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C I RCULAR M I  CROSTRI  P ANTENNAS 

The c i r c u l a r  mic ros t r ip  antenna i s  analyzed by develop- 
ing  t h e  f i e l d  equat ions wi th in  t h e  antenna i n  t e r m s  of Bessel 
funct ions .  When t h e  o rde r  of t h e  Bessel func t ions  i s  1, 
t h e  antenna r a d i a t e s  normal t o  t h e  s u r f a c e  on which t h e  
antenna i s  mounted. Equations a r e  developed f o r  ca lcu la -  
t i o n  o f ' r a d i a t i o n  p a t t e r n s ,  impedance, bandwidth and e f f i -  
ciency when t h e  antenna i s  opera t ing  i n  t h i s  mode. Curves 
a r e  provided t o  a s s i s t  i n  t h e  design of a c i r c u l a r  micro- 
s t r i p  antenna. 
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INTRODUCTION 
. . 

M i c r o s t r i p  an tennas  have been used e x t e n s i v e l y '  i n  app l i ca -  
\ 

t i o n s  where t h e  antenna must h a v e , a  ve ry  low p r o f i l e .  . , Some 

c h a r a c t e r i s t i c s  o f  r e c t a n g u l a r  m i c r o s t r i p  antennas  have been 

covered i n  p rev ious  r e p o r t s .  i n  t h i s  . r e p o r t  t h e  c i r c u l a r  

mic ros t r . i p ,  shown ' in  F.igure 1, i s  analyzed and i t s  k h a r a c t e r i s -  

t i c s  p re sen ted ' . i r i  t h e  form of s imple  equa t ions  .and graphs .  The 

antenna i s  ari a n n u l a r s e c - t i o n  of '  copper c l a d  d i e l e c t r i c  material 

.wi th  t h e  two 'copper  s u r f a c e s '  s h o r t e d  t o g e t h e r ' a r o u n d  . 
. .  . t h e  i n n e r  

: .  , ' . I  . . . 

r a d i u s  , r .  This  antenna i s  n o t  a s  e a s i l y  f a b r i c a t e d  as t h e  

r e c t a n g u l a r  m i c r o s t r i p  antenna b u t  o f f e r s  one s i g n i f i c a n t - a d v a n -  
, . 

t a g e .  The o u t e r  r a d i u s , , r o ,  i s  n o t  . f i xed  by t h e  frequency and 

d i e l e c t r i c  c o n s t a n t  of.  t h e  s u b s t r a t e  s o  t h e  o u t e r  r a d i u s  can be  - 
. . 

' s e l e c t e d  t o  o b t a i n  t h e  b e s t  p a t t e r n .  Once ro i s  determined;  t h e  

i n n e r  r a d i u s  can b e ' d e t e r m i n e d ' t o  o b t a i n  t h e  d e s i r e d  r e sonan t  fre- 

quency. 

MODES OF OPERATION 

I n  c y l i n d r i c a l  s t r u c t u r e s  t h e  f i e l d s  can b e  convenien t ly  
. .  . ,  

expressed  i n  te'rms of Bessel f u n c t i o n s  of ' o r d e r  v; Since  t h e  

antenna "is very  t h i n ,  r e l a t i v e  . t o  a wavelength,  no v a r i a t i o n  i n  

t h e  'z ' d i r e c t i o n  of ' t h e  f i e l d s  - w i i l  be assumed and consequent ly  

Er and Eg are both  z e r o  i n  t h e  a n n u i a r  r eg ion  between t h e  p l a t e .  

(See F igu re  2 ) .  



E Z  = [AH, (i) . (kcr)  + BHy ( 2 ) ( k c r ) ] [ ~  coS v g  + D s i n  v$] (1 

where 

t h i s  form of  t h e  Bessel func t ions  s e p a r a t e s  t h e  f i e l d s  i n t o  r a d i a l l y  

propagat ing waves.; A, (I) (kcr) i s  a  wave propagating i n  . t h e  -r 

d i r e c t i o n  and Hv ( 2 )  (kcr )  i s  a  wave propagating i n  t h e  + r  d i r e c t i o n .  

ALSO, due t o  SyIm-netry, t h e  c o e f f i c i e n t  of s i n  must be zero. 

The o t h e r  non-zero f i e l d  components q r e  

. H =  
. . r k :  

C 

The r a d i a t i o n  admittance of t h e  c y l i n d r i c a l  a p e r t u r e  formed by . 
. . 

t h e  two p l a t e s  i s  much l e s s  than the  admittance of t h e  r a d i a l  t rans- .  

mission i i n e s  . Theref o r e ,  f o r  a , f i r s t  o rde r  approximation, t o  

determine t h e  resonant  frequency, t h i s  ape r tu re  can be considered 

an open c i r c u i t  s o  t h e r e  i s  no c u r r e n t  i n  t h e  r a d i a l  d i r e c t i o n  a t  
0 

t h e  o u t e r  r ad ius .  



since t h e  two p l a t e s  a r e  shor t ed  t o g e t h e r  a t  t h e  i n n e r  r a d i u s ,  

t h e  E f i e l d  must be zero '  a t  t h a t  po in t .  

These two equat ions  determine t h e  resonant  c o n d i t i o n s ,  t h e  k c ' s  

which a r e  a  s o l u t i o n  t o  equat ions  5 and 6 ,  f o r  any o r d e r  of t h e  

B e s s e l  f unc t ions .  This  kc i s  equ iva len t  t o  2n/Xc where A c  i s  

t h e  cu to f f  wavelength c y l i n d r i c a l  waveguide which-propagates  i n  

t h e  z d i r e c t i o n .  When such a  waveguide i s  opera ted  a t  c u t o f f ,  

t h e  guide wavelength approaches i n f i n i t y  and t h e r e  i s  no v a r i a -  

t i o n s  i n  t h e  z d i r e c t i o n .  I n  t h e  p e r f e c t  model which has  been 

assumed f o r  determining resonant  f r equenc ies ,  no power l o s s  through 

t h e  o u t e r  a p e r t u r e ,  i f  t h e r e  w e r e  no l o s s e s  i n  t h e  p l a t e s  o r  d i e l e c -  

t r i c ,  t h e  f i e l d s  i n  t h e  annular  reg ion  could have only  d i s c r e t e  

frequency value's co r re spond ingn to  t h e  k c ' s  f o r  t h a t  geometry. I n  

the r e a l i s t i c  case  of some r a d i a t i o n  f rom' the  edge$ and sma l l  l o s s e s  

i n  t h e  p l a t e s ,  t h e  f i e l d s  w i l l  have s i g n i f i c a n t  amplitude i n  narrow. 

bands around these.  resonant  f requencies .  

The o r d e r  of t h e  Bessel f u n c t i o n s ,  V ,  can have any i n t e g e r  

va lue .  When V = 0 t h e  antenna . I i s  e s s e n t i a l l y  i d e n t i c a l  t o  an 

annular  s l o t  which has  a  p a t t e r n  s i m i l a r  t o  a  monopole. Th i s  i s  

n o t  t h e  o r d e r  which i s  of primary i n t e r e s t  i n  t h i s  r e p o r t  b u t  



t h e  r e s o n a n t  f requency  w i l l  be  determined f o r  t h i s  o r d e r  s i n c e  
. . 

it i s  t h e  l owes t  r e s o n a n t  f requency. 'Fgr  v =  0 equa t ion  5 becomes . . 

. and e q u a t i o n  6 i s  

These.  e q u a t i o n s  can b e  combined. 
. ,  , . ,;. ' . . :. . 

For  any give'n r 'and ro. t h e r e  are an :in£ i n i t e  number of  v a l u e s  of i 

kc which are solutions t o  equa t ion  9 .  The lowes t  value i s  the 

s o l u t i o n  d e s i r e d  and 1s analagous to t h e  case '  of  ''a' one q u a r t e r  
. . .  

wavelength l i n e  s h o r t e d  at one end and open a t  t h e ' o t h e r .  T h i s  , 

. .  . . , .. . 
s o l u t i o n  i s  p l o t t e d  i n  F i g u r e  3 .  Both k c r i  a i d  ' the  r a t i o  k '  r /k r .  

c o  C L  

are p l o t t e d  v s  kcri f o r  conveni,ence. . In an a n a l y s i s  o f  a f  =xed 

geometry,  t h e  r a t i o  ro / r  = k r /k r .  i s  known so t h e  r a t i o  r~ .~ rve  
L G O  C l "  

can  be used t o  de te rmine  t h e  va lue  kcri and consequent ly  t h e  

r e s o n a n t  f requency ,  I n  a des ign  e f f o r t ,  t h e  d e s i r e d  r e sonan t  

f requency and one of  the '  r a d i i  i s  known s o  t h e  kc ro  curve, can b e  . . 

used t o  de te rmine  t h e  o t h e r  r a d i u s .  



where A = wavelength i n  t h e  d i e l e c t r i c  m a t e r i a l  d . . . . 
.. . . . 

This mode . w i l l  be c a l l e d  ' the 'zero-oraer  mode f o r  t h i s  antenna type  

and opera t ing  i n  t h i s  modewould be a convenient way t o  o b t a i n  a , 

low p r o f i l e  antenna k i t h  a p a t t e r n  s i m i l a r  t o  .a d ipo le .  ' 

. . i . I  . . I i 
The case bf i n t e r e s t '  i n  t h i s  , r e p o r t  i s  when v = 1, 

. one cycle  "va r i a t ion  i n  t h e  (I d i r e c t i o n  of t h e  f i e l d s .  The reso-  

nant  f requencies  a r e ,  determined'  i n  a s i m i l a r  manner, equat ion 5 
. . 

becomes ' 

and equat ion 6 i s  

. . 

These equat ions can be combined t o  y i e l d  ' 

. . . . .  



The lowest  frequency s o l u t i ~ n  t o  t h i s  equat ion i s  p l o t t e d  i n  

F igure  4 .  Again, both kcro and t h e  r a t i o  kcro/kcri a r e  p l o t t e d  

v s  kcr i  f o r  convenience. . 
, . 

0 

BY comparing FkTures 3' and 4 ,  t h e r e  i s  v e r y ' l i t t l e  d i f f e r e n c e  

between t h e  resonant  f requencies  For t h e  zero-prder and 1st order  

modes f o r  l a r g e  r a d i i .  For very l a r g e  r a d i i ,  th%.two rn~dca may . , 

e x i s t  simultansousl,y and e i ther  a d i f f e r e n t  feeding  o r  qode sup- 

p r e s s i o n  techniques must be used t o  e l imina te  t h e  undegirable  mode. 

B y  d r i v i n g  t h e  antenna a t  two p o i n t s ,  $ = 0 and a, o u t  of phase, 

t h e  1st o r d e r  mode w i l l  be exc i t ed  bu t  t h e  zero o rde r  mode w i l l  

no t .  s i m i l a r l y ,  i f  t h e  antenna i s  dr iven  a t  t h e  same two p o i n t s  

b u t  i n  phase, t h e  zero-order mode w i l l  be e x c i t e d  and n o t  t h e  1st 

o r d e r  mode. Shor t ing  p i n s  placed i n  t h e  E f i e l d  nodes of t h e  
\ 

lst o r d e r  mode, 4 = ~ / 2  and 3 ~ / 2 ,  w i l l  a l s o  ki$l t h e  zero-order 

mode and have no e f f e c t  on t h e  1st ogder . m ~ t t e .  . 

PATTERNS 

The r a d i a t i o n  p a t t e r n  of t h e  c i r c u l a r  m i c r o s t r i p  which 4s 

mounted on a  l a r g e  ground plane can be e a s i l y  ca lcu la ted  since 

t h e  vo l t age  d i s t r i b u t i o n  i s  known f o r  a  given va lue  of v .  Since 

t h e  m i c r o s t r i p  antenna i s  very t h i n  r e l a t i v e  t o  a  wave length, 

t h e  vo l t age  around t h e  a p e r t u r e  can be replaced by an equiva lent  

magnetic c u r r e n t  f i l ament  a s  was done f o r  t h e  r ec tangu la r  micro- 

s t r i p  antenna. This equ iva len t  magnetic c u r r e n t  f i lament  f o r  



A . . 
A 

where , a = s in .  4' a& + C O s  0' a 
Q .  Y 

The .coord ina t e  system f o r  t h e  p a t t e r n  c a l c u l a t i o n s  i s  shown i n  

F i g u r e . 5 .  The e l e c t r i c  vec to r  p ~ t e n t i a l  f o r  t h i s  magnetic c u r r e n t  

d i s t r i b u t i o n  i s  

- j k r  - j k r  - 
- ~e j k r '  = Ee L F = - 4xr 4 1 ~ r  

; where ' :' 
. . 

r' = r o ( c o s  $' cos $. +  in.$' sin $ ) s i n  0 

dR = r d$" 
0 

. . 

T h e  components of t h e  r a d i a t e d  f i e l d  can be o b t a i n e d ,  from t h e  
- 

above i n t e g r a l ,  L.. . 

L$ = L, s i n  0 + Ly COS $  

= 0 = L 'COS Q cos 0 + L s i n  $ cos  8 
x. Y , 



T h e  p r i n c i p l e  p l a n e  p a t t e r n s ,  4 = 0  and 90, have been c a l c u l a t e d  

and a r e  p l o t t e d  i n  F i g u r e s  6-10 f o r  r o / h  = .1, .2 ,  . . 3 ,  . 4 ,  and .5.  ' 
. . . ? .  . 

Due t o  symmetry, i n  bo th  t h e  I$ = 0  and 4 = 90 p l a n e s ,  on ly  h a l f  . . . 

- t h e  p a t t e r n s  are p l o t t e d , . t h e  o t h e r  h a l f < b e i n g  a  m i r r o r  image. 

A l so ,  due t o  symmetry E = 0  when $I = 90° o r  270° 'and E0 = 0 .  
. 8 

when (I = 0  o r  180°. I n c r e a s i n g  t h e  r a d i u s  dec reases  t h e  beam- 
. . 

widths  and i n c r e a s e s  t h e  ga in  up t o  ro /h  bf . 3 .  Fpz rad j j 0  g r e a t e r  

than  t h i s ,  t h e  beamwidths con t inue  t o  d e c r e a s e  b u t  ano the r  l o b e  
. . 

forms a t  8 = 90 deg rees  s o  t h e ,  g a i n  does  n o t  go up much m & e .  

The h a l f  power beamwidths a r e  p l o t t e d  i n  F igu re  11.. 

Developing t h e  exp res s ions  f o r  t h e  ' f i e l d s  between t h e  con- 

.duc t lng  p l a t e s  i n  t e r m s  o f  r a d i a l l y  p ropaga t ing  waves l e a d s  
, 

d i r e c t l y  t o  an e q u i v a l e n t  c i r c u i t .  model f o r  t h e  antenna '  as shown 

i n  F i g u r e  12.  The admi t tance  of t h e  a p e r t u r e  i s  Y, which i s  

shun ted  by a s h o r t e d  t r ansmis s ion  l i n e .  ~ h l s  t r ansmis s ion  l i n e  

is '  a r a d i a l  l i n e  where t h e  c h a r a c t e r i s t i c  admi t tance  and t he  pro- 

p a g a t i o n  c o n s t a n t  a r e  bo th  a f u n c t i o n  of ' the  r a d i u s  as w e l l  as 

t h e '  o r d e r ,  v,  Of <he Bessel Func t ions .  . I t  ,is analagous t o  a 
. .. 

one q u a r t e r  wavelength uniform l i n e  shun t ing  . t h e  apercure. The 
. . . . . . 

p r o p e r t i e s  developed h e r e  w i l l  on ly  be  for. . : the ... . 1st o r d e r  mode, 
. . , . . . . . 

v = 1. 

Determining t h e  t o t a l  admi t t ance .  of the  r a d i a t i n g  a p e r t u r e  

i s  ve ry  d i f f i c u l t  b u t  t h e  r e a l  p a r t  of t h i s  admi t tance  can be  

o b t a i n e d  by i n t e g r a t i n g  t h e  t o t a l  r a d i a t e d  power:'.   he imaginary 
t 



p a r t  of t h e  admit tance w i l l ,  be  caiceled by t h e  ?hunt ing t ransmis-  

s i o n  l i n e  s o  it i s . o f  l i t t l e  importance anyway. The r e a l  p a r t  of 

t h e  . .. admit tance . ., of  . t h e  . a p e r t u r e ,  Ga , r  w i l l  . % .  be d e f i n e d  a s  

' -  - rad 
'a l V \ 2 .  

where 
Prad i s  t h e  t o t a l  r a d i a t e d p o w e r  

V i s  t h e  RMS vo1'tag.e between t h e  p l a t e s  
a t  r = ro and $I = 0 .  

This  conductance has  been c a l c u l a t e d  f o r  va lues  of ro from .1 t o  1. 

wavelength and i s  p l o t t e d  i n  F igu re  13.. The sha rp  rise i n  t h e  

conductance f o r  rob between . 4  and .7 i s  due t o  t h e  second lobe ,  

a t  0 = 9 0 ,  becoming s i g n i f i c a n t .  

To  detesmine'the e f f e c t  of th,e shunt ing  t r ansmis s ion  l i n e  

t h e  c h a r a c t e r i s t i c  admit tance must 'be known. Obviously, when 
, . 

t h e  a n t e n n a , i s  r e s o n a n t , t h e  susceptance  of t h i s  shun t  l i n e  can- 

c e l s  t h e  susceptance  of t h e  aper ture  and t h e ' i n p u t  admi t tance  
. . 

w i l l  be j.ust t h e  a p e r t u r e  conduc tance ,  Ga. For  f r equenc ie s  s l i g h t l y  

away from resonance,  t h e  susceptance  of t h i s  shunt ing  l i n e  w i l l  

determine t h e  bandwidth of t h e  antenna.  Due t o  t h e . t h i n n e s s  of 
.. . . 

t h e  l i n e ,  t h e  c h a r a c t e r i s t i c  admit tance of t h e  l i n e  w i l l  be very  

much g r e a t e r  than  t h e  a p e r t u r e  coriductarice. 
. .  . . , .  

TO be  c o n s i s t a n t  w i th  t h e  de.f i n i t i o n  'of  a p e r t u r e  conductance 

t h e  admi t tance  of t h e  r a d i a l  l i n e  w i l l  be 



where Pav i s  t h e  average power f o r  a wave t r a v e l -  

ing  i n  e i t h e r  r a d i a l  d i r e c t i o n  and V (r) i s  t h e  

v o l t a g e  between t h e  p l a t e s  a t  4 = 0 . 

Since  t h e  antenna i s  ve ry  t h i n  

The average power i n  .an  inward propagating wave i s  
. . 

The f i e l d s  f o r  an inward .  t r a v e l i n g  wave' a s  # . .  . .  . . . 

. .  , 

E = AHJ ( k c r )  cos 4 ( 2 4  
z .  . . 

. . .  , 
. . 

. . ,  . 

( I )  (kc=)) cos 4 . ( 2 5 )  
0 

. . 

. . . . 
. . 

The r a d i a l  component o f  t h e , r e a l  p a r t  of t h e  complex Poynting 

v e c t o r  i s  



The average power i s  

2 
' - Y (k cos +d$ = A2*r(%) (Jl (kcr)Yo (kcr)  

'av kc 1 c 
. . 

The c h a r a c t e r i s t i c  admittance i s  given by 
. . 7 

The func t ion ,  F ( r ) ,  i s  p l o t t e d  i n  Figure 1 4  vs  kcr.  

A t  f requrr lcies  near the resonant  frequency of t h e  m i c r o s t r i p  

antenna t h e  shor ted  t ransmission l i n e  provides a very low admittance 

shunt ing t h e  a p e r t u r e  admittance. The e l e c t r i c a l  length  of t h e  

l i n e  i s  approximately n/2 s o  f o r  a f i r s t  o rde r  approximation t o  

determine t h e  bandwidth t h i s  r a d i a l  l i n e  w i l l  be replaced  with a 

uniform l i n e ,  X/4 long,  with a c h a r a c t e r i s t i c  admittance of Y o ( r O ) .  

The shunt  susceptance of t h i s  l i n e  i s  

The Q of a p a r a l l e l  resonant  c i r c u i t  can be determined from 



where fo = resonant frequency 

. A£ = frequency between half-power- points 

The half power points are defined on the frequency where the 

magnitude of the shunt susdeptance equals the shunt conduc- 

tance. Rearranging equation 29 yield&. , . 

. . . . 

cos 8 sin(8 - n/2) 
Y, = -jYo(ro) sin 8 = ]yo (ro) siri 8 - 

Since 8 Q r/2 

Ys 5 jyo (ro) sin (0 - ~ / 2 )  . . .  
(32) 

For..small arguments sin x. can .. be .. approximat.ed by x 

Since 6 -is a linear,function of frequency , - .  in the simple approxi- 
. . 

mate .model . . . ; .. 1 : 
. . 

. . 
. . t > .  , . . 

I . . . .  . 

The half power frequencies., where .. the shunt: .susceptance 

equals the aperture conductance, can be determined by 



The Q .is t h e n  . , 

The. bandwidth, which .can ' b e  obtained,,  can be  determined from t h e  

( 4 )  Without any Q and t h e  amount of broadband matching used.  

broadband matching, t h e  f r a c t i o n a l  bandwidth w i l l  jus ' t  b e . l / Q .  

I n  t h e  above a n a l y s i s  t h e  r a d i a l  t r ansmis s ion  l i n e  w a s  
. . 

assumed l o s s l e s s  and i n  a  r e a l i s t i c .  cake ,  t h e  power d i s s i p a t e d  

i n  t h e  l i n e  w i l l  be very  smal l  r e l a t i v e  t o  t h e  energy s t o r e d  i n  

t h e  l i n e .  But,  : t h e  ' pbwer l o s t  i n  t h e  l i n e  may n o t  be  s m a l l  

r e l a t i v e  t o  t h e  . power . being r a d i a t e d  by t h e  a p e r t u r e .  When 

t h i s  l o s s  i g  ignored ,  t h e  c a l c u l a t e d  v a l u e  of i n p u t  admi t tance .  

i s  lower and t h e  c a l c u l a t e d  v a l u e  . . .  of Q h igher  t han  t h e  measured 
. . 

va lues .  The re fo re ,  t o  have a good model, t h e  effect  of t h e s e  

l o s s e s  must be  t a k e n  i n t o  account .  
. . .. . . 

.S ince , ' the .  power d i s s i p a t e d  i n  t h e  l i n e  i s  sma l l  r e l a t i v e  
I 

t o  the  energy s t o r e d ,  t h e  f i e l d s  i n  t h e  l i n e  a r e  n o t  reduced 

s i g n i f i c a n t l y  by t h i s  l o s s .  T h e r e f o r e ,  ' the  f i e l d s  w i t h i n  t h e  

l i n e  w i l l  be assumed t o  be  t h e  same as i n  t h e  l o s s l e s s  c a s e ,  

t h e  power d i s s i p a t e d  i n  t h e  conduc tors  and d i e l e c t r i c  w i l l  be 

c a l c u l a t e d  f o r , t h e s e  f i e l d  l e v e l s ,  and t h e  e f f e c t  of t h i s  ' l o s s  

on t h e  model w i l l  be accounted ' for  by an a d d i t i o n a l  s h u n t  

conductance a c r o s s  t h e  a p e r t u r e .  I 

The power l o s s  p e r  u n i t  a r e a  i n  a  conduct ing s u r f a c e  



where Js is t h e  RMS s u r f a c e  c u r r e n t  d e n s i t y  , 

- 
R, = 4% i s  t h e  s u r f a c e  r e$ .=k t iv i ty .  . . 

. . 

The surface c u r r e n t  i s  j u s t  equa l  t o  t h e .  t o t a l  H f i e l d  t h e  
. . \ .  

c o n d u c t o r ~ s u r f a c e ,  
\ . . 

'2 2. I J ~ I  = 1 '012 .+ I ' H ~ I  . . .' ' . ' ( 3 .8 )  

The t o t a l  e l e c t r i c . f i e l d  i n  t h e  s t and ing  waves are 
.. . 

Since  t h e  E f i e l d  must be  zero  a t  r ' 

i 

: .  . . . . 

The two .coinponents o f  t h e  H f i e l d  a r e  . . . . 

. 

1 - ('1 (kcr )  + B H ~  (2) tk r )  s i n  4 
Hr - c 



The t o t a l  power d i s s i p a t e d  i n  t h e  2 conductive . . . . s q r f a c e s  i s  

- - & r ~ . . / [  r0 ' 1F9l2 . "  + .IF,I r d r  . 

where 

The func t ion  Fc i s  a func t ion  only of E,, ro and f ,  s i n c e  r i , t h e  

lower l i m i t  of i n t e g r a t i o n ,  i s  determined by t h e  o t h e r  t h r e e  v a r i a -  

b l e s  f o r ' a  resonant  antenna. 
: .  

The t o t a l  power d i s s i p a t e d  i n  t h e  d i e l e c t r i c  m a t e r i a l  i s  

where E " = E E :  t a n 6  
Q r 

t a n  6 is  t h e  l o s s  tangent,.  



. . . .. .. .. ,... -. . .. . . . _ i . . - .  . . . 
. L .  ~. .  <.. . . . . 

' The above i n t e g r a l  become&, '  . 

. , 
= t a n  6 T wneoer . . 

J 

i 
, 

= t a n  6 T F d ( ~ r I  f rO) (4.7) 

. . . : -- ,. 

E q u i v a l e n t  conduc tance  t o  u se  i n  t h e  model,  F i g u r e  1 5 ,  i s  

. . 
I .. . 

- T h e  v o l t a g e .  a t  t h e  o u t e r  e d g e  . .  . . . 
. ,- 

a .  

The two conduc tances .  a r e  t h e n  . 



t a n  '.d F  - d: 
Gsd .- 2 

T I f r  (rO),I 
. . 

. . 

Fc . 0 '  F d  The q u a n t i t i e s  2  and 2  &e, p l o t t e d  v s  ro i n  F i g u r e s  
IFr (rO) I IFr (ro) I 

16-21 f o r .  r r  =:2. .5,  :4:. a n d .  10. and f r e q u e n c i e s  of 500, 1000, 2000, 

. and 4000 MHz. 
. . 

' %  . 

With t n e s 6  cu rves ,  it should be  p o s s i b l e  t b  estimate r e a -  
. .- 

. . 

sonably w e l l  t h e  l o s s  conductances f o r  most any f requency,  con- 

d u c t o r  m a t e r i a l  arid - d i e l e c t r i c  cons t an t .  Equat ions  5 0  and 5 1  

show t h e  s t r o n g  e f f e c t  t h e  t h i c k n e s s  has  on t h e  l o s s e s  i n  a  
. . 

m i c r o s t r i p  antenna.  The e f f i c i e n c y  of t h e  antenna i s  e a s i l y  
. . . , .  . 

,. . . . s 

de termined from t h e  model. . . 

. . . f : , . , . 

. . 

u n l e s s  t h e  loss conductances i n  t h e . a n t e n n a  axe ex t remely  

l a r g e ,  t h e  admit tance.of  t h e  an tenna  a t ' t h e  a p e r t u r e  w i l l  b e  much 

less than  20.mmhos ne'cessary f o r  a  match ' t o  normal 50 ohm t r a n s -  . . 

miss ion  l ines . .  'One way around t h i s  problem 'is t o  f e e d  t h e  

an tenna  a t  a p o i n t  where t h e  r a d i u s  i.s iess t h a n  ro. I f  t h e  

power d e l i v e r e d  t o  t h e  antenna remains t h e  same as t h e  f e e d  p o i n t  

i s  moved'toward t h e  c e n t e r , ' t h e  real  p a r t  0.f t h e  i n p u t  conductance 
,2 . 

. must vary as 1/ I V  I 



I F r ( r )  j L  
The r a t i o  i s  p r i m a r i l y  dependent upon t h e  d i s t a ~ c e  f r o p  - 

IFr (ro) I 
t h e  i n n o r  r a d i u s ,  ri,, compared t o  t h e  d i f f e r e n c e  between to and ri 

and i s  on ly  s l i g h t l y  dependent upon the .overa l3 .  r a d i u s  o r  k,ro. 

I This  r a t i o  is p l o t t e d  i n  F igu re  22 v s  ; , f o r  kCrO of 1.85 
o i 

an.d 4.0. Once t h e  conductance a t  . t he  a p e r t u r e  gntenna .,i$ d e t e r - ,  

mined, bo th  a p e r t u r e  conductance and lo sq  copductanoes,  Figure 22 

can be used t o  de te rmine  t h e  l o c a t i o n  which w i l l  produce an 

antenna w i t h  t h e  d e s i r e d  i n p u t  impedance a t  resonance.  

. . 

CONCLUSIONS 
. 

The curves  . and . equa t ions  developed i n  t h i s  r e p o r t  p rov ide  
m .  

s u f f i c i e n t  d a t a  t o  des ign  a c i r c u l a r  m i c r o s t r i p  antenna wi thou t  

depending upon a l o t  of e m p i r i c a l  e f f o r t .  Due t o  t h e  f r i n g i n g  

c a p a c i t a n c e  a t  t h e  o u t e r  end of t h e  r a d i a l  l i n e .  and t h e  vnknown 

susceptance  of t h e  ape r tu r . e , t he  e x a c t  va lue  of t h e  r a d i i  cannot 

be c a l c u l a t e d .  Using t he  r a d i i  determined from F igure  4 w i l l  

' prov ide  an antenna wi th  a r e sonan t  frequency which i s  j u s t  s l i g h t l y  



less than desired. This can be compensated for by trimming I the 

outer radius slightly to increase the resonant frequency. The 
. . . . ,  . . 

curves for determining input conductance,Q and efficiency have 

been found to provide good agreement with measured data. 
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F i g .  1.. Circular Gcroetrip Antenna 
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Fig. 2. Coordinate System for Analysis 
. . . .  : I  , . . . . . 
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Figure 3.  Solution of  Equation 9 ' 
Zero Order Mode 



Figure 4. Solution of Equation 13 

1st Order Mode 
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ligure 51i Antenna Pattern Coo-rdinate s y s t e m  ' 
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Figure 6 ,  . Circular -Microstrip 'Antenna 

(rO/A = 0 . 1 ,  v = 1). . 

w 



Figure 7 .  Circular Microstrip Antenna 

(r,/h = 0 . 2 ,  v = I )  



Figure 8 .  Circular Microstrip' Antenna 

. . ( r o /h  = .0.3, v = 1) 



Figure 9 .  Circular ~ i c r o s t r i ~  Antenna 



Figure 10. Circular Microstrip Antenna 

(r,/l. = 0.5, v = 1) 



Piqwa 11. Circulax Microrr-ip Antennas 
Half Power Belunwidths 
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Figure 13. Radiation Cohductance 



F i g u r e  14, Normalized Characteristic Admittance 





r, meters 

Figure 16 .  Conductor Loss Factor c r = 2.5 
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Piguge 1 7 .  Dielectric Loss Factor rr - 2 .5  
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Figure 1 8 . Conductor Loss F a c t o r  er 1 4.0 



- 
tan 
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Figure 20.  Conductor Loss Factor cr = 10.0  
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F i g u r e  21 .  D i e l e c t r i c  Loss F a c t o r  e r  = 1 0 . 0  



. F i g u r e  22 .  R a t i o  o f  Feed P o i n t  Conductance 
- # r  i 
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to Aperture Conductance 
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