thermal power dur ing  the burn) as a.  f u n c t i o n  
o f  neutron wa l l  loading and beta. 

aspect r a t i o  and neutron w a l l  loading on u n i t  

c a p i t a l  cos t  averaged over the  c y c l e . a t  constant 

values o f  beta o f  0.15 and 0.05, respec t i ve ly  

(A, up, and a lk  are cnnstant) .  The requ i red  

plasma radius, a, and f i e l d  on axis, BT, a re  

a l s o  inc luded i n  F ig.  2.9 (beta = 0.05) t o  show 

the  e f f e c t  o f  aspect r a t i o  on these parameters. 

Figures 2.10 and 2.11 present the  r e l a t i o n -  

'sh ip  between plasma elongation, neutron w a l l  

3 0 0  I I I I I 
0 ! 2 3 4 5 

N E U T R O N  W A L L  L O A D I N G  M W / ~ '  

Fig.  2.2. U n i t  c a p i t a l  cos t  (based on 
c y c l e  average thermal power) as a f u n c t i o n  o f  
neutron wa l l  loading and beta. 

t i o n  and beta f o r  a  constant neutron w a l l  
2  loading o f  2.0 MWIm (A and A a re  constant) .  

F igure 2.14 i s  a  c rossp lo t  of ~ i g s .  2.12 

and 2.13 and shows the values of beta requ i red  

t o  mainta in  a constant u n i t  c a p i t a l  cos t  o f  

$460/kW(t) and $560/kW(t), both on a burn and a 
cyc le  average basis, as a funct ion o f  plasma 

e longat ion a t  a  constant neutron wa l l  l oad ing  o f  
2  2.0 MW/m ( A  and A a re  constant) .  

loading,  and u n i t  c a p i t a l  cos t  (w i thou t  and w i t h  

du ty  f a c t o r  e f f e c t s ,  respect ive1 y )  a t  a  constant 17. Note t h a t  these are operat ing po in ts  and 

beta o f  0.15 ( A  and A a re  constant) .  n o t  j u s t  i g n i t e d  po in ts .  A f t e r  i g n i t i o n ,  

Figures 2.12 and 2.13 show u n i t  c a p i t a l  the  plasma w i l l  underyo a thermal excurs ion 

cos t  (w i thou t  and w i t h  duty  f a c t o r  e f f e c t s ,  t o  a s t a b l e  operat ing p o i n t  (see Sect. 3 ) .  

respec t i ve ly )  as a f u n c t i o n  o f  plasma elonga- 
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F ig .  2.3. Duty f a c t o r  (burn t i m e l c y c l e  
t ime)  as a f u n c t i o n  o f  neutron w a l l  l oad ing  
and beta. NEUTRON W A L L  LOADING M W / ~ '  

2.4 DISCUSSION 

2.4.1 I m p l i c a t i o n s  o f  Resul ts  

Beta has a major impact on u n i t  c a p i t a l  

cos t ,  as ev iden t  from F igs .  2.1 and 2.2. For 

cxample, as beta decreases from 10% t o  5%, a 

f a c t o r  o f  two decrease, u n i t  c a p i t a l  cos t  i n -  

creas.es by s35-40%. As p rev ious ly  noted, t h e  

values u f  beta presented i n  t h i s  study a r e  

c o n s i s t e n t  w i t h  a zero-dimensional t rapped 

p a r t i c l e  plasma physics mode1,which does n o t  

account f o r  d e n s i t y  and temperature p r o f i l e s .  

Wkrn p r o f i l e s  a re  accn~lnte l l  f o r ,  the  r c q u i r e d  

values o f  beta may be s i g n i f i c a n t l y  le'ss. For 

example, a recen t  c a l c u l a t i o n  f o r  TNS 14 , 

i n d i c a t e d  t h a t ,  when p r o f i l e s  are accounted 

f o r ,  t h e  r e q u i r e d  beta ( a t  t h e  plasma opera t ing  

c o n d i t i o n )  decreased from 0.14 t o  0.085, a 40% 

reduct ion.  Also, i n  the UWMAK-I11 design, when 

p r o f i l e s  were accounted f o r ,  the  requ i red  va lue 

o f  beta decreased f rom 0.083 t o  0.058, o r  

approximate1 y 30%. 18 

F5g. 2.4. Plasma r a d i i  associated w i t h  t h e  
cos t  curves o f  F ig .  2.1. These r a d i i  y i e l d  i g -  
n i t i o n  on the  has is  o f  the trapped p a r t i c l e  
ccal i n g  model adopted i n  t h i s  sk~lr ly.  

18. UWMAK-111,  A Non-ChrrrPnh Tohamah POW= 

Reactoh Design, UWFDM-150, Nuclear Engineer- 

i n g  Department, U n i v e r s i t y  o f  Wisconsin, 

Madison, Wisconsin ( J u l y  1976). 

2.4.1.2 Neutron w a l l  l o a d i n g  

Neutron w a l l  l oad ing  i n i t i a l l y  has a s t rong  

e f f e c t  on c a p i t o l  cost  d l  w a l l  loadings o f  

1 M W / ~ ~ ,  b u t  t h i s  e f f e c t  diminishes w i t h  i n -  

creas ing w a l l  loading.  For example, Fig. 2.1 

shows, a t  a constant beta o f  0.15, t h a t  i n -  

creas ing t h e  wa l l  l oad ing  by a f a c t o r  o f  Lwo 
2 2 from 1.0 MW/m t o  2.0 MWIm causes a decrease i n  

u n i t  c a p i t a l  cos t  from $560/kW(t) t o  $440/kW(t), 

a 21% reduct ion.  An a d d i t i o n a l  f a c t o r  o f  two 

increase i n  neutron wa l l  loading, from 2.0 MWIm 2 

t o  4.0 M W / ~ * ,  reduces u n i t  c a p i t a l  c o s t  from 
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F ig .  2.5. Thermal power dur ing the burn 
(so l  i d  1  ine )  and cyc le  average thermal power 
(dashed l i n e )  as a f u n c t i o n  o f  neutron wa l l  
l oad ing  and beta. 

$440/kW(t) t o  $380/kW(t), a  14% reduct ion.  I t 

i s  noted from Fig.  2.1 t h a t  the  c a p i t a l  cos t  
0 

of a tokamak power reac to r  favors h igh  beta 
2 and w a l l  loadings i n  the range o f  2-4 MW/m . 

2 Wall loadings beyond 4 MW/m reduce cdpi  t a l  

cos t  very l i t t l e ,  y e t  decrease w a l l  l i f e  and 

thus increase p l a n t  operat ing costs. I t i s  

suggested i n  Ref. 19 t h a t  w a l l  l i f e t i m e s  o f  

approximately f i v e  years and more w i l l  n o t  

s i g n i f i c a n t l y  reduce the p l a n t  capaci ty  f a c t o r .  

Therefore, i t  appears t h a t  i n t e g r a l  w a l l  load- 
2 ings o f  10-20 MW-yr/m would be adequate f o r  

the  b lanket  s t r u c t u r a l  mate r ia l .  It i s  noted 

t h a t  the c u r v e s . o f  Fig. 2.1 were generated f o r  
2  w a l l  loadings between 1.0 MW/m and e i t h e r  

M E G A W A T T S  T H E R M A L  

F ig .  2.6. U n i t  c a p i t a l  cos t  (based on t h e r -  
mal power dur ing  the  burn) as a f u n c t i o n  o f ,  t h e r -  
mal power dur ing the  burn and beta. 

2  
5.0 MW/m o r  t h a t  va lue o f  wa l l  loading f o r  which 

the center  column rad ius  o f  the  to rus  goes t o  

zero. 

99. T. E. Shannon e t  a1 . , Oak Ridge Tokamah 

ExpehOnentae P o w u  Reactoh SRudy - 1976 : 

Paht 5 ,  E n g i n e h n g  , ORNL/TM-5576, Oak Ridge 

Nat ional  Laboratory, Oak Ridge, Tennessee 

(February 1977). 

2.4.1.3 V o l t  second l i m i t a t i o n  

The increase i n  u n i t  c a p i t a l  cost  observed 

by +comparing F ig .  2.2 t o  F i g  2.1 r e s u l t s  from 

the  considerat ion o f  the  v o l t  second l i m i t a t i o n  

o f  the  OH c o i l  on burn t ime and the corres-  

ponding in f luence  on duty  f a c t o r ,  which i s  , 

def ined as the  r a t i o  o f  plasma burn t ime t o  

the  t ime requ i red  f o r  a  complete tokamak 
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, F i g .  2.7. Plasma f i e l d s  on a x i s  assoc ia t -  
ed w i t h  the  cos t  curves o f  F ig .  2.1. These 
t i e l d s  on a x i s  y i e l d  i g n i t i o n  on t h e  bas is  o f  
t h e  t rapped p a r t i c l e  s c a l i n g  model adopted i n '  
t h i s  study. 

cyc le .  For t h i s  study, t h e  c y c l e  downtime was 

assumed t o  be 1 min. The v o l t  second capah i l -  

i t y  o f  the  OH c o i l  depends on the  f i e l d  i n  the  

c o i l ,  s e t  a t  7 1' f o r  t h i s  study, and on t h e  

bore o f  the  OH c o i l ,  which va r ies  p r i m a r i l y  as 

a f u n c t i o n  o f  t h e  plasma rad ius  and the  aspect 

r a t i o .  Duty f a c t o r  as a f u n c t i o n  o f  beta and 

neutron w a l l  l oad ing  ( f o r  constant  aspect 

r a t i o  and plasma e longa t ion )  i s  shown i n  F ig.  

2.3. 

The v o l t  second c a p a b i l i t y  o f  t h e  OH c o i l  

may n o t  be the  l i m i t a t i o n  on duty  f a c t o r  be- 

cause the  burn t ime may be s e t  by o t h e r  con- 

s ide ra t ions ,  such as i m p u r i t y  accumulation i n  

the  plasma. The i n t e n t  o f  F ig .  2;2 i s  t o  

show the  p o t e n t i a l  impact o f  engineering- and 

Lecl~r~ulogy on p l a n r  costs .  
The u n i t  c a p i t a l  cos t  o f  F ig .  2.1 i s  based 

ORNL DWG 77.3713 

p=.15'  

up= 1.6 
a,, = 1.35 

I / A S P E C T  
R A T I O  = 6  

3 0 0  I I  I  I  I 
0 1 2 3  4 5  

N E l l T R O N  W A L L  L O A D I N G  M W / ~ ~  

F ig .  2.8. U n i t  c a p i t a l  cost  (based on c y c l e  
average thermal power) as a f u n c t i o n  o f  neutron 
w a l l  lnading and aspect r a t i o  a t  a constant beta 
o f  0.15. 

on power output  dur ing  the  burn and i s  thus inde- 

pendent o f  du ty  f a c t o r .  The u n i t  c a p i t a l  cos t  o f  

F i g .  2.2 i s  based on c y c l e  average power ( t h e  

u n i t  c a p i t a l  cos t  o f  .Fig. 2.1 d iv ided  by the duty  

f a c t o r )  and i s  the more meaningful q u a n t i t y  t o  

use when comparing tokamak cos t  w i t h  the  cos t  of 

s teady-state power p lan ts .  

2.4.1.4 Plasma rad ius  

The requ i red  plasma radius f o r  s e l f -  

sus ta in ing  opera t ion  i s  shown i n  F ig.  2.4 

as .a f u n c t i o n  o f  beta and neutron w a l l  loading 

f o r  a  constant  plasma e longat ion o f  1.6 and a 

constant  aspect r a t i o  o f  4.0. This  f i g u r e  i n d i -  

cates t h a t  a  plasma r a d i u s  i n  the  range o f  2-1 m 

i s  associated w i t h  w a l l  loadings i n  the range o f  
2  2-4 MW/m . This  curve a lso  ind ica tes  t h a t  f o r  
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F ig.  2.9. U n i t  c a p i t a l  cos t  (based on 
c y c l e  average thermal power) as a func t ion  of 
neutron wa l l  loading and aspect r a t i o  a t  a  
constant  beta o f  0.05. Required values o f  
plasma r a d i i  and f i e l d s  on a x i s  are ind ica ted .  

constant  beta, u n i t  c a p i t a l  cos t  decreases w i t h  

decreasing plasma radius.  AL: constant beta, 

thermal power a l s o  decreases w i t h  plasma radius, 

as i s  ev ident  from F ig .  2.5. However, a t  con- 

s t a n t  beta, the  u n i t  c a p i t a l  cos t  decreases w i t h  

power l e v e l ,  as shown, i n  F ig.  2.6. Th is  t rend  

i s  con t ra ry  t o  the cos t  t rends o f  f i s s i o n  

reactors,  i n  which c a p i t a l  cos t  favors increased 

output .  

2.4.1.5. F i e l d  on a x i s  

The requ i red  f i e l d  on a x i s  i s  shown i n  F ig .  

2.7 as a f u n c t i o n  o f  beta and neutron w a l l  

loading.  These p l o t s  a r e  f o r  a .constant  plasma 

e longat ion o f  1.6 and a constant  aspect r a t i o  

o f  4.0. According t o  t h i s  f i gu re ,  f i e l d s  on 

I I I I I I 
0 I 2  3 4 5 
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F ig .  2.10. U n i t . c a p i t a 1  cos t  (based on 
thermal power dur ing the  burn) as a f u n c t i o n  o f  
neutron w a l l  loading and plasma e longat ion b t  a  
constant  beta o f  0.15. 

a x i s  o f  3.0-4.5 T a re  associated w i t h  wa l l  
2  

loadings i n  the  range o f  2-4 MW/m . These 

f i e l d s  a re  low enough t h a t  Nb3Sn superconductor 

may n o t  be requ i red  i n  the  t o r o i d a l  f i e l d  

winding; thus, N b l i  superconductor lrlay be 

adequate f o r  commercial fus ion  power. However, 

an a d d i t i o n a l  considerat ion f o r  Nb3Sn i s  t h a t  i t  

can be used a t  h igher  temperatures, thus pro- 

v i d i n g  g rea te r  s t a b i l i t y  and reduced r e f r i g e r a -  

t i o n  cost .  

2.4.1.6 Aspect r a t i o  

The optimum aspect r a t i o ,  f o r  a  beta o f  

0.15, i s  approximately'4.0, as shown i n  Fig. 2.8 

(plasma e longat ion,  TF c o i l  e longat ion,  and A 

c o n i t a n t  j. This'opt imum aspect r a t i o  occurs a t  a  
2 w a l l  loading o f  approximately 3.0 MW/m . Using 

a h igher  aspect r a t i o ,  say 6.0, increases t h e  

u n i t  c a p i t a l  cos t  s l i g h t l y ,  b u t  does a l low 
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F i g .  2.11. U n i t  c a p i t a l  c o s t  (based on 
average thermal power) as a f u n c t i o n  o f  neu- 
t r o n  w a l l  l oad ing  and plasma e longa t ion  a t  a  
constant  b e t a  o f  0.1 5. 

opera t ion  a t  a  h igher  w a l l  l oad ing  (4.0 M W / ~ ~ )  

before t h e  e f f e c t  o f  du ty  f a c t o r  causes t h e  u n i t  

c a p i t a l  c o s t  t o  s t a r t  i nc reas ing  w i t h  w a l l  

loading.  ( Inc reas ing  t h e  aspect r a t i o ,  a t  the  

same w a l l  l oad ing  and beta, prov ides a l a r g e r  

cen te r  column rad ius  and t h e r e f o r e  a g rea te r  

v o l t  second c a p a b i l i t y  f o r  the  OH c o i  1. ) F igure 

2.9 i s  a  p l o t  s i m i l a r  t o  F i g .  2.8 except t h a t  i t  

i s  f o r  a  constant  beta o f  0.05. For  t h i s  va lue 

o f  beta, t h e  minimum u n i t  c a p i t a l  cos t  occurs a t  

an aspect r a t i o  o f  approximately 6.0 and a neu- 
2 t r o n  w a l l  l oad ing  o f  1.6 MW/m . Note t h a t  the  

r e q u i r e d  plasma rad ius  and the  f i e l d  on a x i s  are 

a l s o  i n d i c a t e d  on t h i s  p l o t  t o  show t h e  v a r i a -  

t i o n  o f  these parameters w i t h  aspect r a t i o .  I n  

general,  f o r  about the same u n i t  c a p i t a l  cost.  
one can choose t o  operate w i t h  a h igher  aspect 

r a t i o ,  h igher  f i e l d  on a x i s ,  h igher  w a l l  loading, 

F ig.  2.12. U n i t  c a p i t a l  cos t  (based on t h e r -  
mal power dur ing  the  burn) as a f u n c t l o n  o f  beta . 
and plasma e longat ion a t  a  constant  ncutron w a l l  
l o d d i r ~ q  UP 2.0 MW/m2. 

and smal ler  plasma radius,  o r  w i t h  a lower 

aspect r a t i o ,  lower f i e l d  on ax is ,  lower w a l l  

loeding, and l a r g e r  plaslad r.dd ius. The l a t t e r  

c o n f i g ~ r r a t i n n  wn~l l r l  nperate w i t h  a longer  w a l l  

l i f e ,  more thermal power, and have a g rea te r  

t o t a l  c a p i t a l  cost.  

. 2.4.1.7 Plasma e longat ion 

Increastng the plasma e longat ion a t  constant 

beta.and aspect r a t i o  increases u n i t  c a p i t a l  

cost ,  as shown i n  Figs:2.10 and 2.11. However, 

i t  i s  theor ized20s21 t h a t  an elongated plasma has 

t h c  b c n c f i c i a l  e f f e c t  o f  a l l ow ing  a h igher  value 

o f  beta t o  be achieved. The d i f f e r e n c e  between 

F i y s .  2.10 ar~d 2.11 ,Is ayaln the  e f f e c t  o f  duty  

f a c t o r .  The u n i t  c a p i t a l  cos t  o f  F ig .  2.10 i s  

based on power output  dur ing t h e  burn, wh i le  



Fig.  2.13.. U n i t  c a p i t a l  costs  (based on 
cyc le  average t h e y a l  power) as a  f u n c t i o n  o f  
beta and plasma e longat ion a t  a  constant neu- 
t r o n  w a l l  loading o f  2.0 MW/m2. 

t h e  u n i t  c a p i t a l  cos t  of F ig .  2.11 i s  based on 

c y c l e  average power ( i  .e., power dur ing t h e  

.burn t imes the  duty  f a c t o r ) .  Note t h a t -  f o r . .  

t l iese f igu res  the  T r  c o i l  elongation i s  n o t  

constant,  b u t  va r ies  as a  f u n c t i o n  o f  the  

plasma e longat ion through the  r e l a t i o n s h i p  t h a t  

AH = 2.0 m and A, = 2.35 m (A,, and A, a re  the  

distances from t h e  plasma edge t o  the TF c o i l  

i n  t h e  hor i zon ta l  and v e r t i c a l  d i r e c t i o n s ,  

r e s p e c t i v e l y ) .  

The e f f e c t  o f  plasma e longat ion and beta 

on u n i t  c a p i t a l  cos t  a t  a  constant  neutron w a l l  

l oad ing  o f  2.0 M W / ~ '  i s  shown i n  Figs. 2.12 

through 2.14. The e f f e c t  o f  duty  f a c t o r  i s  

the  d i f f e r e n c e  i n  the  u n i t  c a p i t a l  cos t  o f  

~ = 2 . 0  M W / ~ ' .  

A H = 2 . 0  m 

- 
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/ 
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F ig .  2.14. Beta requ i red  t o  mainta in  a  con- 
s t a n t  u n i t  c a p i t a l  cos t  as a  f u n c t i o n  o f  plasma 
e longat ion a t  a  neutron w a l l  l o a d i n  of 2.0 MW/ 
m2. Lines o f  u n i t  c a p i t a l  cos t  o f  !460/kW and. 
$560/kW on t h e  basis o f  both the thermal power 
dur ing  t h e  burn ( s o l i d  l i n e )  and c y c l e  average 
thermal power (dashed l i n e )  as shown. 

Figs. 2.12 and 2.13. F igure 2.14 i s  a  cross- 

p l o t  o f  F igs.  2.12 and 2.13, and shows the beta 

requ i red  t o  mainta in  constant  u n i t  costs  o f  $460 

an2 $560 per k i l o w a t t  thermal w i t h  and w i thou t  

the  e f f e c t  o f  duty  f a c t o r  ( s o l i d  l i n e s  are based 

on thermal power dur ing the  burn and dashed l i n e s  

a re  based on c y c l e  average power). For example, 

i nc reas ing  plasma e longat ion from 1.0 t o  2.0 

requ i res  an increase i n  beta from 0.12 t o  0.16 

( ~ 3 0 %  increase)  t o  ma in ta in  a  constant  cyc le 

average u n i t  c a p i t a l  cos t  o f  $460/kW(t) ( a t  a  
2  w a l l  loading o f  2.0 MW/m ) .  
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2.4.2 Representat ive Parameters f o r  a Power 
Reactor 

For  the  purpose o f  subsequent discussions, 

a represen ta t i ve  s e t  o f  parameters was chosen 

f o r  a power reac to r ;  System parameters and 

cos ts  a re  g iven i n  Tables 2.2 and 2.3. Th is  

i s  n o t  an opt imized r e a c t o r  b u t  one chosen from 

our  s tud ies  f o r  i l l u s t r a t i o n . .  

Table 2.2. Design parameters f o r  a 
tokamak power r e a c t o r  

Beta, 6 

Neutron w a l l  loading,  L 

Sa fe ty  f a c t o r ,  q 

Aspect r a t i o ,  A 

Del td, A , 

Plasma radius,  a 

Plasma e longat ion,  o 

Plasma volume, V 

Wall area, AW 

F i e l d  on ax is ,  BT 

TF c o i l  e longat ion,  o~~ 

TF c o i l  h o r i z o n t a l  bore 

TF c o i l  v e r t i c a l  bore 

Burn time, TB 

Duty f a c t o r  

Thermal power (burn) ,  PB 

Thermal power (average), PA 

- - 

a See Sect.  9. 

7.0 m 

9.4 m 

20 min 

0.95 

2260 MW(t) 

2150 MW(t) 

Table 2.3. Cap i ta l  cos t  ( i n  1976 d o l l a r s )  f o r  a 
representat ive tokamak power reac to r  [ s i n g l e  

u n i t  p l a n t  producing 21 50 MW(t)] 

Subsystem Cost ( i n  m i l l i o n s )  

Reactor system $265 

 eat' t ranspor t  system 102 

Turbine system 80 

A u x i l i a r y  system and maintenance 99 

Bu i ld ings  90 

E l e c t r i c a l  p l a n t  242 

I &C 25 - 
TOTAL $903 

Cost/kW(t) ( c a p i t a l  on ly )  $420 

Once again i t  i s  emphasized t h a t  the 

costs shown i n  Table 2.3 do n o t  inc lude  engi- 

neer ing costs, i n t e r e s t  du r ing  const ruct ion,  

contingency, r o t u r n  on iovestment, o r  n t . h ~ r  

such i n d i r e c t  costs. 

Several o f  the  cos t  components discussed 

i n  Sect. 2.2 were grouped i n t o  systems f o r  

p resen ta t ion  i n  Table 2.3. These systems 

inc lude the f o l l o w i n g  components, 

1 )  Reactor System. 

I h e  reac to r  system 'includes The TF c o l l s ,  

the PF c o i l s ,  the  d i v e r t o r ,  the  n e u t r a l  beam 

i n j e c t i o n  system (exc lud ing the  e l e c t r i c a l  

power suppl ies) ,  the  blanket,  the sh ie ld ,  and 

the  vacuum system. 

2) E l e c t r i c a l  p l a n t .  

The e l e c t r i c a l  p l a n t  inc ludes pulsed 

power equipment f o r  the PF c o i l s  and r r e ~ ~ t r a l  

beams p lus the requ i red  conventinnal e l ~ c t . r i -  

ca 1 equ i pmen t . 

3) Auxi 1 i a r y  systems and maintenance. 

These areas inc lude  t r i t i u m  processing 

equipment i n  a d d i t i o n  t o  those i tems discussed 

i n  Sect. 2.2 f o r  t h i s  cos t  category. 



2.4.3 Shared F a c i l i t i e s  and M u l t i p l e  U n i t s  

One o f  t h e  ma jo r  c o s t  i tems f o r  a  tokamak 

r e a c t o r  i s  t h e  e l e c t r i c a l  p l a n t ,  as i n d i c a t e d  

i n  Tab le  2.3. Fo r  t h e  r e p r e s e n t a t i v e  r e a c t o r  

des ign  t h i s  i t e m  c o n s t i t u t e s  approx imate ly  

27% o f  t h e  t o t a l  c a p i t a l  cos t .  The m a j o r i t y  

n f  t h i s  cos t ,  24% o f  t h e  t o t a l ,  i s  f o r  t h e  

pu l sed  e l e c t r i c a l  equipment r e q u i r e d  t o  induce 

cu r ren t ,  i n  t h e  plasma and t o  hea t  t h e  plasma 

t o  t h e  i g n i t i o n  temperature.  T h i s  i s  a c y c l i c  

o p e r a t i o n  and f o r  t h e  r e p r e s e n t a t i v e  r e a c t o r ,  

i t  occurs  about  once every 20 min. The plasma 

c u r r e n t  i s  induced by  a  c u r r e n t  d r i v e n  through 

t h e  OH c o i l  f o r  a  d u r a t i o n  o f  approx imate ly  2  

sec. The plasma i s  heated by  t h e  i n j e c t i o n  of  

app rox ima te l y  100 MW ( i n  t h e  case o f  t h e  rep-  

r e s e n t a t i v e  r e a c t o r )  o f  h i g h  energy n e u t r a l  

beams i n t o  t h e  plasma f o r  app rox ima te l y  5-10 

sec. Large pu l sed  power s u p p l i e s  a r e  r e q u i r e d  

t o  d r i v e  t h e  plasma c u r r e n t  and t o  p r o v i d e  t h e  

h i g h  energy beams. 

The expens ive  pu l sed  e l e c t r i c a l  p l a n t  o f  a  

tokamak power f a c i l i t y  l i e s  dormant r l ~ l r i n g  most 

o f  t h e  c y c l e ;  t h e r e f o r e ,  t h e  concept o f  m u l t i p l e  

tokamak u n i t s  t i e d  i n t o  a  common pu l sed  e l e c t r i -  

c a l  p l a n t  appears a t t r a c t i v e .  As an example, 

two u n i t s  o f  t h e  r e p r e s e n t a t i v e  r e a c t o r  o f  2150 

MW(t) [750 MW(e)] a t  one s i t e ,  each s h a r i n g  one 

c e n t r a l  pu l sed  e l e c t r i c a l  p l a n t ,  would be a  pos- 

s i b l e  c o n f i g u r a t i o n .  Such a  c o n f i g u r a t i o n  would 

reduce .the t o t a l  average c a p i t a l  c o s t  f o r  a  

single r rac t . n r  u n i t  f r om $903 m i l l i o n  t o  $795 

m i l l i o n  and would reduce c a p i t a l  c o s t  p e r  thermal  

k i l o w a t t  from $420 t o  $370. Tab le  2.4 shows 

system c a p i t a l  c o s t s  f o r  t h i s  m u l t i u n i t  c o n f i g -  

u r a t i o n .  (These systems c o n t a i n  t h e  same c o s t  

elements as those d e f i n e d  f o r  Tab le  2.3.) Tab le  

2.4 a l s o  shows t h e  e f f e c t  o f  c l u s t e r i n g  t h r e e  

and f i v e  2150-MW(t) u n i t s  around a  s i n g l e  pu l sed  

e l e c t r i c , a l  p l a n t .  

I n  a d d i t i o n  t o  t h e  pu l sed  e l e c t r i c a l  p l a n t s ,  

o t h e r  equipment c o u l d  be shared i f  t h e  s i n g l e  

s i t e ,  m u l t i p l e  u n i t  concept  i s  adopted. T h i s  

m i g h t  i n c l u d e :  

sw i t chya rd  and t ransmiss ion  l i n e s  

much o f  t h e  l a r g e  maintenance equipment 

t r i t i u m  p rocess ing  p l a n t  

he1 ium r e f r i g e r a t i o n  ' 

gas rep rocess ing  p l a n t  (0-T r e c y c l e )  

f eed  p e l l e t  p r o d u c t i o n  f a c i l i t i e s  

c o o l i n g  towers  f o r  waste h e a t  

computer f o r  i n s t r u m e n t a t i o n  

r a d i o a c t i v e  waste s to rage  

feedwater  t r e a t i n g  p l a n t  

a d m i n i s t r a t i v e  overhead ( s e c u r i t y ,  o f f i c e ,  
e t c . )  

r a i l r o a d  spur  and h a n d l i n g  f a c i l i t i e s  

spare  p a r t s ,  c o i l s ,  b l a n k e t  modules, and 
s t r a t e g i c  i tens 

machine shop 

maintenance crew 

b u i l d i n g  v e n t i l a t i o n  and c o n t r o l  system 

standby emergency system. 

The s h a r i n g  o f  such equipment c o u l d  l e a d  t o  

f u r t h e r  r e d u c t i o n s  i n  u n i t  c a p i t a l  cos t s .  

2.5 COST COMPARISON WITH THE LMFBR 

As i n d i c a t e d  p r e v i o u s l y ,  t h e  . c a p i t a l  

c o s t s  es t ima ted  by t h e  model shou ld  be viewed 

as l y i n g  i n  t h e  c o s t  range spanned by systems 

c o n s t r u c t e d  on a  noncommercial b a s i s  and sys- 

tems c o n s t r u c t e d  on a  commercial bas i s .  I n  

o r d e r  t o  compare t h e  es t ima ted  tokamak c a p i t a l  

c o s t s  w i t h  c o s t  es t ima tes  f o r  t h e  L iqu id -Me ta l  

Fas t  Breeder Reactor  (LMFBR), t h e  arguments o f  

Levenson e t  a1 .22 have been adopted t o  es tab -  

l i s h  t h e  c o s t  range spanned by  LMFBR systems 

c o n s t r u c t e d  on a  noncommercial b a s i s  and 

LMFRR systems c o n s t r u c t e d  on a  commercial 

b a s i s .  T h i s  c o s t  range was e s t a b l i s h e d  as 

desc r i bed  below. 

The c a p i t a l  c o s t  f o r  a  noncommercial ly 

c o n s t r u c t e d  LMFBR i s  rep resen ted  by t h e  c o s t  

es t ima te  f o r  t h e  975-MW(t) C l i n c h  R i v e r  

Breeder Reactor  P l a n t  (CRBRP) which i s  $506 

m i l l i o n  ( i n  1974 d o l l a r s ) . 2 2  T h i s  c o s t  e s t i -  
I 

mate does n o t  i n c l u d e  e n g i n e e r i n g  and c o n t i n -  

gency c o s t s .  To e s c a l a t e  f r om mid-1974 d o l -  

l a r s  t o  mid-1976 d o l l a r s ,  a  f a c t o r  o f  1.24 was 

used (based on t h e  c o s t  i ndex  d a t a  o f  t h e  



Table 2.4. C a p i t a l  c o s t  f o r  a  m u l t i u n i t  power reac to ra  (1976 m i l l i o n s  o f  t l o l l a r s )  

Number o f  u n i t s  2  3 5 

Thermal power (MW) 

Reactor system 

Heat t r a n s p o r t  system 

Turb ine system 

A u x i l i a r y  and maintenance systems 

Bui l d i n g s  

E l e c t r i c a l  p l a n t  

I &C 

TOTAL COST 

$/b.W( t )  

a ~ u l s e d  e lect . r ica1 p l a n t  cos t  on ly  i s  reduced due Lo c l u s t e r i n g .  
No o t h e r  shared c o s t  i s  assumed. 

J u l y  1976 Handy Whitman B u l l e t i n ) .  , The adjusted 

CRBRP c a p i t a l  cost ,  a f t e r  adding esca la t ion ,  i s  

$627 m i l l i o n  ( i n  1976 d o l l a r s )  which i s  equiva- 

l e n t  t o  a$650/kW(t). Th is  value i s  shown i n  

column 1 o f  Table 2.5. Column 2 shows CRBRP 

c o s t  scaled t o  power r a t i n g s  o f  2150 and 4300 

MW(t). These costs  were scaled assuming the  . 
c a p i t a l  cos ts  vary as the 0.65 power o f  the  

thermal r a t i n g . 2 2  Fol lowing t.hp observat ions of 

Levenson. we assume there i s -  a  r e l a t i v e  cos t  

f a c t o r  o f  a2.0 when one compares the  cos t  o f  

f i s s i o n  reac to rs  const ructed on a noncommercial 

bas is  w i t h  the  cos t  o f  f i s s i o n  reac to rs  construc- 

ted  on a commercial basis. The costs  f o r  the 

commercial ly const ructed LMFBR, shown i n  column 

3 o f  Table 2.5, were generated by app ly ing  a 

f a c t o r  o f  2.0 reduc t ion  t o  the  power-scaled 

CRBRP. costs  i n  column 2. 

The estimated c a p i t a l  costs  o f  the  repre- 

s e n l d l i v e  lokarnak p la l i t s  a r e  g.iven i n  column 4 

f o r  a  s i n g l e  2150-MW(t) system and i n  column 5 

f o r  a  two-uni t ,  4300-MW(t) c l u s t e r  w i t h  shared 

pulsed e l e c t r i c a l  equipment. 

Based on the  cost ~ z t i m a t e s  shown i n  Tablc 

2.5, i t  appears t h a t  the est imated tokamak power 

systems l i e  i n  the  range spanned by t h e  noncom- 

m e r c i a l l y  const ructed and t h e  commercially 

cons t ruc ted  LMFBR systems. For example, the  

c a p i t a l  cos t  per k i l o w a t t  thermal i s  $420 f o r  

the tokamak which l i e s  i n  the range $490-$245 

spanned by the LMFBR a t  the 21 50-MW(t) l e v e l .  

A t  the  4300-MW(t) l eve l ,  the tokamak cos t  

est imate i s  $370 and the LMFBR range i s  $380- 

$190 per  k i l o w a t t  thermal. 

The f o l l o w i n g  observat ions are made con- 

cern ing the c a p i t a l  cos t  comparison o f  

tokomeks hi  111 ltle LMFBK. 

1) Tokamak c a p i t a l  cost.est imates are 

more uncer ta in  than LMFBR c a p i t a l  

c o s t  f?st.imat.~z 

2)  The tokamak c a p i t a l  costs  given i n  

Table 2.5 should be viewed as rcpre-  

sen ta t i vc  ond t - .~) . l .b  i111y y& a 5  Opt i -  

mized w i t h  respect  t o  costs o r  u n i t  

s i ze .  

3) The f a c t o r  o f  improvement which 

might  he gained i n  progress inq from 
prototype t o  commercial u n i t s  i s  n o t  

known f o r  e i t h e r  the LMFBR o r  the  

tokamak. 

4) M u l t i p l e  u n i t  operat ion favors 

tokarnaks w i t h  regard t o  c a p i t a l  

costs . 

n ~ e v e n s o n  e t  a l . ,  Nucl. News ( A p r i l  

' 1976). 



Table 2.5. Cap i ta i  cos t  comparison between LMFBR and represen ta t i ve  
tokamak p lan ts  ( i n  1976 d o l l a r s  per k i l o w a t t  thermal) 

Noncommercial l y  Commercially Tokama k To kama k 
const ructed construc t c d  ( s i n g l e  u n i t ) ,  ( 2 - u n i t  c l u s t e r ) ,  

LMFBR LMFBR 2150 MW(t) . .4300MW(t) 

CRRRP CRBRP scaled 

650 4 9 0 [ a t 2 1 5 0 M W ( t ) ]  245 420 

380 [ a t  4300 ~ W ( t ) l  190 

2.6 A ROUTE TO DEMONSTRATING COMMERCIAL 
FEASIBILITY 

Based on our s tud ies,  i t  i s  recommended 

t h a t  a  s i n g l e  s i t e ,  m u l t i p l e  u n i t  concept be 

adopted t o  demonstrate commercial fus ion  power. 

This p lan has th ree  phases: (1  ) an i g n i t i o n  

demonstration phase, (2 )  a  power technology 

demonstration phase, and (3 )  a  commercial 

prototype demonstration phase. 

During the  i g n i t i o n  demonstration phase, a  

c e n t r a l  pulsed e l e c t r i c a l  p l a n t  would be b u i l t  

t o  prov ide pulsed power f o r  a l l  the u ~ i i t s .  Con- 

cu r ren t l y ,  'a s i n g l e  tokamak would be b u i l t  and 

connected t o  the cen t ra l  pulsed e l e c t r i c a l  p lan t .  

The s i n g l e  tokamak would be an i g n i t i o n  device 

and would cons is t  p r i m a r i l y  o f  a  torus,  a  sh ie ld ,  

TF c o i l s ,  PF c o i l s ,  neu t ra l  beam i n j e c t o r s ,  and 

a d i v e r t o r  system. The TF c o i l s  would be s ized 

t o  accommodate a b lanket  i n  the  next phase. 

During the power technology demonstration 

phbsc, a b lankct ,  J heat t ranspnrk system. a 
t u r b i n e  system, and a t r i t i u m  breeding system 

would be added t o  the  i g n i t i o n  demorlstration 

tokamak. E l e c t r i c a l  power produced dur ing  t h i s  

phase could be fed i n t o  a commercial g r i d .  

During the  commercial prototype demonstra- 

t i o n  phase, a d d i t i o n a l  i d e n t i c a l  u n i t s  would be 

added and t i e d  i n t o  the c e n t r a l  pulsed e lec-  

L r l c a l  p lan t .  A s i n g l e  s i t e  might he p r o r l ~ ~ c -  

i n g  1500-3000 MW(e), and commercial prototype 

operat ion would be demonstrated. The number 

o f  u n i t s  and the power l e v e l  would be deter-  

mined by both plasma physics considerat ions 

and system op t im iza t ion  considerat ions.  

The above sequence has several major 

advantages. 

1 )  The plasma physics requirements are 

the  same f o r  the i g n i t i o n  device and 

the  commercial prototype. A ser ies  

o f  successively l a r g e r  devices does 

n o t  have t o e b e  scaled up and demon- 

s t ra ted .  This i n  i t s e l f  reduces the 

t ime requi red t o  proceed from i g n i -  

t i o n  demonstration t o  commercial 

operat ion.  

2) Cap i ta l  equipment i s  conserved 

dur ing  a l l  phases lead ing  t o  commer- 

c i a l  demonstration. 

3) Power i s  suppl ied t o  a commercial 

power g r i d  e a r l y  as each u n i t  i s  

added a t  an i n d i v i d u a l  s i t e .  

The est imated f a c i l i t y  cos t  o f  the f i r s t  

two phases o f  the program t o  demonstrate com- 

merc ia l  f u s i o n  power '(the i g n i t i o n  demonstra- 

t i o n  phase and power technology demonstration 

phase) can be determined t r 6 M  Flg. 2.15. 

This  f i g u r e  shows t h a t  the est imated c a p i t a l  

cos t  f o r  a  s i n g l e  tokamak u n i t  i s  i n  the 

v i c i n i t y  o f  $1 b i l l i o n  f o r  tokamaks designed 
2 f o r  w a l l  loadings o f  2-4 MW/m w i t h  values o f  

beta g rea te r  than 0.10. For the  representa- 

t i v e  tokamak described i n  Tables 2.2 and 

2.3, t h i s  cos t  through power demonstration i s  

approximately $900 m i l  1  ion.  t'br the  1y11.l t lo l l  

demonstration phase only, the cos t  of the 

heat t r a n s p o r t  system, the  blanket,  the  t u r -  

bine, and the  t r i t i u m  system can be deleted. 



2.7 CONCLUSIONS 

On t h e  b a s i s  o f  o u r  p l a n t  c o s t  s t u d i e s ,  i t  

appears t h a t  t h e  tokamak concept  can ach ieve 

c a p i t a l  c o s t s  wh ich  a r e  i n  t h e  range of  those 

p r e d i c t e d  f o r  t h e  LMFBR. Moreover, u n c e r t a i n t i e s  

w i t h  r e g a r d  t o  t h e  economic p o t e n t i a l  o f  tokamak 

pow& p l a n t s  a r e  assoc ia ted  p r i m a r i l y  w i t h  un- 

c e r t a i n t i e s  i n  t h e  expected plasma phys i cs  pe r -  

formance and n o t  w i t h  f o reseeab le  l i m i t a t i o n s  i n  

t h e  areas o f  techno logy and eng inee r i ng .  The 

toltamak ean ach ieve  eLullulllic cu lnpet l r l ve i iess  w i t h  

t . h ~  I MFRR i f  t h e  f o l l o w i n g  s c t  o f  plasma p h y s i i s  

c r ~ t e r i a  i s  s a t i s f i e d ;  aga in ,  i t  i s  emphasized 

t h a t  t h e  f o l l o w i n g  s e t  o f  c r i t e r i a  rep resen ts  a  

p r o l l ~ i s i n g  s e t  b u t  n o t  a  un ique one. 

1. S i ze  s c a l i n g .  The tokamak plasma 

shou ld  be capab le  o f  a c h i e v i n g  i g n i t i o n  w i t h  

plasma r a J . i i  i n  t h e  range 1-2 m and f o r  

assoc ia ted  t o r o i d a l  F i e l d s  on a x i s  i n  t h e  

r'allge 4.5-3.0 T.  Th4s range o f  s i z e s  and 

0 4 2 3 4 5 
NEUTRON WALL LOADING M W / ~ '  

F i g .  2.15. T o t a l  c a p i t a l  c o s t  ( f o r  a  
s i n g l e  tokamak u n i t )  as a  f u n c t i o n  o f  n e u t r o n  
w a l l  l o a d i n g  and beta .  

T h i s  r e s u l t s  i n  a  c o s t  f o r  t h e  i g n i t i o n  dem- 

o n s t r a t i o n  phase o f  app rox ima te l y  $650 mi 1  - 
1  i o n .  The t h i r d  phase (commercial  p r o t o t y p e  

demons t ra t i on )  wou ld  i nc rease  t h e  c o s t  o f  t h e  

program t o  $1.6 b i l l i o n  f o r  a  t w o - u n i t  system , 
delivering -1500 M'w(e) and $2.3 b i l l i o n  f o r  a  

t h r e e - u n i t  c l u s t e r  d e l i v e r i n g  -2250 MW(e), as 

shown i n  Tab le  2.4 ( a  thermal  e f f i c i e n c y  o f  35% 

wes used Lu c u r ~ v e r t  t o  e l e c t r i c a l  megawatts f o r  

t h e  purpose o f  d i s c u s s i n g  program c o s t ) .  These 

c o s t s  a r e  r e p r e s e n t a t i v e  o f  c o n s t r u c t i o n  c o s t s  - .  

l y i n g  between commercial and noncommercial va lues 

and a r e  summarized i n  Tab le  2.6. 

f i e l d s  r e q u i r e s  a  s i z e  s c a l i n g  performance about  

an o r d e r  o f  magnitude b e t t e r  than t h a t  p r e d i c t e d  

by  f u l l  t r apped  p a r t i c l e  s c a l i n g  and I s  cons i s -  

t e n t  w i t h  i g n i t i o n  requ i rements  p r e d i c t e d  hy 

e m p i r i c i a l  s c a l i n g  r e l a t i o n s h i p s .  

2. Beta. Under o p e r a t i n g  c o n d i t i o n s ,  

pnint-model c a l c u l a t i o n s  i n d i c a t e  t h a t  t h e  

plasma average be ta  would have t o  be about  

10-1 5%. The point-model c a l c u l a t i o n s  do n o t  

account  f o r  d e n s i t y  and temperature  p r o f i l e  

e f f e c t s .  When such e f f e c t s  a r e  i nc luded ,  

t h e  r e q u i r e d  va lue  o f  average be ta  may be 

s i g n i f ~ c a n t l y  l e s s  t han  2.10-15%, perhaps ~ 5 -  

10%. Such v a l ~ r ~ s  o f  hp ta  art? q t i l l  h i g h  compared 

t o  va lues ob ta ined  i n  c u r r e n t  exper iments b u t  a r e  

compa t i b l e  w i t h  r ~ c ~ n t  r a l c l ~ l a t i o n s  o f  h i g h  

be ta  tokamak o p e r a t i o n .  

I n  a d d i t i o n  t o  s i z e  s c a l i n g  and be ta ,  

success fu l  s o l u t i o n s  i n  t h e  areas o f  i m p u r i t y  

c o n t r o l ,  plasma hea t i ng ,  and plasma f u e l  i n g  

a r e  c r i t i c a l  t o  t h e  economic compe t i t i veness  

o f  tokamak power systems. I n  t h e  Demo 



Table 2.6. Cap i ta l  cos t  o f  demonstration program 

To ta l  program cos t  - 
Phase cos t  Power sum o f  a l l  th ree  phases 

Phase ( b i l l i o n s o f d o l l a r s )  [MW(e)l ( b i  11 ions o f  do1 1 a r s )  

I g n i t i o n  demonstration 

Power technology 
demonstration 

Commercial prototype 
demonstration 

2 -un i t  c l u s t e r  0.70 ,. 

3-uni t c l u s t e r  1.40 

s tudies,  we have assumed t h a t  successful so- 

l u t i o n s  t o  these problems can be achieved. 

However, we are consider ing the impact o f  

d i v e r t o r s  on the o v e r a l l  engineering design 

and the economics o f  the tokamak power p lan t .  

Assuming t h a t  the preceding plasma 

physics c h a r a c t e r i s t i c s  can be achieved, then 

a commercial tokamak fus ion  power p l a n t  would 

cons is t  o f  mu1 t i p l e  (2-5) tokamak reac to r  

u n i t s  shar ing a number o f  common elements. 

Two key elements shared by these m u l t i p l e  

u n i t s  would be the pulsed power suppl ies f o r  

d r i v i n g  the plasma cur ren t  and the  pulsed 

power suppl ies which prov ide the plasma sup- 

plemental heat ing. Each reac to r  u n i t  might  

produce about 2000 MW o f  thermal output  

power; the prec ise value o f  the  thermal out -  

p u t  o f  each u n i t  would be determined both by 

plasma physics considerat ions and hy c o s t  

opt im iza t ion  considerat ions.  The f o l l o w i n g  

po in ts  are noted w i t h  regard t o  the commer- 

c i a l  tokamak fus ion  power p l a n t .  

1. The c a p i t a l  cos t  t rends f o r  tokamak 

power systems i n d i c a t e  that ,  a t  a f i x e d  value 

o f  beta, u n i t  c a p i t a l  costs  decrease w i t h  

decreasing p l a n t  s ize.  This  t rend  i s  

con t ra ry  t o  the  cos t  trends o f  f i s s i o n  reactors,  

for 'which u n i t  c a p i t a l  costs  favor  increased 

p l a n t  s ize.  

2. The plasma c h a r a c t e r i s t i c s  requ i red  f o r  

the commercial u n i t s  are e s s e n t i a l l y  the same as 

those requi red f o r  an i g n i t i o n  demonstration 

device. Thus, many o f  the components developed 

f o r  i g n i t i o n  demonstration w i l l  be p 0 h J L y ~ l i O d l  

o f  the components requ i red  f o r  commercial power. 

This  i s  an impor tant  observat ion and con t r ibu tes  

t o  the p o s s i b i l i t y  of min imiz ing the  number o f  

f a c i l i t i e s  requ i red  f o r  demonstrating commercial 

f e a s i b i l i t y .  

3 .  The mot i va t ion  f o r  pursuing a power 

p l a n t  cons is t ing  o f  m u l t i p l e  reac to r  u n i t s  t i e d  

i n t o  a common pulsed e l e c t r i c a l  system i s  based 

on our cos t  s tud ies which show t h a t  the pulsed 

e l e c t r i c a l  system o f  the tokamak represents 

about 25% o f  t.he t o t a l  p l a n t  cost .  Th is  con- 

t r a s t s  w i t h  f i s s i o n  power p lan ts  i n  which the  

e l e c t r i c a l  p l a n t  system cos t  represents o n l y  

about 5% o f  the  t o t a l  p l a n t  cost .  The pulsed 

e l e c t r i c a l  equipment i s  requ i red  t o  i n i t i a t e  the  

plasma c u r r e n t  and achieve plasma heat ing and 

operates f o r  on ly  a f r a c t i o n  o f  each cyc le.  For 

example, w i t h  a 20-min burn t ime and a 1-min 

downtime, the  pulsed equipment would be operat -  

i n g  f o r  on ly  about 1% o f  the cyc le.  I t appears 

t h a t  t h i s  pulsed equipment could be economical ly 

and convenient ly  shared among several un i t s .  

4. The p l a n t  cos t  s tud ies i n d i c a t e  t h a t  

neutron w a l l  loadings i n  the v i c i n i t y  o f  2-4 
2 MW/m w i l l  r e s u l t  i n  near-optimum p l a n t  costs .  

Such w a l l  loadings must a l s o  lead  t o  accept- 

ab le  p l a n t  a v a i l a b i l i t y  and costs o f  operat ion 

and maintenance. I n  our  s tud ies,  we have 

reached t h e  p r e l i m i n a r y  conclus ion t h a t  wa l l  

l i f e t i m e s  o f  35 years w i l l  no t  s i g n i f i c a n t l y  

impact the  p l a n t  a v a i l a b i l i t y .  Therefore, i t  

appears t h a t  i n t e g r a l  w a l l  loadings o f  about 
2 10-20 MW-yr/m should be acceptable f o r  the  

s Lruc tu rd l  111crlt.r.id1 pri'fot'l~tancc. 



A three-phase program, bui  1 t around a 

s i n g l e  s i t e - m u l t i p l e  u n i t  concept, o f f e r s  a 

v i a b l e  p lan  f o r  demonstrat ing commercial 

f e a s i b i l i t y  o f  tokamak f u s i o n  power. The 

three-phase program cons is ts  o f  (1  ) i g n i t i o n  

demonstrat ion ( c e n t r a l  pu lsed e l e c t r i c a l  p l a n t  

p l u s  a s i n g l e  i g n i t i o n  dev ice) ,  ( 2 )  power 

technology demonstrat ion (b lanke t  and power 

conversion system added), and ( 3 )  commercial 

prototype demonstration ( a d d i t i o n a l  tokamak 

u n i t s  added and t i e d  t o  cen t ra l  pulsed e lec-  

t r i c a l  p l a n t ) .  Based on our cos t  est imates, 

such a program could be implemented i n  t h i s  

century w i t h  a t o t a l  f a c i l i t y  cos t  o f  around 

$2-3 b i l l i o n  ( i n  FY 1976 d o l l a r s ) .  This does 

no t  inc lude  engineering and contingency costs, 

rlor. does i t  inc lude development costs. 



3. PLASMA CONSIDERATIONS 

A. T. Mense 

3.1 . INTRODUCTION 

The analys is  i n  the  prev ious s e c t i o n . i n -  

d i ca ted  t h a t  an economical ly a t t r a c t i v e  toka- 

mak power reac to r  was produced when operated 

w i t h i n  the f o l l o w i n g  range o f  parameters. 

Plasma minor 
rad ius (m) l < a < 2  

Aspect r a t i o  
(R/a) 4 <  R / a G 5  

Plasma e longa t ion  
(b/a) 1 .O < b/a < 3 

Toro ida l  f i e l d  on 
ax is  (T) 3.0 < BT < 4.5 

Safety f a c t o r  2.5 G q - ~  4 

Plasma cur ren t  
(Amperes) 2 . O x 1 o 6 < I  < 4 x 1 0  

6 
P 

E f f e c t i v e  Z 1 G Z e f f  < 2 

Average beta 0.10 G B 9 0.20 

[F . p 2 Y,,/B: (R) ; 

see Sect. 3.3 f o r  
f u r t h e r  d e t a i l  .] 

The above parameters could be produced w i t h  

plasma d e n s i t i e s  and temperatures i n  the 

ranges 1 i s t e d .  

' Average p l  asma3 - 
dens i t y  (#/m ) n > 1.0 x 10 20 

Average e l e c t r o n  - 
temperature (keV) Te > 10 

Average i o n  - 
temperature (keV) 

Ti > 10 

The purpose o f  t h i s  sec t ion  i s  t o  consider 

the l i k e l i h o o d  t h a t  tokamaks can operate i n  

t h i s  des i red  p a r t  o f  parameter space. 

A t  the ou tse t  i t  should be emphasized 

t h a t  one cannot p resc r ibe  i n  d e t a i l  the 

"doses" o f  plasma physics requ i red  t o  achieve 

these desi red plasma parameters. We have 

used the best  a n a l y t i c  and numerical t o o l s  

a v a i l a b l e  t o  perform the  plasma analyses i n  

t h i s  study, b u t  the r e s u l t s  are no b e t t e r  

than the assumptions involved. Simply stated, 

the experimental evidence a t  hand i s  no t  ade- 

quate t o  prov ide d e f i n i t i v e  procedures on how 

t o  achieve i g n i t i o n  i n  a tokamak device. 

This i s  n o t  s u r p r i s i n g  s ince the tokamak program 

i s  s t i l l  r e l a t i v e l y  young (working on i t s  second 

generat ion of devices) and much has y e t  t o  be 

learned. Nevertheless, we have attempted t o  ex- 

p l a i n  the a n t i c i p a t e d  plasma behavior i n  an 

ign i t i on -g rade  device based upon assumed t rans-  

p o r t  sca l ing  models. I t i s  our view t h a t  one 

should approach the f o l l o w i n g  d iscuss ion o f  

plasma physics w i t h  the understanding t h a t  a 

commercial demonstration p l a n t  would be pursued 

o n l y  a f t e r  an i g n i t i o n  t e s t  r e a c t o r  (e.g., TNS) 

has been success fu l l y  operated. I n  the  i g n i t i o n  

t e s t s ,  the  d e t a i l e d  plasma behavior w i l l  be de- 

termined. I t  can be argued t h a t  the r e s u l t s  of 

these i g n i t i o n  experiments could d r a s t i c a l l y  

a l t e r  the plasma d e t a i l s  which we propose i n  

t h i s  repor t .  Th is  w i l l  be t r u e  i f  i t  i s  found 

t h a t  the t ranspor t  sca l ings and hea t ing  tech- 

niques are markedly d i f f e r e n t  from those we 

adopt here. This  i s  the chance one takes i n  a 

study o f  t h i s  k ind,  and no f u r t h e r  caveat i s  

necessary. 

This  sec t ion  i s  organized as fo l lows .  

F i r s t  the s c a l i n g  laws adopted i n  t h i s  study 

w i l l  be described. Fol lowing t h i s  i s  a- b r i e f  

review o f  . the advantages o f  h igh  0 operat ion.  

Methods c u r r e n t l y  being considered as the best 

avenues t n  the  achievement o f  h igh  B w i l l  then 

be de ta i led .  The plasma operat ing cyc le  and 

e f f e c t i v e  duty  fac to r  w i l l  be discussed, fo l lowed 

by considerat ions o f  i m p u r i t y  c o n t r o l ,  plasma 

heating, and fue l ing .  F i n a l l y ,  the  s a l i e n t  

imp l i ca t ions  o f  the  plasma ana lys is  w i l l  be 

summarized. 

3.2 TRANSPORT SCALING LAWS 

As was ind ica ted  i n  the  economics sect ion, 

the re  i s  some i n t e r e s t  a t tached t o  cons t ruc t ing  

n e t  power-producing tokamaks having a phys ica l  

s i z e  smal ler  than t h a t  proposed as EPR's. 
1-3 

When energy and p a r t i c l e  confinement times scale 
2 roughly  as the  plasma minor rad ius  squared ( d  ) ,  



one i s  compel l e d  t o  i n v e s t i g a t e  plasma param- 

e t e r  regimes which reduce t h e  magnitude o f  the 

thermal and p a r t i c l e  loss  processes. One such 

regime i s  t h a t  o f  h igh  d e n s i t y  operat ion.  

Recent gas puf f ing experiments on both 

A L C A T O R ~  and ORMAK~ tend t o  i n d i c a t e  t h a t  

h igh  dens i t y  plasma operat ion i s  achievable. 

The experimental team working on ALCATOR drew 

t h e  in fe rence  t h a t  p a r t i c l e  d i f f u s i o n  and 

e l e c t r o n  thermal conduct ion times scale d i -  

r e c t l y  w i t h  the  plasma dens i t y .  I n  add i t i on ,  

ALCATOR and ORMAK experimental parameter scans 

a l s o  tend t o  i n d i c a t e  t h a t  Zeff, which i s  a  

measure o f  some ( b u t  no t  a l l )  o f  t h e  i m p u r i t y  

e f f e c t s  i n  a plasma, scales i n v e r s e l y  w i t h  

t h e  dens i t y .  These observat ions lead  us t o  

be1 i e v e  t h a t  h igh  dens i t y  opera t ion  may be 

poss ib le  and i n  f a c t  very des i rab le .  The 
2 f u s i o n  r e a c t i o n  r a t e  i s  p r o p o r t i o n a l  t o  n <av> 

where t h e  () i nd ica tes  an average over  the  

plasma volume and <av> equals the f u s i o n  
3 2 r e a c t i o n  parameter (cm /sec).  The n depen- 

dence helps t o  produce l a r g e  power dens i t i es ,  

which a r e  always economical ly a t t r a c t i v e .  We 

have considered the  so-ca l led  "emp i r i ca l "  

s c a l i n g  law4 suggested by the  ALCATOR data. 

However, we have used i n  a d d i t i o n  t h c  o ther  

"extreme" on plasma sca l ing  behavior ( i .e . ,  

t h e  trapped p a r t i c l e  modes). 

I t has been proposed on t h e o r e t i c a l  

grounds t h a t  magnet ica l ly  trapped p a r t i c l e s  

i n  a tokamak which operates a t  very h igh  tem- 

peratures ( o r  low dens i t y )  may be responsib le  

f o r  suppor t ing some microscopic e l e c t r i c  

f i e l d  f l u c t u a t i o n s  which a r e  r e f e r r e d  t o  i n  

very broad terms as m i c r o i n s t a b i l i t y  turbu-  

lence. This turbulence can have the  conse- 

quence O f  t r a n s p o r t i n g  energy and p a r t i c l e s  

o u t  o f  the  h o t  plasma core and thus prevent ing 

i g n i t i o n .  I n  a very hot, h igh  d e n s i t y  tokamak 

such as the  one we propose t o  look  a t  here, 

t h e  modc which t h c o r c t i c a l l y  would dominate 

the  t r a n s p o r t  over most o f  the  plasma cross 

sec t ion  i s  the  ( d i s s i p a t i v e )  trapped i o n  

mode.6 However, n e i t h e r  t h i s  mode nor i t s  

lower  temperature counterpar ts  ( t rapped 

e lec t ron  modes and c o l l i s i o n a l  d r a f t  waves) have 

been conc lus ive ly  i d e n t i f i e d  as being responsib le  

f o r  energy /par t i c le  loss  i n  tokamak experiments. 

This may be due t o  the l a c k  o f  adequate diagnos- 

t i c  techniques. However, f o r  t h i s  study we have 

considered both the emp i r i ca l  and trapped p a r t i -  

c l e  mode s c a l i n g  laws. Usjng the dimensionless 

parameters 

N : K~/IO" #/cm3, 

a. : a/100 cm, 

T :  T2(  = Ti)/10 keV, 

and - 
1 - n ~  14 -3 

e  ~ n e r ~ ~ ' "  - S y  

the s c a l i n g  law f o r  empir ica l  s c a l i n g  (where 

= 3.2 x 10- l9  Ne q 112 a') i s  g4ven by. 
'Energy 

Iemp " a ~ '  (1)  

and the trapped i o n  ( T I )  ~~lor le (assu~niny 

D and x publ ished i n  WASH-1295) i s  given by 

I n  comparing Eqs. (1 )  and (2 )  we note t h a t  T a N, 

b u t  o n l y  the  T I  mode has a temperature depen- 

dence. The inverse temperature dependence causes 

the confinement t ime t o  decrease as the plasma 

heats up and adversely a f f e c t s  the achievement 

o f  i g n i t i o n ,  al though i t  has a p o s i t i v e  e f f e c t  

on the reac to r  temperature con t ro l  once I g n i t i o n  
' 

i s  achieved. ( I g n i t i o n  i s  def ined as the p o i n t  

i n  parameter space a t  which the  alpha power de- 

pos i ted  i n  the plasma equals t h e  energy loss  

from the  plasma. ) Both s c a l i n g  laws have been 

found t o  y i e l d  i g n i t i o n  c r i t e r i a  i n  the  same 

regime ( i  .e., a  = 1-2 m, ii = lo2' #/m3, e tc .  ) . 
Once i g n i t e d ,  however, the plasma temperature 

runs away i f  emp i r i ca l  s c a l i n g  i s  used. (The 

temperature r i s e s  up t o  60-80 keV, where the . 

synchrotron r a d i a t i o n  catches ho ld  and causes 

the loss  r a t e  curve t o  exceed the  power produc- 

t i o n .  ) Thus f o r  the  q u a n t i t a t i v e  s tud ies done 

on Demo, we have used'only  the trapped p a r t i c l e  

modes. By scal ing,  we mean the  way i n  which the 

d i f f u s i o n  c o e f f i c i e n t  D and thermal d i f f u s i v i t i e s  

xi and 'xe depend f u n c t i o n a l l y  on Te, Ti, N, e tc .  

The 'other impor tant  concern i s  how large a f a c t o r  

mu1 t i p l i e s  these func t iona l  forms; i .e., the . 



d i f f u s i o n  c o e f f i c i e n t  has t h e  fo rm 

D = C * f (Te,  Ti. M, B). 

We need t o  know how l a r g e  C i s  b e f o r e  we can 

determine t h e  i g n i t i o n  and o p e r a t i o n  charac- 

t e r i s t i c s .  U n f o r t u n a t e l y  t h e  t h e o r e t i c a l  

a n a l y s i s  procedures used t o  d a t e  on t h e  

t rapped p a r t i c l e  modes do n o t  produce a s e l f -  

c o n s i s t e n t  va lue  f o r  t h i s  mu1 t i p l y i n g  f a c t o r  

C. The e m p i r i c a l  s c a l i n g  laws a l s o  have t h i s  

d i f f i c u l t y ,  b u t  one can d e f i n i t e l y  determine 

C by r e q u i r i n g  a f i t  t o  exper imenta l  da ta .  I n  

u s i n g  t h e  t rapped b a r t i c l e  modes, we eva lua te  

bo th  t h e  T I  s c a l i n g  and t h e  e m p i r i c a l  s c a l i n g  

(where C i s  determined f rom ALCATOR d a t a )  f o r  

T 2 10, N = 1-2, and a. = 1 ; then they  agree 

i n  magnitude, p rov ided  we m u l t i p l y  t h e  con- 

f inement  t imes (as  g i v e n  i n  WASH-1295) by a 

f a c t o r  210. Thus t h e  use o f  t r a n s p o r t  co- 

e f f i c i e n t s  (D, x,, and xi), wh ich  s c a l e  as 

t h e  t rapped p a r t i c l e  modes b u t  whose magni- 

tude i s  1/10 o f  t h a t  shown i n  WASH-1295, 

g i ves  agreement w i t h  t h e  e m p i r i c a l  s c a l i n g  

law a t  i g n i t i o n  temperatures  and indeed 

a l l ows  i g n i t i o n  c r i t e r i a  t o  be f u l f i l l e d .  

I f  f o r  some reason t h e  t r a n s p o r t  c o e f f i -  

c i e n t s  a r e  l a r g e r  than 1/10 t rapped  p a r t i c l e  

values, then t h e  s c a l i n g  laws t e l l  us t h a t  we 

must e i t h e r  go t o  h i g h e r  d e n s i t i e s  o r  a l a r -  

g e r  plasma m ino r  r a d i u s .  The h i g h  d e n s i t i e s  

(ii > 2 x 1014 #/cm3) r e q u i r e d  f o r  plasma i g -  

n i t i o n  w i t h  a m ino r  r a d i u s  o f  150 cm may be 

d l f f l c u l l :  to  acti'ieve cllready, so the  l o g i c a l  

a l t e r n a t i v e  would be t o  go t o  a l a r g e r  plasma 

minor  r a d i u s .  T h i s  would t end  t o  i nc rease  

t h e  c o s t  o f  t h e  r e a c t o r .  We have taken  t h e  

mu1 t i p 1  i e r  o f  1/10 f o r  t h e  Demo s tudy  pre-  

sented here.  

A t ime-dependent, s p a t i a l l y - i n d e p e n d e n t  

computer code (sometimes c a l l  a 0-D code due 

t o  the  absence o f  ally s p a t i a l  dependence) was 

used t o  eva lua te  t h e  plasma o p e r a t i o n .  T h i s  

code was developed a t  ORNL as p a r t  o f  t h e  

FBX, EPR, and TNS ~ t u d i e s . ~  The code weighs 

i n  t h e  f o l l o w i n g  t r a n s p o r t  s c a l i n g  laws. 

E l e c t r o n  thermal c o n d u c t i v i t y :  pseudo- 

c l a s s i c a l ,  1/10 t rapped e l e c t r o n  

modes, 1/10 t rapped i o n  mode. 

I o n  thermal  c o n d u c t i v i t y :  n e o c l a s s i c a l ,  

1/10 t rapped  i o n  modc. 

P a r t i c l e  d i f f u s i o n  c o e f f i c i e n t :  pseudo- 

c l a s s i c a l ,  1/10 t rapped  e l e c t r o n  modes, 

1 /10 t rapped  i o n  modes. 

The code uses t h e  combinat ion  o f  t h e  above s c a l -  

i n g  laws. wh ich  weighs t h e  l a r g e s t  c o e f f i c i e n t  

t h e  most. Our numer ica l  model ing  o f  a represen-  

t a t i v e  tokamak r e a c t o r  u s i n g  these s c a l l n g s  (as  

desc r i bed  i n  Tab le  2.2, Sect.  2.4.2) has i n d i -  

ca ted  t h a t  most o f  t h e  c o n t r i b u t i o n s  t o  t h e  

energy and p a r t i c l e  conf inement  t imes  come f rom 

t h e  t rapped i o n  mode, a t  l e a s t  ove r  most o f  t h e  

r e a c t o r  o p e r a t i n g  c y c l e .  One-dimensional , space- 

t i m e  codes tend  t o  v a l i d a t e  t h i s  conc lus ion  as 

l o n g  as t h e  plasma i m p u r i t y  c o n t e n t  ove r  most o f  

t h e  plasma remains low. T h i s  t ime-dependent 

code has produced t h e  s e t  o f  o p e r a t i n g  parameters 

shown i n  Tab le  3.1, and a f u r t h e r  e l a b o r a t i o n  o f  

t h e i r  impor tance w i l l  be made i n  t h e  d i s c u s s i o n  

o f  h i g h  6 e f f e c t s .  

1. D. G. McAlees e t  a l . ,  Oak Ridge Tokamak 

Expehbnentae Powm Reactoh SXudq, ORNL/TM- 

5572-5577, Oak Ridge N a t i o n a l  Labora tory ,  

Oak Ridge, Tennessee (October 1976).  

2. W. Stacey e t  a l . ,  ANL/CTR-76-3, Argonne 

Na t i ona l  Labo ra to ry ,  Argonne, I l l i n o i s  (1976).  

3. General Atomic Fus ion Study Group, GA-A14000, 

General Atomic Co., San Diego, C a l i f o r n i a  

(1976).  

4. D. R. Cohn, D. L. Jassby, and R. R. Parker,  

Phonpeu% doh T h m o n u f R e a h  ignition i n  a 

"CoU. ih iond l '  Tokamak, MATT-1 170, P r i n c e t o n  

Plasma Phys ics  Labora tory ,  P r i nce ton ,  New 

Jersey (October  1975). 

5. L. A. B e r r y  e t  a l . ,  "Conf inement and N e u t r a l  

Beam I n j e c t i o n  Stu'dies on ORMAK," paper CN- 

35/A4-1, p resented a t  t h e  6 t h  Conference on 

Plasma Phys ics  and C o n t r o l l e d  Nuc lea r  Fus ion  

Research, Berchtesgaden, West Germany 

(October 1976).  See a l s o  Fus ion Energy 

D i v i s i o n  1976 Annual Repor t  ( t o  be pub1 i s h e d ) .  

6. S. 0 .  Dean e t  a l . ,  StaXun and Object iven 604 

Tolru~~~alz Sybtems doh Fusion R Q C U ' L ( ? ~ ,  WASH- 

1295, USAEC ( 1  974). 



Table 3.1. Tokamak reac to r  parameters 

Machine parameters 

Major rad ius,  Ro(m) 6.0 

Plasma radius,  a(m) 1.5 

F i e l d  s t reng th  on ax is ,  BT(T) 3.6 

F i e l d  strength a t  wlndlng, B ~ ~ ( T )  7.1 

2 Wall area, Awall (m ) 474. 

3 Flasnia vo l  uwe, V(in ) 426. 

Plasma e longat ion,  n 1.6 

Plasma parameters 

Safety  f a c t o r ,  q 

Plasma cur ren t ,  1 '(MA) 
P 

Beam power, Pb(MW) 

Average e l e c t r o n  densi ty ,  n e ( i 3 )  

Average e l e c t r o n  temperature, Te(keV) 

Average i o n  temperature, Ti (keV) 

Global energy confinement t ime  ~ ~ ( s )  

Toro ida l  ( t o t a l  )-beta, B 

Thermal power. Pth(MW) 

14-MeV neutron w a l l  loading, Pnls (MWI~~) 

I m p u r i t y  l e v e l ,  Zeff 

Power balance 

Alpha power, P,(MW) 283. 

Conduction and convect ion loss ,  P+.,.(MW) 247. 

7. D. G. McAl ees e t  a1 . , Oak Ridge Tokumak 

E x p e h i m e W  Powa R u c t o t  S.tudy, ORNL/ 

TM-5572-5577, Oak Ridge Nat ional  Labora- 

t o r y ,  Oak Ridge, Tennessee (October 1976). 

3.3 HIGH 6 EFFECTS 

The economic p o t e n t i a l  o f  f u s i o n  power 

i s  enhanced i f  t h e  plasma can operate w i t h  a 

h igh  r a t i o  o f  plasma pressure t o  magnetic 

f i e l d  c o n f i n i n g  pressure. This  r a t i o  i s  u s u a l l y  

measured by a parameter c a l l e d  B :  
- average plasma pressure 9 (3 )  ' ' [ B ~ ( R ~ ) I ~ / ~  PO 

where the  average plasma pressure i s  a volume 

average o f  a l l  the  p a r t i a l  pressures i n  the 
1 

plasma ( ions,  e lect rons,  alphas, and i m p u r i t i e s ) .  

The use o f  the vacuum t o r o i d a l  f i e l d  a t  the mag- 

n e t i c  ax is ,  BT(R,), i n  the  eva lua t ion  o f  p i s  

most ly  a mat ter  o f  convention. I t was made 



c l e a r  i n  t h e  econan ics  s e c t i o n  t h a t  a  good 

share  o f  t h e  f u s i o n  r e a c t o r  c o s t  i s  i n  t h e  

magnet ic f i e l d  system [$ % ( B ~  v ~ l u m e ) ~ ' ~ ] .  

Knowing t h i s ,  we w i s h  t o  make t h e  most e f f i -  

c i e n t  use p o s s i b l e  o f  t h e  magnet ic  f i e l d .  

T h i s  i s  done by e n c l o s i n g  t h e  h i g h e s t  plasma 

pressure  (energy d e n s i t y )  compat i  b l e  w i t h  

magnetohydrodynamic (MHD) s t a b i l i t y  con- 

s t r a i n t s .  

There a r e  two methods be ing  i n v e s t i g a t e d  

a t  t h e  p resen t  t i m e  f o r  a c h i e v i n g  h i g h  0 op- 

e r a t i o n  i n  tokamaks. The f i r s t  method i s  t o  

deform t h e  plasma cross  s e c t i o n  f rom i t s  

usua l  c i r c u l a r  shape. Th i s  e l o n g a t i o n  (as  

be ing pursued i n  Doublet ,  ISX, and PDX) may 

a l l o w  h i g h e r  0 o p e r a t i o n ,  and i t  a l s o  a l l ows  

t h e  b e s t  usage by t h e  plasma o f  t h e  a v a i l a b l e  

magnet ic f i e l d  f o r  a  g i v e n  plasma volume. 

The second approach, wh ich  i s  i n  f a c t  n o t  

m u t u a l l y  e x c l u s i v k  o f  t h e  t echn ique  no ted  

above, i s  t h e  very  r a p i d  h e a t i n g  o f  t h e  

plasma ( u s i n g  i n t e n s e  n e u t r a l  beams and/or  

rf waves). I f  t h e  he'a'ting can be accompl ished 

on a  t i m e  s c a l e  wh ich  i s  s h o r t  compared t o  

t h e  t i m e  i t  takes theqmagne t i c  f i e l d  t o  d i f -  

f use  r e s i s t i v e l y ,  t hen  t h e  magnet ic  f l u x  

(bo th  t o r o i d a l  and p o l o i d a l )  must be con- 

served. T h i s  f l u x  conse rv ing  tokamak (FCT) 

o p e r a t i o n  i m p l i e s  t h a t  q ( ~ ) ,  wh ich  measures 

t h e  r a t i o  o f  t o r o i d a l  f l u x  t o  p o l o i d a l  f l u x ,  

must remain t h e  same f u n c t i o n  o f  Y  d u r i n g  t h e  

hea t i ng :  f o r  a  c y l i n d e r ,  q ( y )  + q ( r )  = s a f e t y  

f a c t o r  = ( r /R )  [BT/Bp(r) ]  = # t imes  a  magnet ic  

f i e l d  1  i n e  c i r c l e s  t h e  dev i ce  t h e  "long-way" 

i n  moving once around t h e  plasma t h e  " s h o r t -  

way"; and Y  i s  d e f i n e d  as t h e  po l  o i d a l  mag- 

n e t i c  f l u x .  Once a  l ow  temperature  e q u i l i b -  

r i u m  w i t h  a  f a v o r a b l e  q(Y) p r o f i l e  i n  t h e  

plasma i s  e s t a b l i s h e d ,  i t  i s  hoped t h a t  r a p i d  

h e a t i n g  and thus  p r e s e r v a t i o n  o f  q ( y )  w i l l  

produce a  h i g h  temperature ,  s t a b l e  plasma. 

Th i s  i s  f e a s i b l e  based on t h e  r e s u l t s  o f  t h e  

n e u t r a l  beam i n j e c t i o n  program a t  ORNL, wh ich  

have demonstrated t h a t  s i g n i f i c a n t  beam power 

can be depos i t ed  i n  t h e  plasma w i t h  no ca ta -  

s t r o p h i c  consequences. Assuming t h a t  t h i s  

exper imenta l  l i n e  o f  i n q u i r y  con t i nues ,  one can 

foresee a  ve ry  n a t u r a l  r o u t e  t o  a t t a i n i n g  h i g h  B 

, ope ra t i on .  The MHD s t a b i l i t y  a n a l y s i s  o f  h i g h  0 
tokamak r e a c t o r s  i s  j u s t  beg inn ing .  The M e r c i e r  

modes ( b o t h  i d e a l  and r e s i s t i v e )  a r e  u s u a l l y  

s t a b l e  a t  h i g h  0 e q u i l i b r i a .  The ques t i ons  r e -  

main ing a re  those o f  t h e  b a l l o o n i n g  modes and 
8  . t he  r e s i s t i v e  k i n k  t e a r i n g  modes. Bateman has 

p r e l i m i n a r y  computer r e s u l t s  d e r i v e d  f rom h i s  

3-D i n i t i a l  va lue  codes which show 8 = 5% as 

s t a b l e ,  b u t  h i s  work o n l y  ana lyzed one p a r t i c u -  

l a r  s e t  o f  FCT e q u i l i b r i a .  H i s  o p i n i o n  i s  t h a t  

h i g h e r  B ' s  a r e  p o s s i b l e .  

There may n o t  be a  need, howe;er, fdr B = 
10-20% i n  o r d e r  t o  be economica l l y  a t t r a c t i v e  

and a l s o  use FCT e q u i l i b r i a .  Th i s  s ta tement  has 

t o  do w i t h  p r o f i l e  e f f e c t s  wh ich  can o n l y  be ana- 

l y z e d  u s i n g  ( a t  l e a s t )  a  l - D  t r a n s p o r t  code - 

p r e f e r a b l y  coup led t o  a  2-D MHD code and p r o p e r l y  

ar ranged beam p e n e t r a t i o n  and d e p o s i t i o n  code. 

The p o i n t  was i n i t i a l l y  n o t e d  a t  t h e  U n i v e r s i t y  

o f  Wisconsin and p o i n t e d  o u t  by Conn and Kesner. 9 

The gene ra t i on  o f  very  c e n t r a l l y  ( r  = 0) peaked 

temperature  and d e n s i t y  p r o f i l e s ,  wh ich  would 

i m p l y  a  l a r g e  r a t i o  o f  peak t o  average 0 ,  i s  

. - b e n e f i c i a l .  The p o i n t  can be seen s i m p l y  by 

n o t i n g  t h a t  t h e  f u s i o n  r e a c t i o n  r a t e  i s  , 

where t h e  b a r  ( )  i n d i c a t e s  an average o v e r  

t h e  plasma volume. The s p a t i a l  l y - independent  

codes i n  use rep resen t  t h i s  tern as 

where <uv>DT i s  eva lua ted  a t  t h e  average i o n  

temperature .  One can e a s i l y  see t h a t  Eq. ( 5 )  

can be many t imes s m a l l e r  t h a n  Eq. ( 4 )  f o r  t h e  

same va lue  o f  8 a ii 7. Thus i t  i s  n o t  s u r p r i s -  

i n g  t o  f i n d ,  as i n  TNS, t h a t  one can ach ieve t h e  

same f u s i o n  power l e v e l s  w i t h  a  l o w e r  va lue  o f  

average B ,  B, i f  one can ach ieve  and 1  i v e  w i t h  

peaked pressure  p r o f i l e s  .lo I n  p a r t i c u l a r  we 

have found f rom some 1-D work t h a t  i f  t h e  t rapped  

p a r t i c l e  modes a r e  o p e r a t i v e  i n  a  f u s i o n  grade 



tokamak plasma, p a r t i c u l a r l y  w i t h  a d i v e r t o r  

h o l d i n g  the  s e p a r a t r i x  dens i t y  low, peaked 

pressure p r o f i l e s  seem t o  be a na tu ra l  conse- 

quence. 11 

I n  summary then we no te  t h a t  the  conse- 

quences o f  h igh  B opera t ion  ( p r o v i d i n g  i t  can 

be s t a b l y  achieved and maintained,) a r e  bene- 

f i c i a l  and, once p r o f i l e  e f f e c t s  a re  weighed 

i n ,  may a l l o w  reasonable r e a c t o r  opera t ion  f o r  
- 
6 = 5-10%. 

8. R. G. Bateman (Oak Ridge Nat ional  Labora- 

t o r y ,  Oak Ridge, Tennessee), p r i v a t e  com- 

municat ion, December 1976. 

9. J. Kesner and R. W. Conn, Space Dependent 

E66ech on .the Lnwhon Chi.te~A'.On, t h e  

I g U o n  Cond i t i un ,  and T h m d  EqLLieib- 

hium i n  Tokamahs, UWFDM-155, U n i v e r s i t y  

o f  Wissensin, Cadison, Wizrnnqin 

(December 1975). 

10. TNS Design Team (Oak Ridge Nat ional  

Laboratory, Oak Ridge, Tennessee), p r i -  

vate communication, December 1976. 

11. A. T. Wenw, ,4 T.t~~ialzsjoo.'tt Modat 60'1 n 
Tokmnk u L i t h  n. P o L o i d d  Div&%toh, Ph .D. 

Thesis, U n i v e r s i t y  o f  Wisconsin, Madison, 

Uisconsin,  1977. 

3.4 DUTY FACTOR 

Pre l im inary  cons idera t ion  o f  p l a n t  a v a i l -  

a b i l i t y  suggests12 t h a t  an economical ly a t -  

t r a c t i v e  tokamak power r e a c t o r  must operate 

w i t h  a duty  f a c t o r  GO%. Duty f a c t o r  i s  de- 

f i n e d  i n  t h i s  con tex t  as the  r a t i o  o f  burn 

t ime  t o  t o t a l  c y c l e  t ime (burn t ime + downtime). 

The est imated t ime requ i red  t o  bring the 

plasma t o  f u l l  c u r r e n t  and the  f u s i o n  power t o  

i t s  f u l l  value w i l l  take on the order  of 10 

sec. Th is  i s  based on t h e  usage o f  our 0-D 

code and assumes the  i n p u t  o f  100 MW o f  200- 

keV deuteron beams. The shutdown problem f o r  

f u s i o n  reac to rs  has n o t  y e t  been s e r i o u s l y  

addressed i n  any fus ion  study, b u t  we est imat-  

ed t h a t  one could ramp t h e  cur ren t  down on a 

t ime scale o f  20 sec w i thou t  a  g rea t  deal o f  d i f -  

f i c u l t y .  Giv ing ourselves 30 sec (which i s  

probably longer  than needed) t o  recock the t rans -  

former, pump ou t  any res idua l  gas, and r e f i l l  the 

chamber, we a r r i v e  a t  a  t o t a l  downtime o f  roughly  

60 sec. 

The quest ion o f  how long a burn t ime one 

could have has been addressed i n  t h i s  study 

s t r i c t l y  from the  p o i n t  o f  vjew o f  a v a i l a b l e  

v o l t  seconds i n  the  ohmic heat ing (OH) transform- 

e r .  This  presupposes a very e f f e c t i v e  i m p u r i t y  

con t ro l  system, t o  be discussed l a t e r  i n  t h i s  

sect ion.  Using the  a v a i l a b l e  space i n  the 

reac to r  center  ( r  2 .1 .8 m), an ana lys is  was per-  

formed as t o  what the  maximum number o f  v o l t -  

seconds f o r  the OH transformer would be us ing 
' 

NbTi superconductors arranged i n  a cy l inder .  The 

ana lys is  ind ica ted  t h a t  60 V-sec was the maxi111u111 

value and was l i m i t e d  by Rmax = 7  T a t  the i n s i d e  

o r  the center  transformer c o i l .  For a plasma 

c u r r e n t  o f  4  megamps and a plasma inductance o f  

roughly  11 uH, the volt-seconds requirement t o  

b r i n g  the  plasma c u r r e n t  t o  i t s  f i n a l  operat ing 
6 value i s  (11 x  10- ) (4  x  l o 6 )  = 44 V-sec. We 

have a s s u ~ ~ ~ e d  Pur- 111 i s  slul ly  tl'lot the cqui 1  i b r i u m  

f i e l d  c o i l s  w i l l  prov ide 75% o f  t h i s  volt-seconds 

r e g u i r ~ m a n t .  Thl~s n n l y  11 o f  the  60 V-sec a v a i l -  

able a r c  uscd ,during s ta r t -up .  Tak ing Spi t.zer 

r e s l s t l v . l . t y  fur, r .- 1 

one f i n d s  the plasma res is tance ( i g n o r i n g  trapped 

p a r t i c l e  co r rec t ions )  t o  be roughly  

nab 

For the  represen ta t i ve  reac to r  design we consider 

here, t h i s  tu rns  ou t  t o  be 1.8 x l o - '  Q. I f  we 

assume a res is tance  anomaly f a c t o r  which could 

inc lude  trapped p a r t i c l e  e f f e c t s ,  p r o f i l e  e f -  

fec ts ,  i m p u r i t y  e f f e c t s ,  and turbulence e f f e c t s  

o f  5-6, then we a r r i v e  a t  a  burn t ime o f  120 min. 

[(60-11) V-sec/RpI v o l t s ] .  We have e s s e n t i a l l y  

l e g i s l a t e d  f o r  Demo t h a t  20 min o f  burn would be 

adequate. Th is  would g i v e  a du ty  f a c t o r  o f  20121 

95%. 



Whether o r  n o t  a  burn  o f  20 min i s  r e a l l y  

f e a s i b l e  i; very  much an open ques t i on .  I t  

would c e r t a i n l y  be cons idered u n r e a l i s t i c  i f  

we cannot  c o n t r o l  t h e  plasma i m p u r i t y  c o n t e n t  

w i t h  some measure o f  assurance. I n  a  s tudy  of  

t h i s  k ind ,  one must r e a l i z e  aga in  t h a t  a  fu- 

s i o n  r e a c t o r  ( o r  any o t h e r  dev i ce  f o r  t h a t  

m a t t e r )  cannot be a  v i a b l e  e n t i t y  i f  one has 

no c o n t r o l  ove r  some o f  i t s  o p e r a t i o n a l  param- 

e t e r s .  Our b e l i e f  i s  t h a t  i f  we cannot  con- 

t r o l  t h e  i m p u r i t y  behav ior ,  we p robab l y  can- 

n o t  c o n t r o l  t h e  r e a c t o r  behav ior .  We a r e  as- 

suming good i m p u r i t y  c o n t r o l .  

The q u e s t i o n  n a t u r a l l y  a r i s e s  as t o  why 

such a  l o n g  bu rn  t i m e  i s  needed. C o u l d n ' t  

one somehow sho r ten  t h e  downtime, have a  

s h o r t e r  burn  t ime,  and s t i l l  o b t a i n  t h e  same 

du ty  f a c t o r ?  The answer i s ,  o f  course, yes.  

I n  f a c t  one can e a s i l y  compute t h a t  i f  we o n l y  

needed a  10-sec downtime, a  200-sec bu rn  t ime  

would s t i l l  g i v e  a  d u t y  f a c t o r  o f  295%. The 

problem which deserves some c o n s i d e r a t i o n  from 

t h e  eng inee r i ng  des ign p o i n t  o f  v iew i s  t h e  

f a t i g u e  i n t r o d u c e d  on t h e  r e a c t o r  s t r u c t u r a l  

m a t e r i a l  d u r i n g  these t r a n s i e n t s  ( s t a r t - u p  

and shutdown). From a c y c l i c ,  l o a d i n g  ap- 

proach, we know t h a t  t o  l o w e s t  o r d e r  compo- 

nents  deve lop c racks  based upon t h e  total 
number o f  times t h e  p a r t  i s  " f l e x e d "  o r  

s t r a i n e d .  T h i s  seems t o  be a lmost  independent 

o f  t h e  f l e x i n g  r a t e  ( i  .e., # o f  f l e x e s / u n i  t 

t i m e ) .  L e t  us assume t h a t  a  c e r t a i n  p a r t  w i l l  

c rack  a f t e r  i t  has been f l e x e d  two m i l l i o n  t imes.  

I f  we c y c l e d  t h e  p a r t  once eve ry  200 sec, we 

n o t e  t h a t  i t  would reach t h e  two m i l l i o n  mark 

. s i x  t imes  f a s t e r  t han  i f  we f l e x e d  i t  once 

eve ry  1200 sec. T h i s  t r a n s l a t e s  i n t o  r e a l  

d o l l a r s  very  q u i c k l y .  A t  p resent ,  we have 

n o t  done d e t a i l e d  enough a n a l y s i s  on t h e  

s t r u c t u r a l  components be ing  sub jec ted  t o  t h e r -  

mal s t resses  and torques due t o  t r a n s i e n t  mag- 

n e t i c  f i e l d s  t o  s t a t e  what t h e  minimum bu rn  

t ime  shou ld  be f o r  an "economica l ly "  accept -  

a b l e  f u s i o n  r e a c t o r ,  b u t  i t  i s  s a f e  t o  say 

t h a t  l o n g e r  burn  t imes  appear ve ry  much more 

a t t r a c t i v e .  

12. D. S t e i n e r ,  "The Techno log i ca l  Requirements 

f o r  Power by Fusion," in .Amehican Nudeah 

S a c i c t y  C h i t i c a l  Revim #2, r e p r i n t e d  f rom 

Nuc l .  S c i .  Eng. 58, 107-165 (1975).  

3.5 IMPURITY CONTROL 

I n  o r d e r  t o  ach ieve l o n g  bu rn  t imes,  t h e  

plasma must m a i n t a i n  i t s  c e n t r a l  c o r e  r e g i o n  

( r  < 0.4 a )  e s s e n t i a l l y  f r e e  o f  h i g h  Z i m p u r i -  

t i e s .  ~ e a d e ' ~  has c a l c u l a t e d  t h a t  i f  t h e  h i g h  

d e n s i t y  c e n t r a l  c o r e  reg ions  o f  a  plasma were t o  

have as l i t t l e  as 0.2% W ( i . e . ,  nw/ne = 0.002), 

then i g n i t i o n  would be prevented. On t h e  o t h e r  

hand, one c o u l d  t o l e r a t e  t h i s  k i n d  o f  i m p u r i t y  

c o n c e n t r a t i o n  i f  t h e  i m p u r i t i e s  remained essen- 

t i a l l y  on t h e  o u t s i d e  ( r  > 0.5a) o f  t h e  plasma 

where few f u s i o n  events  a r e  o c c u r r i n g .  The r e -  

qu i rement  o f  e x a c t l y  how f a r  i n  towards t h e  

p l k m a  c o r e  one can t o l e r a t e  t h e  i m p u r i t i e s  de- 

pends c o n s i d e r a b l y  on t h e  thermal  c o n d u c t i v i t y  

o f  t h e  plasma. Keeping h i g h  Z i m p u r i t i e s  f r om 

g e t t i n g  i n  t h e  c o r e  i s  t h e  b i g g e s t  problem, and 

i f  once i n ,  p r e v e n t i n g  them f rom reach ing  t h e  

c e n t r a l  c o r e  r e g i o n  o v e r  t h e  course o f  t h e  de- 

s i r e d  bu rn  t i m e  i s  a l s o  a  problem. 

Another  i m p u r i t y  problem i s  t h a t  o f  a l pha  
5  p a r t i c l e s .  ORNL EPR s t u d i e s  u s i n g  a  0-D code 

have shown t h a t  i f  t h e  r e a c t o r  r a n  i n  a  manner 

wh ich  d i d  n o t  a l l o w  t h e  a lphas t o  l e a v e  (and be 

c o l l e c t e d ) ,  t h e  r e a c t o r  would " d e - i g n i  t e "  a f t e r  

%loo-200 sec. T h i s  c a l c u l a t i o n  presupposed t h a t  

t h e  r e a c t o r  must be f u e l e d  i n  such a  manner t h a t  

i t  never  exceeds t h e  designed o p e r a t i n g  B, so as 

a lphas b u i l t  up  and c o n t r i b u t e d  t o  B, t h e  f u e l i n g  

r a t e  was a d j u s t e d  down. I t  i s  conce i vab le  t h a t  

one m i g h t  r u n  a  tokamak r e a c t o r  on a  s l o w l y  i n -  

c r e a s i n g  p ressu re  scenar io ,  p rov ided  one can 

accep t  t h e  consequences o f  exceeding t h e  Qrit 
f o r  some i n s t a b i l i t y .  T h i s  i s  l a r g e l y  an unex- 

p l o r e d  concept.  I n  a d d i t i o n ,  however, K e l l e y  
14 

r e a l  i s t i c a l  l y  s t a t e s  t h a t  one may never  be a b l e  

t o  keep t h e  he l i um i m p u r i t y  c o n t e n t  down because 

o f  t h e  ve ry  h i g h  pumping speed requ i rements  t o  

m a i n t a i n  ~I,,~/II~+~ a t  ti.ts f t a c t i o n a l  burn-up va lue ,  



However, i f  we can c o l l e c t  i t  and ho ld  i t  up 

f o r  o n l y  a  few hundred seconds, we may be ab le  

t o  achieve long  burn times. I n  t h e  fus ion 

program t h i s  whole area o f  p a r t i c l e  c o l l e c t i o n  

schemes, p r e f e r e n t i a l  se lec t ion ,  and holdup of 

se lec ted  i m p u r i t i e s  has n o t  been pursued i n  

much depth. I t c l e a r l y  deserves much more 

a t t e n t i o n .  

I n  t h i s  p a r t i c u l a r  s tudy we have t r i e d  t o  

assess t h e  problems invo lved  i n  us ing  a  bundle 

d i v e r t o r  as an a i d  t o  i m p u r i t y  and plasma 

"edge" c o n t r o l .  t h e  most obvious p o s i t i v e  

comment on d i v e r t o r s  i s  t h a t  they work! The 

C s t e l l a r a t o r  d i v e r t o r  worked;" the  DITE bun- 

d l e  d i v e r t o r 1 6  lowered the  h igh  Z i m p u r i t y  

content  s i g n i f i c a n t l y ,  which i n  t u r n  lowered 

the  e lect romagnet ic  r a d i a t i o n  t o  the  w a l l .  

The DIVA(JFT-2a) plasma1' behaves favorably ,  

a l though i t s  phys ica l  smallness renders i t  

vulnerable t o  many atomic processes normal ly  

sh ie lded o f f  i n  a  l a r g e r  device. The problem 

w i t h  o t h e r  i m p u r i t y  c o n t r o l  schemes i s  t h a t  

they a re  untested. The except ion i s  ALCATOR 

when i t  i s  run  i n  i t s  h igh  dens i t y  opera t ing  

regime. As y e t  the re  i s  no c l e a r  ( r e a d i l y  

ex t rapo la tab le )  explanat ion as t o  why, when 

operated i n  t h i s  manner, i t  i s  so i m p u r i t y  

f ree .  Thus i t  seemed d i f f i c u l t  t o  c l a i m  t h a t  

Demo operated us ing the same i m p u r i t y  c o n t r o l  

scheme as ALCATOR s ince the  reasons f o r  

ALCATOH's c lean l iness  are n o t  understood. 

The bundle d i v e r t o r  was se lec ted  f o r  

study based upon two fac to rs .  F i r s t ,  the  TNS 

study group a t  ORNL was look ing  a t  the 

p o l o i d a l  d i v e r t o r .  Second, the bundle d i v e r -  

t o r  seemed t o  have eas ie r  assembly, access, 

and s h i e l d i n g  requirements. The problems w i t h  

the  bundle d i v e r t o r  are as fo l l ows .  

1)  I t  breaks the  axisymmetry o f  the  

tokamak. This d i d  n o t  seem t o  a f f e c t  

DITE, al though i t  may a f f e c t  f u t u r e  

reac to r  qrade plasmas. 

2) I t requ i res  very l a r g e  cur ren ts  s ince 

i t  must n u l l  the t o r o i d a l  f i e l d  (c2.9 

T)  us ing the  quadruple f i e l d  generat- 

ed by two c o i l s  w i t h  oppos i te l y  
. 

d i r e c t e d  currents .  

3)  The mechanical s t ress  on the d i v e r t o r  

c o i l s  i s  large.  

4 )  The forces on surrounding c o i l s  are now 

asymmetric due t o  the presence o f  the 

d i v e r t o r .  

A l l  o f  the above considerat ions l e d  us t o  e s t i -  

mate t h a t  probably on ly  one, o r  a t  the most 

three, bundle d i v e r t o r s  could be engineered t o  

f i t  onto our  design. 

Taking t h i s  t o  be the  a l lowable l i m i t ,  one 

then est imates whether o r  no t  the f u l l  283 MW o f  

alpha-produced power can be handled s a f e l y  i n s i d e  

the b u r i a l  chambers o f  the  d i v e r t o r ( s ) .  The 

answer i s  probably not. Even i f  the w a l l s  were 

corrugated t o  increase the e f f e c t i v e  area over 

which the energy i s  deposited, one i s  hard 

pressed t o  handle these l a r g e  heat loads. One 

poss ib le  answer t o  t h i s  problem i s  t o  decouple 

the  alpha produced energy from the p a r t i c l e  c o l -  

1  e c t i o n  ( i  . e., bombardment ) process i n  the d ive r -  

t o r  b u r i a l  chamber. One way o f  doing t h i s  i s  t o  

e s t a b l i s h  a  plasma b lanke t  i n  a d d i t i o n  t o  having 

the d i v e r t o r .  Th is  b lanket ,  which i s  establ ished 

i n  the " d i v e r t o r  zone," may ne lp  t o  conduct some 

o f  the energy t o  the  wa l l s .  I n  a d d i t i o n  i t  might 

a lso  prov ide a  reasonable p a r t i c l e  bath i n  which 

t o  immerse i m p u r i t i e s .  They could then r a d i a t e  

the energy (which has been conducted and con- 

vected ou t  o f  the plasma core)  t o  the  wa l l .  The 

d i v e r t o r  may g ive  one the means t o  d i r e c t l y  con- 

t r o l  t h i s  i m p u r i t y  content.  A l l  o f  these hy- 

potheses need t o  be inves t iga ted  i n  more depth. 

However, one p o i n t  i s  c l e a r .  The energy leav ing  

the plasma must be decoupled from the energy 

c a r r i e d  (convec t i ve ly )  by the p a r t i c l e s  i n  the  

d i v e r t o r  scrape-of f  zone t o  the b u r i a l  chambers. 

This be exper imenta l ly  inves t iga ted .  

I n  l i g h t  o f  these fac ts ,  we have requ i red  . .  
t h a t  the f i r s t  w a l l  heat t r a n s f e r  system be ab le  

t o  t o l e r a t e  the whole alpha p a r t i c l e  heat load. 

This amounts t o  an increase i n  the sur face heat 

load by the amount o f  0.6 MWI~'. The i m p u r i t i e s  

produced due t o  charge exchange, plasma, and neu- 

t r o n  bombardment of the f i r s t  w a l l  and the c o l -  

l e c t i o n  p la tes  i n  the d i v e r t o r  were assumed c o l -  

l e c t i b l e  and c o n t r o l l a b l e  using a  s e t  o f  devices 

(as y e t  unknown) i n  the d i v e r t o r  chamber. 
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3.6 PLASMA HEATING AND FUELING 

3.6.1 H e a t i n q  

It i s  g e n e r a l l y  acknowledged t h a t  ohmic 

h e a t i n g  - as l o n g  as t u rbu lence  does n o t  s i g -  

n i f i c a n t l y  a f f e c t  t h e  momentum t r a n s f e r  p ro -  

cess, i . e . ,  produce an anomaly f a c t o r  

o r  so - by i t s e l f  w i l l  n o t  be s u f f i c i e n t  t o  

b r i n g  a  tokamak plasma t o  an i g n i t i o n  tempera- 

t u r e .  Because o f  t h i s  l i m i t a t i o n  o f  ohmic 

hea t i ng ,  programs have been developed f o r  sup- 

p lementa l  h e a t i n g  schemes. The two most popu- 

l a r -  a r e  n e u t r a l  bcam i n j c e t i o n  and -1.1 I ~ea l ; i r l y .  

Much work has been done bo th  t h e o r e t i -  

c a l l y  and e x p e r i m e n t a l l y  on n e u t r a l  'beam i n -  

j e c t i o n  hea t i ng .  The most s i g n i f i c a n t  accom- 

p l i shmen t  i n  t h i s  area i s  t h a t  beam-slowing- 

down t h e o r y  and exper imenta l  measurements 

show remarkable agreement. l8 A l s o  t h e  success 

i s  b e s t  a t t r i b u t e d  t o  t h e  f a c t  t h a t  t h e  beam 

s low ing  down has been s o l e l y  c lass . ica1 I n  

na tu re ,  i . e . ,  one has no need t o  c a l l  upon 

i n s t a b i l i t i e s  o r  t u r b u l e n c e  t o  e x p l a i n  t h e  

energy deg rada t i on  o f  t h e  beam o r  t h e  power 

t r a n s f e r  r a t i o s  t o  t h e  plasma c o n s t i t u e n t s  

( i ons ,  e l e c t r o n s ,  and , i m p u r i t i e s ) .  Us ing 

beam i n j e c t i o n ,  bo th  TFR and ORMAK have succeeded 

i n  a c h i e v i n g  Ti > Te w i t h o u t  d e l e t e r i o u s  conse- 

quences t o  t h e  plasma e q u i l i b r i u m  and s t a b i l i t y .  

Beam i n j e c t i o n  i s  p lanned f o r  a l l  ma jo r  tokamak 

exper iments i n  t h e  wor ld ,  wh ich  speaks h i g h l y  o f  

t h e  con f i dence  i n  beam hea t i ng ;  t h e r e f o r e ,  we 

have i n c l u d e d  n e u t r a l  beam h e a t i n g  i n  t h i s  s tudy.  

The requ i rements  t o  i g n i t e  a  h i g h  d e n s i t y  plasma 

such as t h e  r e p r e s e n t a t i v e  r e a c t o r  plasma con- 

s i d e r e d  here  a r e  q u i t e  l a r g e .  The a n a l y s i s  u s i n g  

o u r  0-D code i n d i c a t e s  t h a t  100 MW o f  i n j e c t i o n  

power c o u l d  b r i n g  such a  plasma t o  i g n i t i o n  i n  

-10 sec. However, when one adds t h e  a d d i t i o n a l  

requ i rement  t h a t  t h e  beam must be capab le  o f  

p e n e t r a t i n g  i n t o  t h e  magnet ic  a x i s ,  t h e  r e q u i r e d  

beam energy becomes v e r y  l a r g e  (-200 keV). T h i s  

r e q u i r e s  a  beam development program. 

The o t h e r  scheme f o r  plasma h e a t i n g  i s  t o  

use rf power. The a p p l i c a t i o n  o f  t h i s  scheme t o  . 
tokamaks has been l a r g e l y  t h e o r e t i c a l  a l t hough  

some expe r imen ta l  work was per formed on ST and 

ATC a t  t h e  P r i n c e t o n  Plasma Phys ics  Labora- 

t o r y .  19920 A  r e c e n t  EPRI-sponsored r e p o r t  2  1  

rev iews some o f  t h e  p o s s i b l e  methods and wave- 

l e n g t h s .  The essence o f  t h e  prob lem seems t o  be 

t h a t  s h o r t  wavelengths ( e l e c t r o n  c y c l o t r o n  

h e a t i n g  a t  100 GHz) can p e n e t r a t e  i n t o  t h e  c e n t e r  

o f  t h e  plasma, b u t  h i g h  powers (100 MW) a r e  

e i t h e r  u n a v a i l a b l e  o r  v e r y  i n e f f i c i e n t l y  ( ~ 1 5 % )  

produced. The l ower  f r equenc ies  ( i . e . ,  l ower  

h y b r i d ,  A1 fv6n,  and magnetosonic)  a r e  a v a i l a b l e  

a t  h i g h  powers, b u t  t h e r e  a r e  s t i l l  ques t i ons  

r e g a r d i n g  plasma p e n e t r a t i o n  and f e a s i b l e  

l aunch ing  s t r u c t u r e s .  Some o f  t hese  problems 

may be r e s o l v e d  i f  rf h e a t i n g  i s  pursued i n  PLT. 

The p o t e n t i a l  advantages o f  rf hea t i ng ,  r e l a t i v e  

t o  n e u t r a l  beam h e a t i n g  f o l  1  ow. 

1  ) I t s  p e n e t r a t i o n  c h a r a c t e r i s t i c s  may be 

much l e s s  a f f e c t e d  by Zeff than a r e  

n e u t r a l  beams. 

2 )  E f f i c i e n c y  i n  p roduc ing  h i g h  powers may 

be h i g h e r  than n e u t r a l  beams. 

3 )  One does n o t  have t o  wo r r y  about  spu t -  

t e r i n g  due t o  charge-exchange beam and/ 

o r  plasma f a s t  n e u t r a l s .  

4 )  There need be no concern about  hav ing  t o  

pump a d d i t i o n a l  ( i n j e c t e d )  p a r t i c l e s .  



Fxperiniental  r e s u l t s  should be a v a i l a b l e  by gas p u f f i n g  may r e s u l t  i n  r e l a t i v e l y  f l a t  dens i t y  

1980 o r  so on some o f  the problems o u t l i n e d  p r o f i l e s  . This  can have favur~able consequcnces 

above. We have n o t  considered rf hea t ing  i n  on t ranspor t  b u t  poss ib ly  unfavorable conse- 

t h e  Demo study because o f  resource l i m i t a -  quences on power product ion vs ?, as discussed 

t i o n s .  We do advocate t h a t  i t  be pursued as prev ious ly .  Fur ther  p e l l e t  i n j e c t i o n  and gas 

a scheme f o r  hea t ing  a ne t  power producing p u f f i n g  experiments are t o  be performed on ISX 

f u s i o n  r e a c t o r .  and poss ib ly  PDX, i f  they a re  needed. P e l l e t  

technology i s  c u r r e n t l y  being inves t iga ted  a t  

L. A. Berry  e t  a1 . , "Confinement and 

Neutra l  Beam I n j e c t i o n  Studies on ORMAK," 

pdpers CN-35/A4 1, p r e s e n t ~ d  at.  t.he 6 th  
Conferonce on Plasma Physics and Con- 

t r o l  l e d  Nuclear Fuslon Research, Derch- 

IIRNL. Numerical i n v e s t i g a t i o n s  a t  ORNL are j u s t  

now under way t o  determine if "deep" p e l l e t  pen- 

e t r a t i o n  i s  r e a l l y  needed t o  mainta in  a long  burn 

tiaie plosnu, Thero n l .m~r ica1  r e s u l t s  should be 

a v a i l a h l ~  e a r l y  i n  1978. 
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3.6.2 F u e l i n g  

Except f o r  the p e l l e t  injection work 

(bo th  t h e o r e t i c a l  and experimental)  performed 

a t  ORNL by L. Stewart, C. Foster ,  and S. 

~ i l o r a , ~ '  1 i t t l e  a t t e n t i o n  has thus f a r  been 

g-iven t o  t h c  f u e l i n g  ~ ~ v ~ i h l e m  i n  tokamaks. 

The reason f o r  t h i s  s i t u a t i o n  i s  t h a t  present- 

day devices make use o f  w a l l  r e c y c l i n g  o f  

charge-exchange neu t ra ls  and plasma p lus  gas 

p u f f i n g  tn  a t t a i n  des i red d e n s i t i e s .  The ex- 

p l a n a t i o n  f o r  plasma bu i ldup  d u r i n g  p u f f i n g  

i n  h igh  d c n s i t y  devices such as ALCATOR i s  

not cnmpletel  y ynderstood. However, i t  seems 

reasonable t o  be l ieve  t h a t  "edge" f u e l i n g  by 

I n  summary, the f o l l o w i n g  po in ts  are c e n t r a l  

t o  the plasma ana lys is  performed f o r  t h i s  study. 

1 ) Both emp i r i ca l  and trapped p a r t i c l e  mode 

s c a l i n g  laws a l low f o r  i g n i t i o n  o f  a 1-2 rn minor 
14 . -3 

rad ius,  (n = 2 x l o  cm . T . 10-15 keV), h igh  

dens i t y  plasma prov ided one can f i n d  a v i a b l e  

scheme f o r  reaching these h igh average d e n s i t i e s  

w i t l l l j u t  couging the plasm+ t n  gn d i s r u p t i v e .  

P e l l e t  i n j e c t i o n  may be such a scheme. 

2) From both 0-D and 1-U t ranspor t  s i l l ~u la -  

Lions us ing the  trapped p a r t i c l e  mode s c a l i n g  

laws, one f i n d s  t h a t  over most o f  the  burn phase 

the  energy t ranspor t  i s  governed by the trapped 

i o n  mode. Thus, i t  appears j u s t i f i a b l e  t o  per- 

form econnmic s e n s i t i v i t i e s  us ing on ly  the  T I  

mode s c a l i n g  law. The r e s u l t s  should n o t  d i f f e r  

s i g n i f i c a n t l y  from those using a combination of 

modes. 

3 )  A1 1 p resen t l y  conceived t ranspor t  sca l -  

i n g  laws a re  speculat ive when ex t rapu la ted  t o  

i g n i t i o n  grade plasmas. However, one should 

consider the use o f  the trapped p a r t i c l e  modes 

as a pess im is t i c  model wleh w s p e c t  Lo the 

e f f e c t s  o f  temperature on reaching i g n i t i o n .  



4 )  An examinat ion  o f  t h e  1 -D p r o f i l e  

e f f e c t s  on TNS," wh ich  i s  s i m i l a r  i n  n a t u r e  

( b u t  w i t h  a much s h o r t e r  bu rn  t i m e )  t o  com- 

m e r c i a l  s i z e  plasmas, one f i n d s  t h a t  reason- 

a b l e  f us ion  power l e v e l s  can be a t t a i n e d  w i t h  

h i g h  r a t i o s  o f  B( r  = O)/B. T h i s  i n d i c a t e s  

economica l ly  a t t r a c t i v e  o p e r a t i o n  a t  B 10% 

based upon 1-D r e s u l t s .  T h i s  appears con- 

s i s t e n t  w i t h  o p e r a t i n g  t h e  plasma i n  an FCT 

lllirde up through i g n i t i o n .  

5 )  The i m p u r i t y  c o n t e n t  o f  t h e  plasma 

(Zeff = 1.06) i s  due o n l y  t o  fus ion-produced 

a lpha p a r t i c l e s ,  and any w a l l  - o r  d i v e r t o r -  

o r i g i n a t e d  i m p u r i t i e s  a r e  assumed t o  be con- 

t r o l l e d .  A bund le  d i v e r t o r  i s  be ing  examined 

f o r  t h i s  purpose, b u t  I t  cannot  hdr ld le t h e  

283 MW of a lpha power. Thus much o f  t h i s  i s  

assumed t o  be depos i t ed  on t h e  f i r s t  w a l l  

e i t h e r  by  EM r a d i a t i o n  near  t h e  plasma edge 

o r  by  thermal conduc t i on  t h rough  a "warm" 

p l  asrna b l a n k e t  (T  100 eV).  

6 )  W i th  100 MW o f  200-keV deuteron 

beams, i g n i t i o n  i s  reached i n  r o u g h l y  10  sec. 

I f  t h e  e m p i r i c a l  s c a l i n g  i s  used, t h e  plasma 

i s  t h e r m a l l y  u n s t a b l e  p a s t  i g n i t i o n ,  wh ich  

means t h a t  T -+ 60-80 keV where t h e  synchro- 

t r o n  r a d i a t i o n  l o s s  r a t e  catches t h e  power 

p r o d u c t i o n  r a t e .  Trapped p a r t i c l e  s c a l i n g  p ro -  

duces a t h e r m a l l y  s t a b l e  o p e r a t i o n  p o i n t  a t  

7 )  F u e l i n g  t o  r e p l e n i s h  t h e  D and T l o s t  

and fused  i s  accompl ished th rough  a combinat ion  

o f  "edge" r e c y c l i n g ,  d i v e r t o r  gas r e c y c l i n g ,  and 

p e l l e t  i n j e c t i o n .  Ca re fu l  1-D t r a n s p o r t  s t u d i e s  

have n o t  y e t  been performed, and t h e  r e s u l t s  

quoted a r e  based on a 0-D code. 

8 )  F u r t h e r  exper imenta l  plasma phys i cs  

work i s  needed i n  t h e  areas o f  a )  i m p u r i t y  

c o n t r o l  i n c l u d i n g  d i v e r t o r s ,  b )  n e g a t i v e  i o n  

n e u t r a l  beam techno logy,  c )  rf hea t i ng ,  

d )  p e l l e t  i n j e c t i o n ,  and e )  unders tand ing o f  

ALCATOR o p e r a t i o n  and c l e a n l i n e s s .  
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4. BLANKET DESIGN 

T. E. Shannon 

4.1 INTRODUCTION 

Design concepts f o r  the reac to r  b lanket  

system are proposed based on the  a p p l i c a t i o n  

o f  cu r ren t  and near-term technologies wherever 

poss ib le .  Conservat ive l i m i t s  on pressures 

and temperatures were se lected t o  permi t  a 

r e l i a b l e  s t r u c t u r a l  design approach w i t h i n  

the h igh energy r a d i a t i o n  environment. 

The p re l im inary  b lanket  designs focus 

genera l iy  on generic problems r a t h e r  than on 

s p e c i f i c  problems r e l a t i n g  t o  hardware devel- 

opment and demonstration. The reac to r  system 

requirements and design parameters were se- 

l e c t e d  t o  cover a range o f  values w i t h i n  

those expected f o r  the successful development 

o f  tokamak fus ion  power. 

Two mechanical design approaches, which 

d i f f e r  p r i m a r i l y  i n  con f igu ra t ion  and method 

o f  assembly, are p resen t l y  under considerat ion.  

Both concepts comply w i t h  the  fundamental ob- 

j e c t i v e s  described. 

4.2 SYSTEM REQUIREMENTS AND DESIGN CRITERIA 

The reac to r  b lanket  system cons is ts  o f  

the i n t e r n a l  tokamak components from the edge 

o f  the plasma t o  the  i n s i d e  o f  the t o r o i d a l  

f i e l d  (TF) c o i l s .  The major components 

(shown i n  F ig .  4.1) inc'lude: 

1 ) a h igh vacuum t o r o i d a l  reg ion t o  

prov ide a c lean environment f o r  the  

deu te r ium- t r i t i um (D-T) plasma (A 

secondary vacuum i s  provided by the 

reac to r  containment bu i ld ing ,  which 

e l im ina tes  the ~p on the t o r o i d a l  

vessel. See Sect. 8 f o r  a descr ip-  

t i o n  o f  the vacuum bu i ld ing .  ) , 
2 )  a neutron-absorbing, f e r t i l e  mate r ia l  

t o  capture the h igh  energy neutrons 

f o r  producing heat and breeding tri- 

tium, 

3) a heat  exchanger t o  t r a n s f e r  the ab- 

sorbed heat energy t o  a power conversion . 
system, and 

4) a s h i e l d  t o  reduce r a d i a t i o n  and p r o t e c t  

the TF c o i l s  from neutron heating. 

Blanket design concepts were developed t o  

s a t i s f y  o v e r a l l  reac to r  system requirements w h i l e  

p rov id ing  p r a c t i c a l  engineering so lu t ions  f o r  

safety ,  r e l i a b i l i t y ,  f a b r i c a b i l i t y ,  maintaina- 

b i l i t y ,  and long  l i f e .  The plasma i s  assumed t o  

produce a power dens i t y  r e s u l t i n g  i n  a neutron 
2 w a l l  loading i n  the  range o f  2-4 MW/m . S u f f i -  

c i e n t  b lanket  and s h i e l d i n g  m a t e r i a l  i s  provided 

t o  accommodate superconducting TF c o i l s ,  bu t  the 

use o f  normal c o i l s  would s i g n i f i c a n t l y  reduce 

t h i s  requirement (see Sect. 8 ) .  F i n a l l y ,  the  

reac to r  system requ i res  a reasonably h igh  ther -  

modynamic c y c l e  e f f i c i e n c y  (>30%) f o r  economic 

e l e c t r i c a l  power conversion. 

The design approach adopted i n  t h i s  study 

resu l ted  i n  the  f o l l o w i n g  gu ide l ines  f o r  the 

b lanket  system: 

1 ) low coolant  pressures, 

2) s t r u c t u r a l  mate r ia l  a l l o y s  based on 

curren't commercial mater ia ls ,  

3) p r o v i s i o n  f o r  remote maintenance, 

4 )  secondary vacuum system t o  reduce pres- 

sure on t o r o i d a l  h igh  vacuum region 

and 

5) conservat ive l i m i t s  on design s t ress,  

corros ion,  and mate r ia l  and coolant  

temperatures. 

Due t o  system design c o n s t r a i n t s  and space 

l i m i t a t i o n s ,  a s p e c i f i c  b lanket  design represents 

a compromise o f  a1 te rna t i ves .  I n  the design of 

the  superconducting TF c o i l s ,  f o r  example, m i n i -  

m iz ing  r e f r i g e r a t i o n  requirements caused by neu- 

t r o n  heat ing tends t o  d r i v e  the  b l a n k e t / s h i e l d  

thickness up, which i n  t u r n  increases the s i z e  

and cos t  o f  the c o i l .  The optimum design must 

be based on a t r a d e - o f f  between r e f r i g e r a t i o n  

and c o i l  costs. ,As another er.ample, the 
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Fig .  4.1. Tokamak reac to r  cross sec t ion  showing major b lanket  components. 

e f f i c i e n c y  o f  the  power conversion system i n -  

creases w i t h  inc reas inq  coo lan t  temperature, 

w h i l e  r a d i a t i o n  damage and a l lowable s t r u c t u r -  

a l  design s t r e s s  favor  opera t ion  a t  reduced 

temperature. Also, energy depos i t i on  a t  the 

f i r s t  w a l l  imposes thermal s t ress,  which may 

be reduced by decreasing t h e  w a l l  thickness; 

pressure loading,  however, favors inc reas ing  

the  w a l l  th ickness.  

Obviously, the  optimum s e l e c t i o n  o f  major 

components i s  a  complex task  r e q u i r i n g  system 

model ing techniques. Current  b lanke t  designs 

r e f l e c t  experience galned from prev ious ORNL 

s tud ies  and a  nominal cons idera t ion  o f  the  de- 

s i g n  space. The parameters l i s t e d  i n  Table 

4.1 were se lec ted  as a  bas is  f o r  the  b lanke t  

design s tud ies  and are n o t  intended t o  repre-  

sent  a  s p e c i f i c  opt imized reac to r  design. 

4.3 DISCUSSION OF REFERENCE PARAMETERS 

4.3.1 E latcr ia l  Se lec t ion  

The f i r s t  s t r u c t u r a l  wa l l  o f  the  tokamak 

r e a c t o r  vessel i s  exposed t o  the  t o t a l  neutron 

f l u x  from tho f u s i ~ n  reac t ion .  (This  i s  ~ n l i k ~  

f i s s i o n  reac to r  experience, where on ly  consumable 

core components are exposed t o  s i g n i f i c a n t  i r r a -  

d i a t i o n .  ) I n  add1 t l o n ,  b h l s  w d l l  I I I U ~ L  1r .c i11srer  

by conduct ion some p o r t i o n  o f  the  fus ion  alpha 

power. The mate r ia l  s e l e c t i o n  must be based on 

an o v e r a l l  cons idera t ion  o f  the  f o l l o w i n g  

c r i t e r i a :  

1  ) c o m p a t i b i l i t y  w i t h  plasma vacuum 

requirements, 

2 )  proven f a b r i c a t i o n  techniques compatible 

w i t h  remote maintenance requirements, 

3 )  reasonable l i f e  ( 2 5  years)  under rad ia -  

t i o n  damage (see Sect. 2), 

4 )  creep and s t ress  rup tu re  res is tance  t o  

operat ing loads, and 

5)  res is tance  t o  f a t i g u e  under thermal and 

s t r u c t u r a l  loading.  



Table 4.1. Blanket design parameters 

S t ruc tu ra l  mate r ia l  

Absorberlbreedi ng mate r ia l  

Coolant 

Design l i f e  

Fusion burn t ime 

Duty cyc le  

Neutron w a l l  loading 

F i r s t  wa l l  design heat f l u x  

Brceding r a t i o  

Maximum al lowable coolant  temperature 

Maximum al lowable s t r u c t u r e  temperature 

F i r s t  wa l l  

Other 

Value 

A u s t e n i t i c  s t a i n l e s s  s tee l  

L i t h i u m  

Molten s a l t  (HITEC) 

5 3 x  10 pulses 

20 min 

9 5% 

2-4 M W / ~ '  

0.5-1 M W / ~ ~  

>1 

We selected mate r ia l s  and a temperature 

range f o r  the f i r s t  wa l l  which minimize radia-  

t i o n  e f f e c t s .    he p re l im inary  b lanket  design 

assumes an a l l o y  s i m i l a r  t o  type 316 s t a i n l e s s  

s t e e l .  Temperatures were assumed t o  be 400 '~  

o r  l e s s  i n  the reg ion next  t o  t h e  f i r s t  w a l l  

where the damage r a t e  i s  highest.  Progres- 

s i v e l y  h igher  teirlperatures (up t o  500'~) were 

a1 lowed e l  sewhere because damage decreases 

w i t h  r a d i a l  d is tance i n t o  the b lanket .  This  

approach i s  described i n  more d e t a i l  l a t e r  i n  

t h i s  sect ion.  Sect ion 5 conta ins a complete 

summary o f  the s t r u c t u r a l  mate r ia l s  evaluat ion.  

4.3.2 The Breeding Mate r ia l  

I t appears t h a t  l i q u i d  l i t h i u m  o f f e r s  the 

g rea tes t  p o t e n t i a l  f o r  the breeding mate r ia l .  

L i t h i u m  y i e l d s  the  h ighest  f l e x i b i l i t y  w i t h  

regard t o  t r i t i u m  breeding, and i t  has good 

thermal p roper t ies  and acceptable chemical 

c o m p a t i b i l i t y .  Much f u r t h e r  work w i l l  he 

requ i red  i n  the  areas o f  t r i t i u m  recovery and 

magnetohydrodynamic (MHD ) e f f e c t s .  

4.3.3 Coolant Se lec t ion  

To prov ide a b lanke t  design w i t h  h igh s t r u c -  

t u r a l  r e l i a b i l i t y ,  we inves t iga ted  the use o f  a  

low pressure coolant .  This  low pressure requ i re -  

ment s i g n i f i c a n t l y  r e s t r i c t s  the  a v a i l a b l e  coul -  

ants. Helium and water were r e j e c t e d  because.of 

the h igh  pressures requ i red  f o r  a  s a t i s f a c t o r y  

thermodynamic cyc le.  L i th ium metal was a lso  

e l  iminated because o f  compl i c a t i o n s  resu'l t i n g  

from MHO considerat ions.  The o n l y  remaining 

coolant  seemed t o  be a molten s a l t .  A commer- 

c i a l  heat t r a n s f e r  s a l t ,  HITEC, was assumed f o r  

the  p re l im inary  design. i t  cons ls ts  o f  53% 

potassium n i t r a t e ,  4Wk sodium n i t r i t e ,  and 7% 

sodium n i t r a t e .  The heat t r a n s f e r  p roper t ies  

'fdensi ty, v i s c o s i t y ,  vapor pressure me1 t i n g  

p o i n t ,  and heat capac i t y )  are adequate fo r  rea - .  

sonable component design. Sect ion 6 inc ludes a 

d e t a i l e d  d e s c r i p t i o n  o f  t h e  coo lan t  se lec t ion .  



4.3.4 Design L i f e  

The design l i f e  parameter o f  3  x  10 5  

pulses represents a  r e a c t o r  l i f e  o f  10-15 

years, assuming a  20-min burn t ime and 95% 

du ty  cyc le .  A  p l a n t  capaci ty  f a c t o r  has n o t  

been determined, b u t  a  t a r g e t  design va lue o f  

7 0 4 0 %  would be desi rab le.  These f a c t o r s  were 

se lec ted  t o  evaluate the thermal f a t i g u e  l i f e  

i n  t h e  f i r s t  w a l l .  . 

4.3.5 F i r s t  Wall Luadiny 

The alpha power r e s u l t i n g  from the  D-T 

f u s i o n  represents approximately 20% of the  

fus ion power. Some p o r t i o n  o f  t h i s ,  power w i l l  

be deposi ted d i r e c t l y  on the  f i r s t  w a l l  as a  

heat  f l u x .  I f  a  magnetic d i v e r t o r  i s  devel- 

oped, some p o r t i o n  of t h i s  power may be depos- 

i t e d  i n  t h e  p a r t i c l e  t r a p  o f  the  d i v e r t o r .  

Consider ing the  major uncer ta in ty  i n  d i v e r t o r  

concepts a t  t h i s  time, we recommend t h a t  the  

f i r s t  w a l l  be designed t o  handle the  most ex- 

treme case, the  t o t a l  alpha power. 

4 .3.6.  A l lowable Design Stress 

The a l ldwab le  design stresses f o r  t h i s  

p r e l i m i n a r y  design study were guided by the  

ASMt ~ u c l e a r  Vessel Uesign Code. I t  i s  recog- 

n i  zed t h a t  s i g n i f i c a n t  new code development 

w i l l  be requ i red  i n  support o f  the unique 

s t r u c t u r a l  problems i n  fus ion  r e a c t o r  blankets. 

Ihe e x ~ s t l n g  codes, however, prov ide a goodc 

bas is  f o r  p r e l i m i n a r y  design evaluat ion.  A  

more d e t a i l e d  d iscuss ion o f  the  s t ress  analy- 

's is i s  inc luded l a t e r  i n  t h i s  sect ion.  

4.4 MECHANICAL DESIGN ALTERNATIVES 

Two b lanke t  mechanical design concepts 

a r e  c u r r e n t l y  being evaluated as a l t e r n a t e .  

s o l u t i o n s  t o  the  problem o f  remote maintenance 

and r e p a i r .  Both concepts w i l l  be reviewed i n  

t h i s  repor t ;  however, we expect t o  s e l e c t  one 

o f  these f o r  a  more thorough design and analy- 

s i s  f o r  the  remainder o f  t h i s  year ' s  study. 

One design, c a l l e d  the  contour b lanke t  

concept, i s  s i m i l a r  t o  the  b lanket  design 

proposed i n  the ORNL Experimental Power Reactor 

(EPR) ~ e s i ~ n . '  The i n d i v i d u a l  b lanket  modules 

form a  contoured envelope t o  conform t o  the 

plasma shape. The o ther  design, c a l l e d  the cas- 

s e t t e  b lanke t  concept, i s  a  new design t h a t  pro-  

vides f l a t  b lanket  modules f o r  ease o f  disassem- 

b l y .  Both concepts have been conceptual ly  de- 

signed t o  s a t i s f y  the basic gu ide l ines  and 

design parameters. 

1 .  6 .  A. Flanagan e t  a1 ., O u k  Ridge Tobumah 

ExpehOnentae Poweh R u c t o h  S k d y  - 1976 ,  

P a h t  4 ,  Nu&e.ah E n g i n e e ~ n g ,  ORNLITM-5575, 

Oak Ridge Nat ional  Laboratory, Oak Ridge, 

Tennessee (December 1976). 

4.4.1 The Contour Blanket Concept 

This  design concept cons is ts  of s c i r c u l a r  

a r r a y  o f  small b lanke t  modules which form seg- 

ments o f  t h e  torus and f i t s  between TF c o i l s .  

The number o f  wedge-shaped b lanket  segments i s  

th ree  times the  number o f  TF c o i l s .  Bearings are 

mounted on the i n s i d e  o f  the  s h i e l d  segments so 

t h a t  b lanke t  segments, when inser ted  between the  

TF c o i l s ,  can be ro ta ted  under the c o i l s .  F igure 

4.2 i s  a  schematic i l l u s t r a t i o n  o f  t h i s  concept 

and Fig.  4.3 i s  a  p lan  view o f  the tokamak assem- 

b l y .  Each b lanket  segment i s  made up o f  12 mod- 

u les  loca ted  p o l o i d a l l y  around a  s t r u c t u r a l  

trame. An e l e v a t i o n  view o f  one complete b lanke t  

segment w i t h  framework. modules. and inner  w a l l  

i s  shown i n  F ig.  4.4. The framework provides 

support f o r  the modules and f i r s t  w a l l  and, i n  

add i t i on ,  provides the coo lan t  i n l e t  manifolds 

f o r  the b lanket .  

The f i r s t  w a l l  i s  o f  tubu la r  cons t ruc t ion  t o  

prov ide a  t h i n  w a l l  f o r  thermal s t ress  reduct ion.  

The b lanket  module cons is ts  o f  a  double-wal l e d  

vessel w i t h  coo lan t  f l ow ing  between the  wa l l s .  

Ins4de the module the re  i s  m e t a l l i c  l i t h i u m ,  a  

g raph i te  r e f l e c t o r ,  s t a i n l e s s  s tee l  ,gamma s h i e l d  

slabs, and coo lan t  tubes. D e t a i l s  o f  the b ianket  

cr.oss sect'iur~ are shown ,In F iys.  4.5 and 4.6. 

Around the  top  o f  the  module on a l l  f o u r  sides i s  
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F ig .  4.2. Contour b lanket  concept 

a  coo lan t -co l lec t ing  plenum from which coolant  

pipes run  down a t  three po in ts  t o  d e l i v e r  

coolant  t o  the f i r s t  wa l l  s t ruc tu re .  

The th ree  par ts  o f  the b lanket  -module 

wal ls ,  f i r s t  wa l l ,  and bu lk  b lanket  - are  

cooled i n  se r ies .  The i n l e t  mani fo ld  feeds 

and re tu rns  coolant  from each o f  the 12 mod- 

u les i n  a segment. Coolant enters the module 

i n  a center  pipe, which discharges the  coolant  

between the wa l l s  a t  the center  bottom. Cool- 

a n t  f lows between a l l  wal ls ,  i s  c o l l e c t e d  i n  

the plenum around the top, flows down through 

three feed pipes t o  the f i r s t  wa l l ,  up through 

one o u t l e t  pipe, and down an annular cen te r  

concentr ic  p ipe t o  the coolant  tubes f o r  the 

bu lk  blanket.  

4.4.2 The Cassette Blanket Concept 

Plasmas i n  tokamak systems were i n i t i a l l y  

developed i n  t o r q i d a l  s h e l l s  w i t h  c i r c u l a r  

cross sect ions.  As understanding o f  plasmas 

has increased, the e f f e c t i v e  shape o f  the 

plasma has become e l l i p t i c a l  o r  elongated. 

The phys ica l  surrounding w a l l s  no longer  d i c -  

t a t e  t h i s  shape - physics makes t h i s  s p e c i f i -  

ca t ion .  I t  should the re to re  fo l l ow t h a t  the. 

shape of the b lanket  be d i c t a t e d  by engineer ing ' 

requirements, i .e. , the s t r i v i n g  towards f a b r i  - 
c a b i l i t y ,  ease o f  maintenance, economy, and de- 

pendabi l i  t y .  The , rectangular  b lanket  design 

using casset te  modules i s  a  s tep i n  t h i s  d i rec -  

t i o n .  The components comprising the b lanket ,  

the casset te  modules, are designed as long,  r e l -  

a t i v e l y  t h i n  box- l i ke  volumes. The w a l l s  o f  

these volumes are a se r ies  o f  contiguous U- 

shaped tubes conta in ing the  coolant  and com- 

p l e t e l y  enveloping the 1 i thium-moderat ing f l u i d  

contained w i t h i n .  Removal and replacement o f  

these casset te  u n i t s  by remote means are reduced 

t o  l i n e a r  motions. F igure 4.7 i l l u s t r a t e s  sche- 

m a t i c a l l y  one subassembly o f  casset te  modules 

occupying the space between adjacent  TF c o i l s .  

The number o f  subassemblies i s  equal t o  the num- 

ber  o f  TF c o i l s ,  and each subassembly i s  d i v i d e d  

r a d i a l l y  i n t o  th ree  s l i c e s .  Cassette removal i s  

e f f e c t e d  through the middle s l i c e  i n  order  t o  

c l e a r  the  TF c o i l s .  F igure  4.8 shows a p lan 

view o f  t h i s  concept. The i n d i v i d u a l  cassettes 

s l i p  ou t  between v e r t i c a l  f i e l d  c o i l s  so t h a t  

they need n o t  be d is turbed.  

F igure 4.9 i s  a  cross sec t ion  o f  a  casset te  

showing one o f  the  U-shaped coolant  f l o w  chan- 

ne ls .  These i n d i v i d u a l  f l ow channels are j o i n e d  

one t o  the  next  t o  form the complete u n i t .  The 

ends have a nested s e t  o f  U-tubes f o r  c losure 

and f o r  coo l ing .  Sect ion A-A o f  Fig. 4.9 i l l u s -  

t r a t e s  how the  tubes a re  formed s ide  by s ide 

wh i le  s t i l l  preserv ing the  i n d i v i d u a l  tubes' 

c i r c u l a r  shape. 

4.'5 DESIGN STRESS ANALYSIS 

A p re l im inary  e l a s t i c  s t ress  ana lys is  was 

conducted t o  assess the f e a s i b i l i t y  o f  the s t r u c -  

t u r a l  aspects o f  the  design concepts. For the  

l i t h i u m  and s a l t  f l u i d s  contained i n  the  b lanke t  

region, pressure w i l l  be low, b u t  the re  w i l l  be 

a system o f  r e l a t i v e l y  h igh  c y c l i c  thermal 

stresses induced by alpha power and nuclear  heat- 

i n g  (neutron-induced) deposited on the f i r s t  

w a l l .  It' was assumed t h a t  away from the f i r s t  

wa l l ,  the  l a r g e  mass o f  l i t h i u m  w i l l  keep the) 

temperature reasonably constant  dur ing the. o f f  
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F i g .  '4.3.  Tokamak plan view contour b lanket  concept. 



F ig .  4.4. Blanket module assembly-contour concepl. 
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F ig .  4.7. Cassette b lanket  opt ion.  

p o r t i o n  o f  the cyc le.  The magnitude o f  the 
2 sur face heat f l u x  (1 MW/m ) i n  conjunct ion 

w i t h  the  approximate number o f  f u l l  power 
5 cyc les '(3 x 10 ) and the s t r u c t u r a l  mate r ia l  

damage due t o  neutron i r r a d i a t i o n  may present 

unprecedented design chal 1 enges' i n  comparison 

t o  comparable power p l a n t  s t ruc tu res  such as 

heat exchangers. 

 his pre l im inary  assessment was guided 

by the ASME B o i l e r  and Pressure Vessel Code, 

Scct ion 1 1 1 ,  Nuclear Power P lan t  Components 

Subsections NA, NB, and NG,' and i s  r e f e r r e d  

t o  i n  the f o l l o w i n g  d iscuss ion as Sect ion 1 1 1 ,  

or ,  simply, the Code. The use o f  t h i s  Code 

i s  n o t  r e l a t e d  t o  i t s  lega l  standing, b u t  

r e s t s  on the f a c t  t h a t  i t  i s  a proven, h i g h l y  

r e l i a b l e  s e t  o f  procedures t o  ensure safe de- 

s ign  o f  metal components subjected t o  steady, 

varying, and/or a l t e r n a t i n g  stresses. For t h i s  

conceptual design, the i n t e n t  was t o  l i m i t  the 

temperature o f  the  f i r s t  w a l l  t o  about 4 0 0 ' ~  i n  

order  t o  minimize radiat ion- induced loss  o f  duc- 

t i l i t y .  The design r u l e s  and l i m i t s  f o r  austen- 

i t i c  s t a i n l e s s  s tee ls  contained i n  the Code a re  

app l i cab le  up t o  4 2 7 ' ~  and should prov ide rea- 

sonable guidel ines f o r  t h i s  p re l im inary  assess- 

ment. Where design t o  h igher  temperatures i s  

requi red,  Sect ion I 1 1  i s  supplemented by ASME 

Code Case 1 5 9 2 , ~  RDT Standard F 9 - 4 ~ , ~  and RDT 

Standard F 9 - 5 ~ , ~  which prov ide design r u l e s ,  

a l lowable l i m i t s ,  and ana lys is  gu ide l ines  f o r  

aus ten i ' t i c  s t a i n l e s s  s t e e l s  f o r  operat ion above 

427'~. These r u l e s  w i l l ,  i f  appropr ia te,  be 

used f o r  por t ions  o f  the  b lanke t  s t r u c t u r e  o ther  

than the f i r s t  w a l l .  

The Code'and the above supplements do 

n o t  con ta in  s p e c i f i c  p rov is ions  f o r  environ- 

mental e f f e c t s  such as i r r a d i a t i o n .  The de- 

s igner  i s  thus n o t  provided d e f i n i t i v e  design 

r u l e s  f o r  those cases where i r r a d i a t i o n  dam- 

age and o ther  environmental e f f e c t s  a re  s ig -  

n i f i c a n t .  Ava i lab le  data6" do i n d i c a t e  t h a t  

i r r a d i a t i o n  causes a decrease i n  d u c t i l i t y  

and f a t i g u e  l i f e .  A d d i t i o n a l l y ,  cold-working 

t o  achieve enhanced mechanical p roper t ies  i s  

n o t  p resen t l y  considered by the Code t o  be a 

v a l i d  treatment because the  r e s u l t a n t  en- 

hanced st rengths may be l o s t  by se rv ice  expo- 

sure. Thus, f o r  t h i s  p re l im inary  assessment, 

i r r a d i a t i o n  e f f e c t s  have n o t  been considered; 

the  a l lowable l i m i t s  contained i n  the Code, 

which a re  based on p roper t ies  o f  annealed 

mate r ia l ,  were used t o  evaluate these con- 

ceptual designs. 

The conduction heat t r a n s f e r  o f  the  heat 

load  on the f i r s t  w a l l  r e s u l t s  i n  a c y c l i c  t h e r -  

mal s t ress  w i t h  each burn pulse. For a f i r s t  

w a l l  design composed o f  th in-wal  l e d  tubes sup- 

por ted by a backing p la te ,  the ca lcu la ted  ther -  

mal s t ress  has two major components. The tem- 

perature drop through the  wa l l  th ickness and t h e  



Fig.  4.8. Tokamak p lan  view casset te  b lanket .  

temperature drop across t h e  tube diameter com- 

b i n e  t o  cause a maximum compressive s t ress  a t  

the  f i r s t  w a l l  surface. The dominant s t r e s s  i s  

caused by the  temperature drop across the  tube 

diameter and i s  determined by the  degree o f  r e -  

s t r a i n t  g iven t o  the  ends o f  the  heated w a l l .  

Because the  tubes normally run between two 

l a r g e r  mani fo lds,  freedom from r e s t r a i n t  may be 

d i f f i c u l t  t o  achieve. However, two new concepts 

proposed 1 a t e r  i n  t h i s  s e c t i o n  may poss ib ly  

reduce the  problem o f  temperature drop across 

the  tube diameter and thus enhance t h e  f i r s t  

w a l l  design margin. 

Based on the  assumptions and s i m p l i f i c a -  

t i o n s  used, i t  was found t h a t  the magnitude o f  

the s t resses i n  t h e  f i r s t  w a l l  was below t h e  

Code a l lowables,  al though the margin was n o t  

la rge .  The ana lys is  f o r  c y c l i c  operat ion a l s o  

i n d i c a t e d  t h a t  the design i s  acceptable. How- 

ever, the presence o f  a  neutron f l u x  w i l l  prob- 

ab ly  reduce f a t i g u e  l i f e .  While the magnitude 

o f  t h i s  reduc t ion  can on ly  be estimated, i t  i s  

probable t h a t  some o r  a l l  o f  the  margin on 

f a t i g u e  w i l l  be l o s t  and t h a t  f a t i g u e  w i l l  be 

one o f  the most important mechanisms i n  se t -  

t i n g  the f i r s t  w a l l  l i f e .  

The above d iscuss ion po in ts  ou t  the need 

f o r  an e f f o r t  d i r e c t e d  a t  developing and v e r i -  

f y i n g  s t r u c t u r a l  design c r i t e r i a  f o r  app l i ca -  

t i o n  t o  fus ion  reactors.  The essen t ia l  fea- 

tu res  o f  a  scoping study aimed a t  p rov id ing  

load  d e f i n i t i o n s  and requ i red  avenues f o r  c r i  t e -  

r i a  devel opment have been del  ineated .8 Compara- 

b l e  s tud ies have been undertaken t o  develop de- 

s ign  c r i t e r i a  and ana lys is  methods fo.r f i s s i o n  

reactors.  9y10 These e f f o r t s  could be a va luable 

source o f  p re l im inary  design c r i t e r i a  o r  guide- 

l i n e s  f o r  development o f  design c r i t e r i a  and 

ana lys is  methods app l i cab le  t o  f u s i o n  reactors.  
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4.6 NEW BLANKET DESIGN CONCEPTS 

Several new ideas have been proposed by the 

design team and a r e  presented here-as p r e l i m i -  

nary ideas w i t h  l i m i t e d  design analys is .  These 

concepts w i l l  be evaluated i n  some d e t a i l  dur ing 

the remainder o f  t h i s  y e a r ' s  study. 

4.6.1 The FBZ Approach 

I n  the  f i r s t  b lanke t  zone (FBZ) design ap- 

proach, we take advantage o f  the f a c t  t h a t  r a d i -  

a t i o n  damage decreases as a f u n c t i o n  o f  depth i n -  

t o  ' t h e  b lanket .  For the  reference design, a 

s p a t i a l  d i s t r i b u t i o n  o f  damage character ized by 

atomic displacement r a t e  and he1 ium generat ion 

r a t e  i s  i l l u s t r a t e d  i n  F ig .  4.10. It may be 

observed from t h i s  f i g u r e  t h a t  i n  a d is tance 

of about 25 cm, the atomic displacement r a t e  

has decreased by a f a c t o r  o f  f i v e  and the  h e l i -  

um generat ion r a t e  has decreased by a f a c t o r  o f  

seven. We def ine t h i s  region, which represents 

v o l u m e t r i c a l l y  about 20% o f  the  t o t a l  blanket,  

as the  f i r s t  b lanket  zone. The FBZ i s  t h a t  

p a r t  o f  the  b lanke t  which can be changed rou- 

t i n e l y  when r a d i a t i o n  e f f e c t s  d i c t a t e  or when 

sur face e f f e c t s  such as s p u t t e r i n g  eros ion re -  

q u i r e  it. A l l  o ther  th ings being equal, the 

second b lanket  zone, i .e . ,  the 80% remainder 

o f  the  b lanket ,  would l a s t  5-10 times longer.,, 

Th is  zoning approach t o  b lanket  maintenance is,  

markedly s ~ ~ p ~ r i n r  t o  the more common d i f f e r e n -  ' 

t i a t i o n  o f  having a main b lanket  and a separable 

f i r s t .  w a l l .  There i s  1 i t t l e  t o  be gained by 
' 

changing a t h i n  f i r s t  w a l l  and leav ing  behind 
o ther  mater ia l  t h a t  a l so  has s i g n i f i c a n t  damage. 

The coolant  c i r c u i t  f o r  the FBZ o f  Fig. 4.11 

may be one which i s  completely independent o f  

the remainder o f  the b lanket ,  o r  the o u t l e t  duct 

may feed t o  the  second b lanket  zone. P ip ing  

connections i n  e i t h e r  case would be outboard o f  

the s h i e l d .  



F i g .  4.10. R a d i a t i o n  damage vs b l a n k e t  t h i ckness .  ( C a l c u l a t i o n s  and f i g u r e  p rov ided  by  R. T. Santoro.  ) 
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F i q .  4.11. The FBZ approach. 



4.6.2 The Balanced Energy I n p u t  

As d iscussed i n  t h e  s e c t i o n  on s t r e s s  ana1y.- 

s i s ,  t h e  hea t  l o a d  on a  t u b u l a r  f i r s t  w a l l  r e -  

s u l t s  i n  two components o f  thermal  s t r e s s :  one 

caused by AT through t h e  w a l l  t h i ckness ,  a n o l l ~ e r  

by AT across  t h e  tube  d iameter .  The ba lanced 

energy i n p u t  concept  a t t emp ts  t o  reduce t h e  

second component by b a l a n c i n g  t h e  hea t  f l u x  on 

t h e  f i r s t  w a l l  by  h e a t i n g  t h e  tube on t h e  back 

face.  The energy source i s  t h e  n e u t r o n i c  h e a t i n g  

o f  t h e  l i t h i u m  (see F i g .  4.12).  
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F i g .  4.12. F i r s t  w a l l  ba lanced energy i n p u t .  

The equa t i ng  o f  q, and qn w i l l  e s t a b l i s h  t h e  

r e q u i r e d  l i t h i u m  th i ckness .  P r e l i m i n a r y  c a l c u l a -  

t i o n s  i n d i c a t e  t h a t  3-6 cm o f  l i t h i u m  a r e  r e -  

q u i r e d  t o  ba lance t h e  hea t  l o a d  f o r  t h e  r e f e r e n c e  
2  w a l l  l o a d i n g  o f  2-4 MW/m . For  s t e a d y - s t a t e  op- 

e r a t i o n ,  i t  i s  c l e a r l y  advantageous t o  hea t  t h e  

t ubc  u n i f o r m l y  f r o m  b o t h  s i des ;  however. t h e  

t r a n s i e n t  c o n d i t i o n s  r e q u i r e  f u r t h e r  a n a l y s i s .  

4.6.3 M o d i f i e d  Tube Wal l  Concepts 

Another  p o s s i b l e  approach t o  m i n i m i z i n g  

t h e  thermal  s t resses  due t o  t h e  AT across  t h e  

tube  d iame te r  i s  t o  l o c a t e  t h e  supp l y  and re -  

t u r n  m a n i f o l d s  ad jacen t  t o  each o t h e r  and have 

t h e  duc ts  f o rm ing  t h e  f i r s t  w a l l  f o l l o w  an o u t  

and r e t u r n  path .  Both  l e g s  o f  t h e  d u c t  w i l l  

t end  t o  bend i n  t h e  same d i r e c t i o n  and nomi- 

n a l l y  p r o v i d e  no r e s t r a i n t  on each o t h e r .  

Such an arrangement can be r e a l i z e d  as a  

nes ted  a r r a y  o f  U - l i k e  tubes o r  an a r r a y  o f  

c o i l - s p r i n g - l i k e  tubes.  These a r e  shown con- 

c e p t u a l l y  i n  F igs .  4.13 and 4.14. 

4.6.4 I n t e r n a l  T r i t i u m  Recovery 

The l i t h i u m  volume con ta ined  w i t h i n  t h e  U- 

shaped envelope o f  t h e  c a s s e t t e  module has i n  i t  

an independent w a l l  t h a t  serves a  dual  r o l e :  

( a )  i t  a c t s  as an a d i a b a t i c ,  e n e r g y - i s o l a t i n g  

su r face  between t h e  c o o l a n t  t ube  f a c i n g  t h e  

plasma and t h e  o t h e r  h a l f  o f  t h e  t ube  f a c i n g  t h e  

secondary b l a n k e t  zone, and ( b )  i t  i s  a  means o f  

t r i t i u m  recovery .  The b a r r i e r  w a l l  i s  made up 

o f  c a p i l l a r y  tubes o f  n iobium. T r i t i u m  i s  r e -  

covered by  d i f f u s i o n  i n  t h e  l i t h i u m  and perme- 

a t i o n  th rough t h e  niobium. The ' l o c a t i o n  o f  t h e  

b a r r i e r  w a l l  (see F ig .  4 .9)  i s  determined by 

hea t  t r a n s f e r  c o n s i d e r a t i o n s ,  by t h e  d e s i r e d  

f l u x  a t t e n u a t i o n ,  and by t h e  d i f f u s i o n  o f  

t r i t i u m  i n  l i t h i u m  t h a t  may have ze ro  f l u i d  

c i r c u l a t i o n  due t o  magnet ic f i e l d  e f f e c t s .  A  

concept t o  i n c o r p o r a t e  t h i s  i dea  i n  t h e  con tou r  

module w i l l  be developed i f  p r e l i m i n a r y  d i f f u -  

s i o n  c a l c u l a t i o n s  show i t  t o  be v i a b l e .  

4.7 UNRESOLVED PROBLEM AREAS 

Severa l  p rob lem areas remain  i n  t h e  b lan -  

k e t  system and w i l l  be s t u d i e d  d u r i n g  t h e  r e -  

mainder o f  t h i s  f i s c a l  yea r .  The ma jo r  prob- 

lems a r e  desc r i bed  below. 

4.7.1 S ta r t -Up  

Due t o  t h e  r e l a t i v e l y  h i g h  m e l t i n g  p o i n t  

o f  t h e  mo l ten  s a l t ,  s150°c, some method w i l l  

b e . r e q u i r e d  t o  p rehea t  t h e  b l a n k e t .  Opt ions  

under c o n s i d e r a t i o n  i n c l u d e :  

1 )  i n i t i a l  m i x i n g  o f  t h e  s a l t  w i t h  water  
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S ~ P P L Y  AND RETURN MANIFOLDS 

F ig .  4.13. Concept o f  'modi f ied U-tube f i r s t  w a l l .  
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SUPPLY +ND RETURN MANIFOLDS 

Fig.  4.14. Concept o f  c o i l - s p r i n g - l i k e  f i r s t  w a l l  : 



which would be removed a f t e r  the pre- 

heat.  This  approach i s  i n  use i n  com- 

merc ia l  a p p l i c a t i o n  f o r  both s t a r t - u p  

and shutdown; 

2 )  d r a i n  the molten l i t h i u m  from the blan- 

k e t  upon shutdown and recharge i t  a t  a  

s u f f i c i e n t l y  h igh temperature t o  me l t  

the s o l i d i f i e d  s a l t ;  

3) d r a i n  the  s a l t  c i r c u i t  and reheat by 

c i r c u l a t i n g  a m ix tu re  o f  sodium and 

potassium (NaK) through the s a l t  c i r -  

c u i t .  The NaK can be removed by vacuum 

boi  1  - o f f ;  

4) the same approach as op t ion  3, except 

t h a t  h o t  gas, i n e r t  i f  necessary, 

n 
would be used t o  accomplish heat-up; 

and, 

5 )  use o f  e l e c t r i c a l  res is tance heat ing 

e i t h e r  t o  supply heat  r a d i a n t l y  o r  

by contact  w i t h  the  b lanket .  

4.7.2 F i r s t  Wall S t r u c t u r a l  Design 

The l i f e  o f  the  f i r s t  w a l l  i n  the reg ion 

o f  h igh  neutron f l u x  w i l l  be determined 

l a r g e l y  by the  acceptable l i m i t  f o r  l oss  i n  

mate r ia l  d u c t i l i t y .  Based on present under- 

standing o f  mate r ia l s  behavior, normal loading 

condi t ions,  and design c r i t e r i a ,  fab r i ca ted  

s ta in less  s tee l  should have s u f f i c i e n t  d u c t i l -  

i t y  t o  accommodate the  s t r a i n s  dur ing i n i t i a l  

s t a r t - u p  o f  the  reac to r ,  i . e . ,  when s t r u c t u r a l  

components normally experience the most severe 

imposed loads. Under cont inued c y c l i c  opera- 

t i o n ,  as the mate r ia l  d u c t i l i t y  decreases w i t h  

increasing f luence, the s t r u c t u r e  w i l l  tend t o  

shake down i n t o  a s tab le  load  deformation con- 

f i g u r a t i o n  t h a t  w i l l  l i m i t  accumulation o f  

add i t i ona l  i n e l a s t i c  s t r a i n .  The assumptions 

and s i m p l i f i c a t i o n s  used above i n  assessing 

f i r s t  wa l l  behavior must be f u r t h e r  i n v e s t i -  

gated. Also, acceptable design c r i t e r i a  must 

be developed and, u l t i m a t e l y ,  v e r i f i e d  fo r  

t h i s  unique design case. 

4.7.3 Remote Maintenance 

(see Sect. 8) i s  expected t o  improve the re -  

mote maintenance problem, an in-depth analy- 

s i s  o f  t h i s  o v e r a l l  problem i s  s t i l l  requi red.  

Equipment requirements and d e t a i l e d  design 

so lu t ions  a re  necessary t o  he lp  guide and i m -  

plement a much needed technology program. 

4.7.4 I n t e r n a l  PF C o i l s  

The i n t e r n a l  p o l o i d a l  f i e l d  (PF) c o i l s  

requ i red  f o i  plasma shaping and c o n t r o l  are 

an i n t e g r a l  p a r t  o f  the b lanket  system. The 

problem here i s  i n  the design o f  a  j o i n t  both 

fo r  replacement o f  the c o i l s  and f o r  access i n t o  

the plasma chamber. A h igh  vo l tage power source, 

which f u r t h e r  complicates the  c o i l s  by r e q u i r i n g  

many turns per cu r ren t  loca t io? ,  i s  des i rab le.  

There i s  p resen t l y  no acceptable s o l u t i o n  fo r  

t h i s  problem. 

4.7.5 T r i t i u m  Removal 

A p o t e n t i a l  problem r e s u l t i n g  from MHD e f -  

f e c t s  on the l i t h i u m  has been i d e n t i f i e d .  Por- 

t i o n s  o f  the l i t h i u & m a y  be s u f f i c i e n t l y  immo- 

b i l i z e d  t o  p r o h i b i t  adequate removal o f  the tri- 

t ium. De ta i led  c a l c u l a t i o n s  are under way t o  

evaluate poss ib le  stagnant l i t h i u m  regions and 

the ex ten t  t o  which motion i s  suppressed. The- 

d i f f u s i o n  r a t e  o f  t r i t i u m  through the non6lowing 

regions w i l l  a l s o  be evaluated. 

4.8 CONCLUSIONS 

We conclude t h a t  the  bas ic  design approach 

f o r  the  power demonstration study i n  general 

i s  f e a s i b l e  f o r  the  b lanke t  system and r e s u l t s  

i n  p r a c t i c a l  engineer ing concepts which are p r i -  , 

m a r i l y  app l i ca t ions  o f  e x i s t i n g  technology. How- 

ever, as ind ica ted  throughout t h i s  sect ion, the  

b lanket  concepts are i n  an e a r l y  stage o f  devel- 
0 

opment and represent on ly  p re l im inary  designs a t  

t h i s  time. For the remainder o f  t h i s  f i s c d l  

year, we w i l l  perform a d d i t i o n a l  in-depth analy- 

s i s  and layou t  design t o  ascer ta in  the f e a s i b i l -  

i t y  o f  the basic design concepts. 

A summary o f  our  s p e c i f i c  conclusions from 

Although the  vacuum b u i l d i n g  approach 



the  b lanke t  study t o  date fo l lows.  

1. A b lanke t  heat exchanger us ing  a low 

pressure s a l t  coo lan t  hav ing sa t i s fac -  

t o r y  thermal/hydraul i c  performance 

which matches a convent ional  steam 

generator can be provided. 

2. An acceptable breeding r a t i o  f o r  t r i t i -  

um can be obta ined i n  a b lanke t  t h i c k -  

ness o f  112-1 m. Our f i r s t  concept i n -  

c luded a l a y e r  o f  g raph i te  t o  reduce 

the th ickness o f  l i t h i u m  requi red.  

More recen t  neu t ron ic  c a l c u l a t l o n s ,  

however, show t h a t  the  g raph i te  provides 

o n l y  a s l i g h t  improvement. Consider- 

i n g  poss ib le  c o m p a t i b i l i t y  problems 

w i t h  g raph i te  and some coolants  such 

as s a l t .  we e l im ina ted  t h e  g raph i te .  

3. A b lanke t  f i r s t  w a l l  w i t h  reasonably 

long l i f e  under h igh  thermal w a l l  

loading us ing conventional mate r ia l s  

can be designed. Conservat ive l i m i t s  

on temperature and hydrau l i c  loading 

are se lected t o  reduce the impact o f  

r a d i a t i o n  damage. 

4. The ASME S t r u c t u r a l  Design Code i s  rea-  

sonable as a s t a r t i n g  p o i n t  t o  assess 

the r e l i a b i l i t y  o f  the s t r u c t u r a l  de- 

sign. Radiat ion damage occurs as a 

gradual l oss  i n  d u c t i l i t y  and as such 

does n o t  have as severe an impact on 

the design as a mate r ia l  w i t h  i n i t i a l  

low d u c t i l i t y .  

5. New design concepts such as the cas- 

s e t t e  module and FBZ approach (when 

coupled w i t h  a vacuum b u i l d i n g )  appear 

t o  be v i a b l e  cnncept.s fo r  improved 

mechanical design f o r  remote 

maintenance requirements. 



5. BLANKET STRUCTURE 

J. L .  S c o t t  

5.1 INTRODUCTION 

The s t r u c t u r a l  m a t e r i a l  o f  t h e  b l a n k e t  i s  

an i m p o r t a n t  f a c t o r  t o  cons ide r  i n  e s t a b l i s h i n g  

t h e  t e c h n i c a l  and economic f e a s i b i l i t y  o f  t h e  

tokamak concept  f o r  power gene ra t i on .  To demon- 

s t r a t e  t e c h n i c a l  f e a s i b i l i t y ,  one must e s t a b l i s h  

t h a t  he can b u i l d  and i n s p e c t  t h e  s t r u c t u r e  and 

ensure r e l i a b i l i t y .  He must a l s o  have da ta  

i n d i c a t i n g  s a t i s f a c t o r y  performance (under  

s e r v i c e  c o n d i t i o n s )  o f  temperature,  s t r e s s ,  

chemical  environment,  and f l u x  and f l u e n c e  o f  

neu t rons  w i t h  t h e  p rope r  energy spectrum. One's 

a b i l i t y  t o  g e t  t h e  r e q u i r e d  da ta  i n  t i m e  t o  have 

f a v o r a b l e  impact on t h e  des ign  must be an 

impor tan t  c o n s i d e r a t i o n .  I n  c o n s i d e r i n g  eco- 

nomic f e a s i b i l i t y ,  one must t a k e  i n t o  account  

t h e  c o s t s  of  f a b r i c a t i n g  and i n s p e c t i n g  t h e  

b l a n k e t  modules and weigh these c o s t s  a g a i n s t  
t h e  l i f e t i m e  o f  t h e  p a r t i c u l a r  s t r u c t u r e .  I n  

a d d i t i o n ,  one must cons ide r  t h e  c o s t s  f o r  a l l o y  

development, r a d i a t i o n  t e s t i n g ,  and e s t a b l  i s h -  

ment o f  t h e  r e q u i r e d  da ta  base. Beyond t h i s ,  

one must be aware o f  t h e  c o s t s  i n v o l v e d  i n  

c r e a t i n g  new i n d u s t r i a l  c a p a b i l i t y  f o r  new 

m a t e r i a l s  and f a b r i c a t i o n  processes. 

Keeping t h e  above f a c t o r s  i n  mind, t h e  

f o l l o w i n g  c o n s i d e r a t i o n s  were emphasized i n  

t h e  s e l e c t i o n  o f  t h e  s t r u c t u ~ ~ a l  m a t e r i a l :  

1 )  demonst ra t ion  o f  commercial f e a s i b i l i t y  

i n  t h i s  cen tu ry ,  

2)  s a f e  and r e 1  i a b l e  o p e r a t i o n  a t  minimum 

c a p i t a l  cos t s ,  

3 )  economica l ly  a t t r a c t i v e  thermodynamic 

e f f i c i e n c y  ( i n  t h e  range o f  conven- 

t i o n a l  1  i g h t  wa te r  r e a c t o r s ) ,  

4 )  a b i  l i t y  t o  develop a f u l l  d a t a  base, 

i n c l u d i n g  e n d - o f - l i f e  p r o p e r t i e s ,  i n  

a  t i m e  p e r i o d  c o n s i s t e n t  w i t h  each 

phase o f  commerc ia l i za t i on ,  and 

5 )  m i n i m i z a t i o n  o f  t h e  number o f  new 

c lasses  o f  m a t e r i a l s ,  f a b r i c a t i o n  and 

j o i n i n g  processes, and i n d u s t r i e s .  

The t i m e  p e r i o d  a v a i l a b l e  f o r  deve lop ing  

t h e  eng inee r i ng  d a t a  base f o r  des ign  i s  s e t  by 

t h e  t i m i n g  o f  t h r e e  phases beyond t h e  Tokamak 

Fus ion T e s t  Reactor  (TFTR): ( 1 )  t h e  i g n i t i o n  

demonst ra t ion  phase, ( 2 )  t h e  power techno logy 

demonst ra t ion  phase, and ( 3 )  t h e  commercial 

p r o t o t y p e  demonst ra t ion  phase. The m a t e r i a l  

cho i ce  f o r  each phase must be made seve ra l  y e a r s  

b e f o r e  t h e  o p e r a t i n g  date .  Fo r  t h e  i n i t i a l  

i g n i t i o n  phase, development t i m e  i s  l i m i t e d ;  

t h e r e f o r e ,  emphasis must be p laced  on e x i s t i n g  

commercial m a t e r i a l s  o r  improved ve rs ions  o f  

them. A t  t h e  same t ime,  t h e  r e q u i r e d  1  i f e t i m e  

and da ta  base a r e  l e s s  s t r i n g e n t  f o r  t h e  i n i t i a l  

i g n i t i o n  phase t h a n  f o r  t h e  commercial p r o t o t y p e  

demonst ra t ion  phase. Fo r  t h e  l a t t e r ,  t h e r e  i s  

more t i m e  f o r  development and thus t h e  cho i ce  

o f  m a t e r i a l  may change. To m in im ize  t h e  number 

n f  new techno log ies  r e q u i r e d  f o r  demonst ra t ion ,  

i t  would be h i g h l y  d e s i r a b l e  t h a t  t h e  s t r u c t u r a l  

m a t e r i a l  f o r  a l l  t h r e e  phases be based on t h e  

same c l a s s  o f  m a t e r i a l s .  However, i f  r e s u l t s  

o f  t h e  development program i n d i c a t e  t h a t  a  new 

c l a s s  o f  m a t e r i a l s  i s  r e q u i r e d ,  t h e n  s u f f i c i e n t  

f l e x i b i l i t y  shou ld  e x i s t  i n  t h e  program t o  

a l l o w  t h e  change t o  be made. Fo r  each phase, 

l ow  c o s t  and h i g h  r e l i a b i l i t y  a r e  obv ious r e -  

quirements.  

The requ i remen t  t h a t  t h e  f u l l  da ta  base, 

i n c l u d i n g  e n d - o f - l i f e  p r o p e r t i e s ,  be a v a i l a b l e  i n  

a  t i m e  p e r i o d  c o n s i s t e n t  w i t h  commercial demon- 

s t r a t i o n  i n  t h i s  c e n t u r y  i s  e s p e c i a l l y  d i f f i c u l t  

t o  s a t i s f y .  F i s s i o n  r e a c t o r  i r r a d i a t i o n s  can 

p r o v i d e  much o f  t h e  da ta  base f o r  i r o n -  and 

n i cke l -base  a l l o y s ,  and these f a c i l i t i e s  a r e  

a v a i l a b l e  now. I f  r e f r a c t o r y  me ta l s  a r e  chosen 

as t h e  s t r u c t u r a l  m a t e r i a l ,  a  t e s t  f a c i l i t y  w i t h  

l a r g e  volume, h i g h  f l u x ,  and h i g h  neu t ron  energy 

w i l l  be r e q u i r e d .  The f i r s t  such f a c i l i t y ,  t h e  

D-Li source, wou ld  have o n l y  a  l i t e r  o f  t e s t  

space.' '2 T h i s  i s  adequate f o r  scop ing s t u d i e s ,  

b u t  g r o s s l y  inadequate  f o r  p r o v i d i n g  t h e  d a t a  



base r e q u i r e d  f o r  d e t a i l e d  design. Several D-Li 

sources o r  a  magnetic f u s i o n  t e s t  f a c i l i t y  would 

have t o  be b u i l t  and u t i l i z e d  i n  order  t o  t e s t  

r e f r a c t o r y  meta ls .  One D-Li source would be 

s u f f i c i e n t  t o  v e r i f y  the f i s s i o n  r e a c t o r  r e -  

s u l t s  f o r  i r o n -  and nickel-based a l l o y s  so the 

development costs  a re  much lower f o r  these 

m a t e r i a l s .  

I n  s e l e c t i n g  t h e  s t r u c t u r a l  m a t e r i a l  f o r  

each phase o f  the  commercial f e a s i b i l i t y  

demonstrat ion, a  number o f  a d d i t i o n a l  f a c t o r s  

must be considered. The economics ana lys is  

(Sect.  2) suggests t h a t  c a p i t a l  costs  approach 

an optimum f o r  neutron w a l l  loadings i n  t h e  

range o f  2-4 M W / ~ ~ .  Secondly, t h e  requ i red  

opera t ing  l i f e  increases w i t h  each successive 

demonstrat ion phase. For commercial power 

operat ion,  p e r i o d i c  replacement o f  the  f i r s t  

w a l l  i s  perce ived as a  d i f f i c u l t  and c o s t l y  

process because i t  must be done remotely. Pre- 

1  im inary  a n a l y s i s  suggests t h a t  p l a n t  a v a i l  - 
a b i l i t y  i s  n o t  s e r i o u s l y  impacted f o r  w a l l  

l i f e t i m e s  o f  f i v e  years o r  greater .  Thus, a  

d e s i r a b l e  i n t e g r a l  w a l l  l oad ing  - which may be 

de f ined  as the  product  o f  the  neutron w a l l  

loading,  the  power f a c t o r ,  and t h e  years o f  

opera t ion  be fo re  replacement - i s  a t  l e a s t  

10 MW yr/m7 and hope fu l l y  11iql1t.r.. 

The l i f e t j m e  requirements, which vary w i t h  

each demonstrat ion phase w i l l  be l i m i t e d  by 

r a d i a t i o n  damage. The pr imary e f f e c t s  o f  

r a d i a t i o n  a re  s w e l l i n g  and l o s s  o f  d u c t i l i t y .  

As the  l i f e t i m e  increases, the  atomic d isp lace-  

ments and t h e  hel ium and hydrogen contents  i n -  

crease, as i n d i c a t e d  i n  Table 5.1 f o r  type 316 

s t a i n l e s s  s tee l  and Nb-1% Zr ,  which are t y p i c a l  

o f  the  two major classes o f  conventional and 

I l . i y l ~  temperature mate r ia l s  being considered. 

I n  a d d i t i o n  t o  atomic displacements and gas 

content,  the l i f e t i m e  w i l l  be a  s t rong  f u n c t i o n  

o f  metal 1  u r g i c a l  s t ruc tu re ,  operat ing tempera- 

ture,  and s t ress  l e v e l s .  A t  pt.eserrt, the re  

a r e  i n s u f f i c i e n t  data t o  s p e c i f y  the  i n t e g r a l  

wal.1 load ing  o f  any mate r ia l ,  bu t  a  des i rab le  

range would be 10-20 MW-yr/m2. 

I n  a d d i t i o n  t o  r a d i a t i o n  s t a b i l i t y ,  the  

s t r u c t u r a l  mate r ia l  must s a t i s f y  o ther  requ i re -  

ments. One i s  f a b r i c a b i l i t y .  The s i z e  o f  the 

system w i l l  d i c t a t e  t h a t  a t  l e a s t  some o f  the 

assembly operat ions w i l l  have t o  be done i n  the 

f i e l d .  F i e l d  assembly would be d i f f i c u l t  f o r  

r e f r a c t o r y  metal systems because an i n e r t  atmos- 

phere i s  requ i red  f o r  welding. Smaller sub- 

systems could be f a b r i c a t e d  i n  glove boxes, b u t  

coolant  p i p i n g  and vacuum seal welds would be 

most e a s i l y  done i n  a i r .  The s t r u c t u r e  must 

a lso  be compatible w i t h  t h e  coolant  and w i t h  

some form o f  l i t h i u m  as a  t r i t i um-breed ing  

m a t e r i a l .  F i n a l l y ,  the h igh  power dens i t y  w i l l  

r e s u l t  i n  h igh  heat f l uxes ,  so the  m a t e r i a l  

must be capable o f  wi thstanding the r e s u l t i n g  

thermal stresses. 
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5.2 CANDIDATE STRUCTURAL MATERIALS 

A  number o f  candidate s t r u c t u r a l  m a t . ~ r i a l  z 

were considered f o r  the commercial f u s i o n  power 

appl i c a t i o n .  These included: 

1 )  a u s t e n i t i c  s t a i n l e s s  s tee ls ,  

2)  Ni-base a l l o y s ,  

3 )  Nb-1% Zr, 

4) V a l l o y s  

5) Mo a l l o y s ,  and 

6) A1 a l l o y s .  

5.2.1 A u s t e n i t i c  S ta in less  Steels  

I n  comparison w i t h  the  o ther  m a t e r i a l s  on 

t h e . 1  i s t ,  austeni  t i c  s t a i n l e s s  s tee ls  have so 

Illany advantages t h a t  t h i s  c lass  o f  m a t e r i a l s  



Table  5.1. Atomic d isp lacements  and gas con ten ts  o f  s t r u c t u r a l  m a t e r i a l s  
a t  goal  l i f e t i m e s  o f  commerc ia l i za t i on  phases 

M a t e r i a l  Phase 
Goal l i f e t i m e  

( M W - ~ r l m ~ ) ~  dpab ~ e ( a ~ ~ m ) ~  H(appm) 
- -- pp - p~ ~- 

Type 316 s t a i n l e s s  s t e e l  . I g n i t i o n  2.5 2 7 320 1060 

Nb-1% Zr I g n i t i o n  2.5 18 7 3 260 

Type 316 s t a i n l e s s  s t e e l  Power Demo and commercial 10-40 115-460 1440-5750 5330-21,300 

Nb-1% Z r  Power Demo and commercial 10-40 73-290 290-1 160 1050-4200 ' 

' ~ i f e t i m e  i s  def ined as t h e  p roduc t  o f  yea rs  o f  ope ra t i on ,  t h e  power f a c t o r ,  and t h e  14.1-MeV 

neu t ron  w a l l  l o a d i n g .  

b ~ i s p l a c e m e n t s  pe r  atom. 

' ~ t o m i c  p a r t s  pe r  m i l l i o n .  

shou ld  be s e r i o u s l y  cons idered un less  some com- 

p e l l i n g  reason e x i s t s  t o  r e j e c t  i t .  Severa l  

commercial a l l o y s  a r e  r e a d i l y  a v a i l a b l e ,  and 

some have a h i s t o r y  o f  use and t e s t i n g  under 

c o n d i t i o n s  t h a t  p a r t l y  s i m u l a t e  those i n  a 

f u s i o n  r e a c t o r .  Techniques f o r  f a b r i c a t i o n  and 

we ld ing  s t a i n l e s s  s t e e l s  a r e  w e l l  developed, and 

an u n i r r a d i a t e d  data  base f o r  des ign  e x i s t s .  

Broad commercial exper ience w i t h  s t a i n l e s s  

. s t e e l s  p rov ides  a h i g h  degree o f  con f i dence  i n  

o u r  a b i l i t y  t o  ach ieve a r e l i a b l e  dev i ce  t h rough  

t h e i r  use - i g n o r i n g ,  f o r  t h e  moment, i r r a d i a -  

t i o n  e f f e c t s .  

A s i g n i f i c a n t  advantage o f  a s t a i n l e s s  

s t e e l  as a s t r u c t u r a l  m a t e r i a l  i s  t h e  a b i l i t y  

t o  s i m u l a t e  f us ion  r e a c t o r  i r r a d i a t i o n  e f f e c t s  

i n  a mixed-spectrum f i s s i o n  r e a c t o r .  T h i s  

un ique va lue  o f  f i s s i o n  r e a c t o r s  a r i s e s  f rom 

t h e  combinat ion  o f  d isp lacement  damage p ro -  

duced by f a s t  neut rons and h e l i u m  produced by 

a two-s tep thermal neu t ron  r e a c t i o n :  3 

T h i s  approach recogn izes  t h a t  f u s i o n  r e a c t o r  

r a d i a t i o n  e f f e c t s  a t  h i g h  f l u e n c e  a r e  b e s t  

approximated by  match ing t h e  amount o f  bo th  
he l i um p r o d u c t i o n  and d isp lacement  damage. 

Resu l t s  on t y p e  316 s t a i n l e s s  s t e e l  i r r a d i a t e d  

under these c o n d i t i o n s  a r e  d iscussed i n  more 

d e t a i l  i n  Sect.  5.3. 

The ma jo r  drawbacks t o  t h e  use of  austen- 

i t i c  s t a i n l e s s  s t e e l s  a r e  a q u e s t i o n  o f  long-  

t e rm  chromium a v a i l a b i l i t y ,  r e l a t i v e l y  l uw  

thermal ' c o n d u c t i v i t y ,  problems o f  waste d i s -  

posa l  as a r e s u l t  o f  neu t ron  a c t i v a t i o n ,  and a 

compara t i ve l y  low upper o p e r a t i n g  temperature  

1 i m i t  o f  4 0 0 - 5 0 0 ~ ~ .  The o p e r a t i n g  temperature  

l i m i t  can p robab l y  be i nc reased  by  an a l l o y  

development program. Resource a v a i l a b i  1 i t y  

and waste d i sposa l  a r e  problems which app l y  

t o  n e a r l y  a l l  t h e  cand idates  and must be faced  

i n  t h e  f u t u r e .  W i th  p rope r  design, many o f  

these d isadvantages can be accommodated. 

I t  i s  u n l i k e l y  t h a t  any p r e s e n t l y  a v a i l -  

a b l e  commercial a u s t e n i t i c  s t a i n l e s s  s t e e l  

a l l o y  i s  t h e  optimum c h o i c e  f o r  comnerc ia l  

f u s i o n  power. L i m i t e d  i r r a d i a t i o n  da ta  ob- 

t a i n e d  i n  mixed-spectrum f i s s i o n  r e a c t o r s  

suggest t h a t  t y p e  316 s t a i n l e s s  s t e e l  may have 

adequate p r o p e r t i e s  f o r  t h e  i g n i t i o n  phase. 3 

I n f o r m a t i o n  on i t s  p r o p e r t i e s  under i r r a d i a t i o n  

i s  more e x t e n s i v e  t han  f o r  o t h e r  a l l o y s  be- 

cause i t  i s  t h e  r e f e r e n c e  c l a d d i n g  m a t e r i a l  

f o r  t h e  L iqu id -Me ta l  F a s t  Breeder Reactor  

(LMFBR). A t  t h e  same t ime, p r e l i m i n a r y  data  

on exper imenta l  a u s t e n i t i c  a l l o y s  i n d i c a t e  t h e  



p o t e n t i a l  f o r  marked ly  improved i r r a d i a t i o n  

r e s i s t a n c e .  S p e c i f i c a l l y ,  t i t a n i u m  a d d i t i o n s  

(s0.25 w t  % )  t o  t y p e  316 s t a i n l e s s  s t e e l  r e s u l t  

i n  improved p o s t i r r a d i a t i o n  d u c t i l i t y  and creep 

l i f e  a t  5 5 0 0 c . ~  

It must be emphasized t h a t  t h e  amount o f  

t e s t i n g  thus  f a r  o f  a u s t e n i t i c  s t a i n l e s s  s t e e l s  

i n  a s imu la ted  f u s i o n  environment i s  ex t reme ly  

l i m i t e d .  I n  a d d i t i o n ,  o u r  fundamental unders- 

s t a n d i n g  o f  damage processes i s  l i m i t e d  t o  t h a t  

caused by a tomic  d isp lacements  i n  t h e  l a t t i c e .  

The e t t e c t s  o f  he l i um p e r  se o r  s y n e r g i s t i c  

e f f e c t s  o f  he l i um on d isp lacement  damage a r e  

n o t  y e t  w e l l  understood. We b e l i e v e  t h a t  bas i c  

work l e a d i n g  t o  an unders tand ing o f  processes 

and mechanisms toge the r  w i t h  e m p i r i c a l  t e s t s  

t h a t  generate  eng inee r ing  da ta  w i l l  r e s u l t  i n  

an a l l o y  w i t h  p r o p e r t i e s  s u p e r i o r  t o  those o f  

t y p e  316 s t a i n l e s s  s t e e l .  

Even though t h e  optimum a u s t e n i t i c  s t a i n -  

l e s s  s t e e l  may have a d i f f e r e n t  compos i t i on  f rom 

p r e s e n t  connnercial a l l o y s ,  i t  should  be recog- 

n i z e d  t h a t  t h e  v a s t  exper ience w i t h  commercial 

a l l o y s  w i l l  s i m p l i f y  t he  commerc ia l i za t i on  o f  

t h e  new ones. Impor tant  problems such as im- 

p u r i t i e s  i n  raw m a t e r i a l s .  m e l t i n g  p r a c t i c e s ,  

f o r m i n g  processes, i n s p e c t i o n  techniques, and 

j o i n i n g  w i l l  be e a s i e r  t o  deal  w i t h  f o r  austen- 

i t i c  s t a i n l e s s  s t e e l s  and n i c k e l - b a s e  a l l o y s  

than  f o r  r e f r a c t o r y  meta ls .  

3. t. t. BIOO-W. Wi f fen,  P. 3. Maziasz, 

and J ,  0 .  S t i c g l c r ,  Nuc l .  Technol.  3 ( 1 ) ,  

11 5-1 22 (October  1976). 

4. J .  L. S c o t t  ( c o m p i l e r ) ,  Magnhc Fusion 

Enagq M a t u h h  Technoloqy Phoqh~m Anwd 

Phoghuh Repoht doh P d o d  Ending June 30, 

7 9 7 6 ,  ORNL-5189, pp. 5-8, Oak Ridge N a t i o n a l  

Labora to ry ,  Oak Ridge, Tennessee (September 

1976) .  

5.2.2 Nicke l -Base Al' loys 

These a i l o y s  have most o f  t h e  advantages. 

and d isadvantages o f  s t a i n l e s s  s t e e l s .  N i c k e l  

a l l o y  Inconel  718 has b e t t e r  f a t i g u e  r e s i s t a n c e  

than t h e  a u s t e n i t i c  s t a i n l e s s  s t e e l s ,  and a l l o y  

PE 16 has demonstrated e x c e l l e n t  r e s i s t a n c e  t o  

r a d i a t i o n - i n d u c e d  s w e l l i n g .  N i cke l  i s  r e l a -  

t i v e l y  s o l u b l e  i n  l i t h i u m  so t h a t  t h e  maximum 

o p e r a t i n g  temperature f o r  s t a t i c  capsules of  

n i cke l -base  a l l o y s  and l i t h i u m  i s  o n l y  300- 

4 0 0 O c . ~  The use o f  an i ron-base l i n e r  i n  

cu r l j unc t i on  w i t h  a n i cke l -base  s t r u c t u r e  was 

cons idered t o  be excess i ve l y  expensive and 

d i f f i c u l t .  Because n i c k e l  ' a l l o y s  a r e  n o t  

compat ib le  w i t h  1 i t h ium,  they were n o t  chosen 

as t h e  p r imary  s t r u c t u r a l  m a t e r i a l .  

5. J. 0 .  Cawles and A. D. Pasternak, Liffkium 

Phopehtiu Rdated t o  Uhe ad a Nudeah 

R u o t o h  Coolant, UCRL-50647, Lawrence 

L ivermore Labora to ry ,  Berke ley ,  C a l i f o r n l a  

( A p r i l  18, 1969).  

5.2.3 Niobium A l l o y s  

Niobium a l l o y s  were chosen f o r  severa l  

e a r l y  f u s i o n  r e a c t o r  des igns t o  e x p l o i t  t h e  

h i g h  thermodynamic e f f i c i e n c y  t o  be d e r i v e d  

through t h c i r  use (up t o  ~ O O O ~ C ) . ~  T h i s  bene- 

f i t  i s  n o t  un ique t o  f u s i o n  dev ices and c o u l d  

be e x p l o i t e d  by o t h e r  c e n t r a l  s t a t i o n  power 

systems. Counter ing t h e  p o t e n t i a l  advdtl layes 

o f  h i g h  thermodynamic e f f i c i e n c y  a r e  t h e  prob- 

lems assoc ia ted  w i t h  t h e  use o f  r e f r a c t o r y  

meta ls  - such as h i g h e r  costs ,  h i g h e r  reac-  

t i v i t y  w i t h  ~ i r ,  and g r e a t e r  d i f f i c111t .y  i n  

weld ing.  

A l though n iob ium a l l o y s  a r c  commercially 

available, they  a r e  n o t  a v a i l a b l c  i n  thc s i r e s  
needed f o r  comnerc ia l  f u s i o n  power. A l a r g e  

expansion i n  t h e  i n d u s t r i a l  c a p a b i l i t y  would 

have t o  be e f f e c t e d .  The assoc ia ted  i n v e s t -  

ment would be d i f f i c u l t  t o  j u s t i f y  w i t h o u t  an 

assured market.  

Last ,  b u t  n o t  l e a s t ,  t h e  development o f  

an i r r a d i a t e d  data  base f o r  n iob ium a l l o y s  

would be d i f f i c u l t  t o  accnmpl ish by t h e  e a r l y  

1990 's .  Even i f  one assumes t h a t  a D-Li source 



w i l l  be a v a i l a b l e  i n  1982183, t h e  t e s t  volume 

w i l l  be so l i m i t e d  t h a t  a l l o y  o p t i m i z a t i o n  

f o l l o w e d  by t h e  genera t i on  o f  t h e  data  base 

cannot be achieved. 

I n  s p i t e  o f  t h e i r  drawbacks, n iob ium 

a l l o y s ,  e s p e c i a l l y  Nb-1% Zr ,  have a  much be t -  

t e r  thermal shock r e s i s t a n c e  than a u s t e n i t i c  

s t a i n l e s s  s t e e l s .  Some t ype  o f  r e f r a c t o r y  

metal  shou ld  be c a r r i e d  as a  backup t o  t h e  

d u s t e n i t i c  s t a i n l e s s  s t e e l s .  I t i s  a l s o  

p o s s i b l e  t h a t  a  r e f r a c t o r y  meta l  may be r e -  

q u i r e d  i n  f u s i o n  r e a c t o r s  f o r  such. s p e c i a l  

a p p l i c a t i o n s  as l i m i t e r s ,  n e u t r a l  beam i n -  

j e c t o r  e lec t rodes ,  o r  d i v e r t o r  t a r g e t s .  

6. A. P. Fraas, Compahntive Study 06 Rhe Mokc 
Phomining Combinationn 06 Uanket M a i m ,  

Poweh Convmion S y h t m ,  and T h i t i w n  

Recovehy and Containment Syotemh doh Fubion 

react oh^, ORNL/TM-4999, Oak Ridge Na t iona l  

Laboratory ,  Oak Ridge, Tennessee (November 

1975). 

5.2.4 Vanadium A l l o y s  

Vanadium a l l o y s  were cons idered b r i e f l y  

as a  c ladd ing  m a t e r i a l  f o r  t h e  LMFBR b u t  were 

abandoned when i t  was found t h a t  they were n o t  

compat ib le  w i t h  sodium o f  react.nr p u r i t y .  

L i t h ium,  u n l i k e  sodium, w i l l  e x t r a c t  oxygen 

f rom vanadium; thus the  reasons f o r  t h e  

r e j e c t i o n  o f  vanadium a l l o y s  i n  t h e  LMFBR do n o t  

app ly .  For  f u s i o n  reac to rs ,  vanadium-base 

a l l o y s  a r e  p o t e n t i a l l y  a t t r a c t i v e  because o f  

( 1 )  reasonably good s t reng th ,  u s e f u l  t o  about 

8 0 0 ' ~  i n  t h e  absence o f  i r r a d i a t i o n ;  ( 2 )  low 

a c t i v a t i o n  r a t e  compared w i t h  n iob ium a l l o y s  o r  

s t a i n l e s s  s t e e l s  and thus g r e a t l y  reduced 

problems w i t h  r a d i o a c t i v e  waste management; and 

( 3 )  a  demonstrated r a d i a t i o n  r e s i s t a n c e  o f  

vanadium-t i tan ium a l l o y s  t o  displacement- 

produced s w e l l i n g  and embr i t t l emen t .  7 

I he major  drawback t o  vdlladiurn a l l o y s  i s  

t h a t  a t  t h i s  p o i n t  work on them i s  so l i m i t e d  

t h a t  t h e r e  a r e  n o t  enough data  even f o r  des ign 

o f  u n i r r a d i a t e d  s t r u c t u r e s .  I n  a d d i t i o n ,  very  

l i t t l e  i n f o r m a t i o n  can be found on f a b r i c a t i o n  

methods o r  t h e  s e n s i t i v i t y  o f  p r o p e r t i e s  t o  

f a b r i c a t i o n  v a r i a b l e s .  A t  present,  t h e r e  i s  no 

commercial vanadium a l l o y ;  an i n d u s t r y  would 

have t o  be c rea ted  b e f o r e  t h i s  c l a s s  o f  mater-  

i a l s  c o u l d  be used.8 Thus, t h e  s e l e c t i o n  o f  

vanadium a l l o y s  as t h e  p r imary  s t r u c t u r a l  

m a t e r i a l  would be i n c o n s i s t e n t  w i t h  t h e  guide- 

l i n e  o f  m i n i m i z i n g  t h e  number o f  f a c i l i t i e s  and 

new techno log ies  r e q u i r e d  f o r  commerc ia l i za t i on .  

A t  t h e  same t ime, however, exper imenta l  work 

l e a d i n g  t o  t h e i r  p o s s i b l e  s e l e c t i o n  as backup 

m a t e r i a l s  t o  a u s t e n i t i c  s t a i n l e s s  s t e e l s  

shou ld  be cont inued on these m a t e r i a l s .  

7. J. Ben t l ey  and F. W. Wif fen,  Nucl .  Technol. 

30(3) ,  376-384 (September 1976). 

8. Re6hactohy M W  Fabhication Technology ah 

Applied t o  Fudion Reactom - A S.tate-06-fie- 

aht Anh~hrnent, Find Repoht, BNWL-2053, 

Ba t te l l e -Nor thwes t ,  P a c i f i c  Northwest 

Laboratory ,  Richland, Washington (May 15, 

1975).  

5.2.5 Molybdenum A l l o y s  

Molybdenum a l l o y s  a r e  a t t r a c t i v e  f o r  f u s i o n  

dev ices because o f  t h e i r  e x c e l l e n t  h i g h  tempera- 

t u r e  s t r e n g t h  and good compa t ib i l  i t y  w i t h  he1 ium 

coo lan t  i n  comparison w i t h  most o t h e r  r e f r a c -  

t o r y  me ta l s .  These a l l o y s  a l so ,  however, have 

many se r ious  disadvantages such as h i g h  costs ,  

low d u c t i l i t y  a t  room temperature, and l a c k  o f  

w e l d a b i l i t y .  Because o f  these d i f f i c u l t i e s  

t h e y  were n o t  i d e n t i f i e d  as p r imary  cand idates 

f o r  t h e  s t r u c t u r a l  m a t e r i a l ,  a l t hough  they may 

be used f o r  c e r t a i n  components such as l i m i t e r s  

and beam dumps. 

5.2.6 Aluminum A l l o y s  

Fus ion r e a c t o r s  w i t h  r e l a t i v e l y  c o l d  

alumin~um f i r s t  w a l l s  o r  h i g h  temperature s i n -  

t e r e d  aluminum p roduc t  (SAP) s t r u c t u r e s  have 



been proposed, p r i m a r i l y  because o f  the  poten- 

t i a l  f o r  low neutron a c t i v a t i o n   blanket^.^" 
Because o f  the  many problems associated w i t h  

these approaches, such as low thermodynamic 

e f f i c i e n c y  w i t h  aluminum a l l o y s  and inheren t  

low d u c t i l i t y  w i t h  SAP, these approaches have 

been r e j e c t e d .  

9.e- n i c h l e r ,  and J. R. Powell, 

Trans. Am. Nucl.  Soc. 23, 32-33 (1976). 

5.2.7 Summary o f  Candidate A l l o y  Comparisons 

Table 5.2 summarizes the  r e l a t i v e  advan- 

tages and l i a b i l i t i e s  o f  severa l  candidate 

s t r u c t u r a l  m a t e r i a l s .  

On the  basis  o f  t h i s  q u a l i t a t i v e  compari- 

son, i t  i s  c l e a r  t h a t  a u s t e n i t i c  s t a i n l e s s  

s t e e l s  are the  most promising choices f o r  use 

i n  t h e  i g n i t i o n  demonstrat ion phase o f  com- 

merc ia l  f u s i o n  power development. The choice o f  

type 316 s t a i n l e s s  s tee l  as the reference 

s t r u c t u r a l  m a t e r i a l  from t h i s  broader c lass  

r e s t s  on ex rens ive  experience w i t h  i t  i n  

f i s s i o n  r e a c t o r  a p p l i c a t i o n s  and on i t s  i n d i -  

cated p o t e n t i a l  o f  meeting the  requirements. 

For subsequent phases, an a u s t e n i t i c  s t a i n l e s s  

s t e e l  would be p re fe rab le  i f  the  optimum a l l o y  

has acceptable p roper t ies .  A r e f r a c t o r y  metal 

should be c a r r i e d  as a backup u n t i l  h igh  f luence 

i r r a d i a t i o n  data on a u s t e n i t i c  s t e e l s  have been 

nht.ainrzd and evaluated. 

Because e x i s t i n g  i r r a d i a t i o n  data on type 

516 s t a i n l e s s  s t e e l  i n d i c a t e  t h a t  f o r  a  g iven 

f luence the  d u c t i l i t y  i s  h igher  a t  a  lower 

i r r a d i a t i o n  temperature, t h e  design temperature 

o t  4 ~ 0 %  was considered t o  be a conservat ive 

maximum near the  f i r s t  w a l l  .3 Likewise, the  

maximum s t ress  was a lso  kep t  as low as poss ib le  

t o  minimize the  p o t e n t i a l  f o r  f a t i g u e  f a i l u r e .  

Because a h igh  heat f l u x  may e x i s t  a t  the f i r s t  

w a l l ,  the w a l l  was kept as t h i n  as poss ib le  

and the  coo lan t  pressure s t r e s s  was kept  as 

low as poss ib le .  To minimize thermal-hydraul ic  

s t resses we emphasized the a p p l i c a t i o n  

o f  low pressure coolants. On t h i s  bas is  the 
reference coolant  i s  a  heat t r a n s f e r  s a l t  (53% 

KN03, 40% NaN02, 7% NO3); o ther  promising fused 

s a l t s  a re  i d e n t i f i e d  i n  Sect. 6, which discusses 

the coolant  choice i n  d e t a i l .  I f  fused s a l t s  

cannot be used as the  coolant ,  then thermal 

stresses associated w i t h  the use of s t a i n l e s s  

s tee ls  w i l l  have t o  be minimized through c l e v e r  

designs f o r  a  system i n  which the t o t a l  alpha 

energy i s  t ranspor ted through the f i r s t  w a l l .  

5.3 ESTIMATE OF WALL LIFETIME 

At  t h c  nominal neutronic  wa l l  l o a d i r ~ y  o f  
2  2-4 MW/m , the  neutron f l u x  a t  the f i r s t  wa l l  

2  i s  0.8-1.5 x  1015 neutrons/cm /sec, w i t h  

about 20% o f  the neutrons having energies near 

14 MeV. For type 316 s t a i n l e s s  s tee l ,  about 

23-46 displacements per atom (dpa) and 290- 

580 appm He w i l l  be produced per  year o f  opera- 

t i o n .  Data showing the s w e l l i n g  r a t e s  and 

t e n s i l e  p roper t ies  f o r  annealed and cold-worked 

type 316 s t a i n l e s s  s t e e l  i r r a d i a t e d  i n  the High 

F lux  Isotope Reactor (HFIR) a t  d i f f e r e n t  tem- 

peratures t o  about 60 dpa and 4000 appm He are 

shown i n  Figs. 5.1 and 5.2.3 This f luence i s  

equiva lent  t o  about 18-36 months o f  operat ion i n  

terms o f  displacement damage and 10-20 years o f  

operat ion i n  terms of hel ium product ion.  

For operat ing temperatures below about 

600°c, i r rad ia t ion -p roduced  swel l  i n g  t h a t  

r e s u l t s  from c a v i t y  format ion i s  r e l a t i v e l y  

temperature-independent., and cold-worked s t a i n -  

l e s s  steel swc113 at. n markeclly 11:lset. r a t e  than 

does solut ion-annealed m a t e r i a l .  This advantage 

w i l l  make the cold-worked s t ruc tu res  more able 

t o  operate i n  f l u x  gradients ,  where the r e l a -  

t i v e l y  low s w e l l i n g  r a t e s  w i l l  minimize the 

d i f f e r e n t i a l  swe l l i ng .  If the s w e l l i n g  i s  

c o n t r o l l e d  by displacement damage i n  i r r a d i a t e d  

cold-worked type 316 s t a i n l e s s  s tee l ,  a v a i l a b l e  

data can be ex t rapo la ted  t o  p r e d i c t  5% swe l l i ng  

a t  90 dpa f o r  i r r a d i a t i o n  a t  530Oc.~  There are 

a number o f  assumptions i n  t h i s  ex t rapo la t ion ,  

discussed i n  Ref. 3. I f  f u r t h e r  experimental 

work v e r i f i e s  t h i s  p red ic t ion ,  the  i n t e g r a l  wa l l  

Inading, se t  by a s w e l l i n g  l i m i t  o f  5%, w i l l  be 
2 about 8 MW-yrlm . I f  the  s w e l l i n g  i s  c o n t r o l l e d  



Table  5.2. I d e n t i f i c a t i o n  o f  advantages and l i a b i l i t i e s  
o f  t y p i c a l  p o s s i b l e  s t r u c t u r a l  a1 loysa 

w 
aJ 
C, 

m h .r C, 

w '7 

m -  L .r 
LC, 

v- u 
s 3 
x u  

In 
In- 

m m El - 
w  7 m 
C,w m4C 
8 %  b Z  
w 3  > m  

CL- O L  

316 s t a i n l e s s  s t e e l  ... . 
( c o l  d-worked) E ~ E  A ~ E G ~ G  A  M ~ G  A  G  A  

Mod i f i ed  316 s t a i n l e s s  . .-. 
s tee l ( co1d -worked )  G  E  A  E  G G  A  A  G  A  G A. 

Inconel  600 E E A  G G  E  M A  G @ q G  @ '  

- ~ b - l %  Z r  M G E  M E  G A A @ E @ M  

'A r e l a t i v e  rank ing  o f  t h i s  t ype  i s  based on incomp1et.e i n f o r m a t i o n  on most a l l o y s  and on a  

l a r g e  measure o f  s u b j e c t i v e  judgment. 

b ~ a t i o  o f  e l a s t i c  modulus x c o e f f i c i e n t  o f  thermal expansion/thermal c o n d u c t i v i t y .  

' ~ x c e l l  e n t  . 
d ~ c c e p t a b l e .  

e ~ o o d .  

6 ~ a r g i n a l .  

, g ~ . i n t e r e d  a1 uminum p roduc t .  

h ~ n a c c e p t a b l e .  

h o t  known. 

by t h e  he l i um con ten t  r a t h e r  than by dpa 

l e v e l , . t h e  p r e d i c t e d  s w e l l i n g  l i m i t  on w a l l  
2 3 1  i f e t i m e  exceeds 30 MW-yr/ll~ . 

The mechanical p r o p e r t i e s  o f  cold-worked 

m a t e r i a l  - y i e l d  s t reng th ,  u l t i m a t e  t e n s i l e  

s t reng th ,  and d u c t i l i t y  - w e r e  degraded as a  

r e s u l t  o f  i r r a d i a t i o n .  Below 550°c, . t h e  

y i e l d  s t r e n g t h  i s  h i g h e r  than t h a t  o f  an- 

nea led u n i r r a d i a t e d  m a t e r i a l ,  so designs 

based on t h e  y i e l d  p o i n t  o f  u n i r r a d i a t e d  

m a t e r i a l  shou ld  be conse rva t i ve .  The d u c t i l i t y  

decreases w i t h  i n c r e a s i n g  i r r a d i a t i o n  and t e s t  

t ~ m p e r a t u r e ,  f rom n e a r l y  4% a t  3 5 0 ' ~  t o  0% a t  

about 650'~.  

Cons ide ra t i on  o f  a  reasonable des ign r e -  

quirement o f  2% e l o n g a t i o n  and t h e  dependence 

o f  e l o n g a t i o n  on i r r a d i a t i o n  and t e s t  tempera- 

t u res ,  shown i n  F ig .  5.2, s e t  an upper tempera- 

t u r e  l i m i t  o t  ~ 4 6 0 %  f o r  d cold-workcd 316 

s t a i n l e s s  s t e e l  f i r s t  w a l l .  Fo r  t h e  lower  
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F ig .  5.1. Swel l ing o f  cold-worked and 
annealed type  316 s t a i n l e s s  s t e e l  i n  HFIR t o  
40-60 dpa and 3000-4330 appm He. 

temperatures o f  t h i s  design, the i r r a d i a t i o n  

cond i t i ons  o f  F ig .  2  show acceptable elonga- 

t i o n  a f t e r  i r r a d i a t i o n  t o  approximately 50 
2 

dpa (%4.4 MW-yr/m ) and a  he1 ium content  of 
2 approx imate ly  4000 appm (427 MW-yr/m ).  

P r e d i c t i o n  o f  a  d u c t i l  i t y - l i m i t e d  l i f e -  

t ime on the bas is  O F  a requ i red  2% minimum 

e longa t ion  t o  f a i l u r e  i s  d i f f i c u l t  w i t h  t h e  

s c d r c i  t y  o f  a v a i l a b l e  data. A very complete 

t ~ t  I:IT JdLd Itas bccn publ ished by r isl~ e l  

a1 .lo This  shows t h a t ,  f o r  solut ion-annealed 

type 304 s t a i n l e s s  s tee l  i r r a d i a t e d  and tes ted  

a t  370°c, the  e longat ion dropped w i t h  i n -  

creas inq f luence  t o  a f111pncc near 3 x 10 2  2  

2  neutrons/cm . However, the  d u c t i l i t y  d i d  n o t  

f u r t h e r  decrease when i r r a d i a t i o n  was con t in -  
2  

ued t o  f luences t~ 1.1 x 1 oz3 n ~ ~ ~ t r o n c / c m  . 

ORNL-DWG 73-128396 
o. --- YIELD STRESS 
a. -ULTIMATE TENSILE STRESS 
o- -TOTAL ELONGATION 

TEMPERATURE I C I  

F ig .  5.2. ' I 'ensi ls p roper t ies  o f  type 316 
stainless s tee l  a f ter .  i r r a d l a t l o n  i n  H F I R  t o  40- 
60 dpa and 3000-4300 applll He. Data a re  p l o t t e d  
a t  t e s t  temperatures; i r r a d i a t i o n  temperatures 
were s l i g h t l y  h igher  than t e s t  temperatures f o r  
each data po in t .  The open p o i n t s  are f o r  u n i r -  
rad ia ted  samples, and the closed po in ts  a re  f o r  
i r r a d i a t e d  samples. 

316 i r r a d i a t e d  t o  produce both h igh  l e v e l s  o f  

displaccment damage ~ I I J  o f  he l ium i s  given i n  

F ig .  5.3. The t r ~ n r l  c u r ' v w b :  a r e  drawn by onelogy 

t o  data o f  F i s h  e t  a l .  and cannot be supported 

s o l e l y  on the bas is  o f  the a v a i l a b l e  HFIR r e -  

s u l t s .  However, i f  these p r o j e c t i o n s  are sup- 

por ted by f u t u r e  experimental work, the ~ l o n g a -  

t i o n  o f  the f i r s t  w a l l  w i l l  remain above 2% f o r  

h igh  f luence reac to r  operat ion and w i l l  n o t  be 

1  i fe t ime-1  i m i t i n g .  

A s i m i l a r  t reatment  o f  data on cold-worked 
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F ig .  5.3. Fluence-dependence o f  t o t a l  e longat ion i n  HFIR-irradiated, cold-worked type 316 s t a i n -  
less  s t e e l .  Trend curves were drawn based on the data o f  F ish  e t  a1. l o  

I :  

Among o ther  p roper t ies  t h a t  may be af- 

fected by i r r a d i a t i o n  are the i r r a d i a t i o n  

creep r a t e  and f a t i g u e  l i f e t i m e  o f  s t ressed 

components. LMFBR program resu- l ts  on i r r a d i -  

a t i o n  creep o f  cold-worked type 316 s t a i n l e s s  

s tee l  suggest t h a t  a t  a design s t ress o f  

16,000 p s i ,  creep ra tes  on the order  o f  0.1% 

per year  may' be expected a t  the nominal neu- 

t r o n i c  w a l l  loading. ' '  Because i r r a d i a t i o n  

creep i s  approximately . l i n e a r l y  dependent on 

s t ress  and on ly  weakly temperature-dependent, 

l o c a l  dev iat ions from design nominal values 

of e i t h e r  s t ress  o r  temperature w i l l  have 

modest e f f e c t s  on the i r r a d i a t i o n  creep ra tes .  

Data on which t o  assess the f a t i g u e  response 

o f  the i r r a d i a t e d  s t r u c t u r e  do n o t  e x i s t .  The 
5 l i f e t i m e  f a t i g u e  load  o f  3 x 10 pulses i s  a 

demanding requirement and must be considered 

exper imenta l ly .  Cramer e t  a l .  have est imated 

the w a l l  l i f e t i m e  o f  UWMAK I based on creep, 

fa t igue ,  and crack-growth ra tes  i n  a d d i t i o n  t o  

swel l  i n g  and d u c t i  1 i t y  loss .  l2 (The maximum 

combined s t ress  f o r  the UWMAK I design was 

49,000 p s i ,  and the  maximum opera t ing  tempera- 

t u r e  was 558'~. ) These p o t e n t i a l  1 i m i t a t i o n s  

must be reevaluated a t  lower temperatures as the  

experimental data base on mate r ia l s  performance 

becomes avai lab1 e. 
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5.4 QUALIFICATION OF AUSTENITIC STAINLESS 
STEELS FOR COMMERCIAL FUSION POWER 

The design parameters o f  a  neu t ron ic  w a l l  

l oad ing  o f  2-4 blw/m2 a t  temperatures i n  the  

range o f  250-400'~ and the  des i red  design 
2  l i f e t i m e  o f  10-20 MW-yr/m form a  severe 

m a t e r i a l s  requirement. The data described 

above on 2UYb co'ld-worked 3'16 s t a i n l e s s  s t e e l  

(showing acceptable p roper t ies  a t  4 0 0 ' ~  o r  
2  lower  f o r  4-6 MW-yr/m o f  displacement damage 

2  and 20-30 MW-yr/m o f  hel ium) suggest t h a t  an 

a u s t e n i t i c  s t a i n l e s s  s tee l  t h a t  w i l l  be ade- 

quate f o r  use as t h e  s t r u c t u r a l  m a t e r i a l  can 

be developed. We t h i n k  t h a t  the opera t ing  

temperature can be increased by a l l o y  op t im i -  

z a t i o n .  However, t h e  present  h igher  tempera- 

t u r e  data a r e  so l i m i t e d  t h a t  t h i s  must be 

regarded o n l y  as a  speculat ion. 

Experimental work on a u s t e n i t i c  s t a i n l e s s  

s tee ls  i s  requ i red  i n  the  f o l l o w i n g  areas o f  

i n t e r e s t  as func t ions  o f  both composit ion and 

mic ros t ruc tu re .  

1 )  Swel l ing:  

a)  e s t a b l i s h  the basic k i n e t i c s  and 

mechanisms o f  swe l l i ng ,  

b )  con f i rm and extend the eva lua t ion  

o f  the dependence o f  s w e l l i n g  on 

i r r a d i a t i o n  temperature, 

c )  establ  i s h  the r e l a t i o n s h i p s  between 

dpa l e v e l  and hel ium content  on con- 

t r o l  1  i nq swel l  i nq , 
d)  e s t a b l i s h  the in f luence  o f  a l l o y  

m o d i f i c a t i o n  and f a b r i c a t e d  micro- 

s t r u c t u r e  i n  suppressing the swel l -  

i n g  o f  a l l oys ,  

e )  establ  i s h  the  f 1  uence-dependence o f  

swe l l i ng  under fus ion  r e a c t o r  i r r a -  

d i a t i o n  cond i t i on ing .  

2)  D u c t i l i t y  and s t reng th  p roper t ies :  

a )  con f i rm the dependence o f  d u c t i l i t y  

on i r r a d i a t i o n  and t e s t  temperature, 

b )  con f i rm the "sa tu ra t ion"  o f  d u c t i l -  

i t y  l oss  f o r  h igh  f luence i n - a d i a -  

t i ons ,  

c )  e s t a b l i s h  the  i n f l ~ r e n c e  of a l l o y  

m o d i f i c a t i o n  on p o s t i r r a d i a t i o n  

J u c t i  1  i t:y, 

d)  establish the r o l e  o f  displacement 

damage l e v e l  and hel ium content  on 

loss  , o f  d u c t i l i t y  a t  the lower tem- 

peratures o f  i n t e r e s t ,  

e )  evaluate the dependence o f  elonga- 

t i o n  oil s t r a i n  ra te ,  i n c l u d i n g  the  

d u c t i l i t y  under creep-rupture con- 

d i  t i o n s ,  

f )  e s t a b l i s h  t h e  loss  i n  s t r e r ~ y t t i  o f  

cold-worked mate r ia l s  on i r r a d i a -  

t i o n ,  both i n  reduced t e n s i l e  

s t reng th  and i n  reduced rup tu re  

l i f e .  

3) I r r a d i a t i o n  creep: 

a)  e s t a b l i s h  i r r a d i a t i o n  creep r a t e s  

under simulated f ~ r s i n n  reac to r  con- 

d i  t i o n s .  



4)  Cyc l i c  loading e f f e c t s :  

a)  evaluate p o s t i r r a d i a t i o n  f a t i g u e  

p roper t ies  o f  i r r a d i a t e d  s t a i n l e s s  

s tee l  , 
b)  e s t a b l i s h  crack growth r a t e s  i n  

i r r a d i a t e d  mate r ia l s .  

5) Weldment p roper t ies :  

a)  a l l  p roper t ies  l i s t e d  above mus t '  

be establ ished f o r  p r o t o t y p i c  

weld mate r ia l  and f o r  weld- 

a f f e c t e d  zones o f  the  reference 

mate r ia l .  

5.5 CONCLUSIONS 

An ana lys is  has been made o f  the candi- 

date s t r u c t u r a l  mate r ia l s  together  w i t h  design 

requirements f o r  a  se r ies  o f  f u s i o n  devices 

leading t o  commercial fus ion  power. Austen- 

i t i c  s t a i n l e s s  s t e e l s  appear t o  be compatible 

w i t h  a  design based on f i r s t  w a l l  operat ing 

temperatures i n  the range o f  400-500'~ w i t h  

l i t h i u m  as the t r i t i um-breed ing  mate r ia l  and 

a  molten s a l t  as the coolant .  The i r  des i red  

l i f e t i m e s  are p ro lec ted  t o  be i n  the range o f  
2  10-20 MW-yr/m . It must be emphasized t h a t  

data on i r r a d i a t e d  a u s t e n i t i c  s t a i n l e s s  s tee ls  

w i t h  both h igh  displacement l e v e l s  and h igh 

hel ium content  are very l i m i t e d .  An extens ive 

program o f  a1 l o y  development and i r r a d i a t i o n  

t e s t i n g  w i l l  be requ i red  i n  order  t o  f i n d  a  

usable a l l o y  and t o  demonstrate i t s  p e r f o r -  

mance c a p a b i l i t y .  

The s e l e c t i o n  o f  some type o f  a u s t e n i t i c  

s t a i n l e s s  s tee l  should minimize the number o f  

new technologies needed t o  achieve commercial 

fus ion  power. Although i t  i s  u n l i k e l y  t h a t  

the optimum a l l o y  w i l l  be one o f  the present 

commerical a l l o y s ,  the extens ive experience on 

o re  reduct ion, me l t ing  p rac t i ce ,  forming, 

j o i n i n g ,  and inspec t ion  can be app l ied  d i -  

r e c t l y  w i t h  t h i s  c lass o f  a l l o y s .  

Another impor tant  advantage o f  the use o f  

a u s t e n i t i c  s t a i n l e s s  s t e e l s  i s  t h a t  they m in i -  

mize developmental costs. An extensive data 

base i s  requ i red  f o r  i r r a d i a t i o n  e f f e c t s  on 

any s t r u c t u r a l  m a t e r i a l .  Because o f  the 

fo r tuna te  circumstance t h a t  hel ium i s  produced 

from n i c k e l  i n  a  thermal neutron environment, 

much o f  the data can be obta ined i n  e x i s t i n g  

f i s s i o n  reac to rs .  Thus, l a r g e  expenditures f o r  

t e s t  f a c i l i t i e s  a re  n o t  requi red.  It must be 

recognized, however, t h a t  the  r e s u l t s  o f  the 

f i s s i o n  reac to r  i r r a d i a t i o n s  must be v e r i f i e d  i n  

the actual  f u s i o n  reac to r  neutron spectrum. Th is  

v e r i f i c a t i o n  can be c a r r i e d  ou t  i n  one D-Li neu- 

t r o n  source. There i s  no t  s u f f i c i e n t  volume i n  

such a  source t o  develop a  complete data base 

f o r  one conventional a l l o y ,  b u t  r e l a t i v e l y  few 

samples would prov ide adequate v e r i f i c a t i o n .  I f  

a  nonnickel-bearing a l l o y  such as Nb-1% Zr  o r  

V-20% T i  should be requ i red  f o r  commerical f u -  

s ion  power, then expenditures o f  $500 m i l l i o n  o r  

more would be requ i red  j u s t  t o  prov ide the t e s t  

f a c i l i t i e s  - n o t  t o  mention the bpera t ing  and 

developmental costs.13 A t  the same time, i t  

would be d i f f i c u l t  t o  prov ide these f a c i l i t i e s  

i n  a  t ime per iod cons is ten t  w i t h  the  goal o f  

commercial f u s i o n  power by the end o f  t h i s  

century.  

Nickel-base a l l o y s  are incompat ib le  w i t h  

l i t h i u m  above 300°c, so they must be protected 

o r  another breeding m a t e r i a l  must be se lected i f  

they are used as f u s i o n  reac to r  s t r u c t u r a l  

mate r ia l s .  

With regard t o  r e f r a c t o r y  metals, we b e l i e v e  

t h a t  the development program requ i red  would be 

much more extensive than t h a t  associated w i t h  

a u s t e n i t i c  s t a i n l e s s  s tee ls .  I n  add i t i on ,  the  

costs  o f  p rov id ing  t e s t  f a c i l i t i e s  would be much 

greater .  On the o ther  hand, i t  must be recog- 

n ized t h a t  i t  i s  poss ib le  t h a t  no a u s t e n i t i c  

s t a i n l e s s  s tee l  w i l l  be adequate f o r  commercial 

f u s i o n  power. Consequently, we propose t h a t  

work be continued on r e f r a c t o r y  metals - espe- 

c i a l l y  niobium- and vanadium-base a l l o y s  - u n t i l  

we can be assured t h a t  they w i l l  n o t  be needed. 

I n  f a c t ,  even i f  these mate r ia l s  are n o t  requ i red  

as the s t r u c t u r a l  mate r ia l ,  they may be used i n  

specia l  components o r  app l i ca t ions ;  i n  t h a t  case 

more in fo rmat ion  on t h e i r  i r r a d i a t i o n  behavior 

would be requi red.  



13. J. R. Powell et al. (eds.), Phoceedingb 

06 .the M a g n e t i c  Fusion Enmgy Blank& and 

S k i d d  Wolrhohop: A T e c h n i c d  Anne6bmcnt, 

ERDA-76/117/1, CONF-760343, p.  13 

(August 1976). 



6. BLANKET COOLANT 

H. E. McCoy 

6.1 INTRODUCTION 

The b l a n k e t  c o o l a n t  f o r  commercial power 

a p p l i c a t i o n  must be s t a b l e  under h i g h  gamma 

and neut ron f l u x e s  a t  temperatures o f  %50u0c, 

must be compat ib le  w i t h  t h e  s t r ~ r c t u r a l  mate- 

r i a l s ,  and must be capable  o f  t r a n s f e r r i n g  t h e  

d e s i r e d  q u a n t i t i e s  o f  energy. It i s  a l s o  

d e s i r a b l e  t h a t  a  c o o l a n t  operates  a t  low pres- 

sure; has a  low power requ i rement  f o r  pumping, 

a  h i g h  b o i l i n g  p o i n t ,  and a  low m e l t i n g  p o i n t ;  

and be nonhazardous and low i n  cos t .  These 

requirements a r e  s t a t e d  r a t h e r  q u a l i t a t i v e l y  

and can take on va lues o n l y  when cons idered 

i n  l i g h t  o f  s p e c i f i c  b l a n k e t  designs (Sect.  4) 

and b l a n k e t  s t r u c t u r a l  m a t e r i a l s  (Sect.  5 ) .  
2 

For a  neu t ron  w a l l  l o a d i n g  o f  %3 MWIm , an 

a u s t e n i t i c  s t a i n l e s s  s t e e l  as t h e  s t r u c t u r a l  
4  m a t e r i a l ,  a  gamma f l u x  o f  10 Rlsec, and a  

neut ron f l u x  on t.he o r d e r  o f  1015 neut rons1 
2  cm I s e c ,  t he  c o o l a n t  must be compat ib le  w i t h  . 

a u s t e n i t i c  s t a i n l e s s  s t e e l  and t h e  hea t  

t r a n s f e r  c o e f f i c i e n t  o f  t h e  f l u i d  s i d e  shou ld  

be approx imate ly  1.14 x  l o 4  w/m2 K  (2000 B t u l h r  

f t 2 . 0 ~ ) .  . However, these c o o l a n t  requ i rements  

a r e  o v e r s i m p l i f i e d ,  and some a t t e n t i o n  must 

be g i ven  t o  t h e  va r ious  t r a d e - o f f s  between 

designs, s t r u c t u r a l  m a t e r i a l s ,  and coo lan ts .  

For  t h i s  reason, each f a c t o r  i s  d iscussed i n  

more d e t a i l  below. 

6.1.1 I r r a d i a t i o n  S t a b i l i t y  

I r r a d i a t i o n  s t a b i l i t y  o f  t h e  coo lan t  i s  

o f  concern because d i s s o c i a t i o n  can l ead  t o  

h i g h  pressures i n  t h e  c o o l a n t  c i r c u i t  (e.g., 

water  d i s s o c i a t i n g  t o  form H2 and 02 )  o r  can 

form undes i rab le  s o l  i d  products  (e.g. ,  o rgan ic  

coo lan ts  d i s s o c i a t i r ~ y  to  form t a r ) .  The 

d i s s o c i a t i o n  r e a c t i o n  r e q u i r e s  t h a t  t h e  e n t i r e  

b l a n k e t ' b e  designed t o  w i ths tand  h i g h  

pressure, and chemical  adjustments a r e  u s u a l l y  

r e q u i r e d  t o  m a i n t a i n  t h e  d e s i r e d  c o o l a n t  

composit ion. D i s s o c i a t i o n  which leads t o  

s o l i d  r e a c t i o n  products  i s  o f  concern because 

o f  f o u l i n g  and i t s  assoc ia ted  d e t r i m e n t a l  e f -  

f e c t s  on hea t  t r a n s f e r  and a b i l i t y  t o  pump t h e  

coo lan t ,  One f u r t h e r  aspect  o f  n e u t r o n i c  per -  

formance i s  t h a t  t h e  c o o l a n t  must n o t  s i g n i f i -  

c a n t l y  degrade t h e  neu t ron  f l u x  e i t h e r  by  sca t -  

t e r i n g  o r  by p a r a s i t i c  abso rp t i on ,  s i n c e  t h i s  

would reduce t h e  a b i l i t y  o f  t h e  system t o  pro-  

duce t r i t i u m .  

6.1.2 C o o l a n t / ~ t r u c t u r a l  M a t e r i a l  C o m p a t i b i l i t y  

C o m p a t i b i l i t y  between t h e  c o o l a n t  and t h e  

s t r u c t u r a l  m a t e r i a l  i s  necessary t o  m a i n t a i n  . . 
system i n t e g r i t y .  One c o m p l i c a t i n g  f a c t o r  i s  

t h e  e f f e c t  o f  s t r o n g  magnet ic f i e l d s  on co r ro -  

s ion .  S tud ies  have shown t h a t  magnet ic f i e l d s  

i n f l u e n c e  bo th  t r a n s p o r t - c o n t r o l l e d  and 

a c t i v a t i o n - c o n t r o l l e d  reac t i ons . '  F u r t h e r  work 

w i l l  be needed t o  d e f i n e  t h e  magnitudes o f  t hese  

e f fec ts  f o r  each c o o l a n t / s t r u c t u r a l  metal  com- 

b i n a t i o n .  Another area o f  concern i s  t h e  con- 

sequences o f  m i x i n g  o f  t h e  c o o l a n t  w i t h  l i t h i u m ,  

an event  which c o u l d  occur  i f  t h e  'coo lant  tubes 

f a i l e d .  These f a c t o r s  a r e  d iscussed i n  g r e a t e r  

d e t a i l  i n  Sect.  6.2. 

1.  E .  J .  K e l l y ,  "Magnetic F i e l d  E f f e c t s  on 

E lec t rochemica l  React ions Occu r r i ng  a t  

MetalIFlowing-Electrolyte I n te r faces , "  t o  

be pub l i shed  i n  J. Electrochem. Soc. 

6.1.3 Heat T rans fe r  P r o p e r t i e s  

The a b i l i t y  o f  t h e  c o o l a n t  t o  t r a n s f e r  

hea t  i s  an obvious requ i rement ,  s i n c e  t h i s  i s  

t h e  means by which t h e  thermal ener.yy i s  used 

t o  produce e l e c t r i c i t y .  Therefore ,  t h e  c o o l a n t  

must have a  h i g h  thermal c o n d u c t i v i t y  and o t h e r  

a t t r a c t i v e  phys i ca l  p r o p e r t i e s  which a l l o w  

maintenance o f  a  h i g h  hea t  t r a n s f e r  c o e f f i c i e n t  

nn t h e  f l u i d  s ide .  The f l u i d ' s  phys i ca l  prop-  



e r t i e s  must n o t  c rea te  a requirement f o r  unrea- 

sonable amounts o f  power f o r  c i r c u l a t i o n .  

6.1.4 Operat ion a t  Low Pressure 

I t  i s  most impor tant  t h a t  the  coo lan t  

c i r c u i t  be ab le  t o  operate a t  low pressures. 

The e n t i r e  coo lan t  c i r c u i t ,  and p a r t i c u l a r l y  

t h e  f i r s t  w a l l ,  w i l l  operate under r a t h e r  

severe cond i t i ons .  l'he f i r s t  w a l l  w i l l  r e -  

ce ive  in tense  pulses o f  thermal energy and 

p a r t i c l e  i r r a d i a t i o n ,  which lead  t o  c y c l i c  

thermal s t resses i n  the presence o f  i r r a d i a -  

t i o n ;  the  magnitude o f  the  thermal s t resses 

may be reduced by a reduc t ion  o f  t h e  t h i c k -  

ness o f  s t r u c t u r a l  members making up the  

f i r s t  w a l l .  However, use o f  a  h igh  pressure 

coo lan t  would r e q u i r e  t h a t  members be t h i c k  

t o  con ta in  the  h igh  pressure.coolant .  Thus, 

the re  i s  a  c o n f l i c t  between the  need f o r  

t h i n  s t r u c t u r a l  members t o  minimize thermal 

s t resses  and the  need f o r  t h i c k  s t r u c t u r a l  

members t o  accommodate h igh  hydrau l i c  stresses. 

The design s i m p l i c i t y  and f i r s t  w a l l  i n t e g r i t y  

a r e  improved markedly by the  use o f  a  low 

pressure coolant .  

6.2 CANDIDATE FLLlIDS 

Several s p e c i f i c  f l u i d s  a re  discussed 

and t h e i r  r o l e s  as prospect ive coolants  f o r  

commercial f u s i o n  a p p l i c a t i o n  a r e  assessed. 

6.2.1 Helium 

On t h e  basis  o f  general r a d i a t i o n  and 

thermal s t a b i l i t y .  ease o f  handl ing, and 

absence o f  hazardous condi t ions,  the re  i s  

much t o  recommend the  use o f  a  gas as coolant .  

There i s  considerable enqi neer i  nq experience 

w i t h  hel ium-cooled systems. 2-4 

Helium i n  i t s  pure form i s  i n e r t  and thus 

has e x c e l l e n t  c o m p a t i b i l i t y  w i t h  a1 1 prospect ive 

s t r u c t u r a l  mate r ia l s .  However, i t  i s  d i f f i c u l t  

t o  ma in ta in  the  p u r i t y  o f  he l ium i n  a pumped 

p ressur i zed  system. Small amounts o f  oxygen, 

n i t rogen,  water, carbon monoxide and d iox ide,  

and methane would probably be present due t.n 

some a i r  l eak ing  i n  and making contact  w i t h  

l u b r i c a t e d  seals, and hydrogen and t r i t i u m  

would be present due t o  permeation through the  

inner  w a l l .  Thus, the  grade o f  hel ium a c t u a l l y  

used would have some l e v e l  o f  i m p u r i t i e s  which 

would no t  pose a problem f o r  i r o n -  o r  n i c k e l -  

base a l l o y s  b u t  would probably be r c a c t i v e  w i t h  

metals such as niobium, t i tan ium, and vanadium. 

A t  400 '~  the ex ten t  and consequences o f  the  r e -  

a c t i o n  o r  edcll r w c t  ive metal w i t h  impure 

he1 ium muEt be considcrcd i n  d c t o i l  . 5  Oxygen 

contaminat ion o f  niobium has a lso  been shown t o  

have detr imenta l  e f f e c t s  on the  cor ros ion  o f  

niobium by l i t h i u m .  6 

I n  order  t o  make hel ium a t t r a c t i v e  as a 

heat t r a n s f e r  medium, i t  i s  necessary t o  oper- 

a t e  the  system a t  h igh  pressures , 3  t y p i c a l l y  

above 1000 p s i .  Th is  w i l l  r e q u i r e  t h a t  2-3% o f  

the thermal energy be used f o r  pumping power 

and w i l l  complicate the design by r e q u i r i n g  

t h a t  the  coolant  c i r c u i t  operate a t  h igh  pres- 

sures. 

Helium i s  gaseous nver  the e n t i r e  se rv ice  

temperature; therefore.  i t s  use would g r e a t l y  

simp1 i f y  s ta r t -up .  I t  i s  quest ionable whether 

111 i s  fea tu re  i s  worth the added pumping power 

and thp  cnrnpl izat ion o f  a  h igh pressuro sys- 

tem associated w i t h  the  use of helium. 

2. S t u a r t  McLain,"Commerical Power Reactors 

Cooled With Gas o r  L i g h t  Water," p. 1  i n  

Reactoa Techno.togy, ed. by Leonard E. L ink,  

USAEC D i v i s i o n  o f  Technical In fo rmat ion  

Extension, Oak Ridge, Tennessee, 1964. 

3 .  Samuel Glasstone and Alexander Se<nn$k~,  

Nucleah Reactoh E n g i n e h n g ,  p. 407, Van 

Nostrand Reinhold Co., New York, 1967. 

4. P.'C. Davidge e t  a l . ,  "Gas Coolants", p. 979 

i n  Reactoh Handbook, Vot .  I :  MatetLiaeb, ed. 

by C.  R. Tipton, J r . ,  In tersc ience,  New 

York, 1960. 



5. J .  E. S e l l e ,  The E66ec.Z~ 0 6  H e l i u m  Imp&- 

.tiu on Supehaeeoyn, t o  be pub l i shed  as an 

ORNL/TM. 

6. R. L.  Klueh,"Penetrat ion o f  Re f rac to ry  Met- 

a l s  by  A l k a l i  Metals,"  p .  177 i n  Como~i.on 

by L i q u i d  Me&&, ed. by J .  E. D ra ley  and 

J .  R. Weeks, Plenum Press, New York, 1970. 

Water can be used as a  coo lan t  a t  e leva ted  

temperatures i f  i t  i s  p ressu r i zed  so t h a t  i t  

remains a  l i q u i d .  A t  2 0 0 ' ~  t h e  minimum pres-  

sure  r e q u i r e d  t o  m a i n t a i n  water  as l i q u i d  i s  

225 ps ia ;  a t  3 0 0 ' ~  t h e  pressure i s  1246 ps ia ;  

and a t  t h e  c r i t i c a l  temperature o f  3 7 4 ' ~  t h e  

pressure i s  3206 ps ia .  Thus, t h e  pressure 

increases s h a r p l y  w i t h  i n c r e a s i n g  temperature. 

De te rm ina t i on  o f  t h e  optimum o p e r a t i n g  tem- 

pe ra tu re  us ing  water  as a  coo lan t  would i n -  

vo l ve  an e v a l u a t i o n  o f  t h e  t r a d e - o f f s  between 

system pressure and coo lan t  temperature. The 

pumping power r e q u i r e d  f o r  water  i s  q u i t e  

acceptable,  and t h e  exper ience o f  t h e  e n t i r e  

Pressur ized Water Reactor (PWR) i n d u s t r y  i s  

r e l e v a n t  t o  t h e  use o f  p ressu r i zed  water  as 

a  coo lan t .  2 '7 '8 

Water i s  n o t  ve ry  aggress ive toward most 

s t r u c t u r a l  metals,  b u t  i t  i s  g e n e r a l l y  used 

w i t h  a  number o f  i m p u r i t i e s  p resen t  i n  quan- 

t i t i e s  measured i n  p a r t s  per  m i l l i o n  o r  p a r t s  

p e r  b i l l i o n .  These i m p u r i t i e s  a r e  combated 

w i t h  a  number of  a d d i t i v e s  used t o  remove the  

i m p u r i t i e s  o r  t o  a d j u s t  t he  o x i d a t i o n  poten- 

t i a l  (pH) o f  t h e  f l u i d .  A l though t h i s  tech-  

no logy i s  v e r y  spec ia l i zed ,  t h e  exper ience 

w i t h  PWR's and w i t h  steam c y c l e  power p l a n t s  

has produced a  wea l th  o f  o p e r a t i n g  experience, 

and t h e  c o r r o s i o n  problem i s  manageable w i t h  

most s t r u c t u r a l  m a t e r i a l s  (such as i r o n ,  

n i c k e l ,  and copper),  b u t  n o t  w i t h  r e a c t i v e  

meta ls  (such as n iob ium).  

When wa te r  and l i t h i u m  a r e  mixed, a  

number o f  r e a c t i o n s  can occur .9  These i nc lude :  

gH20 + L i  -+ & L i 2 0  + +LiH  AH^^^ = -30.3 k c a l  

H20 + L i  -+ LiOH + 4H2  AH^^^ = -57.5 k c a l  

$H20 + L i  -+ 4L i20  + 4H2  AH^^^ = -43.1 k c a l .  

When water  i s  t h e  excess phase, water  r e a c t s  

v i g o r o u s l y  w i t h  l i t h i u m  t o  form l i t h i u m  ox ide  

and hydrogen. 8y10  I f  l i t h i u m  i s  t h e  excess 

phase, t h e  products  w i l l  be l i t h i u m  o x i d e  and 

l i t h i u m  hyd r ide .  Under r e a l  o p e r a t i n g  cond i -  

t i o n s ,  t h e  water  c o o l a n t  would be leaked i n t o  

t h e  l i t h i u m .  T h i s  would p robab ly  r e s u l t  i n  t h e  

fo rma t ion  o f  c o r r o s i v e  l i t h i u m  o x i d e  and l i t h i u m  

h y d r i d e  w i t h  l o c a l i z e d  hea t i ng  due t o  t h e  exo- 

thermic  na tu re  o f  t h e  r e a c t i o n s .  Cont inued 

l e a k i n g  cou ld  l e a d  t o  s u f f i c i e n t  water  f o r  hy- 

drogen t o  be re leased.  Thus, des ign and 

o p e r a t i n g  procedures must t ake  i n t o  account t h e  

water-1 i t h i u m  m i x i n g  problem. . 
Water can be ma in ta ined  as a  l i q u i d  over  

t he  proposed s e r v i c e  temperature range, so 

s t a r t - u p  cou ld  be accomplished e a s i l y .  However, 

i t  i s  d o u b t f u l  t h a t  t h i s  f e a t u r e  compensates 

f o r  t h e  o t h e r  shortcomings o f  water  as a  c o o l -  

a n t  f o r  f u s i o n  systems. 

7. Samuel Glasstone and Alexander Sesonske, 

N u d m  Reactoh Engineehing , p . 401 , Van 

Nostrand Reinho ld  Co., New York, 1967. 

8. L. P. Bupp,"Maintenance o f  Coolants," p. 307 

i n  Reactoh Handbook, VoL.  7V:  Engineehing, 

ed. by  S t u a r t  McLain and John H. Martens, 

2nd ed., I n te rsc ience ,  New York, 1964. 

9. J .  Brynestad (Oak Ridge Na t iona l  Labora- 

t o r y ) ,  p r i v a t e  communication. 

10. Samuel, Glasstone and Alexander Sesonske, 

N u d m  Reactoh ~ngineehing, p. 405, Van 

Nostrand Reinho ld  Co., New York, 1967. 

6.2.3 L i q u i d  Me ta l s  

The l i q u i d  me ta l s  o f  p o t e n t i a l  use i n  

f u s i o n  systems a r e  l i t h i u m ,  sodium, and potas- 

sium, w i t h  m e l t i n g  temperatures o f  17g°C, 98'~,  

and 64OC, r e s p e c t i v e l y .  l1 These elements have 



r e l a t i v e l y  h igh  b o i l i n g  temperatures o f  

131 ~ O C ,  883'c, and 760'~. l1 The wide temper- 

a t u r e  range over which these elements a re  li- 

q u i d  and t h e i r  h i g h  thermal c o n d u c t i v i t y  make 

them p a r t i c u l a r l y  a t t r a c t i v e  as p o t e n t i a l  

coo lan ts .  I f  t h e  l i q u i d  metals a re  f r e e  o f  

oxygen, they a re  compatible i n  f l o w i n g  sys- 

tems up t o  6 0 0 ' ~  w i t h  t h e  a u s t e n i t i c  s t a i n l e s s  

s t e e l s  and o t h e r  i ron-base a l l o y s ,  and may be 

acceptably  compatible up t o  a400°c w i t h  

n ickel -base a l loys . ' '  They a re  compatible 

w i t h  niobium as long as they a r e  kept  rea-  

sonably pure; they are t o t a l l y  incompat ib le  

w i t h  aluminum and copper. 11 

These elements have been w ide ly  used as 

heat  t r a n s f e r  f l u i d s  i n  nonfus ion devices 

w i t h  very favorab le  r e s u l t s .  However. t h e  

f u s i o n  a p p l i c a t i o n  subjects  the f l u i d  t o  

s t rong  magnetic f i e l d s ,  and the  h igh  e l e c t r i -  

c a l  c o n d u c t i v i t y  o f  l i t h i u m ,  sodium, and 

potassium causes strong forces which oppose 

f low i n  any d i r e c t i o n  n o t  p a r a l l e l  w i t h  the  

magnetic f i e l d . 1 2 y 1 3  Th is  would r e q u i r e  

t h a t  t h e  f l u i d  be pumped a t  pressures i n  ex- 

cess of the  magnetic forces, b u t  t h i s  i s  

viewed as r e q u i r i n g  such h igh  pressures t h a t  

i t  i s  i m p r a c t i c a l .  Several methods have been 

proposed f o r  reducing t h e  magnitude o f  t h i s  

e f f e c t ,  and these proposals need t o  be i b -  

v e s t i  gated f u r t h e r  because o f  t h e  a t t r a c t i v e -  

ness o f  hav ing a common coo lan t  and breeding 

m a t e r i a l .  The s t rong  magnetic forces a l s o  

present  a  problem w i th  respect  t o  heat t rans -  

f e r .  Atomic m o b i l i t y  w i t h  the f l u i d s  i s  r e -  

duced so t h a t  heat  t r a n s f e r  must be l a r g e l y  

by conduct ion r a t h e r  than by convect ion. 

This  e f f e c t  w i l l  l i m i t  t h e  a b i l i t y  t o  t r a n s -  

f c r  hca t  by thcsc mctals, 

11. R. N. Lyon, "L iqu id  Metals," p. 994 i n  

R e a d o h  Handbook, VoL. 1 : Matehi&, 
ed. by C. R. T ip ton,  J r . ,  In te rsc ience ,  

New York, 1960. 

12. George H. Mi ley,  F u i o n  Enetlgy C o n u r n i o n ,  

p. 251, American Nuclear Society, Hinsdale, 

I l l i n o i s ,  1976. 

13. W .  R. Grimes and S. Cantor, "Molten Salts.  

as Blanket F lu ids  i n  Con t ro l led  Fusion 

Reactors," p. 161 i n  Thc C h d f . t g  06 Fu- 

b i o n  Technology,  ed. by D i e t e r  M. Gruen, 

Plenum Press, New York, 1973. 

6.2.4 L i t h i u m  and Bery l l i um F luor ide  Sa l t s  

Molten f l u o r i d e  s a l t s  o f  the LiF-BeF2 sys- 

tcm have hccn st.~lrlicrl ~ x t e n s i v ~ l y :  3'12-1 

There i s  an e u t e c t i c  composi t ion 'o f  about equal 

molar r a t i o s  o f  L i F  and BeF2 which has a me l t -  

i n g  p o i n t  o f  364'~. Although t h i s  s a l t  has 

the lowest me l t ing  p o i n t  i n  the system, i t  has 

a h igh  v i s c o s i t y .  S a l t  o f  the  composit ion o f  

LiF-34 mole % BeF2 has more a t t r a c t i v e  proper- 

t i e s ,  except f o r  i t s  r e l a t i v e l y  h igh  me l t ing  

temperature o f  459'~. This  s a l t  i s  compatible 

w i t h  n i c k e l -  and iron-base a l l o y s  and molybde- 

num, b u t  i s  probably n o t  compatible w i t h  alumi- 

num, t i t an ium,  and niobium. 16-18 Thus, 

molybdenum i s  probably the  on ly  s t r u c t u r a l  

111aterial t h a t  could be used f o r  a h igh  temper- 

a t u r c  system coolcd w i t h  LiF-BcF2 due t o  the 

tempel-a'Lur.e 1 ' i 1 1 1 i  LdL iur15 i l~~pused u r ~  Irurl- and 

11i~ke1-bahe d l  l uys  by I r ' r 'adlat lur~ enlbr i t t lement. 

In te rmix ing  w l t h  l l t h i u m  would r e s u l t  i n  

the  reac t ion  

LF2BeF4 + 2Li + 4L1F + Be -39.7 kcd l .  

Th is  would p r e c l p l t a t e  b e r y l l i u m  metal and i n -  

crease the  me l t ing  temperature o f  the coolant .  

In te rmix ing  would r e s u l t  i n  a  cleanup problem 

should leakage occur, b u t  would n o t  pose a 

safety nroblem. 

Two main f a c t o r s  p lace l i m i t s  on use o f  

t h i s  f l u i d  as a coolant .  F i r s t ,  the  h igh  

me l t ing  temperature would r e q u i r e  an operat ing 

temperature o f  600°c, we l l  i n  excess o f  t h a t  

al lowed f o r  i r o n -  and nickel-base s t r u c t u r a l  

mate r ia l s  on.the bas is  o f  i r r a d i a t i o n  damage. 

Second, the supply o f  b e r y l l i u m  i s  l i m i t e d ,  

and i t  i s  quest ionable whether s u f f i c i e n t  



q u a n t i t i e s  e x i s t  t o  suppo r t  a v i a b l e  f u s i o n  

i n d u s t r y .  Fo r  these reasons i t  i s  f e l t  t h a t  

s a l t s  o f  t h e  LiF-BeF2 system w i l l  n o t  f i n d  

widespread use i n  f u s i o n  r e a c t o r  a p p l i c a t i o n s .  

14. W. R. Grimes and D. R. Cuneo, "Mol ten 

S a l t s  as Reactor  Fuels,"  p .  425 ' i n  

Reactoh Handbook, Vo l .  7: Mat-,  

ed. by  C. R. T ip ton ,  J r . ,  I n t e r s c i e n c e ,  

New York, 1960. 

15. S. Cantor and W. R. Grimes, "Fused-Sa l t  

Co r ros ion  and I t s  Con t ro l  i n  Fus ion Re- 

ac tors , "  Nucl  . Techno1 . g, 120 (1974).  

16. H. E. McCoy, "The INOR-8 Story,"  ORNL 

Review 3 ( 2 ) ,  35 (1969).  

17. J .  R .  Ke i se r  and E. J .  Laurence. " S a l t  

Co r ros ion  Studies,"  p. 75 i n  MoLten-Saet 

Reacton P n o g m  S W n n d  Phoghan 

Repoht doh Pehiod Ending Febhuahy 29 ,  

1976,  ORNL-5132, Oak Ridge N a t i o n a l  

Labora tory ,  Oak Ridge, Tennessee 

(August 1976).  

18. J. H. DeVan, Eddect od M o y i n g   addition^ 

on Cornonion Behavhh  o 6 Nick&-Molybde- 

nwn M o y b  i n  F a c d  F luohids U i x X u h ~ ,  

ORNLITM-2021, Oak Ridge N a t i o n a l  

Labora tory ,  Oak' Ridge, Tennessee (1969).  

6.2.5 Sod ium-Po tass ium-N i t ra te -N i t r i t e  
M i x t u r e s  

Several  s a l t s  composed o f  v a r i o u s  po r -  

t i o n s  o f  sodium and potassium n - i t r a t e s  and 

n i t r i t e s  a r e  used i n d u s t r i a l l y  as hea t  t r a n s -  

f e r  One o f  t h e  most popu la r  i s  

a commercial s a l t  pa ten ted  by  Du Pont and 

trademarked HITEC, wh ich  c o n t a i n s  53% potas-  

s ium n i t r a t e ,  40% sodium n i t r i t e ,  and 7% 

sodium n i t r a t e .  The l i q u i d u s  o f  t h i s  s a l t  i s  

1 4 3 ' ~  and t h e  r a t e  o f  thermal decompos i t ion  

becomes excess ive  above 538'~.  A l though t h e  

s a l t  has been used as a hea t  t r a n s f e r  medium 

f o r  ove r  30 years ,  d e t a i l e d  c o r r o s i o n  data  

a r e  n o t  a v a i l a b l e .  The f l u i d  has been s u i t -  

a b l y  con ta ined  i n  seve ra l  i r o n -  and n i c k e l -  

base a l l o y s  w i t h  nominal  c o r r o s i o n  r a t e s  o f  

-4.8 x mm/sec ( 1  m i l l y r ) ,  b u t  does n o t  

appear t o  be compa t i b l e  w i t h  copper.  S ince 

t h e  s a l t  i s  o x i d i z i n g ,  i t  i s  q u i t e  u n l i k e l y '  

t h a t  i t  w i l l  be compa t i b l e  w i t h  r e a c t i v e  me ta l s  

such as n iob ium and t i t a n i u m .  The hea t  t r a n s -  

f e r  p r o p e r t i e s ,  p h y s i c a l  p r o p e r t i e s ,  and 

pumping power requ i rements  f o r  t h e  s a l t  a r e  

e x c e l l e n t .  The s a l t  i s  cheap and r e a d i l y  

a v a i l a b l e  and does n o t  c o n t a i n  any m a t e r i a l s  

hav ing  l i m i t e d  a v a i l a b i l i t y .  

The p o t e n t i a l  problems w i t h  t h e  s a l t  i n -  

c l u d e  a c c e l e r a t e d  d i s s o c i a t i o n  under i r r a d i a -  

t i o n  and r e a c t i o n  w i t h  l i t h i u m  upon i n t e r m i x i n g .  

The r e a c t i o n  wh ich occurs  by thermal  decomposi- 

t i o n  i s  

5NaN02 + 3NaN03 + Na20 + N2. 

T h i s  r e a c t i o n  r e s u l t s  i n  a p a r t i a l  p ressu re  o f  

N2 which i nc reases  w i t h  i n c r e a s i n g  temperature.  
9 Brynestad proposes t h a t  a d d i t i o n a l  decomposi- 

t i o n  p roduc ts  w i l l  i n c l u d e  Na202 and K202, 

wh ich  a r e  b o t h  v e r y  c o r r o s i v e .  Unless i r r a -  

d i a t i o n  g r e a t l y  a c c e l e r a t e s  t h e  decomposi t ion,  

t h e  p ressu re  o f  n i t r o g e n  o v e r  t h e  s a l t  system 

shou ld  n o t  be excess ive .  

When l i t h i u m  and HITEC a r e  mixed, v i g o r -  

ous r e a c t i o n s  a r e  expected i n  wh ich  b o t h  

n i t r a t e  and n i t r i t e  w i l l  be decomposed t o  N2 

and e i t h e r  oxygen o r  l i t h i u m  oxide: 21 

L i  + NaN03 + +.Li20 + L,Na20 + L,N2 + O2 

"700 K = -20 k c a l  

SLI + NaNU3 + Zt-,Li20 + %Na20 + +N2 

A H 7 0 ~  K = -300 k c a l .  

The f i r s t  r e a c t i o n  would l i k e l y  occu r  w i t h  

small '  q u a n t i t i e s  o f  L i ,  and t h e  second r e a c t i o n  

would occu r  w i t h  an excess o f  L i .  . T h e  q u a n t i t y  

o f  energy r e l e a s e d  i s  reasonab ly  h igh,  b u t  

measurements o f  t h e  r a t e  o f  r e a c t i o n  a r e  

needed t o  assess t h e  e x t e n t  o f  t h e  problem. 

The o n l y  known da ta  on t h e  i r r a d i a t i o n  

s t a b i l i t y  o f  HITEC were r e p o r t e d  by Hoffman 2 2 

on t h e  obse rva t i ons  made by 0 .  Sisman a t  ORNL , 
on t h e  s t a b i l i t y  o f  t h r e e  specimens o f  HITEC. 

The samples r e c e i v e d  a thermal  dose o f  3.3 x 

10'' neutrons/cm2 and an ep i ther rna l  dose of  



somewhat l e s s  than h a l f  t h e  thermal dose. 

Examination o f  the  i r r a d i a t e d  samples i n d i c a t -  

ed t h a t  the  s a l t  was rendered more hygroscopic 

by r a d i a t i o n  and t h a t  i t  a l s o  underwent 

some breakdown, y i e l d i n g ,  i n  p a r t ,  gaseous 

decomposit ion products. Since the  tempera- 

t u r e  o f  the  i r r a d i a t i o n  was n o t  given, i t  i s  

very d i f f i c u l t  t o  i n t e r p r e t  the r e s u l t s ,  and 

a more d e f i n i t i v e  experiment i s  c l e a r l y  

needed. 

HITEC i s  a s t rong ox idan t  and can 

probably  detonate under c e r t a i n  cond i t i ons .  

n r ? i t 1 = 1 ~ ~  ha5 st.trdir?d thc  combustion of 

sodium n i t r a t e  under a v a r i e t y  o f  cond i t i ons  

and made severa l  impor tant  observat ions. 

1  ) Energe t i ca l l y ,  sodium n i t r a t e  i s  

capable o f  exo thermica l l y  o x i d i z i n g  

almost any organic  mate r ia l ,  b u t  

r a t e - c o n t r o l  1 i n g  va r iab les  1 i m i t  

the p o s s i b i l i t y  o f  a  se l f -suppor ted 

exothermic reac t ion .  

2) Sodium n i t r a t e  was s t a b l e  below 

380 '~  and d i d  n o t  support combustion. 

The compound b o i l s  a t  380 '~  and 

some o f  the deconiposi t i o n  products 

(NaO, 0, 02, NO, NO2, o r  NO3) par-  

t i c i p a t e  i n  the ox ida t ion .  

3) Mois ture concentrat ions abovc 22% 

prevented combustion i n  a l l  mixtures. 

4 )  I n  mixtures o f  sodium n i t r a t e  and 

charcoal,  combustion d i d  n o t  occur 

i n  the presence o f  ,35% o r  <36% 

sodium n i t r a t e ,  

5) Sodium n i t r a t e  cannot decompose 

exothermical ly  by I t s e l f  a t  any 

temperature. Any exothermic reac- 

t i o n  w i t h  sodium n i t r a t e  must be 

supported by d f u e l .  

HITEC conta ins on ly  7% sodium n i t r a t e ,  

b u t  conta ins 53% potassium n i t r a t e ,  the 

chemical c h a r a c t e r i s t i c s  o f  which a r e  s i m i l a r  

t o  thosc o f  sodium n i t r a t e .  [The sodium 

n i t r i t e  (40%) would be l e s s  o x i d i z i n g . ]  

Therefore, i t  i s  f e l t  t h a t  the observat ions 

made on sodium n i t r a t e  a r e  app l i cab le  t o  

HITEC. B e i t e l ' s  study i n d i c a t e s  t h a t  HITEC 

would r e a c t  v igo rous ly  on ly  above %380°c i n  the 

presence o f  5-65% organic  m a t e r i a l .  This condi- 

t i o n  does no t  seem l i k e l y  i n  our present concept 

o f  a  f u s i o n  energy device w i thou t  graphi te .  

Should i t  be necessary t o  use g raph i te  as a 

r e f l e c t o r ,  f u r t h e r  eva lua t ion  must be made o f  

the consequences o f  graphite-HITEC i n t e r a c t i o n .  

19. E. G. Bohlmann, Heat Thanb6m S& 6olr 

High T e m p W e  S t e m  Genenation, ORNL/TM- 

3777, Odk Ridye Nel ional  Laboratory, Oak 

Ridgc, Tennessee (1 972). 

20. M. D. Silverman and J. R. Engcl, Swrvey 06 

TechnoLogy doh Stohage 06 T h m d  Enmgy i n  

H& 'lhanh6u~ S&, ORNL/TM-5682, Oak Rldge 

Nat ional  Laboratory, Oak Ridge, Tennessee 

(1977). 

21. C .  F. Baes (Oak Ridge Natior ial  Laboratory),  

p r i v a t e  communication. 

22. H. W. Hoffman and S. I. Cullen, Fused S u R t  

H& Thav1b6m - Paht 111. Folrced-Convec- 

.t ion Heat Thanbde~~ i n  ChclLeah T u b u  Con- 

t a i n i n g  t h e  S& Uixtwe NaN02-NaN03-KN03, 

ORNL-2433, Oak Ridge Nat ional  Laboratory, 

Oak Ridge, Tennessee (1960). 

23. 6. A. B o i t e l ,  S o d i r c ~  N i t n f l t a  h m h r r ~ t i n n  

Lincit T e ~ a ,  ARH-LD-123, A t l a n t i c  R i c h f i e l d  

Hanford Co., Richland, Washington ( A p r i l  

1976). 

6.2.6 L i  th.iu111-Sodiu~a-Potassium Hydroxides 

Pure hydroxides o f  l i t h i u m ,  sodium, and 

p o t a s s l u ~ ~ i  niel t a t  471°c, 320°c, and 400°c, re- 
spec t i ve ly ,  b u t  e u t e c t i c  hydroxide mixtures o f  

Na-44 mole % K and Na-27 mole % L i  me l t  a t  1 8 7 ' ~  

and ~ I Y O C ,  r c ~ p e c t i v e l y . ~ ~  l'hese e u t e c t j c  mix- 

tures have acceptable phys ica l  p roper t ies  and 

would r e q u i r e  reasonable amounts o f  pumping 

power. They a re  q u i t e  cheap and do n o t  con ta in  

mate r ia l s  o f  l i m i t e d  a v a i l a b i l i t y .  The e l l tect i r :  

mix tures can be used up t o  a t  l e a s t  800°c, and 

they have been shown t o  be acceptably s tab le  

under i r r a d i a t i o n  up t o  the same temperature. 24 



The most ser ious l i m i t a t i o n  o f  the hy- 

droxides as coolants  i s  t h e i r  corrosiveness. 

The conclusion o f  r a t h e r  extensive research 

f o r  a  conta iner  mate r ia l  i s  t h a t  a l l  the 

metals and a l l o y s  tes ted  so f a r  a re  at tacked 

t o  some degree;24 the  most co r ros ion- res is tan t  

mate r ia l s  are n i c k e l  ,, s i l v e r ,  gold, and 

chromium. I n  general, o b ~ e c t i o n a b l e  ra tes  of 
0 

a t tack  occurred above 550 C. These mate r ia l s  

exh ib i ted  mass t r a n s f e r  i n  the  presence o f  a  

temperature gradient,  and i t  was recommended 

t h a t  the maximum temperature be l i m i t e d  t o  

550 '~  and t h a t  the temperature d i f f e r e n t i a l  

n o t  exceed 60'~. The c o m p a t i b i l i t y  of 

s t r u c t u r a l  mate r ia l s  w i t h  the hydroxides must 

be s tudied i n  more d e t a i l  before these f l u i d s  

can be ser ious ly  considered as coolants. 

Since the hydroxides a re  ox id iz ing ,  i t  

i s  q u i t e  l i k e l y  t h a t  they would be incompati-  

b l e  w i t h  r e a c t i v e  metals such as niobium, 

t i tan ium, and vanadium. The i r  o x i d i z i n g  na- 

t u r e  sugge;ts t h a t  t h e i r  r e a c t i o n  w i t h  1  i t h i  um 

would be 

2NaOH + 2Li + Na20 + L i 2 0  + H2 

AH700 = -49.6 kcal .  

This r e a c t i o n  i s  exothermic w i t h  a  modest 
, ' 

energy release, b u t  the e q u i l i b r i u m  over- 

pressure o f  hydrogen w i l l  be on the order  o f  

1014 atm.g'21 As long as l i t h i u m  and sodium 

hydroxide are ava i lab le ,  t h e  reac t ion  w i l l  

proceed w i t h  the development o f  a  h igh over- 

pressure o f  hydrogen which must be vented 

t o  mainta in  the i n t e g r i t y  o f  the coolant  

system. The area o f  i n te rmix ing  l i t h i u m  and 

sodium hydroxide needs f u r t h e r  explorat, ion 

before the hydroxides cou ld  be used. 

24. M. W.  M a l l e t t  and John H. Stang, 

"Hydrides and Hydroxides,"' p. 955 i n  

, Reactoh Handbook, V o l .  I :  M a t c % i . a b ,  

ed. by C. R. ~ i p t o n ,  Jr . ,  In tersc ience,  

New York, 1960. 

6.2.7 Chlor ides 

Numerous ch lo r ides  e x i s t  whose m e l t i n g  tem- 

peratures a re  i n  the  1 0 0 - 2 0 0 ~ ~  temperature 

range. 25-26 Many o f  these ch lo r ides  have 

acceptable vapor pressures over the  se rv ice  

temperature range and have very a t t r a c t i v e  heat  

t r a n s f e r  p roper t ies .  Furthermore, many ch lo-  

r i d e s  are composed o f  common mate r ia l s  which a r e  

avai  1  ab le  and cheap. 

Corrosion data are very l i m i t e d  on ch lo-  

r i d e s  w i t h  me l t ing  po in ts  i n  the range o t  

i n t e r e s t .  L im i ted  t e s t i n g  by DeVan e t  a l .  
2  7  

showed t h a t  nickel-base a l l o y s  had cor ros ion  

res is tance  super io r  t o  t h a t  o f  i ron-base a l l o y s  

and t h a t  the co r ros ion  r a t e s  were comparable t o  

those observed i n  f l u o r i d e s .  However, labora-  

t o r y  experience by smithE8 has shown t h a t  the 

c o r r o s i v i t y  o f  the  d i f f e r e n t  ch lo r ides  va r i cs  

g rea t l y ,  w i t h  the  v a r i a t i o n  depending l a r g e l y  

about the ease w i t h  which i m p u r i t i e s  such as 

water are removed from the s a l t .  Thus, an ex- 

perimental program d i r e c t e d  a t  c o m p a t i b i l i t y  

s tud ies on ch lo r ides  w i t h  phys ica l  p roper t ies  

o f  i n t e r e s t  f o r  fus ion  app l i ca t ions  must be 

manned before a  s p e c i f i c  c h l o r i d e  system can be 

chosen o r  before the p o t e n t i a l  o f  ch lo r ides  can 

be assessed. 

The consequences o f  i n t e r m i x i n g  ch lo r ides  

and l i t h i u m  must be evaluated f o r  each s p e c i f i c  

ch lo r ide .  I f  the  c h l o r i d e  coo lan t  conta ins a  

metal c h l o r i d e  t h a t  i s  less  s tab le  than l i t h i u m  

ch lo r ide ,  i n t e r m i x i n g  would r e s u l t  i n  the f o r -  

mation o f  l i t h i u m  c h l o r i d e  and f r e e  metal from 

the ch lo r ide .  I f  the metal i n  the  c h l o r i d e  has 

a  me1 t i n g  p o i n t  above the serv ice  temperature 

range o r  i s  inso lub le ,  s o l i d s  cou ld  be p r e c i p i -  

t a t e d  i n  the molten l i t h i u m .  I f  the  metal 

c h l o r i d e  i s  more s tab le  than l i t h i u m  ch lo r ide ,  

i n t e r m i x i n g  would probably be inconsequent ia l .  

There i s  s u f f i c i e n t  f l e x i b i l i t y  i n  the choice o f  

ch lo r ides  t h a t  ch lo r ides  can probably be found 

f o r  which in te rmix in?  w i t h  l i t h i u m  does no t  

pose a  ser ious problem. 

S p e c i f i c  data on the i r r a d i a t i o n  s t a b i l i t y  

o f  the  ch lo r ides  were n o t  found i n  the l i t e r a -  

t u r e ,  However, the B r i t i s h  have considered 



us ing  the  c h l o r i d e s  i n  f a s t  reactors,  and 

t h i s  i n d i c a t e s  t h a t  the  c h l o r i d e s  probably  

have acceptable i r r a d i a t i o n  s t a b i l i t y .  I f  

the  c h l o r i d e s  do d i s s o c i a t e  s l i g h t l y  i n  an 

i r r a d i a t i o n  f i e l d ,  small amounts of f ree 

atomic c h l o r i n e ,  which i s  very co r ros ive ,  

w i l l  be released. smithz8 has observed t h a t  

the  recombinat ion o f  the rma l l y  d issoc ia ted  

species occurs very r a p i d l y  upon cool ing,  so 

species d issoc ia ted  by i r r a d i a t i o n  would most 

probably  recombine i n  t h e  p a r t s  o f  the coo l -  

a n t  c i r c u t t  uuLs,ide the h l g h  i r r a d i a t i o n  

f i e l d .  

25. Paul V .  C lark ,  Funcd S& Uixtu/~a: 

ELLteCtic Cornpob&iond and M u 5 n g  Paid, 

SC-R-68-1680, Fused Sa l t s  In fo rmat ion  

Center, Sandia Laborator ies,  Albuquerque, 

New Mexl co (1 968). 

Zb. W. R. Grimes and 0. R.  Cuneo, "Molten 

S a l t s  as Reactor Fuels," p. 440 i n  

Reactoh Handbook, Vo l .  I :  Matehi&, 

ed. by C .  R. Tipton, J r . ,  In te rsc ience ,  

New York, 1960. 

27. J .  H. DeVan (Oak Ridge Nat ional  Laborac 

t o r y ) ,  p r i v a t e  communScation. 

20. 6. P. S11l.i t h  (Oak Ridge Nat ional  I-ahora- 

t o r y ) ,  p r i v a t e  communication. 

6.2.8 Organic Coolants 

The use o f  organic coolants  f o r  f u s i o n  

a p p l i c a t i o n s  was reviewed by J. L. Snee e t  

a1. 29 (Considerable a t t e n t i o n  has a lso  been 

g iven t o  these coolants  f o r  f i s s i o n  r e a c t o r  

a p p l i c a t i o n s . )  The most a t t r a c t i v e  f l u i d s  

f n r  n l r c l ~ a r  coolants  seem t o  bc mixt.111-P% s f  

diphenyl  and terphenyl so lu t ions .  These ma- 

t e r i a l s  a re  inexpensive and r e a d i l y  ava i lab le .  

They a r e  s o l i d  a t  room temperature, b u t  m e l t  

a t  the  r e l a t i v e l y  low temperature o f  %66O~ 

( I ~ O ' F ) . ~ ~  The thermal s t a b i l i t y  o f  the o r -  

ganic coolants  i s  good; thermal decomposition 

i s  n o t  a  problem below 4250c.~ '  The vapor 

pressure o f  Santowax R, a  t y p i c a l  organic  

coolant,  i s  34 ps ia  a t  4270c .~ '  The hcat  t rans-  

f e r  c h a r a c t e r i s t i c s  a re  no t  outstanding, bu t  

are acceptable. 3930  Aluminum and i r o n  a l l o y s  

are s u i t a b l e  s t r u c t u r a l  mate r ia l s .  30 

The most serious problem associated w i t h  

the organics i s  t h e i r  decomposition by nuc lear  

r a d i a t i o n .  3,29-31 This decomposition w i l l  re -  

q u i r e  t h a t  f resh  coolant  be added t o  rep lace 

the decomposed coolant,  and t h i s  was est imated 

as 1.1 Ib/MWhr a t  357 '~ (675'~) f o r  one organ- 

i c a l l y  cooled and moderated reac to r  design. 3  

This decomposition a lso  leads t o  fou l ing  on 

heat t r a n s f e r  surfaces and b ~ r i l r l u p  o f  pa r t i c l r -  

l a t e  mat te r  i n  the  coolant.31 Although propo- 

nents o f  the o r g a n i c a l l y  cooled and moderated 

reac to r  f e l t  t h a t  the problem was manageable, an 

organic  coolant  c i r c u i t  nus1 inc lude s ide  

streams f o r  the a d d i t i o n  o f  new coo lan t  and 

removal nf p a r t i c u l a t e  mat ter .  The h igh  rad ia -  

t i o n  f i c l d  a33aciated  will^ d ruston device 

would requ i re  t h a t  these s ide  streams be pro-  

cessed a t  a  very r a p i d  r a t e .  The h igh d i s s o c i -  

a t i o n  o f  the organics i n  an i r r a d i a t i o n  f i e l d  

and the  r e s u l t i n g  p a r t i c u l a t e  mat ter ,  which 

f o u l s  ~LI I I I~S ~ I I J  t ledl r r a n s r e r  Surtaces, lead us 

t o  conclude t h a t  the  f l u i d s  have very l i t t l e  

p o t e n t i a l  as rno lan ts .  

29. J .  L. Snee e t  a l . .  Ohganic CooPnn.t Summag 

Repold, AEC1-4922, Atomic tnergy Commission, 

Washington, D. C. (August 1975). 

30. L. P. Bupp, "Maintenance o f  Coolants," 

p. 336-339 i n  Reactoh Handbook, Vol .  IV: 

E n g i n e h n g ,  ed. by S t u a r t  McLain and John 

H. Martens, 2nd ed., In tersc ience,  New 

York, 1964. 

31 Chad J. Rascman and I  enn GVY,YII, " C U I I I I I I ~ ~ C ~ J ~  

Power Reactors Cooled w i t h  Sodium, Heavy 

Water, o r  Organic L iqu ids,"  p. 121 i n  

RucXoh Technology, ed. by Leonard E. L ink,  

USAEC D i v i s i o n  o f  Technical In fo rmat ion  

Extension, Oak Ridge, Tennessee, 1964. 



6.2.9 Li th ium-Sodium-Potassium Carbonates 

Among t h e  carbonates i n  t h e  l i t h i u m -  

sodium-potassium system hav ing  accep tab le  

p h y s i c a l  p r o p e r t i e s ,  t h e  one w i t h  t h e  l o w e s t  

m e l t i n g  p o i n t  c o n t a i n s  L i  CO -31.5 mole % 

Na2C03-25 mole % K2C03.322 Th3is s a l t  i s  

i nexpens i ve  and r e a d i l y  a v a i l a b l e  and has 

good hea t  t r a n s f e r  p r o p e r t i e s .  The main 

shor tcoming i s  i t s  h i g h  m e l t i n g  p o i n t  o f  

397'~.  There may be o t h e r  carbonates w i t h  

l ower  m e l t i n g  p o i n t s ,  b u t  none i n  t h e  l i t e r a -  

t u r e  c o n s i s t e d  o f  reasonab le  e lementa l  com- 

b i n a t i o n s .  T h i s  p o i n t  needs t o  be i n v e s t i -  

ga ted f u r t h e r .  The carbonates a r e  compa t i b l e  

w i t h  n i c k e l -  and i ron-base a l l o y s ,  b u t  a r e  

l i k e l y  t o  be i n c o m p a t i b l e  w i t h  r e a c t i v e  

me ta l s  such as n iob ium.  

S ince t h e  carbonates  a r e  ox idan ts ,  t h e y  

w i l l  r e a c t  w i t h  l i t h i u m  by t h e  r e a c t i o n  

Na2C03 + 4 L i  + Na20 + 2L i20 + C 

AH700 K = -126 k c a l  . 
T h i s  i s  an energy r e l e a s e  o f  32 k c a l  p e r  mole 

o f  l i t h i u m ,  wh ich  i s  comparable t o  t h a t  

ob ta ined  w i t h  l i t h i u m  and water .  

The h i g h  m e l t i n g  p o i n t s  o f  t h e  l i t h i u m -  

sodium-potassium carbonates make these 

m a t e r i a l s  unusab le  w i t h  i r o n -  and n i c k e l -  

base a l l o y s  where t h e  maximum o p e r a t i n g  

temperatures must be r e s t r i c t e d  t o  t h e  400- 

5 0 0 ' ~  range. Because o f  t h e  o x i d i z i n g  n a t u r e  

o f  t h e  carbonates,  t h e y  would p robab l y  n o t  

be usab le  w i t h  r e a c t i v e  me ta l s  such as 

n iob ium a t  h i g h e r  temperatures.  Thus, i t  i s  

d o u b t f u l  t h a t  t h e  carbonates w i l l  be u s e f u l  

as c o o l a n t s  un less  carbonates w i t h  l ower  

m e l t i n g  p o i n t s  can be found. 

32. J. P. Sanders (Oak Ridge Na t i ona l  

Labo ra to ry ) ,  p r i v a t e  communication, 1971. 

6.3 DISCUSSION 

I n  t h e  p r e s e n t a t i o n s  o f  t h e  n i n e  c o o l a n t  

cand idates ,  a  number o f  s t r o n g  and weak p o i n t s  

were ment ioned f o r  each coo lan t .  There a r e  a  

number of  p r o p e r t i e s  wh i ch  a r e  common t o  seve ra l  

coo lan ts ,  and some c ross  comparisons among t h e  

c o o l a n t s  would be u s e f u l .  

Hel ium o f f e r s  t h e  u l t i m a t e  i n  chemical  

i n e r t n e s s  and i s  un ique among t h e  c o o l a n t s  i n  

t h i s  regard .  The o n l y  fundamental q u e s t i o n  

about  he l i um i s  whether t h e  hea t  can be t r a n s -  

f e r r e d  w i t h o u t  unbearable e f f e c t s  on system 

des ign  and economics. F o r  he l i um t o  ope ra te  as 

a  reasonab le  hea t  t r a n s f e r  medium, t h e  c o o l a n t  

c i r c u i t  must ope ra te  a t  a  p ressu re  o f  about 1000 

p s i .  Th i s  would n e c e s s i t a t e  des ign ing  t h e  c o o l -  

a n t  system t o  w i t h s t a n d  t h i s  p ressu re  and may 

r e s u l t  i n  t h i c k  s e c t i o n s  wh ich a r e  ove rs t ressed  

by  thermal s t resses .  The pumping power r e q u i r e -  

ment o f  seve ra l  pe rcen t  o f  t h e  system power o u t -  

p u t  may have a  s i g n i f i c a n t  degrad ing e f f e c t  on 

t h e  system economics. C l e a r l y ,  a  d e c i s i o n  con- 

c e r n i n g  t h e  p o t e n t i a l  o f  h e l i u m  as a  c o o l a n t  can 

o n l y  be made a f t e r  a  d e t a i l e d  s tudy  has been 

made o f  t h e  t r a d e - o f f s  between system pressure ,  

l i f e t i m e  (based on thermal  f a t i g u e ) ,  and t o t a l  

power cos t .  

Water i s  s i m i l a r  t o  h e l i u m  i n  t h a t  a  

p r e s s u r i z e d  system would be requ i red ,  a l t hough  

t h e  o p e r a t i n g  p ressu re  f o r  wa te r  c o u l d  be lower .  

S ince t h e  p ressu re  r e q u i r e d  t o  m a i n t a i n  water  as  

l i q u i d  increases marked ly  w i t h  i n c r e a s i n q  

temperature,  i t  w i l l  be necessary t o  e v a l u a t e  

t h e  t r a d e - o f f s  between system temperature,  sys-  

tem pressure,  thermal  s t resses ,  and p l a n t  t h e r -  

mal e f f i c i e n c y .  I n c r e a s i n g  t h e  system tempera- 

t u r e  w i l l  i nc rease  t h e  p l a n t  thermal  e f f i c i e n c y ,  

i nc rease  t h e  system pressure ,  and i nc rease  

thermal  s t resses  i n  t h e  s t r u c t u r a l  members o f  

t h e  c o o l a n t  c i r c u i t  (due t o  t h e  l a r g e r  s e c t i o n  

s i z e s  imposed by  t h e  h i g h e r  p ressu re ) .  Decreas- 

i n g  t h e  system temperature  w i l l  have t h e  d e s i r -  

a b l e  e f f e c t s  o f  r educ ing  t h e  system pressure  and 

t h e  thermal s t resses ,  b u t  w i l l  have t h e  undes i r -  

a b l e  e f f e c t  o f  r educ ing  t h e  p l a n t  thermal  e f f i -  

c i ency .  The main  d isadvantage o f  wa te r  i s  i t s  



r e a c t i o n  w i t h  l i t h i u m ,  which produces corro-  

s i v e  l i t h i u m  ox ide o r  l i t h i u m  hydroxide, 

hydrogen, and ~ 5 0  kcal  o f  heat  energy per  mole, 

o f  l i t h i u m .  Th is  r e a c t i o n  would pose bo th  

opera t iona l  and sa fe ty  problems. 

The l i q u i d  metals, p a r t i c u l a r l y  l i t h i u m ,  

normal ly  f u n c t i o n  extremely w e l l  as coolants, 

b u t  the  presence o f  s t rong magnetic f i e l d s  

makes them very d i f f i c u l t  t o  pump and l i m i t s  

. t h e i r  f l o w  turbulence i n  a  way t h a t  would r e -  

duce the  q u a n t i t y  o f  heat t h a t  they could 

t r a n s f e r .  A  number o f  methods have been p ro -  

posed f o r  m i t i g a t i n g  these ef fects  and i t  i s  

recommended t h a t  developments i n  t h i s  area need 

t o  be fo l l owed ver.y c l o s e l y  because o f  t h e  a t -  

t rac t i veness  o f  a  combined breeding and coo l ing  

c i r c u i t  . 
The organic  coolants  l a c k  the  s t a b i l i t y  

requ i red  f o r  o p e r a t i  on a t  e levated tempera- 

t u r e s  i n  an i r r a d i a t i o n  f i e l d .  They do n o t  

m e r i t  f u r t h e r  i n v e s t i g a t i o n .  

The sod ium-po tass ium-n i t ra te -n i t r i t e  

mixtures,  the  l i th ium-sodium hydroxides, and 

t h e  l i thium-sodium-potassium carbonates a r e  

a l l  o x i d i z i n g  and would r e a c t  w i t h  l i t h i u m  t o  

produce c o r r o s i v e  l i t h i u m  ox ide and re lease a  

s i z a b l e  amount o f  energy va ry ing  from 60 kcal  

per  mole o f  l i t h i u m  f o r  n i t r a t e - n i t r i t e  mix- 

tu res  t o  25 kca l  per  mole o f  l i t h i u m  t o r  the  

hydroxides. The hydroxides are very co r ros ive  

and would probably r e q u i r e  n ickel -base a l l o y s ,  

b u t  the  o ther  two coolants  could be contained 

i n  i r o n -  and n ickel -base a l l o y s .  , Upon mix ing  

w i t h  1  i th ium,  the  n i t r a t e - n i t r i t e  mixtures 

would evolve N2, and the hydroxides would 

evolve H2. The n i t r a t e - n i t r i t e  mixtures 

undergo thermal decomposition, which i s  

probably  accelerated t o  some unknown degree by 

i r r a d i a t i o n .  A l l  th ree  coolants  a re  s o l i d  a t  

ambient temperatures, b u t  o n l y  the carbonates 

m e l t  a t  too  h igh  a  temperature t o  be used i n  

a  system w i t h  the  r e s t r a i n t  o f  a  maximum f i r s t  

w a l l  temperature o f  400-500'~. I t  i s  poss ib le  

t h a t  the re  a re  o ther  carbonates w i t h  lower 

me1 t i n g  temperatures. However, f u r t h e r  eval -  

u a t i o n  must be made o f  the  consequences o f  

i n t e r m i x i n g  these o x i d i z i n g  s a l t s  w i t h  l i t h i u m  

before the p o t e n t i a l  o f  these coolants  f o r  

fus ion  systems con ta in ing  l i t h i u m  can be 

assessed. 

The f l u o r i d e s ,  best  represented by LiF-34 

mole % BeF2, have such h igh  m e l t i n g  temperatures 

t h a t  they cannot be used i n  an i r o n -  o r  n i c k e l -  

base a l l o y  where the maximum f i r s t  w a l l  tempera- 

t u r e  i s  r e s t r i c t e d  t o  400-500'~. The f 1  uor ides 

are reasonably w e l l  known, and i t  i s  u n l i k e l y  

t h a t  the re  i s  a  s a l t  which has p roper t ies  more 

a t t r a c t i v e  than those o f  LiF-34 mole % BeF2. 

The ch lo r ides  have n o t  been studied as 

ex tens ive ly  as the f l u o r i d e s ,  b u t  the re  are 

several c h l o r i d e  s a l t s  w i t h  m e l t i n g  po in ts  i n  

the  range .o f  i n t e r e s t .  The c o m p a t i b i l i t y  o f  the 

ch lo r ides  w i t h  i r o n -  and nickel-base a l l o y s  has 

n o t  been studied i n  much d e t a i l ,  b u t  i t  i s  q u i t e  

l i k e l y  t h a t  a  s u i t a b l e  conta iner  mate r ia l  e x i s t s  

among the  i r o n -  and n ickel -base a l l o y s .  Thus, 

i t  i s  f e l t  t h a t  the ch lo r ides  a r e  worthy o f  

f u r t h e r  evaluat ion.  

Several s p e c i f i c  areas have been enumerated 

f o r  the  var ious coolants  i n  which a d d i t i o n a l  i n -  

format ion i s  needed t o  make decis ions about the  

usefulness o f  each coolant .  These areas a re  

described f o r  each coolant ,  and i t  i s  recommend- 

ed t h a t  f u t u r e  work on coolants  concentrates on 

ttiese specr t rc  areas. 
1 ) He1 ium. Eva1 uate t rade-o f f s  between 

system pressure, thermal fa t igue ,  and 

t o t a l  power cost.  

2 )  Water. Evaluate the consequences on 

operat ion and sa fe ty  of i n t e r m i x i n g  

w i t h  I l t h l u m .  

3) L i q u i d  metals. Mainta in  an awareness 

o f  new developments r e l a t e d  t o  the  

a b l l l t y  t o  pump i n  s t rong maynetic 

f i e l d s .  

4) L i th ium and b e r y l l i u m  f l u o r i d e  s a l t  

mix tures.  No f u r t h e r  eva lua t ion  i s  

requ i red  s ince the present  in fo rmat ion  

i s  adequate. 

5)  Sodium-potassium-ni t ra te -n i t r i  t e  mix- 

tu res .  Evaluate the r a t e  o f  decompo- 

s i t i o n  i n  a  s t rong i r r a d i a t i o n  f i e l d .  



Eva lua te  t h e  consequences (exper imen- 

t a l l y )  o f  i n t e r m i x i n g  these m i x t u r e s  

w i t h  l i t h i u m .  

6 )  L i  th ium-sodium hydrox ides.  Per form 

c o r r o s i o n  exper iments  w i t h  poten-  

t i a l l y  s u i t a b l e  i r o n -  and n i c k e l -  

base a l l o y s .  Eva lua te  s a f e t y  conse- 

quences o f  i n t e r m i x i n g  w i t h  l i t h i u m .  

7 )  Ch lo r i des .  Review c h l o r i d e  phase 

diagrams and choose c h l o r i d e  systems 

w i t h  m e l t i n g  p o i n t s  and compos i t ions  

f o r  f u r t h e r  e v a l u a t i o n .  Per form com- 

p a t i  b i  1  i t y  exper iments  w i t h  poten- 

t i a l l y  s u i t a b l e  i r o n -  and n i c k e l -  

base a l l o y s .  Per form exper iments  t o  

eva lua te  s t a b i l i t y  i n  an i r r a d i a t i o n  

f i e l d .  

8)  Organ ic  coo lan t .  No f u r t h e r  eva lua-  

t i o n  i s  r e q u i r e d  due t o  t h e  document- 

ed d i s s o c i a t i o n  and f o u l i n g  wh ich 

occurs  i n  an i r r a d i a t i o n  f i e l d .  

9 )  L i  th ium-sodium-potassium carbonates.  

Make e x t e n s i v e  rev iew  o f  l i t e r a t u r e  

t o  determine whether carbonates  

e x i s t  wh ich  have m e l t i n g  p o i n t s  and 

compos i t ions  o f  i n t e r e s t .  

6.4 CONCLUSIONS 

Many u n c e r t a i n t i e s  e x i s t  concern ing t h e  

exac t  performance requ i rements  o f  c o o l a n t s  

f o r  f u s i o n  dev ices  and t h e  c a p a b i l i t i e s  of  

t h e  va r i ous  coo lan ts .  Fo r  these rrasons, i t  

seems i n a p p r o p r i a t e  t o  make i n f l e x i b l e  d e c i -  

s i ons  about  wh ich  coo lan ts  a r e  bes t .  How- 

ever,  i t  i s  a p p r o p r i a t e  and necessary f o r  

p rogress  t h a t  we i d e n t i f y  t h e  more p rom is ing  

c o o l a n t s  and t h a t  we p e r i o d i c a l l y  reexamine 

t h e  da ta  on c o o l a n t  requ i rements  and c a p a b i l -  

i t i e s .  The s e r v i c e  requ i rements  assoc ia ted  

w i t h  cornme\-cia1 f u s i o n  power a p p l i c a t i o n s  

and t h e  known p r o p e r t i e s  o f  t h e  cand ida te  

c o o l a n t s  have been c r i t i c a l l y  rev iewed.  The 

f o l l o w i n g  conc lus ions  seem i n  o r d e r .  

1 )  The s a l t  cand idates ,  HITEC, sodium 

hydrox ide,  and c h l o r i d e s ,  appear t o  

o f f e r  t h e  most promise based on t h e  

g u i d e l i n e  o f  l ow  pressure  ope ra t i on .  

The s o d i u m - p o t a s s i u m - n i t r a t e - n i t r i t e  

s a l t  m i x t u r e s  have been used most 

w i d e l y ;  t h e r e f o r e ,  p r i m a r y  emphasis i s  

g i v e n  t o  t hese  s a l t s .  Much f u r t h e r  

expe r imen ta l  work i s  needed i n  t h e  

areas o f  c o r r o s i o n  and s t a b i l i t y  b e f o r e  

a  f i n a l  assessment can be made o f  t h e i r  

p o t e n t i a l  use fu lness  f o r  f u s i o n  a p p l i -  

c a t i o n s .  

2 )  I n  terms o f  s t a b i l i t y  and c o m p a t i b i l i t y ,  

h e l i u m  i s  t h e  c o o l a n t  w i t h  t h e  most 

p o t e n t i a l ,  b u t  i t  must be shown t h a t  

he l i um can remove t h e  h e a t  f r om t h e  

f i r s t  w a l l  w i t h o u t  impos ing i n t o l e r a b l e  

thermal  s t r e s s e s .  

3 )  Water i s  p o t e n t i a l l y  u s e f u l  as a  c o o l -  

an t ,  b u t  i t  w i l l  r e q u i r e  a  p r e s s u r i z e d  

system. I t w i l l  a l s o  r e a c t  v i g o r o u s l y  

w i t h  l i t h i u m  and t h e  consequences o f  

t h i s  r e a c t i o n  must be eva lua ted  f u r t h e r .  

4 )  The l i q u i d  me ta l s  a r e  e x c e l l e n t  f rom a  

c o m p a t i b i l i t y  s tandpo in t ,  b u t  t h e  

s t r o n g  magnet ic  f i e l d s  o f  f u s i o n  de- 

v i c e s  i nc rease  t h e  pumping power r e -  
. I S  

q u i r e d  and decrease t h e  hea t  t r a n s f e r  

c a p a b i l i t i e s  o f  these f l u i d s .  Propos- . . 
a l s  f o r  m i t i g a t i n g  t hese  e f f e c t s  shou ld  

- +. 
be i n v e s t i g a t e d  f u r t h e r  i n  o r d e r  t o  de- 

t e rm ine  t h e  a p p l i c a b i l i t y  o f  l i q u i d  

me ta l s .  

5) Both t h e  LiF-BeF2 s a l t s  and t h e  c a r -  

bonates have m e l t i n g  p o i n t s  whfch a r e  

t o o  h i g h  f o r  near - te rm a p p l i c a t i o n s  

i n v o l v i n g  i r o n -  o r  n i cke l -base  a l l o y s  

where t h e  maximum temperature  must be 

r e s t r i c t e d  t o  t h e  400-500 '~  range. 

They may be u s e f u l  f o r  h i g h e r  tempera- 

t u r e  systems b u t  shou ld  be reassessed 

w i t h  a  s p e c i f i c  system i n  mind. 

6 )  The o r g a n i c  coo lan ts  d i s s o c i a t e  under 

i r r a d i a t i o n  and form t a r s  wh ich  i n t e r -  

f e r e  w i t h  hea t  t r a n s f e r  and pumping. 

There does n o t  seem t o  be a  s u i t a b l e  

s h o r t - t e r m  s o l u t i o n  t o  t h i s  problem, 

and these f l u i d s  a r e  n o t  recommended 

f o r  f u s i o n  a p p l i c a t i o n s .  
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7. TOROIDAL FIELD COIL OPTIONS 

W. C. T. S todda r t  

7.1 INTRODUCTION 

The c o i l  system o f  a tokamak power reac-  

t o r  c o n s i s t s  o f  t h e  t o r o i d a l  f i e l d  (TF) c o i l s ,  

t h e  ohmic h e a t i n g  so leno id ,  and a d d i t i o n a l  

p o l o i d a l  f i e l d  (PF) w ind ings f o r  plasma shap- 

i n g  and c o n t r o l .  Three o p t i o n s  a r e  a v a i l a b l e  

f o r  t h e  conductor  i n  t h e  des ign  o f  these 

c o i l s :  normal r e s i s t i v e  w ind ings,  c r y o r e s i s -  

t i v e  w ind ings,  and superconduct ing  w ind ings.  

The c u r r e n t  gene ra t i on  o f  exper imenta l  t oka -  

maks have p rov ided  a techno logy base f o r  b o t h  

r e s i s t i v e  and c r y o r e s i s t i v e  c o i l s ,  w h i l e  t h e  
1 Large C o i l  Program a t  ORNL w i l l  p r o v i d e  t h e  

techno logy base f o r  l a r g e  superconduct ing  

c o i l s .  

R e s i s t i v e ,  c r y o r e s i s t i v e ,  and supercon- 

d u c t i n g  w ind ings have a l l  been cons idered f o r  

t h e  PF systems o f  tokamak r e a ~ t o r s ; ' ' ~  how- 

ever,  o n l y  superconduct ing  TF systems have 

been cons idered i n  these r e a c t o r  s t u d i e s  be- 

cause o f  t h e  un favo rab le  power ba lance t h a t  

would r e s u l t  f r om t h e  use o f  r e s i s t i v e  c o i l s .  

F i g u r e  7.1 shows t h e  v a r i a t i o n  o f  p l a n t  e f f i -  

c i e n c y  w i t h  t h e  r a t i o  o f  thermal  f u s i o n  power 

t o  c o i l  power f o r  a steam c y c l e  e f f i c i e n c y  o f  

35%. I t appears t h a t  t h e  power ba lance be- 

g i n s  t o  l o o k  a t t r a c t i v e  when t h e  thermal f u -  

s i o n  power i s  a t  l e a s t  an o r d e r  o f  magnitude 

g r e a t e r  than t h e  TF c o i l  power requ i rements .  

I n  t h i s  rega rd  i t  i s  i n t e r e s t i n g  t o  n o t e  t h a t  

t h e  r a t i o  o f  thermal  f u s i o n  power t o  compres- 

s i o n  c o i l  power i n  t h e  Reference Theta-Pinch 

~ e a c t o r ~  i s  2.18; t h e  compression c o i l  employs 

room temperature  r e s i s t i v e  w ind ings i n  t h i s  

design. The t h e t a - p i n c h  can ach ieve an ac- 

c e p t a b l e  power ba lance w i t h  r e s i s t i v e  c o i l s  

because i t  ope ra tes  w i t h  a r e l a s i v e l y  h i g h  

f u s i o n  power d e n s i t y .  I n  general', p rev ious  

tokamak r e a c t o r  des igns have opera ted w i t h  

t o o  low a f u s i o n  power d e n s i t y  t o  a l l o w  an 

a t t r a c t i v e  power ba lance w i t h  r e s i s t i v e  wind- 

i n g s  i n  t h e  TF system. 295-10  The fus ion  . 

0 5 10 15 2 0 25 
THERMAL FUSION POWER/COIL POWER 

Fig .  7.1. E f f e c t  o f  c o i l  power consumption 
p l a n t  e f f i c i e n c y  f o r  a steam c y c l e  e f f i c i e n c y  
35%. 

power d e n s i t y  i n  t h e  r e p r e s e n t a t i v e  tokamak reac-  

t o r  cons idered i n  t h i s  s tudy  i s  s i g n i f i c a n t l y  

g r e a t e r  t han  t h a t  o f  p rev ious  tokamak r e a c t o r  

des igns (see Tab le  7.1).  There fore ,  we have 

conducted a p r e l i m i n a r y  des ign  s tudy  t o  determine 

t o  what e x t e n t  r e s i s t i v e  w ind ings can be i nco rpo -  

r a t e d  i n t o  t h e  des ign  o f  t h e  TF system. The i n -  

c e n t i v e  f o r  such a s tudy  i s  t h a t  r e s i s t i v e  c o i l s  

may ease c e r t a i n  maintenance and eng inee r i ng  

problems i n  a commercial r e a c t o r .  Tab le  7.2 

p resen ts  t h e  des ign  parameters used i n  t h i s  

s tudy.  



Table 7.1. C o ~ ~ ~ p a r i s o n  o f  power dens i t y  i n  
var ious fus ion  reac to r  s tud ies 

Fusion power a 
Reactor Plasma volume Power dens i t y  

b 

design (MW) (m3) (MW/m3 

ANI-/EPR 

ORNL/EPR 

GA/EPR 

UWMAK- I 

UWMAK-I I 

UWMAk-I I I 
PPPL 

Th is  studyC 

a Corresponding t o  %22 MeV/fusion event.  

b ~ a t i o  o f  f u s i o n  power t o  plasma volume. 

 he f i g u r e s  presented here d i f f e r  from those i n  Sect. . 2  due t o  the  
assumption o f  a c i r c u l a r  plasma. 

Table 7.2. R e s i s t i v e  t o r ~ i d a l ~ m a g n e t  2. 
system design parameters 

C o i l  shape 

Plasma rad ius  

Major r a d i u s  

TF c o i l  i n s i d e  diameter 

F i e l d  on a x i s  

Number o f  c o i  1 s 

E l e c t r i c a l  power @ 100% 
duty f a c t o r  (max) 

c i r c u l a r  

1.5 m 

6 m 3. 

5 m 

3.92 T 

' 1 8  

%I50 MW(e) 
4. 

a ~ h e  assumption o f  c i r c u l a r  c o i l  and  
plasma shape r e s u l t s  i n  a change i n  
the requ i red  t o r o i d a l  f i e l d  f rom t h e  
3.6 T repor ted  i n  Sect. 2. The plasma 
volume and t o t a l  thermal power a re  
a lso  rcduccd. 

5. 

1. P. N. Haubenreich, "Subprogram I, Large C o i l  

Pro ject , "  i n  Ph0gtra.m doh DeveRopment 0 6  To- 6. 

hokiidae Supmconducting M a g n m  doh F a i o n  

R e n m c h ,  ORNL/TM-5401, Oak Ridge Nat ional  

Laboratory, Oak Ridge, Tennessee (Apr i  1 1976). 
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Fusion Cngineeri ng S t a f f ,  C u v i c e p M  Dwign 
Study oQ a Nonch.cuR.ah Tnh.nmn.h De.monsttmtion 
F a i o n  Powm Reactoh, GA-A13992, General 

Atomic Colnpany, San Diego, Cal S fo rn ia  

(November. 1976). 

An Engineehing Denign Study 06  a Re6mence 

~ h & - P i n c h  Reactoh [KYIR) , LA-5336, ANL- 

8019, j o i n t  r e p o r t  o f  Argonne Nat ional  

Laboratory, Argonne, I l l i n o i s  and Los Alamos 

S c i e n t i f i c  Laboratory, Los Alamos, New 

Mexico (March 1174); 

W .  M. Stacey, Tokamak Expehimentae Powm 

Reactoh Conceptual Denign, ANL-CTR-76-3, 

Argonne Nat ional  Laboratory, Argonne, 

I 1  1 i n o i s  (August 1976). 
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Ridge, Tennessee (October 1976). 



7. C .  C.  Baker e t  a l . ,  Expmbnentd Fubion 

Powm Reactah Conceptual Denign Study, 

GA-A14000, General Atomic Company, San 

Diego, C a l i f o r n i a  ( J u l y  1976). 

8. 8. Badger e t  a1 . , UWMAK-I, A W h c o ~ u i n  

T o h o M  Fubion Reactoh D ~ i g n ,  UWFDM-68, 

~ n i v e r s i t ~  o f  Wisconsin, Madison, Wiscon- 

s i n  (November 1973; rev ised  March 1974). 

9. B. Badger e t  a1 . , UWMAK-11, A Concep;tual 

Tokamak Yowm Reactoh Denign, UWFDM-112, 

U n i v e r s i t y  o f  Wisconsin, Madison,.Wiscon- 

s i n  (October 1975). 

10. R. G. M i l l s  (ed.),  A Fubbn Poweh Phn,  
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Laboratory, Princeton, New Jersey (August 

1974). 

7.2 DESIGN DESCRIPTION 

11 A p re l im inary  design . o f  a r e s i s t i v e  

t o r o i d a l  magnet system was developed f o r  the  

parameters given i n  Table 7.2. Note t h a t  the 

c o i l  shape was assumed t o  be c i r c u l a r ;  

F ig .  7.2 i l l u s t r a t e s  the bas ic  c o i l  geometry 

assumed. I n  ca r ry ing  ou t  t h i s  study, an eval -  

ua t ion  o f  a l t e r n a t i v e s  was made i n  the  areas 

of mate r ia l s  se lec t ion ,  e l e c t r i c a l  i n s u l a t i o n ,  

coo l ing  technique, and s t r u c t u r a l  design ap- 

proach; these a l t e r n a t i v e s  were evaluated on 

the bas is  o f  f a b r i c a t i o n  requirements, devel- 

opment needs, c a p i t a l  and operat ing costs, 

and r i s k .  Pre l iminary f i n d i n g s  are summarized 

below. 

11. R. J. A v e r i l l ,  R. D. Hay, W. G. Lampton, 

and E. J .  Rappenport, Phdiminahy Engi- 

ncetLing Study 06 T o h o M  Magn& to 

O p W e  at Elevated Tempelduhed, con- 

t r a c t o r ' s  r e p o r t ,  prepared by Magnetic 
' 

. Cnginccring Associates, Cambridg~, 

Massachusetts (November 1976). 

7.3 MATERIAL SELECTION 

The fundamental requirement f o r  the conduc- 

t o r  mate r ia l  i s  h igh  e l e c t r i c a l  conduc t i v i t y ,  

b u t  when raw mate r ia l  costs  are a l s o  considered, 

the conductor mate r ia l  choice i s  b a s i c a l l y  l i m -  

i t e d  t o  copper, aluminum, o r  t h e i r  a l l o y s .  

St.ructura1 i n t e g r i t y  i s  another impor tant  con- 

s i d e r a t i o n  because o f  the  h igh  i n t e r n a l  forces 

generated w i t h i n  the .conductor; s t r u c t u r a l  pa- 

rameters o f  importance a re  the modulus 0.l: e las -  

t i c i t y  and y i e l d  s t rength.  

Table 7.3 inc ludes the  range o f  copper and 

aluminum a l l o y s  considered as reasonable a l t e r -  

nat ives;  Table 7.4 i s  a summary o f  t h e i r  phys i -  

ca l  p roper t ies .  The Glid-Cop copper a l l o y s  

(formed by the d ispers ion  o f  f i n e  p a r t i c l e s  o f  

aluminum oxide i n  h igh p u r i t y  copper) have the 

most a t t r a c t i v e  e l e c t r i c a l  and s t r u c t u r a l  prop- 

e r t i e s .  Manufactur ing development i s  necessary 

t o  produce the  l a r g e  sect ions requ i red  f o r  the  

TF c o i l s ,  bu t  the mate r ia l  i s  p resen t l y  a v a i l -  

' ab le i n  small b i l l e t s .  Th is  a l l o y  system was 

chosen f o r  the conductor o f  the r e f e r e r ~ c e  design. 

The i n d i v i d u a l  tu rns  o f  the TF c o i l s  must 

be e l e c t r i c a l l y  insu la ted  from each other .  The 

e l e c t r i c a l  i n s u l a t i o n ,  i n  a d d i t i o n  t o  i t s  major 

f u n c t i o n  o f  r e s i s t i n g  an e l e c t r i c a l  s t ress  on 

the order  o f  300-3000 V/cm, may a l s o  be sub jec t  

t o  mechanical s t ress  o f  a complex nature a t  

room- t o  s l i g h t l y - e l e v a t e d  temperatures. The 

a d d i t i o n a l  requirement o f  res is tance t o  rad ia -  

t i o n  damage l i m i t s  the choice o f  mate r ia l s  t h a t  

may be considered. Combinations o f  organic 

mate r ia l s  such as the poly imide KAPTON and i n -  

organics such as micas o r  ceramics seem t o  be 

appropr ia te choices. 

The choice o f  Glid-Cop as the  e l e c t r i c a l  

conductor precludes t h e  need f o r  in te r leaved  

o r  lumped s t r u c t u r a l  mate r ia l ,  as w i l l  be d i s -  

cussed i n  a l a t e r  paragraph. 



ORNL-DWG 77-3727 

NESTED NOSE 
+ / SUPPORT (18 COl LS)  

,2111 (RADIAL 
BUILD)  

1.4 m- 
( A X I A L  BUILD) 

Fig.  7.2. TF c o i l  geometry. 

7.4 STRUCTURAL DESIGN AND FABRICATION 

The s t r u c t u r a l  design o f  a r e s i s t i v e  

c o i l  i's determined by a l lowab le  s t ress,  me- 

chanlca l  loadlng,  design l i t e  o t  the  c o i l ,  

and a l lowab le  space envelope f o r  the  c o i l .  

The general phi losophy o f  the  Pr inceton Large 

Torus TF c o i l s  was used i n  the  p r e l i m i n a r y  

des ign o f  the TF c o i l s .  The c o i l s  a re  con- 

s ide red  t o  be supported by wedging a t  the 

tapered c o i l  nose and res is tance  t o  the hoop 

st resses w i t h i n  the  magnet i t s e l f .  No con- 

s i d e r a t i o n  was g iven t o  out -of -p lane load ing  

on the  TF c o i l s .  A s t ress  ana lys is  o f  t h e  

proposed c o i l  design was performed us inq t h e  

computer program STARDYNE. For the  reference 

design, the f o l l o w i n g  s t r e s s  l e v e l s  a re  e s t i -  

mated f o r  a homogenized s t r u c t u r a l  model: 

maximum p r i n c i p a l  s t r e s s  4720 ps i ,  

minimum p r i n c i p a l  s t ress  3560 ps i ,  

maximum shear s t ress  4070 ps i ,  

maximum von Mises s t r e s s  7260 p s i .  

These st resses a re  genera l l y  acceptable f o r  a 

p r e l i m i n a r y  design. A d e t a i l e d  examination 

o f  the  heterogeneous nature o f  the  c o i l  would be 

requi red f o r  a d e t a i l e d  design. 

The mate r ia l s  proposed and t h e i r  usage i n  

the c o i l  d c s i j ~ l  do 11u1 c u r i s t l t u t e  an unsupport- 

ab le e x t r a p o l a t i o n  from cur ren t  technology such 

as the Tokamak Fusion Test Reactor (TFTR) TF 

c o i l s .  The incorpora t ion  o f  specia l  mechanical 

and e l e c t r i c a l  coo lan t  f l o w  paths would r e q u i r e  

dpprupr la te d e t a l  led considerat ion,  b u t  i t  

appears t h a t  no insurmountable problems e x i s t .  

7.5 COOLING METHOD 

Tn t . h i s  i n i t i a l  eva lua t ion  we d i d  n i t  t r y  t o  

recover t h e  heat  generated i n  the TF c o i l s  b u t  

considered on ly  the coo l ing  requirement f o r  e lec-  

t r i c a l  and s t r u c t u r a l  i n t e g r i t y .  We considered 

several a l t e r n a t i v e s  f o r  the  coolant ,  i n c l u d i n g  

hel ium gas, organic 1 iqu ids,  molten s a l t s ,  and 

pressur ized water. Pressurized water appears t o  

be the obvious choice, consider ing f l o w  rates,  

corros ion,  temperature e f f e c t s  on conductor re -  

s i s t i v i t y ,  s t rength,  and r e l i a b i l i t y .  To min i -  

mize res is tance  heat ing,  we used low cur ren t  



Table 7.3. Nominal chemical composit ions, we igh t  percentages, and r e l a t i v e  c o s t s  
o f  se lec ted  coppers .and copper a l l o y s  and aluminum and aluminum a1 lays 

Chemical compos i t ion  ( % )  

Cu + Ag As Fe Other  
A l l o y  ( o r  A1 ) (minimum) 

Copper-based 

CDA 102 

COA 110 

CDA ,116 

CDA 150 

COA 162 

COA 175 

COA 182 

CDA 185 

CDA 194 

CDA 195 

Gl i d-Cop A1 -20 

Gl id-Cop A1 -35 

G l  id-Cop A1 -60 

- 
0.15 Z r  

1.0 Cd 

2.5 Co; 0.6 Be 

0.9 Cr 

0.7 Cr 

0.13 Zr ;  0.04 P 

0.8 Co; 0.6 Sn; 0.1 P 

A1 umi num-based 

EC-HI9 99.45a - - 
5005-HI9 - 0.8 Mg 

61 01 -T61 - - 0.50 S i ;  0.60 Mg 

%inimum value. 

b~ax imum va l  ue. 

dens i t y ,  which w i l l  r e q u i r e  a r e l a t i v e l y  smal l  

percentage o f  t h e  conductor  c ross s e c t i o n  f o r  

c o o l i n g  channels.  

The heat  d e p o s i t i o n  due t o  nuc lea r  heat -  

i n g  o f  t h e  conductor  i s  smal l  compared w i t h  

t h a t  due t o  r e s i s t i v e  hea t i ng :  The hea t  

t r a n s f e r  between the  b l a n k e t  and the  TF c o i l s  

may be s i g n  i r . i can t  i f  inadequate thermal bar -  

r i e r s  a r e  present .  I t  i s  f e l t  t h a t  t h i s  hea t  

f l o w  may be kep t  t o  a reasonable l i m i t  by  an 

a p p r o p r i a t e  cho i ce  o f  i n s u l a t i o n  type and 

geometry. 

7.6 COST 

There a r e  g e n e r a l l y  two c o s t s  t o  be cons id-  

ered r e l a t i v e  t o  t h e  TF c o i l :  o p e r a t i n g  and 

c a p i t a l  . For  ou r  purposes, t h e  power consumed by 

t h e  TF c o i l s  w i l l  be viewed i n '  terms o f  i t s  

e f f e c t  on power balance. A s imp le  es t ima te  o f  

t h e  power r e q u i r e d  p e r  c o i l  may be ob ta ined  f rom 

the r o l  l o w i n g  equat ion:  

where PC i s  t h e  power r e q u i r e d  pe r  c o i l  i n  wa t t s ,  

B ' i s  t h e  o n - a x i s , f i e l d  i n  t e s l a ,  
I 

R i s  t h e  plasma major  r a d i u s  i n  meters,  

p i s  the conducloi. 's c o n d u c t i v i t y  i n  ohm- 
meters,  



Table 7.4. P roper t ies  o f  copper a l l o y s  o f  h igh  e l e c t r i c a l  c o n d u c t i v i t y  and s t reng th  
c h a r a c t e r i s t i c s .  Aluminum a l l o y s  given f o r  rgference. 

Temperature base i s  room temperature (70 F )  

E l e c t r i c a l  Y i e l d  s t reng th  Fat igue 
c o n d u c t i v i t y  s t reng th  (cold-worked s t reng th  Anneal i n g  Cost a 

annealed annealed t o  h a l f  hard, ( p s i  fo r  tempgrature index 
A l l o y  ( %  IACS)  ( p s i  o r  aged) 1 0 h y c l e s )  ( C) (volume bas is )  

copper-based 

CDA 102 
CDA 110 
CUA l i b  
CDA 150 
CDA 162 
CDA 175 
CDA 182 
CDA185 , 

CDA 194 
CDA 195 
G l  id-Cop A1 -20 
Gl id-Cop A1 -35 
G l  id-Cop A1 -60 

10.000 
10,000 
10,000 

ti, nnn 
7,000 

25,000 
14,000 
14.000 
24,000 
65,000 
53,000 
61,000 
65,000 

36,000 
36,000 
36,000 
fin, nno 
45,000 
60,000 
42,000 
42,000 
50,000 
80,000 
72,000 'l 

80,000 
*03,000 

- - 

'~ased  on CDA 110 = 1.00 f o r  0.25 x 1.00 i n  s t r i p  i n  10,000-lb q u a n t i t i e s .  

b ~ o r  h a l f  hard m a t e r i a l .  

' ~ e ~ u i  r-es s o l u t i o n  ,and aglng . 
d ~ o r  hard m a t e r i a l .  

D  i s  the c o i l  i n s i d e  diameter i n  met.ers, 

b  i s  the  c o i l  r a d i a l  b u i l d  i n  meters, 

h  i s  the  co l ' l  a x i a l  b u i l d  i n  meters, 

A i s  the c o i l  packing f r a c t i o n ,  

Nc i s  the  number o f  c o i l s .  

S u b s t i t u t i o n  o f  the previously determined 

c o i l  parameters ind ica tes  a  power demand o f  

135 MW f o r  the c o i l  system, which i s  genera l l y  

w i t h i n  the range s ta ted  i n  Table 7.2. The 

p l a n t  e f f i c i e n c y  o f  such a system would be 

l e s s  than 15% (see Fig.  7.1). 

The c a p i t a l  cos t  of such a  l a r g e  copper 

magnet system i s  d i f f i c u l t  t o  est imate. 

Based on the l i m i t e d  data ava i lab le ,  the 

manufactur inq and f a b r i c a t i o n  costs  on o nnnrnm- 

merc ia l  bas is  are est imated t o  be on the order  

o f  $20/ lb  i n  1976 d o l l a r s .  The est imated weight 

o f  the  i n s t a l l e d  copper i s  17.5 x  l o 6  l b ;  cos t  

would thus be on the order  o f  $350 m i l l  i on .  

I n  summary, about 19% o f  the generated 

power (us ing a  35% thermal e f f i c i e n c y )  would be 

d iss ipa ted  i n  the c o i l s  and the  c a p i t a l  cos t  

would be a  s i g n i f i c a n t  p o r t i o n  o f  the  t o t a l  

p lan1  ~ u s t .  Fur reference, the  t b s t  o t  a  com- 

parable superconducting c o i l  system i s  est imated 

t o  be about $90 m i l l i o n .  



7.7 DISCUSSION 

The e l e c t r i c a l  power requ i rements  and t h e  

c a p i t a l  cos t s  o f  a r e s i s t i v e  TF c o i l  s e t  may 

be excess ive  even f o r  t h e  h i g h  power d e n s i t y  

system cons idered here.  However, a s tudy  o f  

o v e r a l l  p l a n t  assembly and maintenance r e v e a l s  

t h a t  i t  may be advantageous t o  use supercon- 

d u c t i n g  c o i l s  i n  reg ions  where access t o  t h e  

i n t e r n a l  r eg ions  i s  n o t  r e q u i r e d  and r e s i s t i v e  

c o i l s  where disassembly i s  necessary.  Spe- 

c i f i c  areas where r e s i s t i v e  c o i l s  may be r e -  

q u i r e d  a r e  t h e  l o c a t i o n s  o f  n e u t r a l  beam 

i n j e c t o r s  o r  l a r g e  vacuum p o r t s .  The r e s i s -  

t i v e  c o i l s  would r e q u i r e  development o f  a new 

e l e c t r i c a l  j o i n t  des ign  beyond c u r r e n t  e x p e r i -  

ence i n  terms o f  s i z e  and ampere t u r n s .  

The TFTR program a t  P r i n c e t o n  Plasrlla 

Phys ics  Labo ra to ry  w i l l  i d e n t i f y  some of t h e  

ma jo r  d i f f i c u l t i e s  i n  d e a l i n g  w i t h  l a r g e  r e -  

s i s t i v e  TF c o i l  s e t s .  Spec ia l  needs of  

power-producing dev ices  such as t h e  j o i n t s  o r  

i n t e r f a c i n g  t o  superconduct ing  systems a r e  

be ing  addressed t o  some degree i n  The Next Step 

(TNS) program. The ques t i ons  o f  how t h e  goa l s  

may be accompl ished a r e  thus  be ing  cons idered a t  

seve ra l  l o c a t i o n s .  The r e 1  i a b i  l i t y  o f  such 

l a r g e  r e s i s t i v e  c o i l s  i s  nbt e n t i r e l y  c e r t a i n ;  

however, t h e y  seem t o  be w i t h i n  a reasonab le  

e x t r a p o l a t i o n  o f  c u r r e n t  p r a c t i c e ,  i .e., a f a c t o r  

o f  about  two compared t o  TFTR. 

7.8 CONCLUSIONS 

The TF c o i l  s e t  f o r  commercial f u s i o n  power 

does n o t  appear t o  be economica l l y  . a t t r a c t i v e  i f  

t o t a l l y  r e s i s t i v e .  However, t h e r e  may be some 

advantage t o  u t i l i z i n g  b o t h  r e s i s t i v e  and super -  

conduc t i ng  c o i l s  i n  t h e  des ign  o f  t h e  t o r o i d a l  

f i e l d  system. The n e x t  p e r i o d  o f  s tudy  w i l l  

address t h e  ques t i ons  o f  t o t a l  system power 

balance, space a1 l o c a t i o n  f o r  t h e  seve ra l  

r e q u i r e d  magnet ic  systems, and t h e  concept o f  a 

coup1 ed superconduct i  ng and r e s i s t i v e  TF magnet 

system. 
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8. THE VACUUM TOPOLOGY 

R. W .  w e h e r  

8.1 INTRODUCTION t h e  plasma zone and t h e  vacuum o f  t h e  remainder  

I t i s  a pr ime o b j e c t i v e  o f  t h e  Demo s tudy  
o f  t h e  volume. These would be d i f f e r e n t i a l l y  

t o  p r o f i t a b l y  e x p l o i t  t h e  un ique f e a t u r e s  o f  
pumped. I t  i s  l i k e l y  t h a t  t h e r e  would a l s o  be 

t h e  f u s i o n  energy source. T h i s  means t h a t  t h e  a t e r n a r y  guard vacuum between t h e  i n t e r i o r  

n u c l e a r  i s l a n d  o f  a commerc ia l ly  v i a b l e  f us ion  
su r face  o f  t h e  main b u i l d i n g  and an i n s i d e  

power p l a n t  must be c o n s t r u c t e d  around i t s  own 
s h e l l .  I n  a d d i t i o n  t o  t h e  assembly, disassembly, 

p e c u l i a r  c h a r a c t e r i s t l c s .  I t  cannot l o o k  1 i ke. and r e p a i r  advantages t h e r e  a r e  o t h e r s  wo r th  . 

a f i s s i o n  p l a n t ,  an LMFBR, o r  a f o s s i l  p l a n t .  ' 
c i t i n g .  I n e v i t a b l y ,  t h e r e  a r e  a l s o  disadvan- 

N e i t h e r  can i t  a f f o r d  t h e  p i t f a l l  o f  copying, 

on an upgraded sca le ,  t h e  c h a r a c t e r i s t i c s  o f  

machines designed f o r  exper imenta l  phys ics .  

Th i s  l a t t e r  problem i s  ev idenced i n  v i r t u a l l y  

a l l  r e a c t o r  des igns t o  date.  One o f  t h e  spe- 

c i f i c  t h i n g s  t h a t  can be recogn ized a s  be ing  

i n  t h i s  "hand-me-down" ca tego ry  i s  t h a t  o f  

l o c a t i n g  immedia te ly  n e x t - t o  t h e  plasma t h e  

c losed  su r face  t h a t  separa tes  t h e  "hard" 

vacuum o f  t h e  plasma zone f r o m  atmospher ic 

pressure .  T h i s  c l o s e d  s u r f a c e  used i n  such a 

way con ta ins  hundred t o  thousands o f  l i n e a l  

meters  o f  welds o r  complex mechanical sea l s .  

Once t h e  l a s t  we ld  has been made, some f u s i o n  

power has been generated, and r a d i o a c t i v e  

p a r t s  have been produced, t h e n  t h e  system be- 

comes d i f f i c u l t  t o  r e p a i r  as a d i r e c t  conse- 

quence o f  i t s  own assembly. I f  t h e  c l o s e d  

s u r f a c e  develops a p i n h o l e  l e a k  i n  t h e  i r r a d i -  

ated, c y c l i c a l l y  s t ressed  welds, i t  i s  doubt-  

f u l  t h a t  i t  can be r e p a i r e d  w i t h o u t  unreason- 

a b l e  d i f f i c u l t y .  When t h e  s u r f a c e  must be 

rep laced,  a l ong - te rm major  shutdown i s  i n -  

v o l  ved. 

I n  t h i s  s tudy  we address t h e  i dea  of  

e n c l o s i n g  t h e  e n t i r e  r e a c t o r  i n  a vacuum b u i l d -  

i n g .  We thus comp le te l y  change t h e  c h a r a c t e r  

o f  t h i s  c l osed  s u r f a c e  f rom one r e q u i r i n g  

a b s o l u t e  vacuum i n t e g r i t y  and an ~ x t r e m e l y  

l o n g  1 i f e  expectancy t o  one t h a t  need have 

o n l y  h i g h  pumping impedance - i t  can be s lb igh t -  

l y  l e a k y  because t h e  pressures  on e i t h e r  s i d e  

a r e  about  t h e  same - and a s h o r t e r  l i f e  r e -  

qu i rement  because i t  comes a p a r t .  Two vacuum 

zones a r e  proposed: t h e  u l t r a c l e a n  vacuum o f  

tages. 

8.2 THE TECHNICAL ADVANTAGES 

The p r i n c i p a l  ga ins  we see a t  t h i s  t ime  a r e  

l i s t e d  below. 

8.2.1 E l i m i n a t i o n  o f  A l l  Remote F i e l d  Weld ing 

i n  t h e  Reactor  Region 

The p r i m a r y  'vacuum i n  many o f  t h e  p resen t  

r e a c t o r  concepts i s  e s t a b l i s h e d  by p e r i p h e r a l  

seam welds g e n e r a l l y  made between a d j a c e n t  

b l a n k e t  modules. The t o t a l  l e n g t h  o f  these 

welds t h a t  must have 100% i n t e g r i t y  a g a i n s t  

leakage can be thousands o f  meters .  I n  t h e  

even t  o f  a leak ,  i t  must f i r s t  be found - no 

sma l l  t a s k  - and then  r e p a i r e d .  I n  t h e  even t  

o f  replacement o f  b l anke ts ,  t h e  e n t i r e  we ld  must 

be c u t .  A11 t h e  ope ra t i ons  ( l e a k  hun t i ng ,  r e -  

p a i r ,  c u t t i n g ,  and rep lacement )  a lmos t  c e r t a i n l y  

must be done remote ly .  T h i s  i s  an i n c r e d i b l y  

d i f f i c u l - t  t ask .  Furthermore, these we ld  zones 

w i l l  be s u b j e c t  t o  b o t h  thermal  s t r e s s  and 

thermal c y c l i n g  w i t h  a lmos t  c e r t a i n  leakage i n  

t ime .  These welds a r e  n o t  necessary and can be 

e l i m i n a t e d  by  moving t h e  p r i m a r y  vacuum t o  t h e  

room temperature  enc losure .  

8.2.2 "Hands-On" and Remote Hand l i ng  Compati- 

b i l i t y  

The reasonab le  concern o f  e x p e r i m e n t a l i s t s  

t h a t  a vacuum enc losu re  i s  i n h i b i t i n g  and causes 

unreasonable d i f f i c u l t y  f o r  some exper iments  i s  

s a t i s f a c t o r i l y  answered by  t h e  f a c t  t h a t  pump- 

down t i m e  from atmospher ic  p ressu re  t o  t o r r  



i s  10 h r  f o r  f a c i l i t i e s  having a l a r g e r  volume 

than would be requ i red  f o r  a  f u s i o n  reac to r ,  

such as t h e  NASA Plum Brook space chamber. 1  

Thus, work o r  experiments r e q u i r i n g  "hands-on" 

opera t ion  (neg lec t ing  the  problems o f  r a d i a -  

t i o n )  cou ld  be done w i t h i n  a 24-hr per iod.  For 

the  remainder o f  the experiments, tes ts ,  rou- 

t i n e  maintenance, e tc . ,  the vacuum could be re-  

ta ined .  One must not,  however, l ose  s i g h t  o f  

the  f a c t  t h a t  a  commercial reac to r  i s  n o t  an 

experiment, and there  cannot be "hands-on" 

opera t ion  anyway on a day-to-day o r  week-to- 

week basis .  

1. Space Pawm F a d d y :  Dehchipfion and 

Capabili.CLeh, NASA, Lewis Research Center, 

Plum Brook Stat ion,  Sandusky, Ohio (June 

1974). 

8.2.3 Replacement Ease - Blanket  Module 

With the  b lanke t  modules assembled as a 

nested s e t  w i t h  a minimum o f  mechanical con- 

nec t ions  and no welded connections, i t  i s  

poss ib le  t o  v i s u a l i z e  remote module rep lace-  

ment t h a t  w i l l  have a minimum amount o f  d i f -  

f i c u l  t y .  The optimum replacement technique 

could be one us ing  simple t r a n s l a t i o n  o f  the  

f i r s t  b lanke t  zone (FBZ) o r  o f  the  t o t a l  ' 

b lanke t  u n i t s  e x i t i n g  between the  t o r o i d a l  

c o i l s .  (A rectangular  b lanke t  us ing FBZ u n i t s  

and t a k i n g  advantage o f  t h i s  t o t a l  vacuum 

topology i s  discussed i n  Sect. 4.)  

8.2.4 Remote Handl ing 

I n  a d d i t i o n  t o  the b lanke t  modules, the re  

i s  remote handl ing involved i n  a s i g n i f i c a n t  

number o f  o ther  reac to r  components - such as 

i n j e c t o r s  - t h a t  probably can be repa i red  o r  

rep laced i n  a t o t a l  vacuum environment more 

r e a d i l y  than i n  one where the vacuum i s  i n  

o n l y  the  plasma zone. I n  f a c t ,  anyth ing t h a t  

penetrates the reac to r  vessel t o  communicate 

i n  one way o r  another w i t h  the  plasma (pres- 

sure transducers, temperature transducers, 

plasma d iagnos t i c  probes, e tc .  ) can be much more 

r e a d i l y  replaced when i t  does no t  have t o  pass 

through a vacuum-tight i n te rven ing  w a l l .  

8.2.5 Reduction o f  Physical Size 

The e l i m i n a t i o n  o f  welds which would have 

establ ished the pr imary vacuum i n  the plasma 

region i f  a vacuum b u i l d i n g  were n o t  used a lso  

e l im ina tes  the need t o  prov ide access space t o  

these welds. E l im ina t ing  t h i s  access space can 

reduce the t o t a l  reac to r  diameter by as much as 

2-3 m. 

8.2.6 Operat ion Time 

The e f f e c t i v e  o n - l i n e  t ime o f  the r c a c t o r  

should improve w i t h  the  use of a  vacuum enclo- 

sure s ince the need t o  l e t  the  plasma zone up 

t o  a i r  o r  ~ r p  t.o argon i s  e l iminated.  This 

should decrease markedly the "bake-in" o r  ou t -  

gassing time< 

8.2.7 T r i t i u m  Contro l  and Accidental Release 

The use of a  vacuum vessel operat ing a t  

room temperature creates a h i q h l v  e f f e c t i v e  

d i f f u s i o n  b a r r i e r  against  t r i t i u m  release. I f  

there  i s  an acc identa l  re lease o f  t r i t i u m  from 

the reac to r  zone, i t  can be c o l l e c t e d  on the en- 

ve lop inq co ld  w a l l  and recovered i n  a rnnt , rn l led 

way. 

8.2.8 Relaxat ion o f  Pressu~.,-Loads 

The welding o f  the b lanket  modules, one ' to 

the next,  creates a s t r u c t u r e  t h a t  i s  e f f e c t i v e -  

l y  an external  l y  loaded pressure vessel. This 

h igh temperature vcsscl i s  sub jec t  t o  creep 

buck l ing.  The problem may have a d ivergent  

so lu t ion ;  i f  t h e  w a l l s  arse t h i n  f o r  good neu- 

t ron ics ,  good t r i t i u m  breeding, and minimum 

neutron heating, they may f a i l  by buck l ing.  I f  

the  w a l l s  are t h i c k  enough t o  r e s i s t  buck l ing  

a t  some temperature (T) ,  then t h e  a d d i t i o n a l  

neutron hea t ing  o f  the t h i c k e r  mate r ia l  causes 

the  temperature t o  r i s e  t o  T + AT, lower ing the  

creep h r ~ c k l i n o  r e s i s t a n c ~ ,  4 se r ies  o f  nestod 

b lanket  modules p h y s i c a l l y  assembled s ide  by 



s i d e  c i rcumvents  t h i s  p o t e n t i a l  problem. 

8.2.9 More E f f e c t i v e  Con t ro l  o f  Hea t .T rans fe r  

The p r o x i m i t y  o f  4-K t o r o i d a l  f i e l d  c o i l s  

I and d i v e r t o r  c o i l s  t o  1000-K b lanke ts ,  500-K 

s h i e l d s ,  room temperature v e r t i c a l  f i e l d  c o i l s ,  

e t c .  c rea tes  a  hea t  t r a n s f e r  problem t h a t  ab- 

s o l u t e l y  must be minimized. The p e n a l t y  p a i d  

because o f  energy t r a n s f e r  i n t o  a  cryogenic  

c o i l  and t h e  consequent r e f r i g e r a t o r  l o a d  i s  

s500 W / W .  The most e f f e c t i v e  means f o r  de- 

c o u p l i n g  the  energy exchange i s  t o  reduce i t  

t o  a  problem o f  r a d i a t i o n  heat  t r a n s f e r  and 

i n t r o d u c e  t h e  use o f  inexpens ive t h i n  f o i l  

r a d i a t i o n  s h i e l d s .  A t  a p e n a l t y  o f  500 W / W ,  

100% o f  t h e  plasma power generated i s  non- 

p r o d u c t i v e l y  used f o r  r e f r i g e r a t i o n  when t h e  

thermal energy l o s s  f rom t h e  b l a n k e t  o r  o t h e r  

thermal sur faces t o  the  c o i l  i s  equal t o  o n l y  

0.2%. We can perhaps a f f o r d  a  heat  l e a k  o f  

0.002% o f  t h e  t o t a l  b l a n k e t  energy, o r  about 

20 kW thermal l o s s  t o  t h e  cryogenic  c o i l s  i n  

a  1000-MW(t) r e a c t o r .  S incc t h i s  energy can 

come f rom any hea t  source, n o t  j u s t  t h e  

b lanke t ,  thermal i s o l a t i o n  i s  ex t remely  impor- 

t a n t .  

8.2.10 Environmental  P r o t e c t i o n  f o r  Ref rac-  

t o r i  es 

The r e f r a c t o r y  meta ls  which a r e  cand idates 

f o r  b l a n k e t  zone m a t e r i a l s  - niobium, vanadium, 

~ r ~ o l y b d e r ~ u ~ ~ ~ ,  t u~ igs ten ,  t i t an ium,  and t o n t a l  um 

- c a n n o t  be used a t  e leva ted  temperatures 

w i t h o u t  a  p r o t e c t i v e  atmosphere. Cover gases 

such as argon may be acceptab le ,  b u t  cons ider -  

i n g  t h e  need t o  min imize a l l  convec t i ve  and 

conduct ion heat  t r a n s f e r ,  a  vacuum background 

i s  a  b e t t e r  s o l u t i o n .  

8.3 THE TECHNICAL DISADVANTAGCS 

The disadvantages and p o s s i b l e  means o f  ' 

c i r cumven t ing  them a r e  l i s t e d  below. 

8.3.1 Large Sur face Areas and Cont inuous Out- 

g a s s i n g  

The d i f f e r e n t i a l  pumping o f  t h e  plasma zone 

and the  remain ing volume min imizes t h i s  problem. 

Simple, h i g h  impedance c losu res  such as s p r i n g  

c l i p s ,  b a f f l e s ,  O-r ings,  o r  metal  bonds can be 

made. These can be i n t r i n s i c a l l y  p a r t  o f  a  

module o r ,  i f  no t ,  can be designed t o  be e a s i l y  

rep laced  o r  removed. 

8.3.2 Components t h a t  "Abhor" Vacuum 

There a r e  components t h a t  f u n c t i o n  more 

e f f e c t i v e l y  i n  a  normal pressure environment. 

These a r e  p a r t s  w i t h  l ow  vapor pressure charac- 

t e r i s t i c s  such as l u b r i c a t e d  bear ings,  c e r t a i n  

p a r t s  o f  i n j e c t o r s  t h a t  may a r c  o r  have corona 

discharge, e t c .  These p a r t s  a r e  o u t s i d e  o f  t h e  

b l a n k e t  s h i e l d  zone and can be i n d i v i d u a l l y  

p ressu r i zed  o r  sealed. Fo r tuna te l y ,  t h e  

number o f  s e n s i t i v e  components i s  sma l l .  

8.3.3 Vacuum Welding I n  S i t u  

W i t h i n  t h e  b lanke t .a rea  w i t h  i t s  nested 

modules, t h e r e  i s  a  problem t h a t  ad jacen t  p a r t s  

o p e r a t i n g  a t  h i g h  temperature may vacuum-fuse 

toge the r  i f  they a r e  i n i t i a l l y  i n  phys i ca l  con- 

t a c t .  The s imp le  c losu res  ment ioned i n  Sect. 

8.3.1 must t h e r e f o r e  i n c l u d e  a  c o a t i n g  o r  ba r -  

r i e r  t h a t  prevents  t h e  weld.  F u r t h e r  s tudy i s  

needed here.  

8.3.4 'I'he Vacuum Bui l d i n g  I t s e l f  

The b u i l d i n g  o f  a  l a r g e  vacuum enc losure 

i s  n o t  t r i v i a l .  However, t h e  approx imate ly  2  m 

o f  concrete  which w i l l  be r e q u i r e d  as a  b i o -  

l o g i c a l  s h i e l d  can a l s o  be used as s t r u c t u r e .  

There can be no s u b s t a n t i a l  d i f f e r e n c e  i n  t h e  

b u i l d i n g  s i z e  r e q u i r e d  f o r  t h e  r e a c t o r  whether 

i t  i s  cons t ruc ted  f o r  use as a  vacuum b u i l d i n g  

o r  used a t  atmospheric pressure.  

8.3.5 C o n s t r u c t i o n  Beyond Cur ren t  Technology 

There may be a  f e a r  o r  r e s e r v a t i o n  t h a t  

vacuum enc losures o f  t h e  phys i ca l  s i z e  needed 

t o  house a  f u s i o n  r e a c t o r  a r e  s t r u c t u r a l l y  



unreasonable o r  v i s ionary .  This  i n c o r r e c t  

assumption i s  countered by the ex is tence of 

t h e  NASA Plum Brook f a c i l i t y .  A cross s e c t i o n  

o f  t h a t  f a c i l i t y  i s  reproduced i n  F ig .  8.1. 

Regis tered on the  f i g u r e  a r e  the approximate 

dimensions o f  the  represen ta t i ve  tokamak 

r e a c t o r  s p e c i f i e d  i n  Table 2.3. C l e a r l y  the 

volume, the  dimensions, and the s h i e l d i n g  

would bc adequate. 

F igure  8.2 shows a p l a n  view o f  the  Plum 

Brook f a c i  1 i t y  i n c l u d i n g  assembly areas, d i s -  

assembiy areas, h o t  ce l  Is ,  o t t i c e s ,  cryogenic 

areas, e tc . ;  everyth ing needed i n  a representa- 

t i v e  way f o r  a f u s i o n  r e a c t o r  f a c i l i t y .  Plum 

Brook, as a t o t a l  f a c i l i t y ,  cos t  %$29 m i l l i o n  

i n  1962 d o l l a r s ,  as ind ica ted  i n  the cos t  

breakdown o f  Table 8.1. I n  terms o f  1976 do l -  

l a r s ,  us ing  an average esca la t ion  r a t e  of 6.5% 

f o r  l a b o r  and mate r ia l s ,  t h e  c o s t  would be 

%$70 m i l l i o n .  A check mark ( 4 )  i n d i c a t e s  

those i tems on t h e  cos t  breakdown uniquely  re -  

l a t e d  t o  the  vacuum system. They amount t o  

about 33% o f  the  t o t a l .  These added costs  

may be more than recovered by savings i n  the 

r e a c t o r  c a p i t a l  cast .  

8.4 THE VACUUM SYSTEM AND PUMPDOWN TIMES . 

As a f i r s t  oppl-oximotion t o  gege t h e  

pumping power, and assuming the NASA Plum 

Brook f a c i l i t y  t o  be more than t h a t  requ i red  

f o r  housing a f u s i o n  reactor ,  then the  vacuum 

system, the  vacuum l e v e l s  a t t a i n a b l e ,  and the 

pumpdown t imes a c t u a l l y  r e a l i z e d  f o r  t h a t  

s t a t i o n  a l l  have encouraging values. A sum- 

mary o f  t h e  c h a r a c t e r i s t i c s  i s  reproduced 

here. 

8.4.1 Vacuum Systeul o f  Plum Brook- 

The basic  vacuum system cons is ts  o f  t h i r t y -  

two 48-in.-diam LN2-baf f led d i f f u s i o n  pumps 

mounted i n  the chamber f l o o r  p lus  two roughing 

t r a i n s  o f  f i v e  stages each. Each roughing 

t r a i n  cons is ts  o f :  

Stage 1 Two 1000-hp Roots Blowers 

Stage 2 One 500-hp Roots Blower 

Stage 3 One 300-hp Roots Blower 

Stage 4 One 200-hp Roots Blower 

Stage 5 Three Beach-Russ r o t a r y  p is ton- type 

mechanical vacuum pumps 

[Approximate t o t a l  power: Roughing = 6 MW, 

D i f f u s i o n  pumping = 1.2 MW, To ta l  = 7.2 MW 

(Author) ]  

8.4.2 Current Achievable Vacuum Level 

Vacuum c a p a b i l i t y :  For c lean chamber 

and spacecraf t  w i t h  LN2 b a f f l e s  opera- 

t i n g  1 H t o r r .  

Current operat ing experience: For h igh 

l e v e l  o f  outgassing from t e s t  support 

equipment and t e s t  a r t i c l e  (no LN2 

b a f f l e s  opera t ing )  - 5 x lo - '  t o  

1 x t o r r .  

Roushing pump performance per t r a i n :  

Stage 1 30,500 C~I I I  

Stage 2 18,300 cfm 

Stage 3 9.900 cfm 

Stage 4 4,720 cfm 

S t a g e 5  2,160cfm 

Typica l  pumpdown times : 

Atmospheric pressure t o  20 t o r r  2 h r  

t o r r  6 h r  

t o r r  10 h r  

8.5 DISCUSSION 

The burden o f  p roo f  as t o  whether the 

vacuum b u i l d i n g  concept i s  a good idea remains 

unresolved. C i t i n g ,  more o r  l e s s  i n  a p h i l o -  

sophical way, the advantages and disadvantages 

serves l u  I r r  i r ~ y  lhe  ided l r ~ t o  focus b u t  solves 

f lul t l l r ly.  

I t  seems t h a t  the re  i s  an economical op- 

pur Lur~ i  t y  t o  t e s t  the concept anel c6mparc i t  

w i t h  competing concepts as f a r  as remote main- 

tenance, assembly, disassembly, gas c o n t r o l ,  

e tc .  are concerned by making use o f  the e x i s t i n g  

Plum Brook vacuum chamber. This  chamher wn111rl 

be s u i t a b l e  f o r  t e s t i n g  i n  whatever way was 

apprnpr ia te -mock-ups o f  po r t ions  o f  a r c a c t o r  - 

a quadrant o r  oc tan t  f o r  instance. The advan- 

tage o f  the f a c i l i t y  i s  t h a t  l e s t i n y  by remote 

means can be done e i t h e r  i n  a vacuum o r  a t  

atmospheric pressure. 
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Table 8 .1 .  Actua l  c o n s t r u c t i o n  cos ts  a t  Plum Brook space power f a c i l i t y  
r e p r e s e n t a t i v e  o f  1962-63 do1 l a r  va lues 

S i t e  development 

E l e c t r i c a l  i n s t a l l a t i o n  

Water, sewer, and gas i n s t a l l a t i o n s  

Steam d i s t r i b u t i o n  system 

Maintenance, assembly, and disassembly area 

Operat iur15 and shop area 

O f f i c e  area 

Con t ro l  area 

S e c u r i t y  and m o n i t o r i n g  area 

Concrete hous ing and s h i e l d  f o r  t e s t  chamber 

av'~luminum c o l d  w a l l  t e s t  chamber - f a b r i c a t i o n  

iAluminum c o l d  w a l l  t e s t  chamber - cryogenic  p i p i n g  641,324.67 

/Aluminum c o l d  w a l l  t e s t  chamber - clean-ing, l eak  
checking, i n s u l a t i o n  398,085.02 

Jcryogenic and o t h e r  coo l  i n g  systems 2,385,292.53 

/Pumping systems 1,659,607.90 

Ins t rumen ta t i on  and c o n t r o l s  1,224,302.02 

Water t rea tmen t  system 153,668.58 

Sa fe ty  and r a d i o a c t i v i t y  m o n i t o r i n g  equipment 

Cranes 

Spec ia l  foundat ions f o r  equipment 100,000.00 

Decontaminat ion equipment 50,000.00 

Mechanized e n t r y  doors 2,562,871.47 

Slavemasters and manipu la tors  1,091.86 

Spec ia l  t o o l s  f o r  shop i n  h o t  area 7,554.89 

Design and eng inee r ing  2,250,468.14 

TOTAL $ 28,845,085.00 
-- 

a J ~ n d i c a t e s  those i tems u n i q u e l y  r e l a t e d  t o  the  vacuum system. 
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9. POWER CONVERSION SYSTEM 

R.  'L. Reid 

9.1 INTRODUCTION 

The thermal power l i b e r a t e d  dur ing the 

burn p o r t i o n  o f  the  representat ive reac to r  u n i t  

i s  2260 MW(t): 1422 MW(t) from therma l i za t ion  

o f  the 14.1-MeV neutrons, 353 MW(t) from 3.5- 

MeV alpha p a r t i c l e s ,  and 485 MW(t) from exo- 

thermic react ions i n  the b lanket .  The burn i s  

est imated t o  be 95% o f  the operat ing cyc le  

(20-min burn, 1 min o f f ) ,  which r e s u l t s  i n  an 

equiva lent  s teady-state power o f  21 50 MW(t) , 
a l l  o f  which i s  assumed t o  be a v a i l a b l e  t o  the  

power conversion system. 

Heat i s  t rans fe r red  from the b lanket  o f  

the reac to r  t o  a steam power cyc le  by way o f  

an in termediate heat t ranspor t  loop. The 

primary purpose o f  t h i s  loop i s  t o  prevent 

p ressur i z ing  the low pressure b lanket  by h igh  

water heat ing conf igurat ion.  Four mois ture 

removal sect ions a re  used i n  the low pres- 

sure tu rb ine  which dra ins t o  the feedwater 
heaters . 

The s a t u r a t i o n  temperature o f  the  steam 

generator was s e t  a t  540°F, which corresponds 

t o  a b o i l e r  pressure o f  963 ps ia.  This  i s  the  

cu r ren t  reg ion  o f  operat ion f o r  steam generators 

f o r  nuclear app l i ca t ions .  Two hundred degrees 

o f  superheat were assumed, which r e s u l t s  i n  a 

steam e x i t  temperature of 740'~. The steam 

generator i n l e t  feedwater temperature was se t  

a t  377 '~  i n  order  t o  mainta in  a minimum tempera- 

t u r e  d i f f e r e n c e  o f  1 0 ' ~  a t  the "p inch p o i n t "  

w i t h i n  the  steam generator, i . e . ,  a t  the  b o i l e r  

i n l e t  sect ion.  F igure 9.1 shows t h e  tempera- 

tures o f  the water and molten s a l t  w i t h i n  the 

pressure steam should there be a tube leak i n  steam generator.  

the steam generator.  The coolant  f o r  both the A condenser pressure o f  2.5 i n .  o f  mercury 

in termediate heat t ranspor t  loop and the i n  conjunct ion w i t h  a mechanical d r a f t  coo l ing  

b lanket  i s  a  molten s a l t  composed o f  sodium tower was se lected.  This  corresponds t o  a con- 

and potassium n i t r a t e s .  denser s a t u r a t i o n  Vemperature o f  108.7'~. Cool - 
The i n i t i a l l y  se lected b lanket  coolant  i n -  i n g  tower water f l o w  was determined based on a 

l e t  and e x i t  temperatures were 500 '~  and range o f  20°F, a  wet bu lb  temperature o f  70°F, 

900°F; these .values were p r i m a r i l y  se t  by the 
and an approach t o  the wet bu lb  o f  10'~. 

f reez ing  and decomposition temperatures o f  

the s a l t .  The temperature d i f fe rences  across 

the pr imary loop t o  the in termediate loop heat 

exchanger were se t  a t  5 0 ' ~  on the tior s ide  and 

1 8 ' ~  on the c o l d  s ide .  The temperatures o f  

the molten s a l t  en te r ing  and e x i t i n g  the steam 

generator i n  the in termediate loop were there-  

f o r e  8 5 0 ' ~  and 482O~, respec t i ve ly .  

9.2 HEAT BALANCE 

A heat ba'lance was determined f o r  the 

steam cyc le  f o r  2150 MW(t) de l i ve red  t o  the  

steam generator by rn6l ten s a l t  a t  8 5 0 ' ~  i n l e t  

and 4 8 2 ' ~  e x i t  temperatures. The steam t u r -  

b ine  ' se lec ted  i s  an 1800-rpm tandem compound, 

two-f low h igh  pressure sect ion, fou r - f l ow low 

pres'sure sect ion, w i t h  f i v e  stdges o f  feed- 

A heat balance f o r  t h i s  cyc le,  generated by 

the ORCENT computer code, shows a n e t  thermal 

e f f i c i e n c y  o f  approximately 35%. A heat  balance 

diagram (F ig .  9.2) shows the temperatures, pres- 

sures, f l o w  rates,  and e x t r a c t i o n  arrangement 

f o r  t h i s  cyc le.  An o v e r a l l  energy schematic f o r  

the power conversion system (pr imary loop, i n -  

termediate loop, and secondary loop)  i s  shown i n  

F ig.  9.3. The steam cyc le  design parameters a r e  

presented i n  Table 9.1. 

The heat balance presented i s  representa- 

t i v e  b u t  n o t  necessar i l y  optimum. Trade s tud ies  

t o  evaluate the  e f f e c t  o f  coolant  temperatures 

on b lanket  design and p l a n t  e f f i c i e n c y  should 

be performed. Also v a r i a t i o n s  t o  the  steam 

cyc le  - such as i n c l u d i n g  steam reheaters be- 

tween the  h igh  pressure and low pressure 

tu rb ines  - should be evaluated. 
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Fig.  9.1. Steam generator coolant  temperatures. 

9.3 ENERGY STORAGE SYSTEM 

The opera t ing  cyc le  f o r  t h e  representa- 

t i v e  r e a c t o r  u n i t  u t i l i z e s  a 20-min burn 

fo l lowed by a 1-min downtime t o  pump ou t  and 

recharge the  t o r u s  and charge the  ohmic heat-  

i n g  t ransformer.  This c y c l i c  o r  pulsed mode 

o f  opera t ion  presents two problems: the f i r s t  

i nvo lves  the  steam tu rb ine ,  f o r  which the  

steam i n l e t  temperature and pressure must be 

mainta ined constant  dur ing the e n t i r e  cyc le ;  

the  second concerns min imiz ing thermal c y c l i n g  

i n  the  b lanke t  coo l ing  system and s t r u c t u r e .  

Supplying constant  steam cond i t i ons  t o  t h e  

t u r b i n e  t h r o t t l e  i s  imperat ive.  B lanket  l i f e  

w i l l  be increased i f  thermal c y c l i n g  i s  

minimal;  however, min imiz ing thermal c y c l i n g  

i s  n o t  a b s o l u t e l y  essen t ia l  t o  the  opera t ion  

o f  the  p l a n t .  

To p rov ide  constant power t o  t h e  steam 

t u r b i n e  f o r  t h i s  i n t e r m i t t e n t  plasma operat ion,  

@ 0 0 0 

a coolant  storaqe system i s  proposed, The p r i n -  

c i p l e  employed i s  storage o f  the  coolant  i n  the 

i i i te t  lllecl i a l e  luup a1  a 11 i y l ~  1e111per.alur.e d u t S l ~ l y  

the burn. This  h o t  coolant  (molten s a l t )  i s  

then in t roduced i n t o  the c i r c u i t  i n  a  c o n t r o l l e d  

manner dur ing  the  o f f  p a r t  o f  the cyc le .  An 

equal volume o f  the  s tored ho t  s a l t  i s  s tored i n  

a tank a f t e r  i t  has passed through the  steam 

gQliQl~blur.. Tile c u u l d r ~ l  ~ U I I I ~  I r l  the I r~Cer l l~edlate 

loop runs a t  a  constant speed so t h a t  the steam 

generator I s  suppl ied w i t h  a constant heat i n -  

put ,  wtilch ,Is 99% o f  t h c  thcrmal power bclng 
produced. The opera t ion  i s  schemat ica l ly  de- 

p i c t e d  i n  F ig.  9.4 and i s  described as fo l lows .  

One o f  th ree  i d e n t i c a l  coolant  loops f o r  

the b lanket  i s  shown i n  the f i g u r e .  The coo lan t  

f l ow r a t e  i s  .about 2700 f t3  per minute, and each 

o f  the t w o  storage tanks w i l l  ho ld a l i t t l e  over 

2700 ft3. The c o l d  storage tank i s  f u l l  o f  c o l d  

s a l t  when the plasma burn i s  i n i t i a t e d .  When the 

s a l t  temperature from the  in termediate heat  
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F i g .  9.2.  Heat ba lance diagram. 
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F i g .  9.3.  O v e r a l l  energy schematic f o r  t h e  power conve rs ion  system. 



Table 9.1. Representative reactor steam cycle design parameters 
-- -. 

Steam generator 

Thermal power 

Molten s a l t  i n l e t  temperature 

Molten s a l t  e x i t  temperature 

Molten s a l t  flow ra te  

850°F 

482'~ 

-62 x lo6 lbslhr 

Feedwater i n l e t  temperature 377'~ - - 

Steam ex i t  temperature 

Boiler pressure 

Feedwater heaters 

Number of heater stages 

In le t  temperature to  heaters 

Exit temperature from heaters 

Condenser 

Flow ra te  

Pressure 
Temperature 

High pressure turbine (2-flow) 

In le t  temperature 

In1 e t  pressure 

In le t  enthal py 

Flow ra t e  

Low prcssurc turbine (4-flow) 

In1 e t  temperature 

I n l e t  pressure 

In le t  enthai py 

Flow ra t e  

Feedpuy turbine 

In1 e t  pressure 

Exit pressure 

In lc t  cnthalny 

Flow ra te  

Power output 

Cooling tower (mechanical d r a f t )  

ncsi  gn  wet bill b temperature 

Approach to wet bulb 

Range 

Flow ra t e  

Overall 

Generator output 

Net. thermal efficiency 

740°F 

963 psia 

7.3 x lo6 lbslhr 

1.23 psia 

108.7'~ 

963 psia 

1353.9 Btu/l b 

7.3 x lo6 lbslhr 

41 OOF 

200 psia 

121G.4 Btu/lb 

6.8 x lo6 lbs lhr  

197.9 psia 
1 5 p r i g  

1216.4 Btu/lb 

11 1,400 1 bs/hr 

8.4 MW 

1 O'F 

20°F 

239 x lo6 lbslhr 
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F i g .  9.4. Energy s to rage  system schematic.  

exchanger, Tc, reaches o p e r a t i n g  temperature,  

va l ves  V 1  and V4  ( t h e  va l ves  i n t o  and o u t  o f  
' 

t h e  h o t  and c o l d  s to rage  tank,  r e s p e c t i v e l y )  

a r e  opened p r o p o r t i o n a l l y  t o  p e r m i t  5% o f  t h e  

f l o w  through t h e  i n t e r m e d i a t e  heat  exchanger 

t o  f l o w  o u t  o f  t h e  c o l d  s to rage  tank  and i n t o  

t h e  h o t  s to rage  tank .  The f l o w  o u t  o f  t h e  h o t  

s to rage  tank  th rough t h e  e x i t  va l ve  V 2  and 

i n t o  t h e  c o l d  s to rage  tank  th rough  i n l e t  v a l v e  

V 3  i s  r e g u l a t e d  by t h e  temperature  o f  t h e  s a l t  

go ing  i n t o  t h e  steam genera tor ,  TS, t o  h o l d  

t h i s  temperature  cons tan t  a t  t h e  des ign  va lue.  

Whi le  t h e  c o o l a n t  pump i n  t h e  i n t e r m e d i -  

a t e  loop,  P2,  runs  a t  cons tan t  speed, t h e  

pump i n  t h e  p r imary  loop,  PI, i s  capab le  o f  

r unn ing  a t  v a r i a b l e  speed i n  o r d e r  t o  reduce 

the c o o l a n t  f l o w  throuqh t h e  b l a n k e t  when t h e  

plasma i s  o f f .  The speed o f  pump PI i s  con- 

t r o l l e d  by t h e  temperature  d rop  across  t h e  

b l a n k e t  t o  h o l d  t h i s  AT as n e a r l y  c o n s t a n t  as 

p o s s i b l e  and m in im ize  t h e  thermal  c y c l i n g  o f  t h e  

b l a n k e t .  

9 .4  CONCLUSIONS 

1 .  For  t h e  temperature  range o f  t h e  m o l t e n  

s a l t  r e a c t o r  c o o l a n t  ( i n 1  e t  temperature  

-500°~, e x i t  temperature  ~ O O ~ F )  ,' a 

n e t  thermal  e f f i c i e n c y  i n  t h e  range o f  

35% can be achieved.  

2 .  The hea t  ba lance f o r  t h e  power conver -  

s i o n  system i s  r e p r e s e n t a t i v e  b u t  was 

n o t  op t im ized .  

3 .  An energy s to rage  system, c o n s i s t i n g  

p r i m a r i l y  o f  t anks  t o  s t o r e  h o t  mo l ten  

s a l t  c o o l a n t  d u r i n g  t h e  b u r n  and t o  

r e l e a s e  t h e  h o t  s a l t  d u r i n g  t h e  down- 

t ime  o f  t h e  tokamak c y c l e ,  appears 

f e a s i b l e  as a  means o f  p r o v i d i n g  

cons tan t  hea t  i n p u t  t o  t h e  steam 

gene ra to r .  
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APPENDIX 

DESCRIPTION OF THE ECONOMICS MODEL 

R. L. Reid 

A. l  INPUT PARAMETERS A.2 PLASMA SIZE SCALING MODEL 

The i n p u t  parameters employed i n  the eco- The f o l l o w i n g  equations are employed i n  t h e  

nomics model are, g iven i n  Table A.1. Geometri- plasma paraineter s c a l i n g  model. The equations 

c a l  r e l a t i o n s h i p s  a re  shown i n  F ig .  A.1. f o r  plasma rad ius  and f i e l d  on a x i s  are based on 

trapped i o n  mode s c a l i n g  and are normalized t o  

Tab1 e A. 1 . Parameters ' requi red t h e  TNS plasma parameters.1 Also, the plasma 
f o r  economics model temperature i s  h e l d  constant a t  t h e  TNS value. 

Parameter Symbol S (plasma shape f a c t o r )  = 

Neutron wa l l  loading, MW/m 
2 

a (plasma radius,  m) = 
29.06 00e4 a0a6 

Average plasma beta 0 ~ 0 . 6  ~ ~ 1 . 4  20.4 

Aspect r a t i o ,  Ro/a A 

Di stance from plasma edge t o  
TF c o i l ,  m A 

Space between plasma edge and 
f i r s t  w a l l ,  m %o 

Blanket  thickness, m . A~ 

0.524 ~ 0 . 4  ~ 0 . 6  ~ 0 . 2 5 ~ 0 . 1  
BT ( f i e l d  on ax is ,  T) = 

00.6 a0.4 
P 

Ro (major rad ius,  m) = aA 

P (thermonuclear power, MW) = 4n2a2ASL 

/ \ 

Space between b lanket  and 
Po (thermal power, MW) = P(%) 

sh ie ld ,  m A~ 

b (plasma he igh t ,  m) = aa 
Sh ie ld  th ickness,  m P 

Space bet;weeti s h i e l d  and TF 
c o i l  along the  major rad ius,  m AE 

Plasma e longat ion,  b/a a P 

TF c o i l  e longat ion o% 

V e r t i c a l  d is tance from plasma 
edge t o  TF c o i l ,  m - A: 

E f f e c t i v e  Z o f  plasma Z 

1. TNS Engineehing Phoghub Repoht 60h .the 

Month  06  Aught 1 9 7 6 ,  WFPS-TN-025, Westing- 

house E l e c t r i c  Corp., Fusion Power Systems 

D iv is ion ,  P i t t sburgh ,  Pennsylvania (Septem- 

ber 1976). 

A.3 COMPONENT COST SCALING MODEL 

The f o l l o w i n g  equations are employed i n  the  

cos t  s c a l i n g  model. Refer t o  F i g .  A. l  f o r  

geometr ical r e l a t i o n s h i p s  . 
'input e i t h e r  aTF o r  Av. 
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I 

F ig .  A. l  S i m p l i f i e d  tokamak geometry. 

B l  an k e t C 0 9  -- as ( s h i e l d  r a d i u s ,  m) = aB + A~ + A~ 

Cost  sca les  as t h e  b l a n k e t  volume. 
bS ( s h i e l d  v e r t i c a l  r a d i u s ,  m) = bB + Ag + AA 

aR ( b l a n k e t  r a d i u s ,  m) = a  + AsO 

V s  ( s h i e l d  volume, m3) = RoaSAS x 
bB ( b l a n k e t  v e r t i c a l  rad ius ,  m) = b  t As, 

[I .. 4. + 4 (19.74) 
VB ( b l a n k e t  volume, m3) = RoaBAB x 

L J 

CB ( b l a n k e t  cos t ,  8 )  = 63,100 (vB)  

S h i e l d  Cost  

Cost  sca les  as t h e  s h i e l d  volume. 

Cs ( s h i e l d  cos t ,  8 )  = 51,050 (VS)  

T o r o i d a l  F i e l d  C o i l  Cost 

Cost sca les  as t h e  s t o r e d  energy t o  t h e  0.8 

power. The T f  c o i l  e l o n g a t i o n ,  aTF, i s  used as 

the I l l p u t  va lue  or I S  Ca'lCulated as 



b + Av 

uTF = , i f  Av i s  inpu t .  T r i t i u m  Handling System Cost 

Cost scales as the  surface area o f  the 
Rc ( c o i l  rad ius,  m) = a + A torus.  

X (geometry f a c t o r )  = 1.0 - 41.0 - (Rc/Ro) 2 C~ ( u n i t  cost  of t r i t i u m  handl ing system, $/MW) 

2 3 
E (s to red  energy, MJ) = 15.7 BT Ro oTF X - 76,800 

L 

CTF (cost  o f  TF c o i l s ,  $ )  = 43,000 E 0 s 8  CT ( cos t  o f  t r i t i u m  handl ing system, $ )  

Polo ida l  F i e l d  C o i l  Cost 

Cost scales as c o i l  volume which i s  

approximated as the  major rad ius,  Ro, times 

the plasma cur ren t ,  I ,  assuming a constant 

cu r ren t  dens i t y  i n  the  c o i l  conductor. 

I (plasma cur ren t ,  A) - -A + 
aBT (I+ u2) 

'PF B ~ S  ( u n i t  cos t  PF, $/MW) = 77,850 

L~~ CpF ( cos t  o f  PF c o i l s )  = x P 

Polo ida l  F i e l d  D r i v i n g  System (PFDS) Cost 

Cost scales as plasma v o l t  seconds, L I .  

L (plasma inductance, henr ies ) % Ro ( I n  8 x A 

- 1.75) 

Cp'DS ( u n i t  cos t  Pms,  $/MW) = 

L~~~~ CpFDS ( cos t  o f  PFDS, $ )  = 7 

Vacuum System Cost 

Cost scales as t h e  sur face area o f  the 

to rus .  

Cv p ( u n i t  cos t  o f  vacuum system, $/MW) 

- 58,400 
L 

Cv C (cos t  o f  vacuum system, 8 )  = x P v 

Neutra l  Beam System Cost 

Cost scales as the  thermonuclear power o f  

the plasma. 

Cbeam (cos t  o f  beams) = 87 x P.x  1000 

Turbine System Cost 

Cost scales as the thermal power t o  the 0.8 

power. 

Ctur ( cos t  o f  t u r b i n e  system, $ )  

Conventional E l e c t r i c a l  System Cost 

Cost scales as t h e  thermal power, t o  the 0.6 

power. 

CCE ( cos t  o f  conventional e l e c t r i c a l  system, $ )  

Heat Transport System Cost 

Cost scales a t  the  thermal power. 

CHT ( cos t  o f  heat t ranspor t  system, $ )  

I&C Cost 

Cost i s  he ld  constant.  



CIAC (cos t  o f  I&C, $) = 12,000,000 ( f u s i o n  A  .4 DUTY FACTOR MODEL 

r e l a t e d )  + 13,000,000 (PWR r e l a t e d )  

A u x i l i a r y  and Maintenance Cost 

Cost i s  h e l d  constant.  

CAhM (cos t  o f  a u x i l i a r y  and .maintenance, $ )  

= 30,000,000 ( f u s i o n  r e l a t e d )  + 24,000,000 

(PWR r e l a t e d )  = 54,000,000 

B u i l d i n g  Cost 

Cost o f  t h e  vacuum containment b u i l d i n g  

i s  h e l d  constant.  The o t h e r  b u i l d i n g s  sca le  

as t h e  thermal power t o  t h e  0.8 power. 

Cbld ( c o s t  o f  bu i ld ings ,  $ )  = 70,000,000 + 

Reactor Cost 

CR ( c o s t  o f  reac to r .  $ )  = CB + Cs  <I. CTF + CpF 

+ C v  + 0.33 Cbeams 

E l e c t r i c a l  P lan t  Cost 

cEP ( t o t a i  c a p i t a i  cost, $ )  = CpFDS + 0.67 Cbeams 

* 'CE 

Tota r .PJ.an.t. Cock 

' t o t a l  ( t o t a l  c a p i t a l  cost ,  $ )  = CR + CEp + CT 

U n i t  Cost 

h o t a l  UC [ u n i t  cost ,  $/kW(t)]  = TT 

The f o l l o w i n g  equations a re  employed i n  

the  duty  f a c t o r  model. Refer t o  F ig .  A. l  f o r  

geometr ical r e l a t i o n s h i p s .  

Assumptions 

(1)  The plasma sa fe ty  fac to r ,  q, i s  con- 

s t a n t  and equal t o  the  TNS value. 

(2 )  The plasma temperature i s  constant and 

equal t o  t h e  TNS value. 

(3)  The c u r r e n t  densi t.y i n  t h e  TF c o i l ,  J, 

i s  18 x l o 6  A/m2 (1800 A/cm2) 

' 2  a (TF c o i l  winding cross-sect ional  area, m ) 

tw ( r a d i a l  th ickness o f  winding, m) 

s t ress  (hoop s t ress  i n  TF c o i l ,  p s i )  

t, ( r a d i a l  th ickness of case, m) 

tTF ( r a d i a l  th ickness o f  TF c o i l ,  m) = tw + tc 

ROH ( rad ius o f  OH c o i l ,  m) = Ro - Rc - tTF 

RR ( rad ius  o f  bore, m) = ROH - 0.31 

A$ ( f l u x  swing c a p a b i l i t y  o f  OH c o i l ,  V-sec) 

I (plasma cur ren t ,  A) 

J 

Lp (plasma inductance, henr ies)  



R (plasma r e s i s t a n c e ,  R )  

~ @ - 0 . 2 5 L  I 
T (burn t i m e ,  min)  = R I  B rn 

' B  
D ( d u t y  f a c t o r )  = 7 TB + . 

PA (average thermal power, MW) = Po D 

L t o t a l  
UCA [averase u n i t  c o s t ,  $ / k W ( t ) ]  = PA 1000 
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