
SAND76-0616
Unlimited Release 

UC-tS LG

g'V t

SF'2900 Q(7-73)

ir3 distribution of this document is unlimited

1



DISCLAIMER

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency 
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image 

products. Images are produced from the best available 

original document.



Issued by Sandia Laboratories, operated for the United States 
Energy Research & Development Administration by Sandia 
Corporation.

NOTICE

This report was prepared as an account of work sponsored by 
the United States Government. Neither the United States nor 
the United States Energy Research & Development Adminis­
tration, nor any of their employees, nor any of their con­
tractors, subcontractors, or their employees, makes any 
warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of 
any information, apparatus, product or process disclosed, or 
represents that its use would not infringe privately owned 
rights.

Printed in the United States of America 

Available from
National Technical Information Service
U. S. Department of Commerce 
5285 Port Royal Road 
Springfield, VA 22161

Price: Printed Copy $3.50; Microfiche $3.00



SA ND76-0616 
Unlimited Release 

Printed February 1977

Distribution 
Category UC-il (^0

TIE-DOWN CABLE SELECTION AND INITIAL TENSIONING 
FOR THE SANDIA 17-METER VERTICAL-AXIS WIND TURBINE

Robert C. Reuter, Jr.
Advanced Energy Projects Division 5715 

Sandia Laboratories 
Albuquerque, NM 87115

ABSTRACT

The rationale used for selection of tie-down cables 
for the Sandia 17-meter turbine are presented, dis­
cussed and implemented. The effects of initial cable 
tension on the response of the tie-down system is 
evaluated and discussed in terms of resulting sag, 
blade interference and response linearity.
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TIE-DOWN CABLE SELECTION AND INITIAL TENSIONING 
FOR THE SANDIA 17-METER VERTICAL-AXIS WIND TURBINE

I. Introduction

There are two principle considerations in the design of a cable tie-down system for the 

vertical axis wind turbine. The first is that of establishing geometric, physical and mechanical 

properties of the system for adequate load carrying capability and tower stiffening. These 

properties include the number of cables, the cable elevation angle, cable density, active cable 

area and cable stiffness. The second consideration in the design is that of determining initial 

cable tension and sag to insure sufficient blade clearance and load retention after tower deflection. 

These two aspects of design are actually coupled together due to the dependence of cable stiffness 

on initial tension. The dependence is nonlinear and therefore difficult to handle, especially when 

the nonlinearities become large. With proper selection of cable properties and initial tensions 

the nonlinear effects can be minimized, thus permitting independent treatment of the two phases. 

This approach will be used here.

This report discusses the initial tension phase of the tie-down design for the 17 meter 

turbine. Since field adjustments may be required to compensate for thermal, creep and dynamic 

effects, response curves should prove to be useful. Results of the first design phase for this 

turbine will also be presented.



II. Phase I Design Results

1. Even symmetrically distributed numbers of cables have a significant erection advantage 

over odd, or unsymmetrically distributed numbers of cables. This is because even numbers of 

cables can be mounted and tensioned in pairs rather than all at once. Four cables, at equally 

spaced azimuth positions, were selected for the 17 meter, V.AWT tower tie-down. Two cables 

offer stiffness in only one vertical plane, and six cables were judged to be too many for cost and 

appearance reasons.

2. The cable elevation angle was selected as that which gave a maximum horizontal stif­

fening effect to the blade support tower and a minimum bending moment at the base of the tower. 

This angle is approximately 35° measured from a horizontal plane. ^

3. Cable "outriggers" at the top of the tower were eliminated because of relatively small 

stiffening effects, undesirable translation-rotation coupling at the top of the tower and added costs. 

They were not needed to reduce the blade-cable strike probability because of the relatively shallow 

cable elevation angle of 35°.

4. A minimum cable-tower horizontal stiffness at the top of the tower of approximately 
9000 Ib/in. was established for the four-cable tie-down system. ^ This resulted in approximately 

a one inch, downwind, horizontal deflection at the top of the tower in an 80 mph wind. (This is 

considered to be the maximum wind speed in which the turbine will be permitted to operate. )

In order to meet this stiffness requirement, the following wire rope was selected.

Name and Construction: galvanized bridge strand, 7 strand

Linear Weight: 2. 07 Ib/ft

Active Cross Sectional Area: 0. 596 in.

Effective Elastic Modulus: 25. 0x10 psi 

Breaking Strength: 122, 000 lb

This result is from unpublished work, where it was found to be independent of geometric 
Scaling.



III. Phase II Design - Initial Tension

Because of the nonlinear coupling of cable geometry (sag) and mechanical properties with 

cable tension, it is possible for results of this phase to effect preliminary design, above. This 

design feedback can be eliminated, however, if cable tension is high enough to minimize non­

linear effects, as will be demonstrated.

There are several features of the cable tension-sag problem which are worth discussing 

separately. The first is the relationship between tension and midpoint sag in a cable which con­

nects two fixed points in space. These two points are the top of the undeflected blade support 

tower and the ground connection, see Figure 1.

TOP OF 
TOWER

CABLE

GROUND
CONNECTION

Figure 1. Cable Geometry
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The midpoint sag in the cable is given by the parabolic approximation 

wC2
5c = “8T" COS a (1)

where a is the elevation angle of the undeflected cable, T is the chordwise component of the cable 

tension (directed along a line connecting the cable endpoints) and w is the linear weight of the cable, 

* Material stiffness is absent from this equation because elastic deformation has a small effect upon

« equilibrium of the cable. To further illustrate this point, consider a cable as in Figure 2, but

, with the ground connection replaced by a roller over which the cable passes before attaching to

a weight, W. The equation relating sag and tension is the same in this case as it is for the cable 

connecting two fixed points. If elastic deformation is suddenly permitted in the cable of Figure 2,

9



the weight, W, simply moves downward without any change in cable sag. If the roller is then 

fixed in space and the weight is removed, the situation displayed in Figure 1 is recovered.

TOP OF 
TOWER

GROUND
CONNECTION

Figure 2, Counterweighted Cable

Another feature of the cable tension-sag problem which is of interest is the relationship 

between cable midpoint sag and sag at some other point. This relationship is

6
P

46 x (S - x) c
„2 2C cos a

(2)

where x is measured as shown in Figure 1. For the cable selected for tie-down of the 17 meter 

turbine, midpoint sag and sag at the point closest to the passing blade are shown in Figure 3. The 

point on a blade which comes closest to a sagging tie-down cable lies approximately at the inter­

section of the straight, circular arc and strut blade sections.

GALVANIZED BRIDGE STRAND 
w - 2.07 Ib/ft

SAG(ft)

Figure 3. Cable Tension Versus Midpoint and Strike Point Sag



The next question which arises is what happens to the tension and sag in a cable when there 

is relative motion between the two end points. For the purposes of this report, the relative motion 

between the end points will be permitted by keeping the ground connection fixed and allowing hori­

zontal motion, AC^, at the top of the tower in the plane of the deflected cable. When this motion 

occurs, part of it is due to elastic stretch (or contraction) in the cable, and part is due to a change

in the cable geometry (sag). See Reference 2 for a more complete discussion. After some alge-
2

braic manipulation, the relationship between cable stiffness and sag is given by

K
512 e"

ATT 9
12(1 + b)wC cos a

where

(3)

and A and E are the cable's cross sectional area and effective modulus. Equation (1) could be 

used to relate K to cable tension. The nonlinearity of (3) is apparent.

When sag is very small, stiffness is nearly constant and is dominated by elastic stretch. 

When sag is large, stiffness can be quite small as cable loads tend to pull sag out before inducing 

cable stretch.

For the 17 meter turbine, the cable stiffness, mid-point sag relation is illustrated in Fig­

ure 4. Since the cable stiffness is not constant with 6 , it is not possible to obtain the loss (orc
gain) of cable tension due to a tower deflection. Concern should be primarily with tension loss 

because this will be accompanied by increased sag and a greater probability of a blade strike.

As the tower deflects, tension is lost, sag is increased and the effective stiffness changes.
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GALVANIZED BRIDGE STRAND 
w = 2.07 Ib/ft

Figure 4. Cable Stiffness Versus Midpoint Sag

To calculate the tension loss directly, the load-deflection relationship must be integrated. 

Expressing the cable stiffness, K, in terms of cable tension, T, gives

K = dT
dC

C
AE

2 3 2w C cos a
12T3 (1 + b)

-1

(4)

Integration of this equation can be simplified greatly (yielding approximate results) if one recog­

nizes that small changes in C produce large changes in T. Since a solution will be sought where 

changes in T are minimized, C may be considered constant for the integration and subsequent 

numerical evaluation. Rearranging Eq. (4) gives

dC C
AE

2_3 2w C cos a
12T3 (1 + b)

dT (5)
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and integration of this gives

AC C
AE (T, T.) -i

2 3 2w C cos a
24(1 + b) (6)

where AC is the change in chord length, and T\ and are the initial and final cable tensions, 

respectively. Equation (6) can also be written in terms of the change in cable tension, AT = (T^ - T 

as

AC CAT
AE

+
2^3 2w C cos a

24(1 + b)

AT (AT + 2T.)i
T? (AT + T.)2

i i .

(7)

Numerical results of Eq. (7) are presented in Figure 5 for the 17 meter turbine tie-down cable

where cable tension change, AT, is shown as a function of cable chord length change, AC, and

horizontal deflection, AC,. Also shown is the 9000 lb/in. linear cable stiffness, K , (Phase 1,h s
pt. 4) used in the composite tower, tie-down analysis. As indicated in the figure, nonlinear

effects become increasingly larger with deflection. It is also evident that the higher the initial

cable tension, the greater the permissible deflection before nonlinear effects become strong.

From the figure, cables with initial tensions of 12, 000 lb or greater behave in a nearly linear

fashion for horizontal deflections, AC,, up to about 1 in.h

K >9X10 Ib/in

T, - 10K

4Ch (in)

Figure 5. Cable Tension Change Versus Chord Length Change and Tower Deflection



Two additional figures may be useful. Figure 6 shows the dependence of final cable tension, 

T^, on AC and AC^. Figure 7 shows the dependence of the cable sag at the strike point, 6 , on the 

deflections. Results in both figures are presented for various values of initial cable tension. Note, 

in Figure 7, that for a given initial tension, T., the final sag, 6 , increases rapidly with dis­

placement. This suggests that selection of initial cable tension be based on a minimum acceptable 

clearance between the sagging cable and a passing blade. For example, if this minimum clearance 

is selected as 5 feet of separation in the vertical direction, approximately 1 foot may be due to 

cable sag after tower deflection (the rest would be an allowance for blade deflection and rigid 

body separation).

T- = 10K

AC (In)

AC^ (in)

Figure 6. Final Cable Tension Versus Chord Length 
Change and Tower Deflection
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T. * 10K

I- - - - - - - - - - - - - - - - - - - - 1 l l l I L
0 1.0 2.0 3.0 4.0 5.0 6.0

4Ch (in)

Figure 7. Strike Point Sag Versus Chord Length 
Change and Tower Deflection

From Figure 7, if a horizontal tower deflection, AC^, of 2. 5 in. is allowed (conservatively)

then for a strike point sag to be 1 foot or less, the initial cable tension should be 12, 000 lb or

more. If a deflection, AC, , of 3 in. is allowed, then 16, 000 lb or more of initial cable tensionh
is required to keep the strike point sag 1 foot or less. For the 17 meter turbine, a 12, 000 lb 

initial cable tension is selected. This value provides a relatively small strike point sag (0. 3 ft) 

when the horizontal tower deflection is approximately 1 in., and the response remains nearly 

linear.
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IV. Summary-

While the initial cable tension-cable sag-tower deflection interaction can be highly nonlinear, 

proper selection of cable properties and initial tension for a specified performance can practically 

eliminate the nonlinearities. The dependence of final, strike point sag upon tower deflection has 

been demonstrated. Since tower deflection, under steady state conditions, is a function of wind 

speed, it is possible to ease cable tension under light wind conditions (from a tension value 

selected to cover all wind possibilities) thereby reducing bearing loads and life. It may also 

happen that undesirable dynamic effects in the cables arise under certain operating conditions.

In this case, cable tension may have to be adjusted to "tune" the cables such that resonant fre­

quencies. Numerical results contained in this report will provide guidance for this operation.
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