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PHYSICS OF REACTOR SAFETY 

Quar t e r ly  Report 
July-September 1976 

I. ABSTRACT 

Th i s  q u a r t e r l y  p rog res s  . r e p o r t  summarizes work done i n  
Argonne National  Labora to ry ' s  Applied Phys ics  Div is ion  and 
Components Technology Div i s ion  f o r  t h e  Div i s ion  of Reactor  
S a f e t y  Research of t h e  U. S. Nuclear Regulatory Commission 
dur ing  t h e  months of July-September 1976. The work i n  t h e  
Applied Physics  D iv i s ion '  i nc ludes  r e p o r t s  on r e a c t o r  
s a f e t y  r e s e a r c h  and t e c h n i c a l  coo rd ina t ion  of t h e  RSR 
s a f e t y  a n a l y s i s  program by members of t h e  Reac tor  Safe ty  
Appra i sa l s  Group, Monte Carlo a n a l y s i s  of s a fe ty - r e l a t ed  
c r i t i c a l .  assembly experiments by members of t h e  Theore t i ca l  
Fas t  Reactor Phys ics  Group, and planning of.DEMO sa fe ty -  
r e l a t e d  c r i t i c a l  experiments by members of t h e  Zero Power 
Reactor  (ZPR) Planning and Experiments Group. Work on . 
r e a c t o r  co re  thermal-hydraul ic  performed i n  t h e  Components 
Technology Div i s ion  is  a l s o  included i n  t h i s  r e p o r t .  

TECHNICAL COORDINATION - FAST REACTOR 
SAFETY ANALY S IS 

(A2015) 

11. SUMMARY 

Fur the r  p i p e  r u p t u r e  s t u d i e s  f o r  t h e  CRBR have been c a r r i e d  o u t  u s ing  
t h e  DEMO and SAS codes wi th  co r r ec t ed  i n p u t  parameters  i n  DEMO. General 
t r e n d s  i n  t h e  r e s u l t s  a r e  s i m i l a r  t o  . those  observed previous ly .  

The r eac t iv i ty  c a l c u l a t i o n s  i n  t h e  CLAZAS (c l ad  motion) module of t h e  
SAS code have been checked and found a c c u r a t e  t o  about 10%. 

The e f f e c t  of us ing  i s o t o p i c  f i s s i o n  and c a p t u r e  ene rg i e s  r a t h e r  t h a n . a  
lumped t o t a l  energy per  f i s s i o n .  on subassembly power f a c t o r s  i n  t h e  CRBR has 
been eva lua t ed .  It was concluded t h a t  d i f f e r e n c e s  i n  co re  subassembly power 
f a c t o r s  between those  c a l c u l a t e d  by u s  and those  i n  t h e  CRBR PSAR a r e  no t  due 
t o  t h e  above e f f e c t  bu t  t o  reasons  g iven  previous ly .  For t h e  r a d i a l  b lanket  
t h e  e f f e c t  of u s ing  i s o t o p i c  ene rg i e s  of f i s s i o n  and c a p t u r e  on subassembly 
power f a c t o r s  i s . l a r g e r ,  but  t h i s  connot be eva lua ted  as a  cause of 

v . d i f f e r e n c e s  between our c a l c u l a t i o n s  and those  i n  t h e  CRBR PSAR because .of  t h e  
i n c o n s i s t e n t  burnup p a t t e r n  assumed i n  t h e  PSAR. 

, Major r e v i s i o n s  were accomplished i n  t h e  hydrodynamics r o u t i n e s  i n  POOL 

t o  d e a l  wi th  t h e  cont inuing  problems caused by t h e  development of incompres- 
s i b l e  r eg ions .  These inc lude ,  a  D i s t r i b u t e d  Pa r t i c l e - in -Ce l l  technique i n  
which t h e  mass of a  p a r t i c l e  i s  d i s t r i b u t e d  o v e r ' a  l o c a l i z e d  volume and energy 

g was implemented; a n  approximate technique  of decoupl ing  t h e  a x i a l  and r a d i a l  
motions f o r  incompress ib le  c e l l s  i s  be ing  examined. ' ' 



An improved p o i n t  k i n e t i c s  scheme i n  FX2 b e t t e r  a b l e  t o  d e a l  wi th  gross  
m a t e r i a l  motions i s  be ing  developed. I n  t h i s  scheme t h e  r e a c t i v i t y  r a t h e r  
t h a n  t h e  f l u x  i s  e x t r a p o l a t e d  t o  p r e d i c t  f u t u r e  behavior .  

Seve ra l  a d d i t i o n a l .  improvements have been made i n  EPIC. Parameter 
s t u d i e s  and a d d i t i o n a l  comparisons wi th  PLUTO a r e  under way. 

The KACHINA code has  been implemented on t h e  I B M  370 195. 

111. STUDY OF BASIC PROBLEMS I N  ACC.IDENT ANALYSIS 

A .  I n i t i a t i n g  Condi t ion  V a r i a t i o n s  

1. P ipe  Rupture S t u d i e s  f o r  t h e  CRBR u s i n g  DEMO and SAS 
(H. H. Huwe l  aud Kaliulul lah)  

The c a l c u l a t i o n s  r epo r t ed  i n  t h e  January-March Phys ics  of Reactor  
Q u a r t e r l y  Report,  ANL-76-72, have been redone t o  c o r r e c t  an incons i s t ency  . 

i n  t h e  i n p u t  parameters.  The r e s u l t s  a r e  q u a l i t a t i v e l y  ' s imi la r  t o  t h e  
p rev ious  ones.  The minimum i n  t h e  coo lan t  f low through f o r  a double-ended 
r u p t u r e  a t  t h e  CRBR i n l e t  nozz l e  is now found t o  b e  26% of t h e  o r i g i n a l  va lue ,  
i n  agreement w i th  o t h e r  c a l c u l a t i o n s .  l '  A r ev i sed  paramet r ic  s tudy  of 
maximum coo lan t  . temperature v s .  p in  power, i n i t i a l  f low r a t e ,  and. gap 
conductance is presented  in Fig.  1: A r e v i s e d  comparison between DEMO and SAS 
c a l c u l a . t i d n s  is  presented  i n  Table I. The DEMO3 model2 u s e s  updated inpu t  
parameters  f o r  t h e  CRBR as expla ined  i n  Ref. 2.  h r t h e r  d e t a i l s  of t h e s e  
c a l c u l a t i o n s  may be found i n  Ref. 3 .  

2 .  Clad Motion R e a c t i v i t y  C a l c u l a t i o n  by t h e  CLAZAS Routine of 
t h e  SAS Code (Kalimullah) 

Because of pre l iminary ,  r e s u l t s  ( l a t e r  found i n c o r r e c t )  showing 
s i g n i f i c a n t  d i f f e r e n c e s  i n  feedback c a l c u l a t i o n s  between t h e  S A S ~  and 1 x 2 ~  
codes ,  t h e  c l a d  motion r e a c t i v i t y  c a l c u l a t i o n  i n  t h e  CLAZAS r o u t i n e  of t h e  
SAS code was checked by a  hand c a l c u l a t i o n  f o r  one c a s e  us ing  t h e  " E x p l i c i t  
Clad Motion Edi t"  p r i n t e d  ou t  by t h e  r o u t i n e  and equal  p a r t s  and t h e  worths of 
t h e s e  p a r t s  were eva lua t ed  by l i n e a r  i n t e r p o l a t i o n  a s  done i n  t h e  CLAZAS 
r o u t i n e .  The had c a l c u l a t i o n  gave a  n e t  c l a d  worth of 22C compared t o  2 0 ~  
c a l c u l a t e d  by t h e  rout i i le .  I n  o t h e r  hand c a i c u l a t  ioifs6 s i m i l a r  underes t  imates  
o f .  abou t  10% by t h e  CLAZAS- r o u t i n e ,  have been found. I n  view of t h e ,  
approximations made i n  c a l c u l a t i n g  t h e  motion. of the,  c l a d  i t s e l f  i n  t h e  CLAZAS 
r o u t i n e ,  t h i s  e r r o r  of 10% i n  c a l c u l a t i n g  t h e  worth of t h e  r e d i s t r i b u t e d  c l a d  
is  n o t  of much concern,  Of courae ,  when an  improvkd model of t r e a t i n g  t h e  
motion of t h e  c l a d  becomes a v a i l a b l e ,  t h i s  underes t imate  w i l l  become 
s i g n i f i c a n t  enough t o  c o r r e c t .  



Fig. I. Maximum Coolant T~mpera tu re  Obtained f o r  
a Double-Ended Rupture a t  t h e  I n l e t  
Nozzle f o r  Various Maximum Pin Power 
Densi t ies  Fuel-Clad Gap Conductances 
(watts/cm3-'c) and Coolant Mass . . . 

Veloc i t i e s  Go. The higher  and lower 
p in  power d e n s i t i e s  correspond t o  DEMO 
hot and peak channels .  GO i s  418, 466 
and 487 gm/cm2-sec f o r  ho t ,  peak, and 
average channels r e spec t ive ly .  

5 800 
I T R I  P Q  0.0 s 



TABLE I. Comparison o f  SAS and DEMO3 P in  Heat T rans fe r  
f o r  Rupture a t  i n l e t  Nozzle 

Channel Average Peak Hot 

. G ~ ,  gms/cm2-sec 

Gap conductance, 
w a t t ~ { ~ m ~ - O ~  

Peak p i n  power, 
kw/m 

Steady-state Coolant 

Core O u t l e t  Temp, O C  
(a) 

SAS 
DEMO3 
DEMO3 adj.. t o  

SAS N a  Cp. 

Maximum Coolant  

Temp.. O C  
(a)  

SAS , 

~mo3 
DEMO3 ' ad j . t o  

SAS Na .Cp . 
s t e a d y - s t a t e  Average 
Fue l  Temp, O C  

SAS 
DEMO3 

Maximi lm A V P ~ R ~ P .  
Fuel Temp. O C  , 

SAS 1064 134 2 1613 
DEMO3 . 1093 1397 1800 

( a ) ~ o o l a n t  i n l e t  temperacure 399 'C . Boil ing a t  950'12 
suppressed.  , . 



3.  E f f e c t  of I s o t o p i c  F i s s i o n  and Capture  Energ ies  on Subassembly 
Power F a c t o r s  i n  t h e  CRBR a t  t h e  Beginning of Equil ibr ium 
Cycle 14 ( ~ a l i m u l l a h )  

The subassembly power f a c t o r s  r epo r t ed  i n  Ref. 7  were c a l c u l a t e d  us ing  
our  s tandard  27-group c ros s - sec t ions  based on ENDFIB Version I11 d a t a  w i th  an  
isotope-independent  average energy per  f i s s i o n  event .  I s o t o p i c  f i s s i o n  and 
c a p t u r e  energy d a t a  was not  used .  Core subassembly power f a c t o r s  were r e -  
ported t o  d i f f e r  from t h e  v a l u e s  r epo r t ed  i n  t h e  PSAR' Fig. 4.3-7 by up t o  
3.2% h ighe r  t o  4.5% lower,  most of t h e  l a r g e r  d i f f e r e n c e s  being i n  t h e  o u t e r  
c o r e  subassemblies .  With a  view t o  i n v e s t i g a t e  t h e  reasons  f o r  t h e s e  r a t h e r  
s i g n i f i c a n t  d i f f e r e n c e s ,  t he  e f f e c t  of u s ing  i s o t o p i c  f i s s i o n  and c a p t u r e  
energy d a t a  on subassembly power f a c t o r s  was analyzed.  F igu re  2 shows t h e  
subassembly power f a c t o r s  and Fig .  3  t h e  subassembly peak-to-average power 
d e n s i t y  r a t i o s  Ear-this c a l c u l a t i o n .  

I n  o rde r  t o  s tudy  t h e  e f f e c t  of i s o t o p i c  f i s s i o n  and c a p t u r e  ene rg i e s ,  
ano the r  27-group c ros s - sec t ion  s e t  based on ENDFIB Version I V  d a t a  was used 
because t h e  former c ross -sec t ion  s e t  d i d  no t  c o n t a i n  i s o t o p i c  f i s s i o n  and 
c a  t u r e  energy d a t a .  This  c ros s - sec t ion  s e t  was a l s o  generated us ing  t h e  ' K MC -2 and SDX codes9 f o r  t h e  s p e c i f i c  cornposit i on  and geometry of t h e  CRBR. 
Using t h e  Version I V  c ros s - sec t ion  s e t ,  two c a l c u l a t i o n s  of r a d i a l  power 
d i s t r i b u t i o n ,  one us ing  a n  average  energy per  f i s s i o n  event  and t h e  o t h e r  wi th  
i s o t o p i c  f i s s i o n  and c a p t u r e  ene rg i e s ,  were done. F igure  4 shows t h e  
subassembly power f a c t o r s  u s ing  a n  average  energy per f i s s i o n  event ,  and 
Fig .  5 shows t h e  same us ing  i s o t o p i c  f i s s i o n  and c a p t u r e  ene rg i e s .  F igu re  6 
shows t h e  subassemblywise rad ia l ly-averaged  power d e n s i t i e s  a t  t h e  midheight  
of t h e  r e a c t o r  core  computed us ing  i s o t o p i c  f i s s i o n  and cap tu re  ene rg i e s .  It 
should be  noted  t h a t  when a n  average  energy per  f i s s i o n  event  i s  used t h e  
energy pe r  c a p t u r e  i n  a  f i s s i l e  i s o t o p e  can  s t i l l  be accounted f o r  i n  t h e  
a n a l y s i s  by lumping i t  with t h e  energy per  f i s s i o n  event .  What i s  n o t  amounted 
f o r  is  t h e  energy per  c a p t u r e  i n  coo lan t ,  s t r u c t u r a l  and o t h e r  i s o t o p e s ,  and 
t h e  i s o t o p i c  v a r i a t i o n  of e n e r g i e s  per  c a p t u r e  and per  f i s s i o n .  

Comparison of subassembly peak-to-average power d e n s i t y  r a t i o s  between 
c a l c u l a t i o n s  wi th  and without  i s o t o p i c  f i s s i o n  and cap tu re  e n e r g i e s  (done with 
t h e  Version I V  c ros s - sec t ion  s e t )  shows l a r g e s t  d i f f e r e n c e s  of about  4% i n  row 
10 of t h e  r a d i a l  b l anke t .  The d i f f e r e n c e s  i n  row 11 a r e  smal le r  and those  i n  
t h e  outermost row of t h e  r a d i a l  b lanket  (row 12)  a r e  n o t  more than  about  two 
t e n t h s  of a  pe rcen t .  Subassembly peak-to-average power d e n s i t y  r a t i o s  wi th  

4 i s o t o p i c  f i s s i o n  and c a p t u r e  e n e r g i e s  a r e  smal le r  than  those wi thout ,  i n  row 
10  and l a r g e r  i n  row 12 .  The subassembly peak-to-average power d e n s i t y  r a t i o s  
shown in Fig.  3. ( c a l c u l a t e d  us ing  t h e  Version I11 cross - sec t ion  s e t  wi thout  
i s o t o p i c  f i s s i o n  and c a p t u r e  e n e r g i e s )  a r e  c l o s e r  t o  t h e  va lues  obta ined  us ing  
t h e  Version I V  c ros s - sec t ion  s e t  wi thout  i s o t o p i c  f i s s i o n  and c a p t u r e .  e n e r g i e s  
than  t h o s e  wi th ,  t h e  v a l u e s  i n  F ig .  3  being no t  more than  a  pe rcen t  l a r g e r  
than t h e  former v a l u e s  i n  row 10  of t h e  r a d i a l  b lanket .  I n  the c o r e  r eg ion  
t h e  subassembly peak-to-average power d e n s i t y  r a t i o s  obta ined  from a l l  t h e s e  
t h r e e  c a l c u l a t i o n s  d i f f e r  o n l y  s l i g h t l y  by n o t  more than  a  couple of t e n t h s  of  
a  pe rcen r .  

Core subassembly power f a c t o r s  c a l c u l a t e d  us ing  t h e  Version I V  c ross -  
s e c t i o n  s e t  wi th  i s o t o p i c  f i s s i o n  and c a p t u r e  ene rg i e s ,  shown i n  F ig .  5 a r e  up 
t o  0.9% higher  and up t o  0.7% lower than  those  computed us ing  t h e  same 



Fig. 2 

Subassembly Power Factors  f o r  
the  LWR-Grade Plutonium Fueled 
Clinch River Breeder Reactor a t  
the  Beginning of  Equilibrium 
Cycle 14.  

Fig. 3 . . 

Subassembly Peak-to-Average 
Power Uensity Rat ios  f o r  t h e  
LWR-Grade Plutonium Fueled 
Clinch River Breeder Reactor 
a t  t h e  Beginning of 
Equilibrium. 



Fig. 5 

Subassenlljly Fowey I'actor3 f o r  
t h e  LWR-Grade Plutonium 
Fueled Clinch River Breeder 
Reactor a t  t h e  Beginning of 
Equilibrium Cycle 14 with 
I so top ic  Capture and 
F i s s ion  Energies. 

Fig. 4 

Subassembly Power Factors  f o r  
t h e  LWR-Grade Plutonium 
Fueled Clinch River Breeder 
Reactor a t  t h e  Beginning of 
Equilibrium Cycle 14 With- 
out  Capture Energy with an 
Average Energy/Fission. 



Fig. 6. SSasser~bl j  AVepBge r'owtl' Densi.ties 
f o r  t h e  LWR-Grade Plutonium Fueled 
Clinch River Breeder Reactor a t  
t h e  Beginning o f  E q u i l i b ~ i u m  Cycle 
14  with I s o t o p i c  Capture and 
F i s s  ion  Energies. 
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c ros s - sec t ion  s e t  wi th  an average  energy per  f i s s i o n  event ,  shown i n  Fig.  4 .  
Subassembly power f a c t o r s  c a l c u l a t e d  wi th  i s o t o p i c  f i s s i o n  and c a p t u r e  
e n e r g i e s  a r e  h igher  i n  t h e  inner  c o r e  r eg ion  and lower i n  t h e  o u t e r  co re  
reg ion  than  those  computed wi thout .  Comparison of F igs  4 and 5  a l s o  
shows t h e  t rend  t h a t  f r e s h e r  subassemblies  i n  t h e  c o r e  tend t o  have sma l l e r  
power f a c t o r s  when i s o t o p i c  f i s s i o n  and c a p t u r e  e n e r g i e s  a r e  accounted f o r ,  
more so  i n  t h e  ou te r  rows of t h e  co re .  A s  f a r  a s  t h e  comparison of t h e s e  two 
c a l c u l a t i o n s  of  co re  subassembly power f a c t o r s  (us ing  t h e  Version I V  
c ros s - sec t ion  s e t )  shown i n F i g s .  4 and 5 wi th  t h e  va lues  repor ted  i n  t h e  P S A R ~  
Fig.  4.3-7 i s  concerned, . t h e  d i f f e r e n c e s  a r e  l a r g e r  f o r  t h e  computation wi th  
i s o t o p i c  f i s s i o n  and cap tu re  ene rg i e s .  

The e f f e c t  of cons ider ing  i s o t o p i c  f i s s i o n  and c a p t u r e  e n e r g i e s  is  
s i g n i f i c a n t l y  l a r g e r  i n  t h e  r a d i a l  b lanket  because t h e  c a p t u r e  power i s  a 
l a r g e r  f r a c t i o n  of t h e  f i s s i o n  power i n  t h e  r a d i a l  b l anke t .  The power f a c t o r s  
of f r e s h  subassemblies  of row 1 0  i n c r e a s e  by up  t o  7 .7% due t o  t h e  a d d i t i o n a l  
c a p t u r e  energy. S t r i k i n g l y ,  t h e  power f a c t o r  of t h e  f r e s h  subassembly 
i d e n t i f i c a t i o n s  no. 51 i n  row 11 of t h e  r a d i a l  b lanket  i n c r e a s e s  by about 
22.5% due t o  i t s  low f i s s i o n  power (compared t o  o t h e r  r a d i a l  b lanket  
subassembl ies ) .  The power f a c t o r s  of h ighlyburn t  subassemblies  i n  t h e  r a d i a l  
b lanket  dec reases  by up t o  4 .52 .  It i s  i r r e l e v a n t  t o  compare r a d i a l  b lanket  
subassembly power f a c t o r s  wi th  t h e  v a l u e s  r epo r t ed  i n  t h e  PSAR Fig. 4.3-7 
because a n  i n c o r r e c t  r a d i a l  b lanket  subassembly-burnup p a t t e r n ,  d i f f e r e n t  from 
any of t h e  s i x  b lanket  subassembly-burnup p a t t e r n ,  d i f f e r e n t  from any of t h e  
s j x  p a t t e r n s  i t  t a k e s  dur ing  i t s  equ i l i b r ium ope ra t ion ,  was used f o r  t h e  
c a l c u l a t i o n  of power f a c t o r s  r epo r t ed  i n  t h e  PSAR. 

This  a n a l y s i s  i n d i c a t e s  t h a t  t h e  main reasons  f o r  t h e  d i f f e r e n c e s  i n  t h e  
c o r e  subassembly power f a c t o r s  between ou r  c a l c u l a t i o n  r epor t ed  e a r l i e r 7  and 
t h e  PSAR Fig .  4.3-7 i s - n o t  connected wi th  t h e  u s e  of i s o t o p i c  f i s s i o n  and 

I - 
c a p t u r e  e n e r g i e s ,  bu t  a r e  s t i l l  be l ieved  t o  be  t h e  ones r epo r t ed  e a r l i e r . 7  

It is i n t e r e s t i n g  t o .  o b t a i n  from Fig .  6 an  e s t ima te  of t h e  c a p t u r e  power 
i n  c o n t r o l  subassemblies .  The c e n t r a l  c o n t r o l  rod of n a t u r a l  enrichment BqC, 
i n s e r t e d  2 /3  i n t o  t h e  co re ,  produces about  4 %  of  t h e  power of t he  f r e s h  f u e l  
subassembly i n  row 2  of t h e  core .  Each c o n t r o l  rod a t  rod a t  f l a t s  of row 7 
con ta in ing  50% enriched BqC and i n s e r t e d  213 i n t o  t h e  c o r e  produces about  7 .6% 
of t h e  power of t h e  a d j a c e n t  two cycle-burnt  i nne r  co re  f u e l  subassembly i n  
t h e  same row. 

4 .  Modif ica t ion  of Flux- to-Pressure T r i p  C r i t e r i o n  i n  t h e  DEMO2 
Code (Kalimullah) 

A double p r e c i s i o n  IBM v e r s i o n  of t h e  DEMO2 code was made o p e r a t i o n a l  a t  
ANL e a r l i e r .  Recent ly t h e  f lux-to-square r o o t  of . p r e s su re  t r i p  c r i t e r i o n  was 
modified t o  a  s l i g h t l y  more gene ra l  form i n  t h e  F o r t r a n  soqrce  of t h e  code. 
Some u n i d e n t i f i e d  e r r o r s  e x i s t  i n  t h e  au tomat ic  double p r e c i s i o n  convers ion  
and op t imiza t ion  l e v e l  2  c a p a b i l i t i e s  of t h e  Fo r t r an  H Extended Compiler a t  
ANL, so t h a t  t h e  complete source of t h e  modified nM02 code could n o t  be 
compiled t o  make a  double p r e c i s i o n  Inad module. For t h e  t ime being,  a  
modified double p r e c i s i o n  load  module has  been made by r e p l a c i n g  on ly  t h e  
sub rvu t ine  PROTSYS (which contained a l l  t h e  modi.fi .cations) i n  t h e  o ld  load  
module, and t h e  r e s u l t i n g  load  module seems t o  work s a t i s f a c t o r i l y .  Of 
course ,  t h e  sub rou t ine  PROTSYS had t o  be compiled us ing  ou r  Fo r t r an  H Extended 



Compiler which has  some bugs. The r e s o l u t i o n  of t h e s e  compiler bugs is being 
made by t h e  Applied Mathematics Div is ion .  

5. E f fec t  of t h e  Use of ENDFIB-IV Data .on  t h e  Computation of 
Sodium Void Worth i n  CRBR (P. H. Kier )  

R e a c t i v i t y  c o e f f i c i e n t s  f o r  t h e  Cl inch  River Breeder Reactor (CRBR) a t  
end of equi l ibur ium c y c l e  (EOEC) c o n d i t i o n s  have been computed us ing  two c r o s s  
s e c t i o n  l i b r a r i e s .  0 n e . l i b r a r y  w a s  genera ted  with u s e  of ENDFIB-111 d a t a  and '  
t h e  s t anda rd  S D X / M C ~ " ~  procedure; t h e  o t h e r  l i b r a r y  was generated with u s e  of 
ENDFIB-IV d a t a  and S D X / M C ~ - ~  used i n  a  mode t h a t  y i e lded  re f inements  i n  t h e  
computat ion of resonance a b s o r p t i o n  and resonance s c a t t e r i n g  . Although 
computed Doppler c o e f f i c i e n t s  and f u e l  worths  were i n s e n s i t i v e  t o  d i f f e r e n c e s  
i n  t h e s e  c r o s s  s e c t i o n  l i b r a r i e s ,  sodium void worths were q u i t e  s e n s i t i v e  t o  
t h e s e  d i f f e r e n c e s .  Sodium void worths  were longer  by 15% i n  the  inne r  c o r e .  
and 3.3% o v e r a l l  when computed wi th  t h e  ENDFIB-IV l i b r a r y .  

A s tudy  us ing  p e r t u r b a t i o n  theory  c a l c u l a t i o n s  was made t o  determine f o r  
which i s o t o p e s  t h e  c r o s s  s e c t i o n  d i f f e r e n c e s  l e a d  t o  t h e s e  d i f f e r e n c e s  i n  
sodium vo id  worth. Sodium void worths a r e  obta ined  from p e r t u r b a t i o n s  i n  
which sodium i s  removed from composi t ions and i n  which c r o s s  s e c t i o n s  I .  

genera ted  f o r  u n i t  c e l l s  i n  which sodium was absen t .  Prol iminary c a l c u l a t i o n s  
i n d i c a t e d  t h a t  t h e  e f f e c t  on t h e  sodium void  worth of changing from ENDFIB-I11 
t o  ENDFIB-I11 c r o s s  s e c t i o n s  f o r  a n  i so tope  i s  p red ic t ed  poorly i f  t h e  
p e r t u r b a t i o n  were performed without  accounting f o r  t h e  e f f e c t  on t h e  r e a l  and 
t h e  a d j o i n t  f l u x  d i s t r i b u t i o n s  of  t h e  change t o  ENDFIB-IV d a t a  f o r  t h e  
i s o t o p e .  

W e  cons idered  t h e  e f f e c t  on t h e  sodium void  worth i n  t h e  inne r  c o r e  of 
CRBR of r e p l a c i n g  ENDFIB-I11 c r o s s  s e c t i o n s  wi th  ENDFIB-IV c r o s s  s e c t i o n s  f o r  
1 3  i s o t o p e s .  A one-dimensional model was used i n  which t h e  r a d i a l  conf igura-  
t i o n  a t  EOEC w a s  t h e  same a s  i n  t h e  r-z model. The, t r a n s v e r s e  he ight  was 
a d j u s t e d  such t h a t  t h e  system w a s  j u s t  c r i t i c a l  when ENDFIB-I11 c ros s  s e c t i o n s  , 

were used f o r  a l l  i so topes .  T h i r t e e n  f i r s t - o r d e r  p e r t u r b a t i o n  theory  problems 
were run ,  one f o r  each i s o t o p e  cons idered .  For each problem, t h e  r e a l  and 
a d j  o i n t  f l u x  d i s t r i b u t i o n s  were computed wi th  compositions having i so topes  
wi th  ENDFIB-I11 c r o s s  s e c t i o n s  except  f o r  t h e  s p e c i f i e d  i s o t o p e  i n  t h e  inne r  
c o r e  composi t ions,  which had ENDFIB-IV c r o s s  s e c t i o n s .  The sodium void 
p e r t u r b a t i o n  was then  performed . 

Table  I1 g i v e s  t h e  r e s u l t s  of t h e  c a l u c u l a t i o n s  i n  terms of t h e  percent -  
age  change i n  t h e  sodium void worth a r i s i n g  from us ing  ENDFIB-IV d a t a  f o r  t h e  
i s o t o p e .  Since t h e  c a l c u l a t i o n s  were one-dimensional, t h e  i n n e r  core  
i m p l i c i t l y  extended t o  t h e  e x t r a p o l a t e d  he igh t  of t h e  r e a c t o r ,  t h e  t r a n s v e r s e  
l eakage  component of r e a c t i v i t y  i s  overes t imated  s i g n i f i c a n t l y .  

I n  t h e  r-z c a l c u l a t i o n  t h e  magnitude of t h e  leakage component of 
r e a c t i v i t y  was abou t  40% of t h e  t o t a l  r e a c t i v i t y  e f f e c t  whereas i n  t h e s e  
c a l c u l a t i o n s  t h e  leakage  component w a s  tw ice  t h e  t o t a l  r e a c t i v i t y  e f f e c t .  
Therefore  t h e  percentage  d i f f e r e n c e s  g iven  i n  t h e  t a b l e ,  exclude t h e  leakage  , - .  
component and should be s l i g h t l y  small .  However, a s  t h e  primary purpose of 
t h i s  s t u d y  i s  t o  compare t h e  e f f e c t  from d i f f e r e n t  i s o t o p e s  i t  i s  no t  im-  
p o r t a n t  t h a t  t h e  magnitude of t h e  e f f e c t  i n  each be s l i g h t l y  small. From t h e  

i 



t a b l e  i t  i s  seen  t h a t  t h e  change i n  t h e  sodium void  worth a r i s e s  p r i n c i p a l l y  
from d i f f e r e n c e s  i n  t h e  c r o s s  s e c t i o n s  of t h e  t h r e e  heavy i s o t o p e s  wi th  t h e  
g r e a t e s t  atom d e n s i t i e s :  2 3 8 ~ ,  2 3 9 ~ u ,  and 2 4 0 ~ u .  

TABLE 11. Percentage Change i n  t n e  Sodium Void 
Worth in t h e  Inner  Core of CRBR at  EOEC 

in Changing from ENDFIB-111 Data t o  
ENDFIB-IV Data f o r  Se l ec t ed  I so topes  

I so tope  % Change 

.,? 

235u 0.25 

sum 9.69 

B .  Model Seudles  

1. Recr i t i c a l i t y  S t u d i e s  (P. B. Abramson) 

d 
Major r e v i s i o n s  were accomplished i n  t h e  hydrodynamics r o u t i n e s  in POOL 

t o  a l low t h e  compressible/incompressible a lgo r i thms  t o  func t ion  b e t t e r  and t o  
avoid  f l u c t u a t i o n s  i n  n e u t r o n i c s  p r e d i c t i o n s  caused by t h e  PIC 
( P a r t  i c le - in-Cel l )  a lgor i thms.  

I n  p a r t i c u l a r ,  we have developed a new technique which we c a l l  
(Distr ibuted)-PIC (Pa r t i c l e - in -Ce l l ) .  The concept  is  s imple  and i ts  
implementation was very  e f f e c t i v e .  The assignment of a  c e r t a i n  amount of mass 
t o  each p a r t i c l e  and t h e  c a l c u l a t i o n  of mass per  c e l l  by simply adding t h e  
masses o f  a l l  p a r t i c l e s  i n  each c e l l  i s  r e s p o n s i b l e  f o r  a major f a u l t  o f  t h e  
PIC scheme, namely t h a t  t h e  mass i n  each c e l l  makes s t e p  f u n c t i o n  changes i n  
v a l u e  a s  p a r t i c l e s  e n t e r  o r  l e a v e  t h e  c e l l .  Th i s  causes  t h e  neu t ron ic  
p r o p e r t i e s  of t h e  g r i d  t o  v a r y  s i g n i f i c a n t l y  from time s t e p  t o  t ime s t e p  by 



amounts which are l a r g e  compared t o  t h e  a c t u a l  hydrodynamic motion induced 
v a r i a t i o n s .  To s o l v e  t h i s  problem, we simply a s s i g n  a  volume t o  each p a r t i c l e  
and d i s t r i b u t e  t h e  a s s o c i a t e d  mass uni formly  over '  t h a t  volume. Thus, a s  a  
p a r t i c l e  n e a r s  a c e l l  edge, t h e  a s s o c i a t e d  mass and energy convect 
con t inuous ly  and smoothly'from one c e l l  t o  t h e  next .  This  D-PIC technique  has  
t h e  advantages  of PIC and appea r s  t o  e l i m i n a t e  one major d isadvantage .  

A second m o d i f i c a t i o n  we a r e  c u r r e n t l y  examining i n  t h e  POOL hydrodynamic 
a l g o r i t h m s  is  t h e  decoupling of a x i a l  and r a d i a l  motions f o r  incompressible  
c e l l s .  While t h i s  i n t roduces  a n  obvious e r r o r ,  i t  does a l low t h e  c a l c u l a t i o n s  
t o  proceed through t h e  compressible/incompressible r eg ions  wi th  no problems. 
S p e c i f i c a l l y ,  we have made t h e  assumption t h a t  when a  c e l l  goes incompressible  
lump is a c c e l e r a t e d  a x i a l l y  and r a d i a l l y  by t h e  p re s su re  g r a d i e n t s  a c r o s s  i t .  
A s  t h e  incompress ib le  r eg ion  becomes more than  one c e l l  wide ( r a d i a l l y )  o r  
h i g h  ( a x i a l l y ) ,  t h e  r a d i a l  momentum of t h e  whole r e g i o n  i s  c a l c u l a t e d  and 
d i s t r i b u t e d  r a d i a l l y  s o  t h a t  each c e l l  f l u x  s a t i s f i e s  r U  = cons t an t .  
S i m i l a r l y  t h e  a x i a l  momentum i s  r e d i s t r i b u t e d  over a l l  a x i a l l y  cont iguous 
incompress ib le  c e l l s  such t h a t  U = c o n s t a n t .  These c e l l s  a r e  then t r e a t e d  a s  

Z one  l a r g e  incompress ib le  lump which is  a c c e l e r a t e d  by t h e  p re s su re  g rad ien t .  
a c r o s s  i t  ( i n  t h e  same f a s h i o n  t h a t  we t r e a t  t h e  upper and lower sodium s l u g s  
as incompress ib le  s l u g s  i n  EPIC). 

2.  Bubble Co l l apse  (Behrens) E f f e c t  (P. B. Abramson and T. A .  Daly) 

I n  a t tempt ing  t o  c a l c u l a t e  r e c r i t  i c a l i t y  and t h e  a u t o c a t a l y t  i c  e f f e c t s  
of  bubble  c o l l a p s e  induced s treaming r educ t ion ,  we have found t h a t  t h e  c u r r e n t  
p o i n t  k i n e t i c s  o p t i o n s  i n  FX2 a r e  u n s t a b l e  f o r  c e r t a i n  types  of m a t e r i a l  
motions.  I n  p a r t i c u l a r ,  as a n e u t r o n i c  c e l l  i s  voided of m a t e r i a l  and t h a t  
m a t e r i a l  i s  pushed i n t o  a d j a c e n t  c e l l s ,  FX2 p r e d i c t s  r e a c t i v i t i e s  which 
o s c i l l a t e  from p o s i t i v e  t o  nega t ive .  Thus t h e  p o i n t  k i n e t i c s  becomes u n s t a b l e  
and t h e  FX2 s o l u t i o n  b reaks  down. We have i n v e s t i g a t e d  t h i s  e f f e c t  both i n  
FX2POOL and FX2-VENUS and f i n d  t h a t  it occu r s  wi th  both.  The shape s t e p  
p o r t i o n  of t h e  FX2 k i n e t i c s  i s  i n i t i a l l y  a b l e  t o  c o r r e c t  .the. f l u c t u a t i o n s ,  bu t  
s i n c e  t h e  ampli tude grows from r e a c t i v i t y  s t e p  t o  r e a c t i v i t y  s t e p ,  even tua l ly  
t h e  ampli tude g e t s  s o  l a r g e  t h a t  t h e  shape s t e p  c a l c u l a t i o n  is  unable  t o  
c o r r e c t  t h e  problem. We a r e  c u r r e n t l y  programmfng a  g loba l  po in t  k i n e t i c s  
scheme which when coupled with t h e  shape s t e p s  w i l l  enable  t he  s t a b l e  

. p r e d i c t i o n  of t h e  k i n e t i c s  parameters .  I n  a d d i t i o n ,  t h e  g loba l  scheme has  t h e  
p o t e n t i a l  advantage of s i g n i f i c a n t l y  reduced n e u t r o n i c s  computat ional  t ime and 
c o r e  s to rage .  The concept  is as fo l lows:  The c u r r e n t , p o i n t s  ' k i n e t i c s  
p o r t i o n s  of FX2 u s e  t h e  c e l l  by c e l l  f l u x  h i s t o r y  t o  p r e d i c t  t h e  c e l l ' s  f u t u r e  
f l u x  and then  u s e  t h e  f l u x  t o  de te rmine  r e a c t i v i t y ,  e t c .  S ince  t h e s e  
l o c a l  p r o j e c t i o n s  a r e  u n s t a b l e  b u t  t h e  g loba l  behavior  of t h e  c a l c u l a t i o n  i s  
smoa t h ,  we  a r e  p r o g r a m i n g  a p o i n t  k i n e t i c s  c a l c u l a t i o n  which, u ses  t h e  normal 
FX2 p a t h  f o r  t h e  f i r s t  few time s t e p s  ( t o  b u i l d  a  g l o b a l ' h i s t o r y )  and then  
u s e s  t h e  p a s t  g l o b a l  r e a c t i v i t y  h i s t o r y  t o  p r o j e c t  t h e  f u t u r e .  This ,  a s  i n  
t h e  c u r r e n t  FX2 v e r s i o n ,  is of cou r se  checked and updated by doing p e r i o d i c  
shape c a l c u l a t i o n s .  . . 



3 .  EPIC Development (P ., A. P i z z i c a  .and P. B. Abramson) 

C a p a b i l i t y  fo r .  c u t t i n g  back t h e  t ime s t e p  ' i n  EPIC i n  cases.  of over- 
compaction i n  t h e  coo lan t  channel ( i . e . ,  moving more m a t e r i a l  i n t o  a  c e l l  than  
i t  can p h y s i c a l l y  hold)  was added. Also t h e  t ime-step is  c u t  back whenever 
t h e  l o c a l  m a t e r i a l  v e l o c i t y  i n  a  p in  channel  node v i o l a t e s  one - f i f t h  of t h e  
cou ran t  cond i t i on .  

An op t ion  was added t o  a l l ow an e x p l i c i t  c a l c u l a t i o n  i n  t ime ( i n s t e a d  of 
semi- impl ic i t )  a f t e r  a  s p e c i f i e d  r e a l  t ime p o i n t  i n  t h e  t r a n s i e n t .  

The number of pa r t i c l e -g roups  in t h e  c o o l a n t  channel was v a r i e d  over a s  
wide a  range a s  p o s s i b l e  ( t h i s  number i s  dependent on t h e  number of time s t e p s  
s i n c e  we c u r r e n t l y  r e q u i r e  a t  l e a s t  one par t ic le -group generated per  t ime s t e p  
when t h e r e  i s  any f u e l  e j e c t i o n ) .  Since t h e r e  was l i t t l e  d i f f e r e n c e  i n  t h e  
r e s u l t s ,  t h e  number of pa r t i c l e -g roups  can now be reduced. I n  t h e  f u t u r e ,  
some c a p a b i l i t y  f o r  combining groups i n  t h e  channel  w i l l  be added t o  reduce 
computer r u n  t ime.  

It was found necessary  t o  t r a c e  t h e  i n t e r f a c e  p o s i t i o n  f o r  t h e  forced 
convect ion of t h e  f i s s i o n  gas i n  t h e  channel  because i n  t h e  c a s e  of a  
p a r t i a l l y  voided channel  an  a r t i f i c i a l  convect ion would o the rwi se  occur ,  which 
would smear t h e  gas  i n s t a n t l y  over a  node a s  soon a s  t h e  gas moved i n t o  it 
f o r c i n g  convect ion i n t o  t h e  next  mode on t h e  n e x t  t ime s t ep .  Th i s  l e a d s  t o  
excess ive  convect ion and a  dependence on time-step which is  undes i r ab le .  

The e f f e c t  of s p a t i a l  mesh s i z e  i n  EPIC was i n v e s t i g a t e d  f o r  a  5 cm long 
c l a d  r i p  by us ing  one, two and fou r  nodes. D i f f e rences  i n  s i g n i f i c a n t  
parameters of about  10% were found, i n d i c a t i n g  some s e n s i t i v i t y  of t h e  r e s u l t s  
t o  mesh s i z e .  

Af t e r  g iv ing  some thought t o  a  f u e l  vapor d r i v e n  p i n  f a i l u r e ,  we have 
decided t h a t  f u e l  vapor condensat ion is  too  ill def ined  an  a r e a  t o  be a b l e  t o  
t r e a t  a n a l y t i c a l l y  a t  t h i s  time. The n e t  e f f e c t  of f u e l  vapor condensat ion i s  
t o  cause  t h e  l i q u i d  f u e l  temperature t o  decrease  and t h e  p re s su re  i n  t h e  vapor 
t o  decrease .  The process  of energy t r a n s f e r  from ho t  l i q u i d  f u e l  t o  co ld  
1, iquid sodium may be  thought o f  a s  heing hounded by two extremums. One 
extremum i s  t h a t  energy is  only  exchanged from l i q u i d  t o  l i q u i d ,  i n  which c a s e  
t h e  p a r t i a l  vapor  p r e s s u r e s  a r e  t h e  s a t u r a t i o n  p re s su res  of t h e  l i q u i d .  The 
o t h e r  extremum is  t h a t  energy i s  only  exchanged by t h e  vapors .  I n  t h i s  l a t t e r  
ca se ,  t h e  vapor  of t h e  hot  l i q u i d  w i l l  be  cooled t o  a  p re s su re  lower than t h e  
s a t u r a t i o n  p re s su re  fo rc ing  gene ra t ion  of more vapor and thus  drawing energy 
o u t  of t h e  h o t  l i q u i d  (with t h e  corresponding inve r se  process  going on f o r  t h e  
o t h e r  m a t e r i a l ) .  The r e a l  phenomenon f a l l s  somewhere between t h e s e  extremes 
and depends upon geometry, m a t e r i a l  p r o p e r t i e s ,  e t c  . I n  EPIC, t he re f  o re ,  f u e l  
vapor  condensat ion w i l l  be t r e a t e d  by u s i n g  a  v a r i a b l e  h e a t  t r a n s f e r  r a t e  
between f u e l  ( a  r e l a t i v e l y  smal l  amount of l i q u i d  f u e l  w i l l  be e j e c t e d  i n t o  
t h e  channel  i n  a  f u e l  vapor void ing  case )  and l i q u i d  sodium t o  s imu la t e  
v a x i a h l e  condensa t ion  r a t e s  of f u e l  vapor and concurren t  p re s su re  des igna t ion .  

P repa ra t ion  of a  d a t a  base  t o  be used f o r  ex t ens ive  comparisons of EPIC 
a.nd PLIJTO and f o r  a n  EPIC parameter s tudy  was begun. A paper p re sen t ing  t h e  
EPIC code was prepared f o r  t h e  Chicago Meeting on Fas t  Reactor Sa fe ty  i n  
October . 



4 .  KACHINA Conversion t o  IBM ( J .  S i e n i c k i ,  T. A. Daly and P. B.  Abramson) 

The KACHINA code w a s  conv i r t ed  from i t s  o r i g i n a l  CDC v e r s i o n  t o  IBM and 
is  now running on t h e  ANL.IBM 370 model 195. 

A b a s i c  problem i n  checking o u t  our IBM v e r s i o n  i s  t h e  l a c k  of a v a i l a b l e  
sample problems. We have been i n  c o n t a c t  wi th  Jack  Trav i s  (LASL) who promised 
t o  g e n e r a t e  some sample c a s e s  f o r  us .  

W e  w i l l  a t t empt  t o  determine what a r e  t h e  c a p a b i l i t i e s  of KACHINA and 
t h e  techniques  employed i n  it and i f  i t  can  be adapted f o r  u s e  i n  POOL. 

I V .  COORDINATION OF RSR SAFETY RESEARCH 

P. Abramson v i s i t e d  LASL on August 2 t o  d i s c u s s  p i n  burs t  and p o s s i b l e  
sodium entrapment i n  t h e  low power r e g i o n s  of a c o r e  undergoing LOF TOP wi th  
M .  Stevenson and  J. Jackson. The major ques t ion  which needs t o  be r e so lved  
h e r e  is  t h e  amount of mixing between f u e l  and c o o l a n t  i n  such circumstances.  
That  mixing w i l l  be  s t r o n g l y  inf luenced  by t h e  s p e c i f i c  mode of c l a d  f a i l u r e  
a s  fo l lows:  i f  t h e  c l a d  f a i l s  i n  one cont inuous  r i p ,  t h e  remaining c l a d  could 
a c t  as a r a d i a l  b a r r i e r  between f u e l  and c o o l a n t ,  p rovid ing  r e s i s t a n c e  t o  hea t  
t r a n s f e r ,  b u t  i f  t h e  c l a d  undergoes b r i t t l e  s h a t t e r i n g  i n t o  many s m a l l  p i eces ,  
t h e  f u e l  t o  coo lan t  h e a t  t r a n s f e r  w i l l  be  v e r y  s t rong .  Thus, t h e  mechan i s t i c s  
of  c l a d  f a i l u r e  under r ap id  (mi l l i s econd)  l oad ing  up t o  p r e s s u r e s  of o r d e r  100 
a t m  need t o  be  exper imenta l ly  determined.  The r e s u l t s  w i l l  bear  heav i ly  upon 
whether o r  no t  s i g n i f i c a n t  work energy i s  ob ta ined  from coo lan t  i n  an  LOF TOP 
a c c i d e n t  . 

Abramson.attended a n  Aerosol  Re lease  and Transpor t  review group meeting 
a t  Oak Ridge on August 1 9  and 20 and submit ted comments t o  M. S i lbe rbe rg .  

Abrarnson a t t ended  a two-day (September 1 3  and 14)  SIMMER workshop at 
LASL t o  h e l p  BNL g e t  ready  t o  implement SIMMER f o r  DPM, and then  spen t -  a day 
a t  SANDIA (September 1 5 )  reviewing t h e  ACPR experimental  r e s u l t s  t o  d a t e .  

V.  EVALUATION OF PROGRESS I N  REACTOR SAFETY RESEARCH 

P u b l i c a t i o n s  a t  t h e  F a s t  Reac tor  .Sa fe ty  'Meeting ' i n  'Chicago 

1. "Core Di s rup t ive  Accident and R e c r i t i c a l i t y  Analysis  wi th  FX2POOL," 
by P. B. Abramson. 

2. . "EPIC" P. A. P i z z i c a  and P. B. Abramson 

Accepted f o r  P u b l i c a t i o n  i n  NSE and F i n a l  MS's Approved 

1. "Basic Co l l apse  C r i t e r i a  f o r  Bo i l i ng  F u e l / ~ t e e l  Mixtures,  " P. B .  
Abramson . 

2. "FXZPOOL - A Two-Dimensional Coupled Hydrodynamic Thermodynamic 
and Neutronic Computer Model f o r  HCDA Analysis ,  " P. B.  Abramson. 
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V I  . MONTE CARLO ANALYSIS OF SAFETY-RELATED CRIT ICALS 

TO a l a r g e  e x t e n t  t h e  VIM-Sn d i sc repanc ie s ,  r epo r t ed  e a r l i e r 1 ,  have been 
r e so lved .  It now appea r s  t h a t  t h e s e  d i s c r e p a n c i e s  were mainly due to :  . 

1. s t a t i s t i c a l  e r r o r s  i n  t h e  VIM r e s u l t s ,  and 

2. inadequacies  i n  t h e  o r i g i n a l  TWOTRAN Sq-PO approximations. 

During t h i s  l a s t  r e p o r t  per iod t h e  VIM,run h a s  been cont inued,  and a  
TWOTRAN Sq-Pi has  been , run .  I n  Table I11 new and o l d  r e s u l t s ,  f o r  t h e  
r e f e rence  co re ,  a r e  compared. 

TABLE 111. Reference Core Eigenvalues 

Previous ly  Reported New Resu l t s  

D i f f e r e n t i a l  
Theory 1.000 - 

V I M  0.998 2 0 . 0 0 2 5 ~  1.0045 + 0 . 0 0 1 0 ~  
TWOTRAN 
(Sq-Pf)) 1.010 
(s4-p1 1.0093 
(s8-Po> 1.0090 

a  Qinted u n c e r t a i n t i e s  are s tandard  d e v i a t i o n s .  

It w i l l .  b e  seen, from d a t a  l i s t e d  i n  t h i s  Table,  , t h a t  t h e  new and .old 
VIM r e s u l t s  d i f f e r  by about  2.2 t imes t h e  s t anda rd  d e v i a t i o n s  of t h e  
d i f f e r e n c e .  The p r o b a b i l i t y  of such a  change i s  % 3%, a  smal l  bu t  n o t  
n e g l i g i b l e  p r o b a b i l i t y  . 

A t  t h i s  po in t  no S8-Pl r e s u l t s  a r e  a v a i l a b l e :  an  S8-P1 has n o t  been r u n  
because of t h e  c o s t  of such a  computation. However, i£ we assume t h e  Sq'tSg 
and Po+Pl c o r r e c t i o n s  t o  be add2 t ive  w e  e s t i m a t e  a n  Ss-Pl e igenva lues '  
X = 1.0083, a n  e igenvalue  which d i f f e r s  from t h e  l a t e s t  VIM by s l i g h t l y  

S8;P$ - l e s s  han 0.4%. A 1  though t h i s  d i screpancy  i s  st ill s t a t i s t i c a l l y  s i g n i f i c a n t  , 
it is n o t  n e a r l y  a s  s e r i o u s  a s  t h e  o r i g i n a l  1 .2% discrepancy .  



L a t e s t  r e s u l t s  f o r  t h e  s p h e r i c a l  model a r e  l i s t e d  i n  Table I V . .  It w i l l  
b e  seen  t h a t  t h e  VIM A is h ighe r  t han  t h e  Sn A by 0.5% i n  both t h e  
c y l i n d r i c a l  and s p h e r i c a l  c a l c u l a t i o n s ,  i n  t h i s  sense  t h e  2-D and 1-D r e s u l t s  
are now c o n s i s t e n t .  ' 

TABLE IV. Sphe r i ca l  Model Eigenvalues 
Best Avai lab le  R e s u l t s  

D i f f e r e n t i a l  
Theory 

V I M  
ANISN (SgTPi) 

V I I .  PLANNING OF DEMO SAFETY RELATED CRITICAL MPERIMENTS 

' During t h i s  q u a r t e r  t h e  schedule  f o r  t h e  Demo s a f e t y  r e l a t e d  c r i t i c a l  
experiments  w a s  f i x e d ,  and a .  pre l imina ry  p l a n  f o r  t h e  experimental  program, 
c o n s i s t e n t  wi th  t h i s  schedule,  was ' p repa red .  The p re l imina ry  program p lan  was 
reviewed a t  a  meet ing a t  NRC i n  S i l v e r  Spr ings  on September 21, 1976. Some 
a d d i t i o n a l  planning and a n a l y s i s  work is  requ i r ed  a s  a r e s u l t  of sugges t ions  
made a t  t h e  program review meeting. Th i s  work w i l l  be r epo r t ed  i n  t he  next  
q u a r t e r l y  r e p o r t  . 

The s a f e t y  r e l a t e d  c r i t i c a l  experiments  a r e  schedu1,e.d f o r  t he  s i x  month 
per iod  from J u l y  1, 1977 t o  December 31, 1977. , The r e v i s e d  program plan  con- 
s i s t e n t  wi th  t h i s  pe r iod  i s  presented  i n  Tables  V and V I .  S u b s t a n t i a l  
d e l e t i o n s  from t h e  previous  p l an  were, of course ,  necessary  s i n c e  the  previous  
p l a n  was based on a 1215 month.period of  c r i t i c a l  experiments.  Sc.hedule 
e s t i m a t e s  i n d i c a t e  t h a t  t h e  rev ised  p l an  can be completed i n  t h e  a v a i l a b l e  
six-month pe r iod  b u t  no schedule cont ingency i s  included. It i s  recnmmenderl 
t h a t  some phases  of  t h e  experimental  program be a s s igned  a  lower p r i o r i t y  and 
b e  cons idered  c a n d i d a t e s  f o r  d e l e t i o n  i f  t h e  program i s  running behind 
schedule.  Th i s  d e c i s i o n  would be made dur ing  t h e  cou r se  of t h e  measurements 
when p rog res s  on t h e  schedule  i s  known. 

The program o u t l i n e d  i n  t h e  program p l a n  is  d iv ided  i n t o  f i v e  major 
phases.  They a r e :  

1. Reference care.. 
2. Sodium-Voided Conf igura t ions .  
3 .  Fuel-Slump-Ou t Conf igu ra  t i o n s  . 
4. Fuel- Slump-In Conf igura t ions .  
5. Blanket Co l l apse  Conf igura t ions  (wi th  Fuel-Slump-In). . . 
These a r e  t h e  c o n f i g u r a t i o n s  o u t l i n e d  i n  Tables  V and V I ,  and they a r e  -. 

shown i n  F ig .  7 .  The Fuel-Slump-Out core  i s  d iv ided  i n t o  two major conf igura-  
t i o n s .  Note t h a t  t h e  o r i g i n  i n  each of t h e  drawings on t h i s  f i g u r e  i s  t h e  
c o r e  c e n t e r .  The c o r e  he igh t  i s  2H, 92.4 cm, and t h e  H/D = 1.0. 



TABLE V. sequence of C r i t i c a l  Assembly .Core Configurations f o r  
Safety-Related C r i t i c a l  Expariments 

Phase. . . '  Step 

b!easurement s 
a t  C r i t i c a l  

(See Table 11) 

I. Referqnce Core. A. .Reference Case. 

11. sodium-voided A. Sodium Voiding i n  Centra l  
Conf igurat ions .  37 Drawers ( r  = .18.96 cm) . 
a. Core Loading. ' 1. Void Upper Axial 

Adjusted s o  t h a t  Blanket. . ' 

a l l  Steps  Sub- 
c r i t i c a l  Except 
a s  Noted. 

2. Void F u l l  Height of 
Core and ,Blankets. 

111. Fuel-Slump-Out A .  Fuel  Slunp Out i n  C e n t r a l .  
Configurations.  37 Drawers. . A l l  Fuel  i n  - 

Region f o r  Z = 0 t o  2 = H/2 
a. A l l  Measurements Slumps i n t o  Region H/2 t o  H, 

Made with Cen t ra l  Where I! is the  Half Beight of" 
37 Drawers Core and Z = 0 is a t  t h e  Core 
Na-Voided. Midplane. 

Yes 

b. . Core Loading ' 
Adiusted s o  t h a t  

1. slump 'upper Half .of Core. 
a 

a l l  Steps  Sub- 2. Slump Over F u l l  Core Yes 
c r i t i c a l  Except . . Height. , 

a s  Noted. 3. ~ d j & t  c a s e  ' ~ ( 2 )  t o  
C r i t i c a l .  

4. S t a r t  From Step A(2). 
Unslump Fuel i n  Bottom Half 
of Core. 

B. Move Slumpled-Fuel Regions i n t o  
Axial  Blankets. 

1. Upper Half of Core (With 
Bottom Half Unslunped) . 

2. F u l l  Core ~ e i ~ h t .  

3. Adjust B(2) t o  C r i t i c a l .  Yes 

I V .  Fuel-Slump-In A .  Fuel Slump In  i n  Cen t ra l  
Conf izura t ions .  37 Drawers. A l l  Fuel  i n  - 

Region Z = H t o  Z = H/2 
a. A 1 1  Measurements Slunps i n t o  Region 2 - H / Z  t o  

Ki th  Cen t ra l  37 Z = 0, Where H i s  t h e  Half 
Drawers Height of t h e  Core and Z = 0 
~ a - v o i d e d .  i s  a t  the  Core Plidplane. 



TABLE V (contd .) 

Phase Step. 

Measurements 
a t  C r i t i c a l  

(See Table 11) 
- 

b. Core Loading Ad- 1. Es tab l i sh  New Sodium- 
j u s t e d  s o  t h a t  Voided Reference. - 
211 Steps  Sub- 
c r i t i c a l  Except 
a s  Noted. 

2. Slump i n  Upper Half 
of core.  

3, Slump O v e r  P u l l  Core 
Feighr. 

4. Adjust c a ~ e  A ( 2 )  t o  
l C r i t i c a l .  Yes 

5. S t a r t  From Step A(3). 
Unslucp Bottom Half of 
Core. 

V. Blanket Collapse A. S t a r t  From Step I V  A(5). 
Conf igurat ions .  Fuel Slumped i n  Top Half 

a 

of Core and ~nslumped i n  
a .  A l l  Measurements 

With Centra l  37 Bottom Half of Core. 

Drawers 
Na-Voided. 

1. Collapse Upper Axial  
Blanket F a t e r i a l  so  t h a t  
i t  is  Di rec t ly  'on Top of 

b. Core Loading Ad- Slumped-In C n r ~  Mat~rj .a ' l . ,  
j u s t e d  so .chat 
a l l  S t e p s  ~ b b -  2. Adjust  Scep 'A(1) t o  Yes 
c r i t i c a i  Except ' c r i t i c a l .  
as Noted. 



TABLE V I .  Outl ine of Measurements f o r  safety-Related C r i t i c a l  Experiments 

Reaction 
PhaseIS tep  Rate P:aterial Doppler 

(See Table I )  keff  Spectrum p r o f i l e s a  h'orthsb Coef f i c i en t  

I A :.( . core  Axial and Fuel  and Core Center 
(Ref. .Core) Center Ra'dial S t r u c t u r e  - 

Axial P r o f i l e s  

111 A(3) 4 
(Fuel-Slump-Out, 1)  

111 B ( 3 )  
(Fuel-Slump-Out , 2 )  

Axial and Axial  P r o f i l e s  
Radial 

Axial and Axial P r o f i l e s  
Radial 

I V  A(4) 4 Core Axial and . Axial P r o f i l e s  Core Center 
(Fuel-Slump-In, 1)  Center Radial  

V A ( 2 )  J 
(Blanket Collapse) 

Axial and Axial  P r o f i l e s  
Radial  

- -  

a Reaction r a t e s  w i l l  inc lude 2 3 9 ~ u ( n , f ) ,  2 3 9 ~ ( n , f )  and 2 3 8 ~ ( n , y )  - I n  some cases  
2 3 5 ~ ( n , f )  may be s u b s t i t u t e d  f o r  2 3 9 ~ u ( n , f ) .  The d e t a i l e d  arrangement of the  f o i l s  
must b e  coordinated with the  Monte Carlo v a l i d a t i o n  work t o  i n s u r e  t h a t  the  experi-  
mental arrangements a r e  ca lcu lab le .  

b ~ i a l  worth p r o f i l e s  w i l l  be made' f o r  2 3 9 ~ u ,  2 3 8 ~  and SS. Centra l  worths may b e .  
obtained f o r  s e v e r a l  o t h e r  ma te r i a l s  (e. g., Na, "B). 



-high density fuel region 

I. Reference Core 4.Fuel-Slump-Out-2 Fir LJJ 
W " , - , . , - . . . .  

Void 'Ore H I 2  . Core 

2. Sodium Voided Case 
r 

'5.Fuel-Slump-In 

Mldnket 

Void 

n 

H I 2  Ki Void Core 

3. Fuel-Slump-Out- 1 

Blanket 
Void 

n Vnid 

H 12 Core 

6. Blanket Collapse : 

Fig. 7. RSR Safe ty  R e l a t e d  C r i t i c a l  
Lxperiments , Core Configu~*a- 
t i o n s .  (Note: Core Height 

' is 2H,  92.4 cm.) 



Preana lys i s  on t h e s e  c o n f i g u r a t i o n s  i s  resuming. ~ 6 u r  p a r t i c u l a r  a r e a s  
w i l l  be  analyzed i n i t i a l l y  . 

1. Ca lcu la t ions  w i l l  be made of t h e  Fuel-Slump-Out con f igu ra t ion .  To 
d a t e  only  Fuel-Slump-In c o r e s  have been ana lyzed .  

2 .  Ca lcu la t ions  w i l l  be  made with t h e  f u e l  slumping i n  on ly  one a x i a l  
h a l f  o f  t h e  co re .  This, a n a l y s i s  w i l l  a l l o w  u s  t o  i n v e s t i g a t e .  some ' a x i a l l y  
asymmetric ca ses .  

3. Various f u e l  d e n s i t i e s  in t h e  fuel-slump r e g i o n s  w i l l  be eva lua ted .  

4 .  The volume of t h e  fuel-slump reg ions  w i l l  be v a r i e d  i n  a way t h a t  f u e l  
i s  no t  conserved w i t h i n  t h e  assembly. It was decided a t  t h e  review meeting 
t h a t  va ry ing  t h e  volume of t h e  fuel-slump reg ion  was t h e  p r e f e r r e d  method of 
a d j u s t i n g  system r e a c t i v i t y .  These c a l c u l a t i o n s  w i l l  eva lua t e  t h e  p o t e n t i a l  
of t h i s  method. 

V I I I  . FINITE DIFFERENCING I N  2, 3-D STAGGERED MESH 
SUITABLE FOR IRREGULAR BOUNDARY APPLICATIONS 
(W. T. Sha, H. M. Domanus and R. C .  Schmit t )  

A. I n t roduc t ion  

A formula t ion  u t i l i z i n g  a  f i n i t e  d i f f e r e n c e  scheme f o r  a  d i r e c t  
.numer ica l  s imu la t ion  of t ime vary ing  two-phase f low problems i n  t h r e e  space 
dimensions wi th  i r r e g u l a r  boundary geometry i s  presented .  The formula t ion  of 
such problems in t roduces  a complicated s e t  of coupled non-l inear  p a r t i a l  
d i f f e r e n t i a l  equat ions  f o r  t h e  conse rva t ion  of mass, momentum, energy, 
a p p r o p r i a t e  c o n s t i t u t i v e  equat ions  coupl ing  t h e  two phases.  D i s c r e t i z a t i o n  of 
t h e  p a r t i a l  d i f f e r e n t i a l  equat ions  by f i n i t e  d i f f e r e n c e  procedures  a l l ow f o r  
numerical s o l u t i o n  of t h e  governing equat ions .  The f  i n i t e  d i f f e r e n c e  scheme 
u s e s  a  s taggered  g r i d  system so of t e n  used i n  hydrodynamics where t h e  
v e l o c i t i e s  a r e  l oca t ed  a t  t h e  t i p s  of a  c e l l  w i th .  t h e  p re s su re ,  temperature,  
and d e n s i t y  be ing  l o c a t e d  a t  t h e  c e n t r a l  mesh po in t  a s  shown i n  Fig. 8.  
t4.l-tbo~~gh t h i s  s taggered  mesh pro<ides s e v e r a l  conse rva t ion  p r o p e r t i e s  it 
r e q u i r e s  some adjustment  when d e a l i n g  wi th  i r r e g u l a r  boundaries  . 

I f  t h e  boundar ies  were curved and t h e  v a r i a b l e s  were d i s c r e t i z e d  a t  
every mesh p o i n t  t h e  u s u a l  formula t ion  a s  descr ibed  i n  any textbook on 
numerical  s o l u t i o n  of p a r t i a l  d i f f e r e n t i a l  equa t ions  could be u t i l i z e d .  
However, t h e  s taggered mesh r e q u i r e s  t h a t  on ly  c e r t a i n  boundary i n t e r s e c t i o n s  
of t h e  mesh system be allowed. A t  t h i s  t ime it i s  r equ i r ed  t h a t  i n  any given 
d i r e c t i o n  f o r  a  boundary i n t e r s e c t i o n  t h e  f i r s t  i n t e r n a l  mesh po in t  always be  
a pressure p o i n t ,  Because of t h e  u s u a l  s e n s i t i v i t y  involved i n  p re s su re  
c a l c u l a t i o n s  t h e  pola ted  t o  t h e  wal l .  I n  t h e  l a s t  s e c t i o n  of t h i s  memo che 
e x t r a p o l a t i o n  procedure is  def ined .  For  example, f o r  a  no-s l ip  boundary 
cond i t i on ,  t h e  c o n d i t i o n s  on v e l o c i t y  on t h e  w a l l  r e q u i r e  t h a t  a l l  of t h e  
components be i n d e n t i c a l l y  zero.  However, i n  t h e  c a s e  of a  f r e e - s l i p  wa l l  
where t h e  t a n g e n t i a l  v e l o c i t y  i s  non-zero and p a r a l l e l  t o  t h e  s t r eaml ine ,  on ly  
t h e  normal component is zero. Hence, from a  c o r r e c t  c a l c u l a t i o n  of t h e  
i n t e r n a l  v e l o c i t i e s  due t o  i n t e r n a l  p r e s s u r e  g r a d i e n t s  t h e  velocities o r  t h e i r  
averages  can  b e  ex t r apo la t ed  t o  t h e  wa l l  and t h e  proper  t a n g e n t i a l  v e l o c i t y  



p,H,p,n = d e n s i t y ,  e n t h a l p y ,  prcs3urc .  void frartinn 

U,V,W - vclocity culllponents i n  x,y,z 

Fig. 8. Location of Variables and 
indices  About a Computational 

: Cell (Staggered Wenh Sy.%temsl. 



ob ta ined  a long  t h e  wal l .  Although the  requirement  f o r  t h e  f i r s t  i n t e r n a l  mesh 
po in t  t o  be  a  p re s su re  p o i n t  is p r e s e n t l y  be ing  incorpora ted ,  o t h e r  
boundary-mesh c u t s  w i l l  be  i n v e s t i g a t e d  t o  determine i f  t h i s  r e s t r i c t i o n  can 
be a l l e v i a t e d .  

B F i n i t e  D i f f e renc ing  of t h e  Governing D i f f e r e n t i a l  Equat ions 

I n  o rde r  t o  o b t a i n  e s t ima te s  of  t h e  dependent v a r i a b l e  d i s t r i b u t i o n s  a t  
d i s c r e t e  p o i n t s  throughout t h e  domain of i n t e r e s t ,  p a r t i a l  d e r i v a t i v e  expres- 
s i o n s  appear ing  i n  t h e  governing d i f f e r e n t i a l  equa t ions  a r e  approximated, by 
f i n i t e  d i f f e r e n c e s .  .Loca t ion  of t h e s e  d e s c r e t e  p o i n t s  i s  made v i a  a s taggered  
mesh p a r t i t i o n i n g  of t h e  s o l u t i o n  domain. The s taggered  mesh par tit ioning  
c o n s i s t s  of f o u r  d i f f e r e n t  mesh systems. One mesh system f o r  t h e  f i e l d  
v a r i a b l e s  ( i . e . ,  p ,  P, a ,  H) and one f o r  each of t h e  t h r e e  v e l o c i t y  components 
(u ,  v ,  w) 

To i l l u s t r a t e  t h e  f i n i t e  d i f f e r e n c e  t echn iques  as app l i ed  t o  a  s taggered  
mesh, governing equat ions  1-5 w i l l  be  cons idered .  While t h e s e  equat ions  con- 
t a i n  o t h e r  terms ( i . e . ,  O.T.,), .only t h e  convec t ive  terms w i l l  be  considered 
here .  

a a a .  a (aap iua )  +-(a p  u u + -(a p u v  + -(a p u  w = - a P 
a - + O.T. 

ax a ay a e a e  az a a . a a .  t a x  
(2)  

a t  

a ( a p w )  a a a a P "' + - ( a p w u ) + - ( a p w v ) + - ( a p w w ) = - a - + O * T .  ax  a a a a  ay a a a a  a z  a a a a ,  aa z 
( 4 )  

a t  

a ( a g ~ a H a ) + a ( a e ~ e H 2 ~ e ) + a ( a a ~ a H p ~ a ) , + a ( ~ ~ H w )  a ' a 
a a a = -(a p) + -(a PU ) 

a t  ax ay a a t  a ax a a ,  

a a auk av a w  a + -(a Pva) + -(a Pw ) - a  P[- + - + - a z  a a a 1 + O.T. 
ay a .a ax ay az 

( 5 )  

The f i n i t e  d i f f e r e n c i n g  of t h e s e  equa t ions  will be  g e n e r a l  enough to 
accomoda t e  a n  i r r e g u l a r l y  shaped domain. 

To c l a r i f y  l o c a t i o n s  on t h e  s taggered  mesh, r e f e r e n c e  is made t o  f i e l d  
po in t s ,  u  po in t s ,  v  p o i n t s ,  and w p o i n t s .  Equation 1 and 5 a r e  a t  f i e l d  
p o i n t s  wh i l e  equa t ions  2, 3, and 4 a r e  a t  u  po in t s ,  v  p a i n t s ,  and w p o i n t s ,  , 

L r e s p e c t i v e l y  . 
Consider equat ion  1, term by term, evalua ted  a t  f i e l d  p o i n t  0 i n  F igs .  9 

and 10. 



f i c l d  p o i n t s  

u p o i n t s  

+ v p o i n t s  

X w p o i n t s  

n Ax, 0 
1 

"1 

Fig. 9. Grid L;ys.Leol Aruu~id Field Poin t  ' U '  

i n  x-y Plane. 



Fig. 10.  Grid System Around Field Point '0' 
i n  x-z Plane .  



H e r e a f t e r ,  d e l e t e  R s u b s c r i p t  and cons ider  it implied.  When s u p e r s c r i p t  n 
i s  a b s e n t  cons ider  it implied.  

. a  a 
F i n i t e  d i f f e r e n c e  forms f o r  - (apv) and - (apw) can be  obta ined  i n  s i m i l a r  

ay a 
manner a s  shown i n  equat ion  7; 

Consider equa t ion  5 eva lua ted  a t  f i e l d  p o i n t  0  in F igs .  9 and 10.  

a a 
F i n i t e  d i f f e r e n c e  forms f o r  - ( a p h )  and - (ap&) can be obtained i n  s i m i l a r  

ay a t  
manner a s  shown i n  equat ion  9.  

a a F i n i t e  d i f f e r e n c e  forms f o r  - (apv) and - (apw) can be  ob ta ined  i n  s i m i l a r  a Y a z 
manner a s  shown i n  equat ion  10 .  



av aw 
F i n i t e  d i f f e r e n c e  forms f o r  aP - and .aP - can b e  obta ined  i n  similar manner a Y a z 
a s  shown i n  equat ion  11. 

( Note t h a t  i n  t h e  f i n i t e  d i f f e r e n c e  expres s ions  from equat ions  1 and 5 as 
eva lua ted  a t  f i e l d  p o i n t  0, only  Ax2, Ax3, Ay2, Ayg , Az2, and Az3 appear .  

However, o t h e r  increments Axl, Ax4, Ayi, Ay4, Azl, Az4 w i l l  appear  i n  t h e  

f i n i t e  d i f f e r e n c e  express ions  of  d i f f u s i v e  terms which a r e  included i n  0. T. 

Consider equat ion  2 eva lua ted  a t  u-point 0 i n  F igs . '  11 and 12 .  

Le t  
n  n n n 

Ax a p +.Ax4a2p2 
" t 3 3 3  
(ap), Ax3 + Ax 4 

&c a P + A x ~ ~ ~ P ~  
Let = 

1 2 2  

Axl + &2 

- A x u  2 o + A x u  
. U  = 3 1 

1 Ax + Ax3 
2 

1 - .  - 
(apu), = y [ ( l  + SGN (ti2)) ( a ~ ) ~ u ~  + ( 1  - SGN ) )  (aP12 u21 



0 f i e l d  points  

O ,  u points  

' + v points  

x w l  points  

0 aux i l iary  pqints  

Fig. 11. Grid System Arourid u-Point ' 0 '  i n  x-y Plane.  



Fig .  1 2 .  G r i d  System Around u-Po in t  '0' i n  x - z  Plane. '  





- Ax a + Ax4a2 
Le t  (a), = 

3 3 
Ax + Ax4 3 

The f i n i t e  d i f f e r e n c e  £ o m s  f o r  t h e  te rms  i n  Equation 3 and 4 can b e  obta ined  
i n  s i m i l a r  manner a s  shown i n  Equat ions 12 t o  16. 

C. Ext rapo la t ion  Procedure f o r  I r r g g u L a ~  Boundaries ,  

I n  problems where t h e  reg ion  under cons ide ra t ion  has  a curved boundary, 
i t  i s  necessary  t o  determine c e r t a i n  v a r i a b l e s  through t h e  u s e  of i r r e g u l a r  
c e l l s .  A method f o r  determining a . va r i ab l e  l o c a t e d  on a boundary from i n t e r -  
n a l l y  c a l c u l a t e d  p o i n t s  i s  presented .  The method u s e s  a n  i n t e r p o l a t i o n  
technique  which e l i m i n a t e s  t h e  need f o r  information from p o i n t s  e x t e r n a l  t o  

u t h e  boundary , which a r e  i n  f a c t  pu re ly  f i c t i t i o u s  and inadmiss ib le  with r e s p e c t  
t o  t h e  f i n i t e  d i f f e r e n c e  scheme. 

Suppose a gene ra l  func t ion  f is known a t  p o i n t  x and x + ~  and des igna ted  
0 

by f i , j , k  and 'i+l r e s p e c t i v e l y ,  a s  shown i n  F ig  13 .  I f  t h e  boundary 
, j , k  

l o c a t e d  a t  is  e x t e r i o r  t o  t he  boundary passes  through p o i n t  x, then  f i  - , j y k  
and sould  n o t  b e  used i n  t h e  de te rmina t ion  of f  a t  po in t  x.  

i , j , k  , + ., 

, Boundary 

Fig. 13 Typica l  Curved Boundary I n t e r s e c t  wi th  Rectangular  Mesh System. 

It is  noted t h a t  equat ion  17 r e q u i r e s  information a t  p o i n t  x-l f o r  f  i-1, j , k 0  
A second approximation must be  made f o r  f  which can  e l imina te  f  

i , j , k  i-1, j, k *  
I f  a t h r e e  p o i n t  Lagrangian i n t e r p o l a t i o n  is  used f o r  p o i n t s  x , ~ ,  xo and x + ~ ,  

e l imina t ion  of f  can be accomplished. A va lue  f o r  f n  can be 
i-1, j , k ,  i , j , k  : . .  

obta ined  a s  fo l lows  rhrough Lagrangian interpolation . 



As a f i r s t  approximation t o  t h e  va lue  f h  
i Y j  Yk 

on t h e  .Eoundary, a  l i n e a r  i n t e r -  

p o l a t i o n  involving t h e  information at po in t s  x and x is  made. 
0 -1 

(1' - 5) AX; 
where 

A1 = Ax2 + Axl 

L a r e  the  Lagrangian c o e f f i c i e n t s  given by 2 

Now el iminate  f from equation 1.7 and 1 8  and solve  f o r  f 2  
i-ly j y k  * , j  ,k On 

the hobndary 

~ ~ u a t i o n  19 al lows f o r  t h e  determination of a  v a r i a b l e  on the boundary from 
determined i n t e r i o r  . f i e l d  information. 



D- Boundary Condi t ions  

General  geomet r ica l  c o n f i g u r a t i o n s  r e q u i r e  t h e  s p e c i f i c a t i o n  of s e v e r a l  
t ypes  o f  boundary cond i t i ons .  The boundary c o n d i t i o n s  a p p l i e d  a t  t h e  w a l l s  
of t h e  computing mesh a r e  t y p i c a l l y  on t h e  fo l lowing:  i )  inf low,  i i )  ou t f low,  
i i i ) '  no - s l i p  and i v )  f r e e  s l i p .  The boundary c o n d i t i o n s  a r e  s e t  be fo re  and 
a f t e r  each  i n t e r a t i o n .  The t rea tment  of s p e c i f i c  boundary c o n d i t i o n s  because 
of s t agge red  mesh i n  t h r e e  dimensions always r e q u i r e s  success ive  i n t e r p o l a t i o n  
and, e x t r a p o l a t i o n  t o  provide t h e  a p p r o p i a t e  v a r i a b l e s  a t  t h e  boundary. 

The code a s  being developed w i l l  i d e n t i f y  each boundary p o i n t  s e p a r a t e l y  
and b e  named independent of t h e  mesh i n d i c e s .  I n  a d d i t i o n ,  i t s  l o c a t i o n  r e l a -  
t i v e  t o  t h e  mesh l a y o u t  w i l l  a l s o  be  determined.  For each named bo1.1ndary 
p o i n t  t h e  u n i t  v e c t o r s  f o r  ' t h e  s u r f a c e  pass ing  through t h e  po in t  'b i l l  be 
determined and s t o r e d .  This  is  done i n i t i a l l y  once and f o r  a l l .  

i )  Inflow: For every i n t e r s e c t i o n  o f  an i n f low s u r f a c e  by a  u ,  v, o r  w 
v e l o c i t y  l i n e ,  a  v e c t o r  v e l o c i t y  a s  we l l  a s  d e n s i t y  and en tha lpy  w i l l  be 
p r e s c r i b e d .  Hence, i f  t h e  po in t ,  f o r  example, i s  l a b e l e d  a s  p o i n t  xx, then 

h(xx) = hh where ub, vb 
where u b, vb , wb, pb  and h  a r e  s p e c i f i e d .  b  

i i )  Outflow: On a n  out£  low boundary s e v e r a l  boundary c o n d i t i o n s  can be 
a p p l i e d .  S e l e c t i o n  of t h e  c o n d i t i o n s  t o  be used on a n  ou t f low boundary r e q u i r e s  
c a r e .  The c o n d i t i o n s  should be  determined i n  such a  way ' t h a t  t h e i r  choice  h a s  
minimal e f f e c t  on t h e  f low reg ion  of i n t e r e s t  ye t  be  p h y s i c a l l y  meaningful.  
The i d e a  of su ing  a  c o n d i t i o n  t h a t  h a s  t h e  l e a s t  upstream e f f e c t  ha s  been used 
s u c c e s s f u l l y  by many i n v e s t i g a t o r s  and w i l l  be  used i n  t h e  p re sen t  code. The 
c o d i t i o n  is  r e a l l y  one of smoothness t h a t  i s  a p p l i e d  t o  t h e  v e l o c i t y  components. 
Oae p o s s i b l e  set. of c o n d i t i o n s  may be 

Other p l a u s i b l e  cond i t i ons ,  such a s  t h e  second d e r i v a t i v e  of t h e  v e l o c i t y  
components van i sh  may be  used; however, t h e  above a r e  s u f f i c i e n t  f o r  i l l u s t r a -  
t i v e  purpose. 

i i i )  No-Slip: The boundary c o n d i t i o n s  f o r  a  s o l i d  w a l l  with v i s c o s i t y  
p re sen t  i n  t h e  f l u i d  r e q u i r e  t h e  s t i c k i n g  c o n d i t i o n ,  i .e . ,  no r e l a t i v e  motion 
between t h e  f l u i d  p a r t i c l e s  a t  t h e  w a l l  and t h e  wall ' .  This  c o n d i t i o n  imp l i e s  



t h a t  t h e  v e l o c i t y  components a t  t h e  w a l l  van i sh .  Since t h e  boundary p o i n t s  
a r e  l a b e l e d  we would have a t  po in t  xx on t h e  boundary 

i v )  F ree  S l ip :  The f r e e - s l i p  boundary cond i t i on  f o r  s o l i d  w a l l s  r e q u i r e s  
t h a t  t h e r e  be  zero  normal flow a c r o s s  t h e  w a l l ,  i . e . ,  V n  = o where 2 
i s  t h e  u n i t  normal t o  t h e  su r f ace .  The u n i t  v e c t o r s  dg f in ing  t h e  boundary 
s u r f a c e  a r e  c a l c u l a t e d  and s t o r e d  a t  t h e  s t a r t  of t h e  code. Hence, t h e  
v e l o c i t y  c o n d i t i o n s  which a r e  a p p r o p r i a t e l y  i n t ~ r p n l a t e d  and then ex t r apo la t ed  
t o  a  boundary p o i n t  can  be  used t o  s a t i s f y  t h e  zero  normal f l u x  cond i t i on  a s  
w e l l  a s  de te rmine  t h e  t a n g e n t i a l  component, i - e , ,  t h e  slip v e l o c i t y  along t h e  
w a l l ,  by u s i n g  t h e  u n i t  normal and decomposing t h e  v e l o c i t y .  

FOP t h e  cases (iii) and ( iv)  the temperature can be ~ p e c i f i e d  f o r  either 
t i e  c o n s t a n t  w a l l  t empera ture  c o n d i t i o n  o r  t h e  cons t an t  hea t  f l u x  cond i t i on ,  
whichever i s  a p p r o p r i a t e  f o r  t h e  given problem. 
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