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ABSTRACT 

Flowsheets for the separation and purification of. neptunium from spent 
LWR fuels have been developed. The neptunium nitrate product would be 
suitable for transfer to an oxide conversion/refabrication facility. 
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1.0 INTRODUCTION 

Neptunium is  t h e  f i r s t  of t he  t ransuranium e lements ,  and a p p r o p r i a t e l y  
was t he  f i r s t  such t o  be discovered. The isotope '  Np-239 was i d e n t i f i e d  
a s  one of t h e  products  from i r r a d i a t i o n  of uranium w i t h  s low n e u t r o n s .  
Subsequen t ly ,  i t  was l e a r n e d  t h a t  t h e  l o n g - l i v e d  i s o t o p e  Np-237 i s  
produced from uranium by the  fol lowing nuc l ea r  r e a c t i o n s :  

and 

2 3 5 u ( ~ , Y ) ~ ~ ~ u ( ~ ' , Y ) ~ ~ ~ u  4 6- 237  ~ p  

I n  t he  1950's Np-237 became of i n t e r e s t  a s  a  s o u r c e  m a t e r i a l  f o r  t h e  
product ion  of Pu-238 by the  nuc lear  r e a c t i o n  

Pu-238 i s  a  u se fu l  i s o t o p i c  hea t  source  a s  i t s  o u t p u t  i s  s l i g h t l y  o v e r  
0.5 wa t t  per  gram. Based on t h i s  i n t e r e s t ,  programs were i n i t i a t e d  f o r  
Np-237 recovery a t  both   an ford and Savannah R i v e r  a s  o u t l i n e d  i n  t h e  
e x c e l l e n t  monograph by Shulz and Benedict. (1) 

Recent ly  t he  recovery and r ecyc l e  of Np-237 i n  LWR f u e l  h a s  been pro- 
posed a s  a  met o  t o  i n c r e a s e  t h e  p r o l i f e r a t i o n  r e s i s t a n c e  of power 
r e a c t o r  f u e l s .  By recyc l ing  Np-237 w i t h  f r e s h  f u e l ,  t h e  p l u t o n i u m  
produced by i r r a d i a t i o n  w i l l  con t a in  s u f f i c i e n t  Pu-238 s o  t h a t  i t  would 
be even l e s s  a t t r a c t i v e  a s  a  weapons m a t e r i a l  than  f i r s t  d i scharge  power 
r e a c t o r  ma te r i a l .  Reprocessing c o u l d  t h e n  p roceed  w i t h  a  d i m i n i s h e d  
t h r e a t  of p r o l i f e r a t i o n .  

The e a r l y  recovery programs u t i l i z e d  r e l a t i v e l y  low burnup m i l i t a r y  
p r o d u c t i o n  f u e l s  a s  a  s o u r c e  of neptunium. LWR f u e l s  which may be 
i r r a d i a t e d  t o  over 30,000 MWd/T w i l l  con t a in  cons iderab ly  more neptunium 
than  product ion fue l .  Thus, adap ta t i on  of technology developed e a r l i e r  
f o r  neptunium recovery should be adequate  f o r  LWR f u e l .  

The s o l v e n t  e x t r a c t i o n  c h e m i s t r y  of nep tunium i s  more complex t h a n  
e i t h e r  uranium o r  p lu ton ium which c o m p l i c a t e s  i t s  s e p a r a t i o n  f r o m  

+4 + i r r a d i a t e d  fue l .  In  ac id  s o l u t i o n ,  neptunium can e x i s t  a s  Np , Np02 , 
and ~ ~ 0 2 ~ .  N ~ + ~  and N ~ o ~ ~  a r e  e x t r a c t a b l e  i n t o  TBP w h i l e  Np02+ i s  
i n e x t r a c t a b l e .  The d i s t r i b u t i o n  c o e f f i c i e n t s  f o r  nep tunium a s  a f  unc- 
t i o n  of n i t r i c  ac id  concen t r a t i on  a r e  shown i n  F igu re  1.1.  Also shown 
i s  t h e  e x t r a c t i o n  c o e f f i c i e n t  f o r  i n  t h e  p r e s e n c e  of 0 . 3  11 
uranium and s i  1 po in t s  f o r  uranium and plutonium i n  t h e  p r e s e n c e  o f  
0.3 M uranium. ?'s4)  A s  can be seen,  t h e  presence of uranium e c r e a s e s  tf! 
t h e  e x t r a c t i o n  c o e f f i c i e n t s  f o r  a l l  s p e c i e s .  However, Np02 i s  more 
e x t r a c t a b l e  than plutonium, s o  i f  nep tunium can  be m a i n t a i n e d  i n  t h e  
p l u s  6 va lence  s t a t e ,  i t  can be ex t r ac t ed .  



Neptunium valence can be c o n t r o l l e d  by n i t r i c  and/or  n i t r o u s  ac id .  High 
concen t r a t i ons  of n i t r i c  ac id  s t a b i l i z e  Npo2* and i n  t h e  p r e s e n c e  of 
n i t r i c  a c i d  s m a l l  c o n c e n t r a t i o n s  of n i t r o u s  a c i d ,  a p p r o x i m a t e l y  
1 x  M ,  c a t a lyze  the  o x i d a t i o n  of Npo2+  t o  Npo2*. On t h e  o t h e r  
hand, n i t T o u s  a c i d  a t  a b o u t  M s t a b i l i z e s  Npo2+ .  O t h e r  s t r o n g  
o x i d i z i n g  a g e n t s  w i l l  o x i d i z e  neptunium t o  Npo2*. F o r  e x a m p l e ,  
~ a j i k ( ~ )  recommends vanadyl i on  t o  produce ~~0~~  i n  t h e  f i r s t  e x t r a c -  
t i o n  cyc le ;  however, t h i s  has not been demonstrated on t h e  p l a n t  s ca l e .  

The s tandard  d i s so lven t  f o r  spent  nuc lear  f u e l  is n i t r i c  a c i d .  Opera- 
t i o n a l  experience has  demonstrated t h a t  most of t he  neptunium i s  Npo2* 
dur ing  d i s s o l u t i o n  i n  n i t r i c  a c i d . ( 5 )  However, t h e  v a l e n c e  s t a t e  of 
neptunium i n  t h e  d i s s o l v e r  s o l u t i o n  w i l l  vary a s  a  f u n c t i o n  of c o o l i n g  
t i m e  and t ime  between d i s s o l u t i o n  and e x t r a c t i o n .  N i t r i t e  i o n  i s  
produced i n  d i s s o l v e r  s o l u t i o n  by r a d i o l y s i s  of n i t r i c  a c i d ,  t h e  e x t e n t  
being a  f u n c t i o n  of r a d i a t i o n  d o s e ,  which i n  t u r n  i s  a  f u n c t i o n  of 
coo l ing  time. With r e l a t i v e l y  s h o r t  c o o l e d  f u e l s  s u f f i c i e n t  n i t r i t e  
could  be produced t o  s t a b i l i z e  N p o 2 + .  A l s o ,  nep tunium i o n s  can  d i s -  
p ropor t i ona t e  while wai t ing  reprocessing.  The n e t  r e s u l t  of a l l  t h e s e  
v a r i a b l e s  i s  t h a t  i t  i s  d i f f i c u l t  t o  p r e d i c t  t h e  v a l e n c e  s t a t e  of 
neptunium e n t e r i n g  the  f i r s t  e x t r a c t i o n  cycle .  

The neptunium recovery processes  a t  both Hanford and Savannah R i v e r  a r e  
based on v a l e n c e  c o n t r o l  by a p p l i c a t i o n  of n i t r i t e  i o n .  I n  t h e  
Hanford process ,  an aqueous s t ream conta in ing  sodium n i t r i t e  i s  i n t r o -  
duced near  t he  bottom of t he  f i r s t  e x t r a c t i o n  column (above t h e  o r g a n i c  
i n l e t ) .  Ni t rous  ac id  i s  formed i n  t h e  aqueous s t r eam some of which i s  
e x t r a c t e d  by t h e  organic  stream. Ox ida t ion  of PIpo2+ t o  Npo2* t a k e s  
p l a c e  i n  t h e  upper s e c t i o n s  of t h e  column. The e q u i l i b r i u m  d a t a  f o r  
n i t r o u s  a c i d  between 30% TBP and n i t r i c  ac id  have been s tud i ed  by Burger 
and Money. (6) A t  2 - M n i t r i c  ac id  t h e  d i s t r i b u t i o n  c o e f f i c i e n t ,  E;, i s  
i n  t h e  range 5 t o  8. 

I n  c o n t r a s t  t o  t he  Hanford process ,  a t  Savannah River s u f f i c i e n t  n i t r i t e  + i s  added t o  t he  f i r s t  con tac to r  t o  s t a b i l i z e  Np02 . N i t r i t e  is  added t o  
t h e  n e x t  t o  t h e  l a s t  s t a g e  of t h e  1A m i x e r - s e t t l e r  e q u i v a l e n t  t o  
7 x  1 0 ' ~  M i n  t h e  s o l v e n t  phase.(7) The neptunium e x i t s  t h e  mixer-  
s e t t l e r  G i t h  t h e  f i r s t  c y c l e  w a s t e  from which i t  s u b s e q u e n t l y  i s  
recovered by ion  exchange. 

A f t e r  r ev i ew  of t h e s e  two p r o c e s s e s ,  i t  a p p e a r e d  t h a t  r e c o v e r y  of 
neptunium from f i r s t  cyc le  LWR wastes would be complicated by t h e  h igher  
l e v e l  of f i s s i o n  products  and a c t i n i d e s .  Using an ion  exchange process ,  
t h e  h igher  r a d i a t i o n  l e v e l s  would lead  t o  more r a p i d  d e t e r i o r a t i o n  of 
t h e  r e s i n ,  probably t o  t he  detr iment  of neptunium r e c o v e r y .  The s p e n t  
r e s i n  might a l s o  be a  s i g n i f i c a n t  waste volume. 

Based on t h i s  r a t h e r  nega t ive  eva lua t ion  of the  Savannah River  p r o c e s s ,  
i t  was d e c i d e d ' t o  a d a p t  t h e  Hanford  a p p r o a c h  t o  t h e  r e c o v e r y  of 
neptunium from LWR f u e l s .  The s e p a r a t e d  neptunium r e q u i r e s  f u r t h e r  
decontaminat ion from uran ium,  p l u t o n i u m ,  and f i s s i o n  p r o d u c t s .  The 



c o e x t r a c t i o n ,  s e p a r a t i o n ,  and p u r i f i c a t i o n  s t e p s  a r e  d i s c u s s e d  i n  t h e  
body of t h i s  r epo r t .  

A s  a p a r t  of t h e  1978 DOE-funded s tudy  conducted by AGNS, a coprocessing 
(uranium-25% plutonium product 1, high-DF f lowshee t  was developed. (8) I n  
t h i s  s t udy '  neptunium recovery i s  i n t e g r a t e d  i n t o  t h e  cop roces s ing  h igh-  
DF flowsheet.  

One tonne of LWR f u e l  i r r a d i a t e d  t o  33 ,000  MWd w i l l  c o n t a i n  a p p r o x i -  
mately 500 grams of neptunium. Thus, a model p l a n t  such  a s  t h e  BNFP 
could recover  a s  much a s  2.5 ki lograms per day of neptunium. Discharged 
f u e l  from t h e  f i r s t  " s p i k e "  r e l o a d  w o u l d  c o n t a i n  a p p r o x i m a t e l y  
1200 grams of neptunium per  tonne. ( 9 )  However, t h e  d i f f e r e n t i a l  between 
2.5 and 6 k i l o g r a m s  p e r  day w i l l  have  no impact  on t h e  c o n v e r s i o n  
f a c i l i t i e s  which have been conceptual ized.  (11) 



NEPTUNILIM EXTRACTION COEFFICIENTS BETWEEN NITRIC ACID AND 30% TBP 

FIGURE 1-1 



2.0 SUMMARY 

Flowsheets have been developed f o =  t h e  r e c o v e r y  of neptunium from LWR 
f u e l s  using t h e  BNFP a s  a model p lan t .  I n  t h e  f i r s t '  e x t r a c t i o n  c y c l e  
t h e  ox ida t ion  of neptunium t o  N ~ o ~ *  i s  c a t a l y z e d  by s m a l l  amounts  of 
n i t r o u s  a c t d  so t h a t  i t  c o e x t r a c t s  wi th  uranium and p lu ton ium.  Neptu- 
nium is subsequent ly  r e j e c t e d  t o  t h e  1s system by valence changes i n  t h e  
uranium and plutonium columns. Neptunium is  separa ted  from t h e  b u l k  .of 
t h e  r e s i d u a l  uranium and plutonium i n  t h e  1s column. The nep tun ium i s  
then  p u r i f i e d  i n  two a d d i t i o n a l  e x t r a c t i o n - s t r i p  cycles .  The neptunium 
n i t r a t e  product i s  concent ra ted  t o  30 g r a m s l l i t e r  f o r  t r a n s f e r  t o  o x i d e  

. . conversion. 



3.0 NEPTUNIUM EXTRACTION 

I n  s tandard  Purex p r o c e s s i n g ,  t h e  b u l k  of t h e  neptunium f o l l o w s  t h e  
f i s s i o n  products  t o  t h e  high a c t i v i t y  waste. The o b j e c t i v e  i n  neptunium 
e x t r a c t i o n  is  t o  c o e x t r a c t  nep tun ium,  uran ium,  and p l u t o n i u m  i n  t h e  
f i r s t  cyc l e  and t o  subsequent ly  remove neptunium i n t o  a  s e p a r a t e  s t r e a m  
f o r  f i n a l  p u r i f i c a t i o n .  In  t h i s  s e c t i o n ,  f l owshee t s  f o r  r e c o v e r y  of a  
neptunium bearing s t ream a r e  discussed.  

I n  o rde r  t o  adapt  t h e  Hanford process  f o r  neptunium recovery t o  t h e  AGNS 
p l a n t ,  some changes i n  flows and s t ream rou t ings  a r e  r e q u i r e d .  I n  t h e  
Hanford process ,  t h e  f i r s t  s o l v e n t  e x t r a c t i o n  c y c l e  i s  o p e r a t e d  a t  a  
uranium s a t u r a t i o n  of 0.3 M a s  compared t o  0.34 M i n  t h e  AGNS flowsheet.  
The h igher  uranium sa tu ra tyon  tends  t o  f o r c e  neptunium t o  remain i n  t h e  
aqueous phase while  t he  lower s a t u r a t i o n  al lows Np+6 t o  e x t r a c t .  Thus, 
a t  a  given uranium throughput ,  t h e  s o l v e n t  t o  t h e  f i r s t  c y c l e  must be 
increased .  

The b a s i c  AGNS f l o w s h e e t  i s  shown i n  F i g u r e  3-1. The f i r s t  c y c l e  
e x t r a c t o r  i s  a  c e n t r i f u g a l  contac tor .  On t h e  a s sumpt ion  t h a t  t h e  f e e d  
t o  t h e  c o n t a c t o r  c o n t a i n s  some Npo2+ , t h e  r e s i d e n c e  t i m e  i n  t h e  
c o n t a c t o r  i s  probably too  s h o r t  f o r  a l l  of t h e  Np02+ t o  be o x i d i z e d  t o  
~p02++  and be ex t r ac t ed .  However, t h e  HS column which i s  a  pu lse  column 
can  be operated i n  t h e  dual  ex t rac t ion-scrub  mode which s h o u l d  p r o v i d e  
t ime f o r  t he  ox ida t ion  and thus ,  e f f i c i e n t  e x t r a c t i o n .  I f  r e l a t i v e l y  
long-cooled f u e l  (> one yea r )  i s  processed,  increased  r e s i d e n c e  t ime  i n  
t h e  qolumn s h o u l d  n o t  r e s u l t  i n  e x c e s s i v e  r a d i a t i o n  damage t o  t h e  
s o l v e n t  which i s  one of t he  reasons f o r  u s i n g  a  c e n t r i f u g a l  c o n t a c t o r  
f o r  f i r s t  cyc le  e x t r a c t i o n .  

The neptunium e x t r a c t i o n  f l o w s h e e t  i s  shown i n  ' F i g u r e  3-2 i n  which 
neptunium i n  t he  HAF i s  ex t r ac t ed  with uran ium and p l u t o n i u m  i n t o  t h e  
HSP. A n i t r i t e  a d d i t i o n  s t r e a m ,  t h e  HSN, i s  shown on t h e  f l o w s h e e t .  
This  s t ream w i l l  be dependent on t h e  amount .of n i t r o u s  ac id  i n  t h e  HAP. 
(The poss ib l e  n i t r o u s  ac id  m a t e r i a l  balance i s  discussed i n  Appendix A.) 
A sc rub  r a t i o  of 0.15 i s  recommended f o r  t h e  Hanford p r o c e s s ,  a l s o  t h e  
a c i d i t y  is  decreased f o r  b e t t e r  f i s s i o n  product decontamination. 

A s  c an  be s e e n ,  t h e  s o l v e n t  t o  t h e  HS Column i s  c o m p r i s e d  of two 
s t reams,  t he  NAP and the  HSX. The r a t i o n a l e  f o r  t h i s  i s  a s  fol lows:  In  
t h e  bas i c  AGNS f lowshee t ,  t h e  o r g a n i c  r a f f i n a t e s  from t h e  second  and 
t h i r d  plutonium c y c l e s  a r e  combined i n t o  t h e  POR ( P l u t o n i u m  O r g a n i c  
R a f f i n a t e )  and re turned  t o  t he  1 R  E l e c t r o c e l l .  The organic  from - 
t h e  1 s  Column i s  n a l l y  re turned  t o  t he  HA Con tac to r .  I n  t h e  copro-  
ce s s ing  flowsheet,P8 t h e  POR i s  a  r a t h e r  s u b s t a n t i a l  amount, 550 l i t e r s  
pe r  hour ,  i n  pa r t  because of an  organic  recyc le  s t r e a m  from an  assumed 
MOX conversion f a c i l i t y .  To l i m i t -  t h e  volume of s o l v e n t  t h r o u g h  t h e  
e x t r a c t i o n - p a r t i t i o n  ,cycle ,  t he  POR i s  used a s  a p a r t  of t he  e x t r a c t a n t  
i n  t he  1 s  Column. Otherwise,  combining t h e  HSP and  t h e  POR i n  t h e  1 5  
s y s t e m  would d e c r e a s e  heavy m e t a l  s a t u r a t i o n  w i t h  a  d e c r e a s e  i n  
throughput.  



The o r g a n i c  r a f f i n a t e s  from t h e  nep tun ium p u r i f i c a t i o n  c y c l e s  ( s e e  
Sec t ion  4.0) a r e  a l s o  re turned  t o  t h e  1 s  Column. The primary purpose of 
t h e  1 s  Column i s  t o  r e c o v e r  uran ium and p l u t o n i u m  from t h e  s e c o n d  
uranium cyc l e  waste and t h e  second  and t h i r d  p l u t o n i u m  c y c l e  was t e s .  
However, i n  t h e  neptunium recovery process ,  t h e  1 s  Column a l s o  s e rves  t o  
s e p a r a t e  neptunium from r e c y c l e  uran ium and p l u t o n i u m  and t o  r e c o v e r  
neptunium from a d d i t i o n a l  waste streams. The 2DW con ta in s  hydraz  i n e  s o  
N 2 O 4  i s  added t o  t h e  1s Feed Tank t o  d e s t r o y  t h e  h y d r a z i n e  a n d  t o  
r eox id i ze  any P U + ~  t o  Pu+4. Some of t h e  n i t r o u s  a c i d  formed from t h e  
N204 w i l l  e x t r a c t  i n t o  t h e  o r g a n i c  i n  t h e  1 s  Column. Thus,  i t  i s  
be l ieved  t h a t  b e t t e r  c o n t r o l  of n i t r o u s  a c i d  would be p o s s i b l e  i f  t h e  
1SP was processed through t h e  HA C o n t a c t o r  b e f o r e  e n t e r i n g  t h e  f i r s t  
e x t r a c t i o n  c y c l e .  I f  t o o  much n i t r o u s  a c i d  r e a c h e s  t h e  HS Column, 
neptunium l o s s e s  t o  waste would be e x c e s s i v e .  By p r o c e s s i n g  t h e  1 SP 
through the  HA C o n t a c t o r  a l o n g  w i t h  t h e  HSR, a d d i t i o n a l  u ran ium and 
plutonium may be recovered from t h e  waste stream and hydrazine c o u l d  be 
added t o  t he  HSR t o  des t roy  excess  n i t r o u s  acid.  Using the  HA Contactor  
i n  t h e  process  i nc reases  pos s ib l e  f lowsheet  op t ions  f o r  process  improve- 
ments. 

.Some f r e s h  s o l v e n t ,  t h e  HAX, i s  a l s o  added t o  t h e  HA C o n t a c t o r .  The 
combined HAX-1SP t h e n  becomes t h e  HAP. The HAW f o l l o w s  i t s  normal  
rou t ing  t o  concen t r a t i on  and s torage .  

S e p a r a t i o n  of neptunium from uran ium and p l u t o n i u m  i s  d i s c u s s e d  i n  
Sec t ion  4.0. 

The m a t e r i a l  b a l a n c e  f o r  t h i s  p o r t i o n  of t h e  f l o w s h e e t  i s  g i v e n  i n  
Table  3-1. 

It should be r e a l i z e d  t h a t  t h i s  is  a  " s t a t e -o f - the -a r t "  f l o w s h e e t .  I n  
p r a c t i c e  i n  an opera t ing  p l a n t ,  process  parameters such  a s  f l o w  r a t e s ,  
a c i d i t y ,  a d d i t i o n s ,  e t c . ,  would be " f ine - tuned"  t o  o p t i m i z e  neptunium 
recovery. 
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4.0 NEPTUNIUM SEPARATION AND PURIFICATION 

I n  t h e  b a s i c  coprocess ing  f l o w s h e e t ,  p a r t i a l  p a r t i t i o n i n g  of uranium and 
plutonium is  accomplished i n  t h e  1 B  ~ l e c t r o c e l l . ' ( 8 )  The a c i d i t y  and  
f l o w  r a t i o s  i n  t h e  1 B  E l e c t r o c e l l  a r e  a d j u s t e d  so  t h a t  some u r a n i u m  i s  
s t r i p p e d  i n t o  t h e  1BP i n  o r d e r  t h a t  t h e  f i n a l  product  from t h e  plutonium 
c y c l e s  w i l l  be uranium-25% plutonium. The bu lk  of t h e  u r a n i u m  r e m a i n s  
i n  t h e  o r g a n i c  phase and e x i t s  t h e  e l e c t r o c e l l  i n  t h e  1 B U  s t r e a m .  The 
plutonium e n t e r i n g  t h e  e l e c t r o c e l l  is reduced t o  P U + ~  s o  t h a t  i t  s t r i p s  
i n t o  t h e  aqueous phase. It is  expected t h a t  t h e  n e p t u n i u m  i n  t h e  f e e d  
t o  t h e  e l e c t r o c e l l  w i l l  be reduced t o  N ~ + ~ .  The d i s t r i b u t i o n  c o e f f i -  
c i e n t  f o r  Np+4 between TBP a n d  n i t r i c  a c i d  i s  much l o w e r  t h a n  N p ~ i *  
( s e e  F i g u r e  1-1) s o  t h e  nep tun ium w i l l  s p l i t  b e t w e e n  t h e  1BP a n d  1 B U  
s t r e a m s  i n  roughly equa l  amounts. 

The neptunium i n  t h e  1BU w i l l  c o - s t r i p  w i t h  u r a n i u m  i n  t h e  1 C  Column. 
The 1CU i s  c o n c e n t r a t e d  and b u t t e d  w i t h  n i t r i c  a c i d  t o  p r e p a r e  f e e d  t o  
t h e  2D Column. The 2D Column i s  opera ted  a t  h i g h  uranium s a t u r a t i o n  i n  
t h e  o r g a n i c  t o  enhance f i s s i o n  p r o d u c t  d e c o n t a m i n a t i o n .  Under t h e s e  
c o n d i t i o n s ,  t h e  neptunium w i l l  be r e j e c t e d  t o  t h e  2DW which  i s  t r a n s -  
f  e r r e d  t o  t h e  1 SF, Tank f o r  uranium recovery.  

The 1BP s t r e a m  c o n t a i n i n g  uranium, P U + ~  and ?Jp+4 i s  t r a n s f e r r e d  t o  t h e  
1BP s u r g e  tank. N204 i s  l i n e  blended t o  t h e  1BP as a s o u r c e  of NO2- i o n  
t o  o x i d i z e  P U + ~  t o  P U + ~  and t o  d e s t r o y  hydraz ine  i n  t h e  1BP. The NO2-, 
s h o u l d  o x i d i z e  and s t a b i l i z e  n e p t u n i u m  as Np02+. I n  t h e  2A Column, 
uranium and plutonium w i l l  e x t r a c t  i n t o  t h e  o r g a n i c  b u t  t h e  nep tun ium.  
w i l l  remain i n  t h e  aqueous s t ream and e x i t  t h e  column i n  t h e  2AW. The 
2AW is  rou ted  t o  t h e  1SF Tank . f o r  uranium and plutonium recovery.  

T h e s e  r o u t i n g s  a r e  shown i n  t h e  n e p t u n i u m  p u r i f i c a t i o n  f l o w s h e e t ,  
F i g u r e  4-1. Thus, t h e  bu lk  of t h e  nep tun ium which  e n t e r s  t h e  p r o c e s s  
w i l l  be c o l l e c t e d  i n  t h e  1SF Tank. From t h i s  p o i n t  on,  t h e  p r o c e s s  w i l l  
d e v i a t e  from t h e  Hanford f lowsheet .  I n  t h e  H a n f o r d  p r o c e s s ,  t h e  back  
c y c l e  waste  w a s  c o n c e n t r a t e d ,  p a r t  r e t u r n e d  t o  t h e  headend, and  p a r t  t o  
neptunium recovery so t h e r e  was c o n s i d e r a b l e  neptunium r e c y c l e .  

I n  t h e  s t a n d a r d  AGNS p r o c e s s ,  t h e s e  a c c u m u l a t e d  w a s t e  s t r e a m s  a r e  
e x t r a c t e d  wi th  TBP i n  t h e  1s Column t o  r e c o v e r  u r a n i u m  and  p l u t o n i u m .  
N204 i s  l i n e  b l e n d e d  t o  t h e  f e e d  t o  t h e  1SF Tank t o  r e o x i d i z e  a n y  
plutonium t o  Pu+4 and t o  d e s t r o y  hydraz ine  in t roduced  w i t h  t h e  2DW. A s  
i n  t h e  1BP Surge Tank, t h i s  should  o x i d i z e  and s t a b i l i z e  n e p t u n i u m  as 
Np02+. Thus, i n  t h e  1s Column, uranium and plutonium w i l l  e x t r a c t ,  b u t  
a s  shown i n  F igure  4-1, neptunium remains i n  t h e  aqueous phase and e x i t s  
t h e  column i n  t h e  1SW. Besides  neptunium, t h e  1SW w i l l  c o n t a i n  s m a l l  . 
amounts of uranium, plutonium,  and f i s s i o n  p r o d u c t s .  T h e r e f o r e ,  t h e  
neptunium must be s u b j e c t e d  t o  a d d i t i o n a l  p u r i f i c a t i o n  s t e p s  t o  y i e l d  a  
" c l e a n "  product .  ' 

I n  t h e  b a s i c  AGNS f l o w s h e e t ,  t h e  1SW i s  routed t o  t h e  LAW C o n c e n t r a t o r .  
However ,  f o r  n e p t u n i u m  r e c o v e r y  t h e  1  SLJ w i l l  be  r o u t e d  t o  a  new 



concen t r a to r  t o  provide feed t o  t h e  neptunium p u r i f i c a t i o n  sys t em.  An 
a l t e r n a t i v e  being c o n s i d e r e d  i s  t o  r o u t e  t h e  1SW t o  t h e  LAW Concen- 
t r a t o r ,  b u t  d i v e r t  t h e  o t h e r  s t r e a m s  s u c h  a s  t h e  HAW c o n c e n t r a t o r  
condensate  t o  a  new c o n c e n t r a t o r .    he r e a s o n  f o r  t h i s  i s  t h a t  t h i s  
second concen t r a to r  could be cons iderab ly  sma l l e r  than  t h a t  r equ i r ed  f o r  
a  new 1SW C o n c e n t r a t o r .  The 1SW w i l l  be c o n c e n t r a t e d  t o  p roduce  a  
bottoms s t ream of 100 l i t e r s  per  hour. The n i t r i c  ac id  concen t r a t i on  i n  
t h e  bottoms should i nc rease  t o  about 7 M which w i l l  ox id i ze  neptunium t o  
Np02++. The bottoms w i l l  be c o o l e d  and  r o u t e d  t o  a  s u r g e  tank .  The 
overheads from t h e  1SW concen t r a to r  w i l l  be routed t o  t h e  f r a c t i o n a t o r  
f o r  n i t r i c  ac id  recovery. 

The neptunium w i l l  be p u r i f i e d  i n  two s e t s  of e x t r a c t i o n - s t r i p  columns. 
I n  t h e  2NA Column, Np02++ a s  wel l  a s  any r e s i d u a l  plutonium and uran ium 
i n  t he  1SW w i l l  be e x t r a c t e d  i n t o  30% TBP. Under t h e  h i g h  a c i d  cond i -  
t i o n s  f i s s i o n  product z i rconium w i l l  p a r t i a l l y  e x t r a c t  s o  a  low a c i d  
s c r u b  i s  added t o  improve zirconium decontamination. Ruthenium decon- '  
t amina t ion  i n  t h i s  column should be e x c e l l e n t .  The aqueous  r a f f i n a t e  
w i l l  be routed t o  t h e  LAW Concentrator .  

The e x t r a c t  from t h e  2NA Column, t he  2NAP, w i l l  be t r a n s f e r r e d  t o  t h e  
2NB column where t he  neptunium, uranium, and plutonium a r e  s t r i p p e d  wi th  
d i l u t e  ac id .  The s t r i p  s t ream i s  but ted  with n i t r i c  ac id  t o  prepare  t h e  
f eed  t o  t he  3NA Column where t he  a c t i n i d e s  a r e  aga in  e x t r a c t e d  with TBP. 
A s c r u b  s t r e a m  can  be added t o  t h e  3NA Column i f  needed.  The 3NAW 
S t r e a m  i s  r e t u r n e d  t o  t h e  1SF Tank t o  r e c o v e r  a n y  n e p t u n i u m  n o t  
e x t r a c t e d  due t o  l o s s  of valence con t ro l .  

The 3NB Column w i l l  u t i l i z e  a  reduc t ive  s t r i p  t o  s e p a r a t e  neptunium from 
u ran ium and p lu ton ium.  The s t r i p  s t r e a m  w i l l  be 2  M n i t r i c  a c i d .  
S u f f i c i e n t  N204 o r  NaN02 w i l l  be added t o  t he  column t o  reduce  Np02++ t o  
Np02+ s o  t h a t  nep tunium w i l l  t r a n s f e r  t t h e  aqueous  phase .  T h i s  
process  s t e p  has been discussed by Koch. (''3 It i s  p r o b a b l e  t h a t  some 
of t h e  n i t r i t e  would be added near  t h e  bottom of t h e  column t o  p roduce  
Np02+ and r e j e c t  i t  t o  t h e  aqueous .    his s t e p  i s  s i m i l a r  t o  t h e  
Savannah River  P l a n t ' s  f i r s t  e x t r a c t i o n  c y c l e .  Uranium and p l u t o n i u m  
w i l l  remain i n  t he  organic  f o r  r ecyc l e  t o  t h e  1 s  Column. Any neptunium 
not  s t r i p p e d  would a l s o  be re turned  t o  t h e  1 s  Column so  t h e  r e d u c t i o n  
process  does not have t o  be 100% e f f i c i e n t .  

The 3NAP Stream w i l l  be washed with d i l u e n t  i n  t he  d i l u e n t  wash column 
t o  remove any en t r a ined  so lvent .  The product w i l l  then be c o n c e n t r a t e d  
t o  approximately 30 grams per l i t e r  and t r a n s f e r r e d  t o  t h e  neptunium 
conversion f a c i l i t y .  

The overheads from the  product concen t r a to r  w i l l  be routed t o  one of the  
waste concen t r a to r s  (LAW o r  GPC) f o r  d i sposa l .  

The m a t e r i a l  b a l a n c e  f o r  neptunium p u r i f i c a t i o n  i s  p r e s e n t e d  i n  
Table  4-1. 
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MATERIAL BALANCE - NEPTUNILT PURIFICATION 
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5.0 DISCUSSION 

The modi f ica t ions  i n  flows and rou t ings  i n  t h e  headend  of t h e  p r o c e s s  
should r e s u l t  i n  good recovery of neptunium from t h e  feed s o l u t i o n .  I n  
a c t u a l  ope ra t i on  some " f i n e  tuning" of t h e  opera t ing  parameters would be 
expected. The amount of NO;? i o n  i n  t h e  HS Column i s  c r i t i c a l ,  w i t h  
e i t h e r  too  much o r  t oo  l i t t l e ,  neptunium w i l l  be l o s t  t o  t h e  was t e .  I n  
t h i s  f lowshee t ,  t h e  HS Column w i l l  be t he  l i m i t i n g  equipment i t e m  a s  t o  
p l a n t  capac i ty .  With t he  g iven  flows t h e  HS Column would be o p e r a t i n g  
a t  a  v o l u m e t r i c  t h r o u g h p u t  of a b o u t  1400  g a l l o n s / h o u r - s q u a r e  f o o t .  
However, t h e  HA Contactor  w i l l  be ope ra t i ng  a t  a  low so lven t  s a t u r a t i o n  
s o  i t  might be p o s s i b l e  t o  o p e r a t e  t h e  HS Column a t  s l i g h t l y  h i g h e r  
s o l v e n t  s a t u r a t i o n ,  thus  reducing f low r a t e s .  Neptunium n o t  e x t r a c t e d  
i n  t h e  HS Column could then  be e x t r a c t e d  i n  t he  HA Contactor.  

One . p o t e n t i a l  problem wi th  t h e  neptunium p u r i f i c a t i o n  f lowshee t i s  poor  
zirconium decontamination. The 2D Column i s  o p e r a t e d  a t  h i g h  uran ium 
loading  i n  o rde r  t o  squeeze r e s i d u a l  f i s s i o n  p r o d u c t s  i n t o  t h e  was t e .  
Thus, t h e  zirconium fol lows neptunium t o  t h e  p u r i f i c a t i o n  c y c l e s .  I n  
t h e  2NA Column t h e  d i s t r i b u t i o n  c o e f f i c i e n t  f o r  zirconium a t  7 M n i t r i c  
a c i d  i s  >0.1.  (3) The d e c o n t a m i n a t i o n  f a c t o r  f o r  z i r con ium-wi l l  be 
h ighe r  i n  t h e  second neptunium cyc l e ,  however ,  w i t h  s h o r t - c o o l e d  f u e l  
app rec i ab l e  a c t i v i t y  could accompany t h e  neptunium p r o d u c t .  I f  s h o r t -  
cooled f u e l  was ever  p r o c e s ~ e d ~ f o r  neptunium recovery, t h e  1SW migh t  be  
concent ra ted  even f a r t h e r  and then d i l u t e d  wi th  water  t o  prepare  a  lower 
a c i d  feed t o  t he  2NA Column. 

Ruthenium d e c o n t a m i n a t i o n  s h o u l d  be e x c e l l e n t ,  t h e  d i s t r i b u t i o n  
c o e f f i c i e n t  i s  <.01 a t  7 M n i t r i c  ac id .  - 
Plutonium and uranium s e p a r a t i o n  w i l l  be accomplished by t h e  r e d u c t i v e  
s t r i p  i n  t h e  3NB Column. 

P o s s i b l e  a c t i v i t y  l e v e l s  i n  recovered neptunium a r e  given i n  T a b l e  5-1. 
Ca l cu l a t i ons  on which t h i s  t a b l e  i s  based a p p e a r  i n  Appendix B. Pro- 
t ac t i n ium grows i n t o  recovered neptunium w i t h  a  h a l f - l i f e  of 2 7  days .  
F o r  p u r p o s e s  of compar i son ,  t h e  a c t i v i t y  l e v e l  of p u r e  Np-237 i s  !, 

0.7 mcilgram. 

I n  aged neptunium product ,  t h e  gamma a c t i v i t y  from p r o t a c t i n i u m  i s  t h e  
major c o n t r i b u t o r  t o  sh i e ld ing  requirements.  Approx i~na t e ly  4 6 %  of  t h e  
pro tac t in ium decay y i e l d s  gamma rays above 0.3 MeV. 

The previous comments a p p l y  t o  t h e  neptunium r e c o v e r e d  from p r e s e n t  
gene ra t i on  LWR f u e l .  The f i r s t  r ecyc l e  f u e l  recovered from "heat  sp ike"  
m a t e r i a l  would con ta in  about 1200 grams of neptunium per tonne of f u e l .  
The plutonium impuri ty  i n  t he  recovered neptunium would be approximately 
5% Pu-238; however ,  t h i s  would have e s s e n t i a l l y  no i m p a c t  on  t h e  
r a d i a t i o n  l e v e l  of t he  product .  I f  t h e  same decon tami ' na t i on  f a c t o r s  
were obtained i n  t h e  neptunium c y c l e s ,  t h e  i m p u r i t i e s  on a  pe r  gram 



neptunium b a s i s  would be less by a  f a c t o r  of about two, except  of course  
f o r  protact inium. 

Using the  BNFP a s  a  model p l a n t ,  a d d i t i o n  of t h e  neptunium p u r i f i c a t i o n  
c y c l e s  would be t h e  major modif icat ion.  I n  r e f e r r i n g  t o  t h e  neptunium 
e x t r a c t i o n  f l o w s h e e t  i n  F i g u r e  3-2, most  of t h e  p i p e  r o u t i n g s  a r e  
a v a i l a b l e .  The p i p i n g  t o  u s e  t h e  HS Column a s  t h e  f i r s t  c y c l e  
e x t r a c t i o n  u n i t  is i n s t a l l e d .  However, t h e r e  a r e  a  few p i p i n g  changes  
r equ i r ed  a s  d e t a i l e d  below. 

The r o u t i n g  t o  r e t u r n  t h e  HSR t o  t h e  HA C o n t a c t o r  i s  v i a  t h e  1AF 
meter ing head pot which would i n  t h i s  mode r e c y c l e  t h e  HSR t o  t h e  HS 
Column. (This  head pot rou t e s  t h e  1AF t o  t h e  HS Column.) T h e r e f o r e ,  
l i n e  21P43 would be c u t  i n  t h e  head t a n k  g a l l e r y  and a  new head pot  
i n s t a l l e d .  The new head pot would be t i e d  i n t o  l i n e  21P44 be low t h e  
block valve on 21P44. The HSR would then flow t o  t he  HA Contactor.  

A new a i r  l i f t  on l i n e  33P59 would be requi red  t o  rou t e  t h e  POR t o  a  new 
head pot i n  o rde r  t o  t r a n s f e r  t he  POR t o  t h e  1 s  Column. The NOR i s  a  
new stream which would be a i r  l i f t e d  t o  t h e  new POR head pot. 

The 1SW must be routed t o  a  new concen t r a to r  (F igure  4-1). L i n e  42P115 
would be cu t  below t h e  1SW ~ e c a n t e r  and connected t o  a  new l i n e  f e e d i n g  
t h e  new concent ra tor .  All t h e  piping.  and equipment beyond t h e  1 s  Column 
on F igure  4-1 i s  new. I 



TABLE 5-1 . . 

ACTIVITY IN NEPTUNIUM PRODUCT 

ISOTOPE COOL1 

NOTE: All values in millicuries per gram Np. 

JG TIME, YEAR STORAGE TIME, DAYS 

Zr-95 

Ru-106 

Pu-241 

Pa-233 

.44 - 
2.05 

0.0588 

0.60 

8 1 - 

0.61 

54 - 

0.53 

1. - 
0.23 . 

0.0403 ' 

0.583 

2. - 
0.0.047 

0.0201 

0.555 

27 - 

0.35 



6.0 CONCLUSIONS 

The BNFP can r e a d i l y  be adapted t o  c o n t i n u o u s  neptunium r e c o v e r y  from. 
LWR fue l s .  Addi t iona l  equipment would inc lude  two s e t s  of e x t r a c t i o n -  
s t r i p  columns f o r  neptunium p u r i f i c a t i o n .  

Neptunium would be coext rac ted  with uranium and p lu ton ium i n  t h e  f i r s t  
e x t r a c t i o n  cyc l e ,  separa ted  .from t h e  bulk of t h e  uran ium and p l u t o n i u m  
b y .  s h i f  t s  i n  t h e  valence s t a t e ' ,  'and f i n a l l y  p u r i f i e d  by two a d d i t i o n a l  
e x t r a c t i o n - s t r i p  cycles .  

Some new equipment would be r e q u i r e d ,  such  a s  t h e  p u l s e  co lumns  f o r  
neptunium p u r i f i c a t i o n ,  a  w a s t e  c o n c e n t r a t o r ,  and a  p r o d u c t  concen- 
t r a t o r .  

The f lowshee ts  presented i n  t h i s  r epo r t  would be sub jec t  t o  mod i f i ca t i on  
dur ing  p l an t  ope ra t i on  t o  opt imize .neptunium recovery. 
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APPENDIX A 

THE NEPTUNIUM-NITROUS A C I D  SYSTEM 

Chemistry 

Neptunium can be ox id ized  t o  NPo2* by n i t r i c  a c i d  c a t a l y z e d  by s m a l l  
amounts of n i t r o u s  ac id .  The chemical r e a c t i o n  is: 

A s  can be seen,  n i t r o u s  a c i d  i s  a  product of t h e  r e a c t i o n  so  t h a t  excess  
n i t r o u s  a c i d  can d r i v e  t h e  r e a c t i o n  t o  t h e  l e f t .  S i m p l i f y i n g  Equa- 
t i o n  (1 )  g ives :  

The equ i l i b r ium express ion  f o r  Equat ion (2 )  is: 

The neptunium ions  a r e  a t  s u f f i c i e n t  d i l u t i o n  , t h a t  t h e i r  a c t i v i t i e s  c a n  
be  assumed equal  t o  concent ra t ion .  The same i s  t r u e  f o r  t h e  un - ion i zed  
n i t r o u s  ac id .  The a c t i v i t y  of water i s  u n i t  and t h u s  d r o p s  o u t  of t h e  
express ion .  The a c t i v i t i e s  of hydrogen  i o n  and n i t r a t e  i o n  a r e  n o t  
e q u a l  t o  c o n c e n t r a t i o n  i n  t h e  r a n g e  of i n t e r e s t .  F u r t h e r ,  on  t h e  
assumption t h a t  t h e  major n i t r a t e  i on  i s  due t o  n i t r i c  a c i d ,  t h e  con- 
c e n t r a t i o n s  of H+ and N O 3  a r e  equal.  Thus, t h e  equ i l i b r ium e x p r e s s i o n  
reduces t o  : 

P Y 

(HNO ) l l 2  
= [:;:;:J *27 

Swanson, ('1 among o t h e r s ,  has s tud i ed  r e a c t i o n  ( 2 ) .  He r e p o r t e d  t h a t  
t h e  equ i l i b r ium c o n s t a n t  can  be e x p r e s s e d  a s  t h e  t h i r d  power of t h e  
n i t r i c  a c i d  concen t r a t i on ,  o r  a s  t h e  s econd  power of t h e  n i t r i c  a c i d  
a c t i v i t y .  To q u o t e  Swanson " . . . t he  l a t t e r  i s  more a e s t h e t i c a l l y  
g r a t i f y i n g  s i n c e  i t  is  t h e  dependence expected." On t h i s  b a s i s ,  we have 
u t i l i z e d  Swanson's d a t a  f o r  process  c a l c u l a t i o n s .  

Swanson s tud i ed  r e a c t i o n  ( 2 )  a t  both 24OC and 46°C. The e q u a t i o n  which 
c o r r e l a t e s  h i s  r e s u l t s  is:  

where T  i s  i n  O Ke lv in  and I n  K i s  the  n a t u r a l  logar i thm of the  equ i l i b -  
r i u m  c o n s t a n t .  T h i s  e x p r e s s i o n  a l l o w s  c a l c u l a t i o n  of K a t  o t h e r  
t e m p e r a t u r e s ,  f o r  example i n  t h e  1 s  Column which o p e r a t e s  a t  38OC, 
K = 9.12 x  10'4. 



. . 

Swanson a l s o  s tud i ed  the  k i n e t i c s  of r e a c t i o n  (2).  As  expected t h e  r a t e  
i n c r e a s e s  wi th  temperature.  The r a t e  a l s o  i n c r e a s e s  w i t h  n i t r o u s  a c i d  
concen t r a t i on  but t h e  equ i l i b r ium amount of Np02++ i s  s m a l l e r .  One of 
t h e  i n t e r e s t i n g  r e s u l t s  of Swanson's s t u d y  was t h a t  r a t e  a c c e l e r a t i n g  
m a t e r i a l s  (RAM) can be formed, such as products  from t h e  d i s s o l u t i o n  of 
ca rb ides  i n  metal f u e l  o r  from so lven t  degrada t ion  products.  This  could 
be very important  i n  t h e  f i r s t  e x t r a c t i o n  cyc le ;  i f  nep tunium r e c o v e r y  
was poor,  a  d e l i b e r a t e  a d d i t i o n  of RAM could be made. 

Ca lcu l a t i ons  

I n  o r d e r  t o  i l l u s t r a t e  t h e  c a r e f u l  c o n t r o l  of n i t r i t e  r e q u i r e d ,  a  
n i t r o u s  a c i d  balance was c a l c u l a t e d  throughout t he  p r o c e s s .  A d i s t  ri- 
bu t ion  c o e f f i c i e n t  f o r  n i t r o u s  a c i d  be tween  t h e  o r g a n i c  and aqueous  
s t reams of f i v e  was assumed. 

The 1BP con ta in ing  P U + ~ .  a l s o  con ta in s  r e s i d u a l  hydraz i n e  i n t r o d u c e d  i n  
t h e  1BX. N204 i s  l i n e  b l ended  i n  t h e  f e e d  t o  t h e  1BP Surge  Tank t o  
d e s t r o y  the  hydrazine and r eox id i ze  plutonium t o  P U + ~ .  In t h i s  s t e p  i t  
i s  a l s o  assumed t h a t  neptunium i s  oxidized t o  ~ p 0 2 + .  The N204 a d d i t i o n  
i s  c o n t r o l l e d  so t h a t  a' s l i g h t  excess  of n i t r i t e  i s  p r e s e n t  i n  t h e  1BP 
S u r g e  Tank. I f  t h i s  e x c e s s  i s  e q u i v a l e n t  t o  0 . 0 1  M ,  t h e  2AX i s  
246 l i t e r s l h o u r  and the  2AE i s  657 l i t e r s l h o u r ,  t h e n  t h e  2AP w i l l  be 
0.015 M and  t h e  2AW w i l l  be 3  x  10-3 M i n  n i t r o u s  a c i d .  I n  t h e  2B 
column-some n i t r o u s  ac id  w i l l  s t r i p  i n t o t h e  2BP s o  t h a t  t h e  2BW w i l l  be 
0.0125 M. The 2BW and t h e  3BW c o m p r i s e  t h e  POR a s  p a r t  o f  t h e  
e x t r a c t a n t  i n  t h e  1 s  Column. The 2AW i s  routed t o  t he  1SF Tank where i t  
combines wi th  o t h e r  waste s t reams t o  form the  1SF. 

The 2DW conta in ing  10 moles per hour of h y d r a z i n e  i s  p a r t  of t h e  1 SF. 
Th i s  r e q u i r e s  an N204 sparge t o  des t roy  h y d r a z i n e .  O r i g i n a l  m a t e r i a l  
balance c a l c u l a t i o n s  were based on a  10% e x c e s s  of N204. However, i t  
should be pos s ib l e  t o  c o n t r o l  t he  n i t r o u s  ac id  t o  a  s l i g h t  excess  by t h e  
c o n t i n u o u s  n i t r i t e  mon i to r .  For  p u r p o s e s  of i l l u s t r a t i o n ,  a s s u m e  
one mole excess  n i t r o u s  ac id  per hour added t o  t he  1SF Tank from t h e  2AW 
and the  N204 sparge. 

The NOR w i l l  a l s o  con ta in  n i t r i t e  a s  a r e s u l t  of t he  r educ t ive  s t r i p  i n  
t h e  3NB Column. Based on n i t r o u s  ac id  a d d i t i o n  i n  t h e  3NBX o f  0.024 M 
t h e  3NBW could con ta in  n i t r o u s  a c i d  a t  0 .013  - M s o  t h a t  t h e  NOR would 
c a r r y  0.33 mole per hour t o  t he  1 s  Column. 

A l l  t he se  s t reams would i n t r o d u c e  a  t o t a l  of 4 .41  mo le s  p e r  hou r  of 
n i t r o u s  ac id  t o  t he  1 s  Column, 1 from lSF, 3.08 from t h e  2BW(POR), and 
0 .33  f rom t h e  3NBW(NOR). The 1SP would t h e n  c o n t a i n  3 .6  x - M 
n i t r o u s  ac id .  

I n  t he  HA Contactor ,  the  HSR would in t roduce  about 0.22 mole per hour of 
n i t r o u s  a c i d  which combined with t he  1SP y i e l d  1.9 x l ( r 3  M n i t r o u s  ac id  
i n  t he  HAP. Thus, t h e  a d d i t i o n  of n i t r o u s  a c i d  t h r o u g E  t h e  1  SP-HAP 
r o u t e  is  about twice t h a t  i nd i ca t ed  i n  t he  m a t e r i a l  balance flowsheet.  



The d e s i r e d  amount of n i t r i t e  i n  t h e  HSX stream i s  2.6 x  M ( s e e  
Tab le  3-1). I n  o r d e r  t o  reduce n i t r o u s  a c i d  i n  t h e  HAP t o  t h i s  l e v e l ,  
t h e  h y d r a z i n e  a d d i t i o n  would be a d j u s t e d  t o  1 0  l i t e r s  p e r  h o u r  o f  
0.075 M hydraz ine .  Th is  would r e a c t  w i t h  1.5 moles  of n i t r o u s  a c i d  s o  
t h a t  n i t r o u s  a c i d  i n  t h e  HAP would be 8.4 x  1 0 ' ~  - M. No n i t r i t e  a d d i t i o n  
t o  t h e  HS Column would t h e n  be requ i red .  

The major s o u r c e  of n i t r o u s  a c i d  t o  t h e  1s Column i s  t h e  2BW. It may be 
p o s s i b l e  t o  c o n t r o l  t h e  N2O4 a d d i t i o n  t o  t h e  1BP s u r g e  t a n k  s o  t h a t  
u l t i m a t e l y  t h e  c o r r e c t  amount of n i t r o u s  a c i d  would be t r a n s f e r r e d  t o  
t h e  HS Column v i a  t h e  1SP-IiAP r o u t e .  

I n  t h e  1SF Tank neptunium may e x i s t  i n  b o t h  t h e  +4 a n d  +5 s t a t e s  f rom 
t h e  2DW and 2AW, r e s p e c t i v e l y .  The N204 a d d i t i o n  shou ld  o x i d i z e  t h e  +4 
and +5. I f  t h e  r e s i d e n c e  t i m e  i s  s u f f i c i e n t ,  some n e p t u n i u m  c o u l d  be 
c o n v e r t e d  t o  N ~ + ~ .  As mentioned above, t h e  e q u i l i b r i u m  c o n s t a n t  f o r  t h e  
1s Column i s  9.12 x  The .coluinn o p e r a t e s  a t  2 .1  M n i t r i c  a c i d .  
The a c t i v i t y  of n i t r i c  a c i d  a t  t h i s  c o n c e n t r a t i o n  w a s  e s t i m a t e d  t o  be 
1.82 from d a t a  g iven  by ~ w a n s o n ( 1 )  and  ~ l a s s t o n e . ( 3 )  T h e r e f o r e ,  t h e  
r a t i o  of N ~ + ~  t o  N ~ + ~  was c a l c u l a t e d  by: 

The r e s u l t s  a r e  g i v e n  i n  Table  A-1 below: 

TABLE A-1 

'EQUILIBRIUM Np(V1) I N  1S SYSTEM 

HNO 2 - & PERCENT Np(V1) 

I f  a small amount of N ~ + ~  i s  formed i n  t h e  1 s  Feed Tank o r  Column, i t  
w i l l  be e x t r a c t e d  and recyc led .  

T h e s e  c a l c u l a t i o n s  i l l u s t r a t e  t h e  p o t e n t i a l  p r o b l e m s  w i t h  n i t r i t e  
c o n t r o l .  The i n c o r r e c t  amount of n i t r i t e  i n  t h e  n e p t u n i u m  r e c o v e r y  
sys tem would cause  a  p rocess  u p s e t  wi th  l o s s e s .  
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APPENDIX B 

CALCULATION OF ACTIVITY I N  NEPTUNIUM PRODUCT 

Zirconium 

For s h o r t - c o o l e d  (160-day) f u e l  zr-95 a c t i v i t y  i n  1SW = 1.025 x 
103 Ci/hr.  

D i s t r i b u t i o n  c o e f f i c i e n t  i n  7 - M HN03 - 0.1. 

Therefore  DF = 10, , Z r  e x t r a c t e d  = 1.025 x lo2  Ci/hr.  

Assume a l l  Z r  s t r i p s  i n  2NP column. 

I n  3NA Column, assume DF = 500. 

Therefore  Z r  t o  3NB Column = 0.205 Ci lhr .  

0.205 C i  
I f  no DF i n  3NB Column, Z r  i n  Np = = 2.05 mCi/gm. 

2*05 = 0.232 mCi/gm. I f  f u e l  one-year cooled,  8.85" 
0.232 

I f  f u e l  two-year cooled,  - = 49** 0.0047 mCi/gm. 

Ruthenium 

For 160-day .cooled f u e l ,  Ru-106 a c t i v i t y  i n  1SW = 1.47 x l o 3  Ci/hr .  

A t  7 - M HN03, DF f o r  Ru - 5 x 103. 

Therefore  Ru t o  2NB Column = 2.94 x 10-I ~ i / h r .  

Assume a l l  Ru s t r i p s  i n  2NB Column. 

I n  3NA Column, assume DF = 10. 

Therefore  Ru t o  3NB Column = 2.94 x Ci/hr .  

I n  3NB Column, assume DF = 5. 

Therefore  Ru i n  product = 5.88 x 1 0 ' ~  Ci/hr  = 0.0588 mCi/gm Np. 

*0588 - -0403 mCi/grn. I f  f u e l  one-year cooled,  - 
.0403 

I f  f u e l  two-year cooled,  7 = .0201 mCi/gm. 

*3.15 a d d i t i o n a l  ha l f - l i ve s .  
**5.6 a d d i t i o n a l  ha l f - l i ve s .  



Plutonium 

Assume 99.5%. o f  Pu i n  HSP t r a n s f e r s  t o  lBP,  t h e n  .5% o r  1 0  g / h r  
t r a n s f e r s  t o  1 B U  and t o  2DW. . 

Assume 1% l o s s  t o  2AW and 1% l o s s  t o  3AW, 20 g / h r  t o  each. 

T o t a l  Pu t o  1S system = 50 g /hr .  

Assume 99% e x t r a c t s  i n  1S Column. 

Therefore ,  1% t r a n s f e r s  to'lSW. 

Assume Pu fol lows Np i n  2NA, 2NB and 3NA Columns. 

Assume DF of 100 i n  3NB Column. 

Pu t o  Np = 5 x 1 0 ' ~  g /h r  o r  50 ppm. 

Plutonium = 11.9% Pu-241: 

Therefore  Pu-241 a c t i v i t y ' =  0.6 mCi/gm Np. 

Pro tac t in ium . . 

H a l f - l i f e  Pa-233 = 27 days. ' 

There fo re  i n  27 d a y s  a f t e r  nep tunium r e c o v e r y  Pa-233 a c t i v i t y  = 
50% of  Np a c t i v i t y ,  75% a f t e r  54 days,  e t c .  
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