

2/5/77
4-5-77

SAND76-0616

Unlimited Release

UC-10 60

3151

Tie-Down Cable Selection and Initial Tensioning for the Sandia 17-Meter Vertical-Axis Wind Turbine

Robert C. Reuter, Jr.

MASTER

Prepared by Sandia Laboratories, Albuquerque, New Mexico 87115
and Livermore, California 94550 for the United States Energy Research
and Development Administration under Contract AT (29-1) 789

Printed February 1977

Sandia Laboratories

SF-2900 Q(7-73)

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Issued by Sandia Laboratories, operated for the United States Energy Research & Development Administration by Sandia Corporation.

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research & Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Printed in the United States of America

Available from
National Technical Information Service
U. S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

Price: Printed Copy \$3.50; Microfiche \$3.00

SAND76-0616
Unlimited Release
Printed February 1977

Distribution
Category UC-~~4~~ 60

TIE-DOWN CABLE SELECTION AND INITIAL TENSIONING
FOR THE SANDIA 17-METER VERTICAL-AXIS WIND TURBINE

Robert C. Reuter, Jr.
Advanced Energy Projects Division 5715
Sandia Laboratories
Albuquerque, NM 87115

ABSTRACT

The rationale used for selection of tie-down cables for the Sandia 17-meter turbine are presented, discussed and implemented. The effects of initial cable tension on the response of the tie-down system is evaluated and discussed in terms of resulting sag, blade interference and response linearity.

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

CONTENTS

<u>Section</u>		<u>Page</u>
I	Introduction	7
II	Phase I Design Results	8
III	Phase II Design - Initial Tension	9
IV	Summary	16
V	References	17

FIGURES

<u>Figure</u>		
1	Cable Geometry	9
2	Counterweighted Cable	10
3	Cable Tension Versus Midpoint and Strike Point Sag	10
4	Cable Stiffness Versus Midpoint Sag	12
5	Cable Tension Change Versus Chord Length Change and Tower Deflection	13
6	Final Cable Tension Versus Chord Length Change and Tower Deflection	14
7	Strike Point Sag Versus Chord Length Change and Tower Deflection	15

TIE-DOWN CABLE SELECTION AND INITIAL TENSIONING FOR THE SANDIA 17-METER VERTICAL-AXIS WIND TURBINE

I. Introduction

There are two principle considerations in the design of a cable tie-down system for the vertical axis wind turbine. The first is that of establishing geometric, physical and mechanical properties of the system for adequate load carrying capability and tower stiffening. These properties include the number of cables, the cable elevation angle, cable density, active cable area and cable stiffness. The second consideration in the design is that of determining initial cable tension and sag to insure sufficient blade clearance and load retention after tower deflection. These two aspects of design are actually coupled together due to the dependence of cable stiffness on initial tension. The dependence is nonlinear and therefore difficult to handle, especially when the nonlinearities become large. With proper selection of cable properties and initial tensions the nonlinear effects can be minimized, thus permitting independent treatment of the two phases. This approach will be used here.

This report discusses the initial tension phase of the tie-down design for the 17 meter turbine. Since field adjustments may be required to compensate for thermal, creep and dynamic effects, response curves should prove to be useful. Results of the first design phase for this turbine will also be presented.

II. Phase I Design Results

1. Even symmetrically distributed numbers of cables have a significant erection advantage over odd, or unsymmetrically distributed numbers of cables. This is because even numbers of cables can be mounted and tensioned in pairs rather than all at once. Four cables, at equally spaced azimuth positions, were selected for the 17 meter, VAWT tower tie-down. Two cables offer stiffness in only one vertical plane, and six cables were judged to be too many for cost and appearance reasons.

2. The cable elevation angle was selected as that which gave a maximum horizontal stiffening effect to the blade support tower and a minimum bending moment at the base of the tower. This angle is approximately 35° measured from a horizontal plane.*

3. Cable "outriggers" at the top of the tower were eliminated because of relatively small stiffening effects, undesirable translation-rotation coupling at the top of the tower and added costs. They were not needed to reduce the blade-cable strike probability because of the relatively shallow cable elevation angle of 35° .

4. A minimum cable-tower horizontal stiffness at the top of the tower of approximately 9000 lb/in. was established for the four-cable tie-down system.¹ This resulted in approximately a one inch, downwind, horizontal deflection at the top of the tower in an 80 mph wind. (This is considered to be the maximum wind speed in which the turbine will be permitted to operate.)

In order to meet this stiffness requirement, the following wire rope was selected.

Name and Construction: galvanized bridge strand, 7 strand

Linear Weight: 2.07 lb/ft

Active Cross Sectional Area: 0.596 in.

Effective Elastic Modulus: 25.0×10 psi

Breaking Strength: 122,000 lb

* This result is from unpublished work, where it was found to be independent of geometric scaling.

III. Phase II Design - Initial Tension

Because of the nonlinear coupling of cable geometry (sag) and mechanical properties with cable tension, it is possible for results of this phase to effect preliminary design, above. This design feedback can be eliminated, however, if cable tension is high enough to minimize nonlinear effects, as will be demonstrated.

There are several features of the cable tension-sag problem which are worth discussing separately. The first is the relationship between tension and midpoint sag in a cable which connects two fixed points in space. These two points are the top of the undeflected blade support tower and the ground connection, see Figure 1.

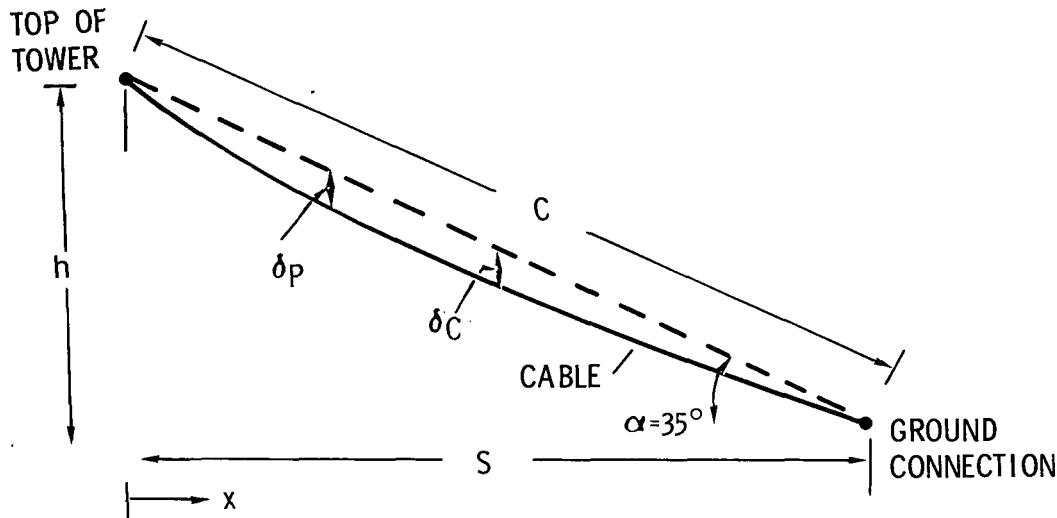


Figure 1. Cable Geometry

The midpoint sag in the cable is given by the parabolic approximation²

$$\delta_c = \frac{wC^2}{8T} \cos \alpha \quad (1)$$

where α is the elevation angle of the undeflected cable, T is the chordwise component of the cable tension (directed along a line connecting the cable endpoints) and w is the linear weight of the cable. Material stiffness is absent from this equation because elastic deformation has a small effect upon equilibrium of the cable. To further illustrate this point, consider a cable as in Figure 2, but with the ground connection replaced by a roller over which the cable passes before attaching to a weight, W . The equation relating sag and tension is the same in this case as it is for the cable connecting two fixed points. If elastic deformation is suddenly permitted in the cable of Figure 2,

the weight, W , simply moves downward without any change in cable sag. If the roller is then fixed in space and the weight is removed, the situation displayed in Figure 1 is recovered.

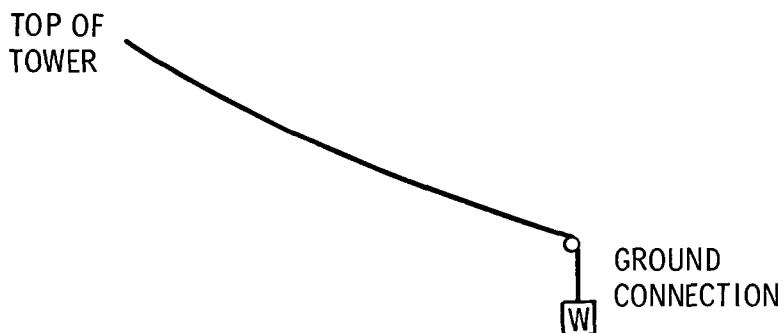


Figure 2. Counterweighted Cable

Another feature of the cable tension-sag problem which is of interest is the relationship between cable midpoint sag and sag at some other point. This relationship is

$$\delta_p = \frac{4\delta_c x (S - x)}{C^2 \cos^2 \alpha} \quad (2)$$

where x is measured as shown in Figure 1. For the cable selected for tie-down of the 17 meter turbine, midpoint sag and sag at the point closest to the passing blade are shown in Figure 3. The point on a blade which comes closest to a sagging tie-down cable lies approximately at the intersection of the straight, circular arc and strut blade sections.

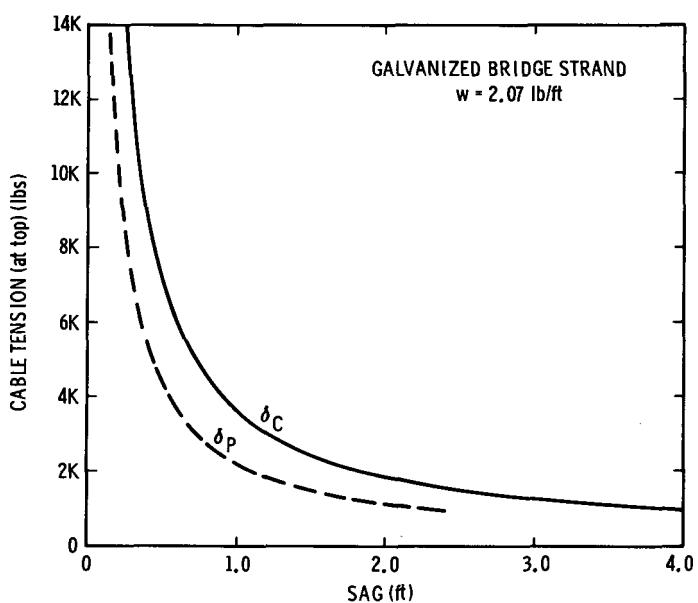


Figure 3. Cable Tension Versus Midpoint and Strike Point Sag

The next question which arises is what happens to the tension and sag in a cable when there is relative motion between the two end points. For the purposes of this report, the relative motion between the end points will be permitted by keeping the ground connection fixed and allowing horizontal motion, ΔC_h , at the top of the tower in the plane of the deflected cable. When this motion occurs, part of it is due to elastic stretch (or contraction) in the cable, and part is due to a change in the cable geometry (sag). See Reference 2 for a more complete discussion. After some algebraic manipulation, the relationship between cable stiffness and sag² is given by

$$K = \left[\frac{C}{AE} + \frac{512 \delta_c^3}{12(1+b)wC^3 \cos \alpha} \right]^{-1} \quad (3)$$

where

$$b = \frac{8}{3} \left(\frac{\delta_c}{C} \right)^2$$

and A and E are the cable's cross sectional area and effective modulus. Equation (1) could be used to relate K to cable tension. The nonlinearity of (3) is apparent.

When sag is very small, stiffness is nearly constant and is dominated by elastic stretch. When sag is large, stiffness can be quite small as cable loads tend to pull sag out before inducing cable stretch.

For the 17 meter turbine, the cable stiffness, mid-point sag relation is illustrated in Figure 4. Since the cable stiffness is not constant with δ_c , it is not possible to obtain the loss (or gain) of cable tension due to a tower deflection. Concern should be primarily with tension loss because this will be accompanied by increased sag and a greater probability of a blade strike. As the tower deflects, tension is lost, sag is increased and the effective stiffness changes.

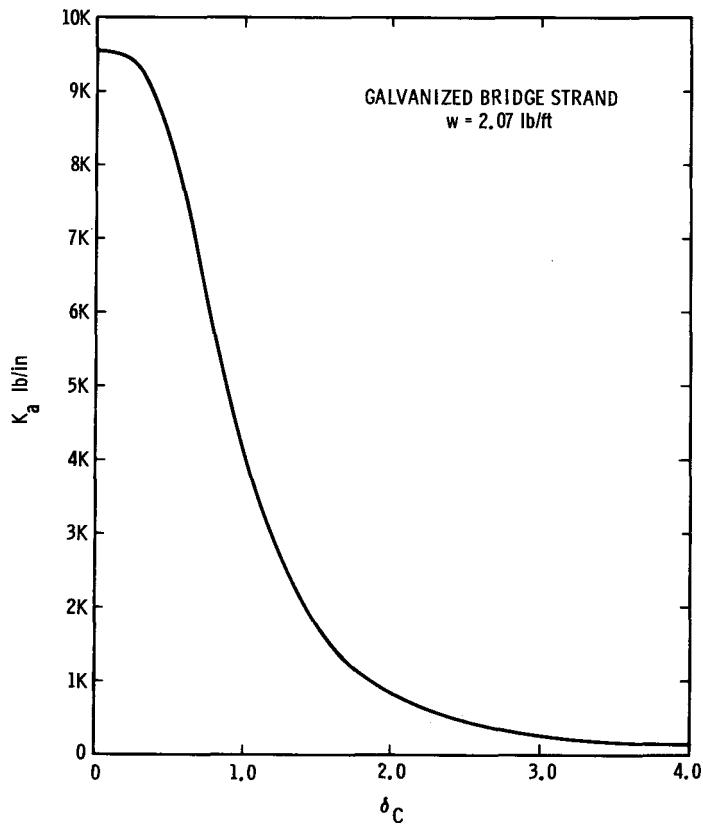


Figure 4. Cable Stiffness Versus Midpoint Sag

To calculate the tension loss directly, the load-deflection relationship must be integrated. Expressing the cable stiffness, K , in terms of cable tension, T , gives

$$K = \frac{dT}{dC} = \left[\frac{C}{AE} + \frac{w^2 C^3 \cos^2 \alpha}{12T^3 (1 + b)} \right]^{-1} \quad (4)$$

Integration of this equation can be simplified greatly (yielding approximate results) if one recognizes that small changes in C produce large changes in T . Since a solution will be sought where changes in T are minimized, C may be considered constant for the integration and subsequent numerical evaluation. Rearranging Eq. (4) gives

$$dC = \left[\frac{C}{AE} + \frac{w^2 C^3 \cos^2 \alpha}{12T^3 (1 + b)} \right] dT \quad (5)$$

and integration of this gives

$$\Delta C = \left[\frac{C}{AE} (T_f - T_i) - \frac{w^2 C^3 \cos^2 \alpha}{24(1+b)} \left(\frac{1}{T_f^2} - \frac{1}{T_i^2} \right) \right] \quad (6)$$

where ΔC is the change in chord length, and T_i and T_f are the initial and final cable tensions, respectively. Equation (6) can also be written in terms of the change in cable tension, $\Delta T = (T_f - T_i)$ as

$$\Delta C = \left[\frac{C \Delta T}{AE} + \frac{w^2 C^3 \cos^2 \alpha}{24(1+b)} \frac{\Delta T (\Delta T + 2T_i)}{T_i^2 (\Delta T + T_i)^2} \right] \quad (7)$$

Numerical results of Eq. (7) are presented in Figure 5 for the 17 meter turbine tie-down cable where cable tension change, ΔT , is shown as a function of cable chord length change, ΔC , and horizontal deflection, ΔC_h . Also shown is the 9000 lb/in. linear cable stiffness, K_s , (Phase 1, pt. 4) used in the composite tower, tie-down analysis. As indicated in the figure, nonlinear effects become increasingly larger with deflection. It is also evident that the higher the initial cable tension, the greater the permissible deflection before nonlinear effects become strong. From the figure, cables with initial tensions of 12,000 lb or greater behave in a nearly linear fashion for horizontal deflections, ΔC_h , up to about 1 in.

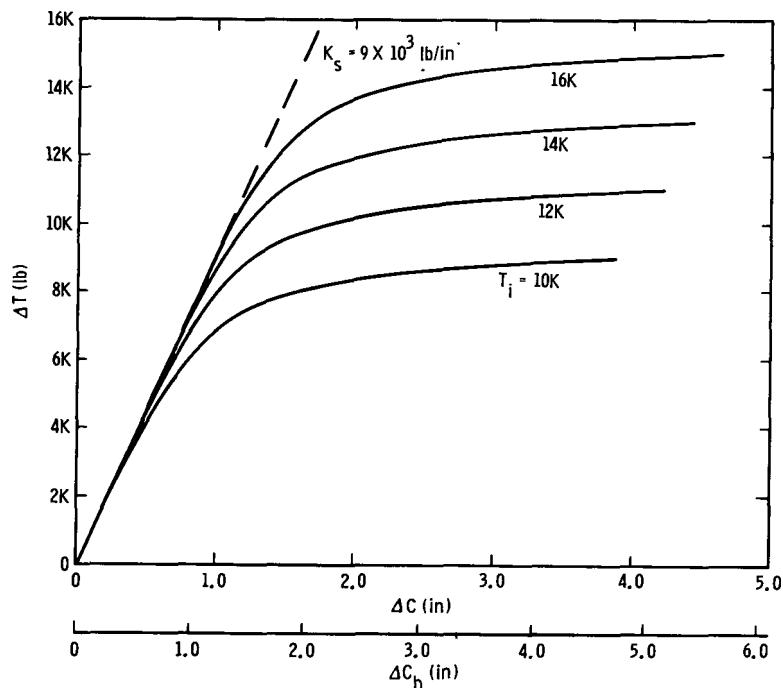


Figure 5. Cable Tension Change Versus Chord Length Change and Tower Deflection

Two additional figures may be useful. Figure 6 shows the dependence of final cable tension, T_f , on ΔC and ΔC_h . Figure 7 shows the dependence of the cable sag at the strike point, δ_p , on the deflections. Results in both figures are presented for various values of initial cable tension. Note, in Figure 7, that for a given initial tension, T_i , the final sag, δ_p , increases rapidly with displacement. This suggests that selection of initial cable tension be based on a minimum acceptable clearance between the sagging cable and a passing blade. For example, if this minimum clearance is selected as 5 feet of separation in the vertical direction, approximately 1 foot may be due to cable sag after tower deflection (the rest would be an allowance for blade deflection and rigid body separation).

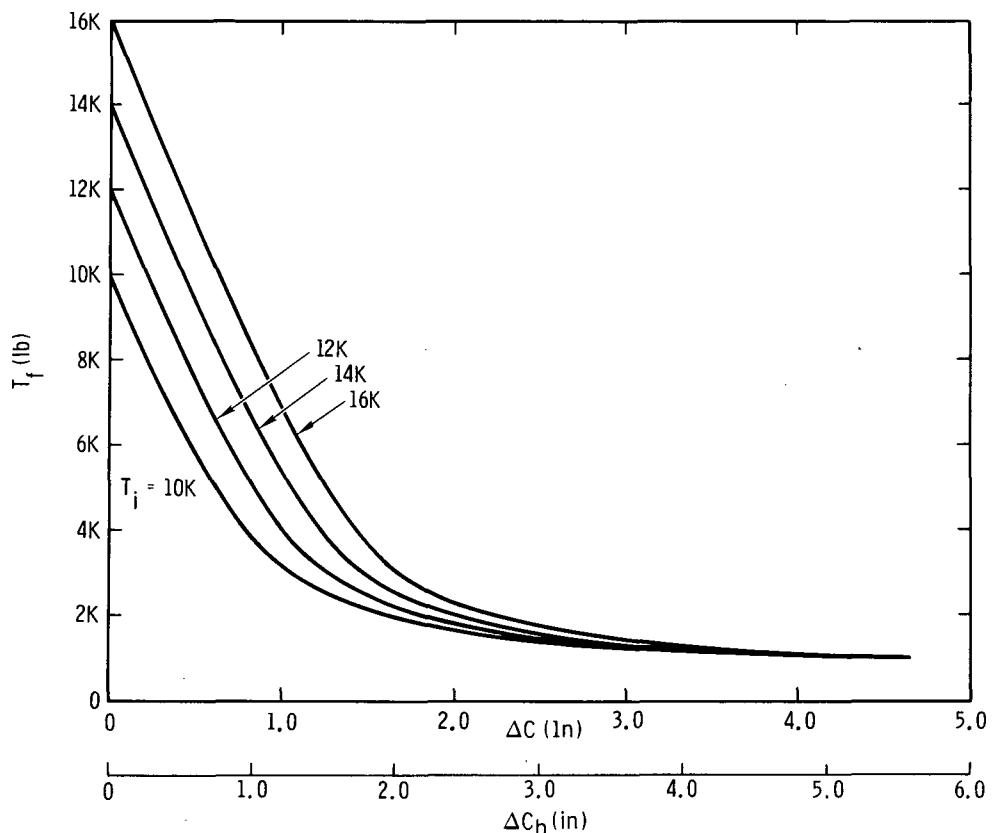


Figure 6. Final Cable Tension Versus Chord Length Change and Tower Deflection

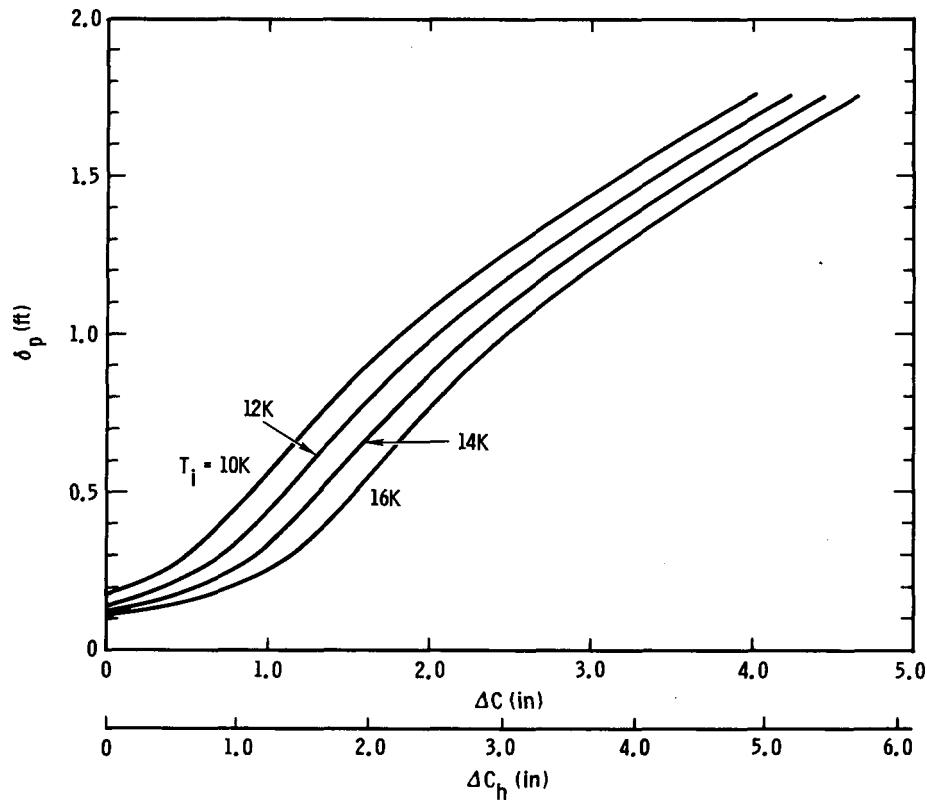


Figure 7. Strike Point Sag Versus Chord Length Change and Tower Deflection

From Figure 7, if a horizontal tower deflection, ΔC_h , of 2.5 in. is allowed (conservatively) then for a strike point sag to be 1 foot or less, the initial cable tension should be 12,000 lb or more. If a deflection, ΔC_h , of 3 in. is allowed, then 16,000 lb or more of initial cable tension is required to keep the strike point sag 1 foot or less. For the 17 meter turbine, a 12,000 lb initial cable tension is selected. This value provides a relatively small strike point sag (0.3 ft) when the horizontal tower deflection is approximately 1 in., and the response remains nearly linear.

IV. Summary

While the initial cable tension-cable sag-tower deflection interaction can be highly nonlinear, proper selection of cable properties and initial tension for a specified performance can practically eliminate the nonlinearities. The dependence of final, strike point sag upon tower deflection has been demonstrated. Since tower deflection, under steady state conditions, is a function of wind speed, it is possible to ease cable tension under light wind conditions (from a tension value selected to cover all wind possibilities) thereby reducing bearing loads and life. It may also happen that undesirable dynamic effects in the cables arise under certain operating conditions. In this case, cable tension may have to be adjusted to "tune" the cables such that resonant frequencies. Numerical results contained in this report will provide guidance for this operation.

V. References

1. Sandia Vertical-Axis Wind Turbine Project Technical Quarterly Report, Edited by R. C. Reuter, Jr. and R. E. Sheldahl, SAND76-0581, October 1976.
2. Shears, M., "Static and Dynamic Behavior of Guyed Masts," Structures and Materials Research Department of Civil Engineering, Report No. 68-6, University of California, Berkeley, California, June 1968.

DISTRIBUTION:

TID-4500-R65, UC-13 (159)

R. J. Templin
Low Speed Aerodynamics Section
NRC-National Aeronautical Establishment
Ottawa 7, Ontario, Canada K1AOR6

A. Robb
Memorial Univ. of Newfoundland
Faculty of Eng. & Applied Sciences
St. John's Newfoundland
Canada A1C 5S7

H. Sevier
Rocket and Space Division
Bristol Aerospace Ltd.
P. O. Box 874
Winnipeg, Manitoba
R3C 2S4 Canada

V. A. L. Chasteau
Department of Mech. Engineering
The University of Auckland
Private Bag
Auckland, New Zealand

G. Herrera
Jet Propulsion Lab
4800 Oak Grove Drive
Pasadena, CA 91103

NASA
Langley Research Center
Hampton, VA 23365
Attn: R. Muraca, MS 317

NASA (2)
Lewis Laboratory
21000 Brookpark Road
Cleveland, OH 44135
Attn: J. Savino, MS 500-201
R. L. Thomas

ERDA (3)
1800 G. Street NW
Washington, DC 20550
Attn: L. Divone

University of New Mexico (2)
Albuquerque, NM 87106
Attn: K. T. Feldman
Energy Research Center
V. Sloglund
ME Department

A. V. da Rosa
Stanford Electronic Laboratories
Radio Science Laboratory
Stanford, CA 94305

A. N. L. Chiu
University of Hawaii
Wind Engineering Research Digest
Spalding Hall 357
Honolulu, HI 96822

R. N. Meroney
Colorado State University
Dept. of Civil Engineering
Fort Collins, CO 80521

A. G. Vacroux
Illinois Institute of Technology
Dept. of Electrical Engineering
3300 South Federal
Chicago, IL 60616

New Mexico State University
P. O. Box 3450
Las Cruces, NM 88003
Attn: M. M. Sluyter

Oklahoma State University (2)
Stillwater, OK 74074
Attn: W. L. Hughes
EE Department
D. K. McLaughlin
ME Department

Oregon State University (2)
Corvallis, OR 97331
Attn: R. Wilson
ME Department
R. W. Thresher
ME Department

Texas Tech University (2)
Lubbock, TX 79409
Attn: K. C. Mehta,
CE Department
J. Strickland
ME Department

R. G. Watts
Tulane University
Dept. of Mechanical Engineering
New Orleans, LA 70018

M. Snyder
Wichita State University
Aero Engineering Department
Wichita, KS 67208

ERDA (2)
Nevada Operations Office
P. O. Box 14100
Las Vegas, NV 89114
Attn: R. Ray, Operations
H. Mueller, ARL

DISTRIBUTION (cont)

Los Alamos Scientific Lab (7)

P. O. Box 1663

Los Alamos, NM 87544

Attn: R. R. Brownlee, J-9

J. R. Bartlit, Qu-26

J. D. Balcomb, Q-DO-T

R. G. Wagner, P-5

J. Nachamkin, T-DO-TEC

S. W. Depp, E-DO

H. Deinken, ADWP-1

W. L. Harris

Massachusetts Institute of Technology

Aero/Astro Department

Cambridge, MA 02139

K. Bergey

University of Oklahoma

Aero Engineering Department

Norman, OK 73069

J. Fischer

F. L. Smith & Company A/S

Vigerslevalle 77

2500 Valby, Denmark

H. M. Busey

DMA, Safety and Facilities A-364

ERDA Headquarters

Washington, DC 20545

P. Bailey

P. O. Box 3

Kodiak, AK 99615

M. E. Beecher

Arizona State University

Solar Energy Collection

University Library

Tempe, AZ 85281

U. A. Coty

Lockheed California Co.

Box 551-63A1

Burbank, CA 91520

Lawrence Livermore Laboratory (2)

P. O. Box 808 L-340

Livermore, CA 94550

Attn: D. W. Dorn

D. Hardy

J. A. Garate

General Electric

Valley Forge Space Center

King of Prussia, PA 19406

O. Krauss

Michigan State University

Division of Engineering Research

East Lansing, MI 48824

A. H. Stodhart

Electrical Research Associates

Cleeve Road

Slurrey, England

V. Nelson

West Texas State University

Department of Physics

P. O. Box 248

Canyon, TX 79016

ERDA
Albuquerque Operations Office
P. O. Box 5400
Albuquerque, NM 87115
Attn: D. K. Knowlin
D. C. Graves
D. W. King

R. Camerero
Faculty of Applied Science
University of Sherbrooke
Sherbrooke, Quebec
Canada J1K 2R1

American Wind Energy Association
21243 Grand River
Detroit, MI 48219

E. E. Anderson
South Dakota Sch. of Mines & Tech.
Dept. of Mechanical Engineering
500 St. Joe St.
Rapid City, SD 57701

E. S. Takle
Iowa State University
Climatology and Meteorology
312 Curtiss Hall
Ames, IA 50010

P. B. S. Lissaman
Aeroenvironment, Inc.
660 South Arroyo Parkway
Pasadena, CA 991105

R. A. Parmelee
Northwestern University
Department of Civil Engineering
Evanston, IL 60201

J. Park
Helion
P. O. Box 4301
Sylmar, CA 91342

W. F. Foshag
Aerophysics Company
3500 Connecticut Avenue NW
Washington, DC 20008

DISTRIBUTION (cont)

E. Gilmore
Amarillo College
Amarillo, TX 79100

R. K. Swanson
Southwest Research Institute
8500 Culebra Road
San Antonio, TX 78284

L. Liljedahl
US Department of Agriculture
Agriculture Research Center
Building 303
Beltsville, MD 20705

T. Wentink, Jr.
University of Alaska
Geophysical Institute
Fairbanks, AK 99701

E. J. Warchol
Bonneville Power Administration
P. O. Box 3621
Portland, OR 97225

W. Batesole
Kaman Aerospace Corporation
Old Windsor Road
Bloomfield, CT 06002

Lechner
Public Service Co. N. Mex.
P. O. Box 2267
Albuquerque, NM 87103

J. Lerner
State Energy Commission
Research and Development Division
1111 Howe Avenue
Sacramento, CA 95825

J. Nightingale
1735 Hunt Avenue
Richland, WA 99352

F. K. Bechtel
Assistant Professor
Washington State University
Department of Electrical Engineering
Pullman, Washington 99163

General Electric Co. (2)
Advanced Energy Programs
Valley Forge Space Center
P. O. Box 8661
Philadelphia, PA 19101
Attn: S. L. Macklis
J. S. Zimmerman

F. Matanzo
Dardalean Associates
15110 Frederick Road
Woodbine, MD 21797

Reynolds Metals Company
Product Development Division
P. O. Box 27003
Richmond, VA 23261
Attn: R. B. Lightner, Director
Electrical Section

1000	G. A. Fowler
1200	W. A. Gardner
1280	T. B. Lane
1284	R. T. Othmer
1284	W. N. Sullivan
1284	L. I. Weingarten
1300	D. B. Shuster
1320	M. L. Kramm
1324	E. C. Rightley
1324	L. V. Feltz
1330	R. C. Maydew
1333	S. McAlees, Jr.
1333	B. F. Blackwell
1333	R. E. Sheldahl
1400	A. Y. Pope
3161	J. E. Mitchell (50)
5000	A. Narath
5431	D. W. Lobitz
5443	J. W. Reed
5700	J. H. Scott
5710	G. E. Brandvold
5715	R. H. Braasch
5715	E. G. Kadlec (100)
5715	R. C. Reuter (5)
5736	A. F. Veneruso
5740	V. L. Dugan
5742	S. G. Varnado
5742	J. F. Banas
8000	T. B. Cook, Jr.
8100	L. Gutierrez
8110	A. N. Blackwell
8300	B. F. Murphey
8320	T. S. Gold
8266	E. A. Aas (2)
3141	C. A. Pepmueller (Actg) (5)
3151	W. L. Garner (3)

For ERDA/TIC (Unlimited Release)