

PORTIONS OF THIS REPORT ARE ILLEGIBLE. It has been reproduced from the best available copy to permit the broadest possible availability.

Institute of Environmental Medicine

COO-2968-1

PROGRESS REPORT

Contract E(11-1) 2968

DETERMINATION OF Pu-239, 240 TISSUE CONCENTRATIONS

IN NON-OCCUPATIONALLY EXPOSED RESIDENTS

OF NEW YORK CITY

Co-Investigators: McDonald E. Wrenn and Norman Cohen

Submitted to: U.S. Energy Research and Development Administration

Date: March 1, 1977

There is no objection from the patent point of view to the publication or dissemination of the document(s) listed in this letter.

4/16/1977 ebk

MASTER

New York University Medical Center
New York, N.Y. 10016

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

The Anthony J. Lanza Research Laboratories
For Research in Environmental Medicine
At University Valley in Sterling Forest

ANNUAL REPORT
to the
ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

Title of Project: Determination of Pu-239, 240 Tissue Concentrations in Non-Occupationally Exposed Residents of New York City

Period Covered by Report: June 1, 1976 -- May 31, 1977

Co-Investigators: McDonald E. Wrenn, Ph.D.
Norman Cohen, Ph.D.

Institute of Environmental Medicine
New York University Medical Center

Contract Number: E(11-1)-2968

Supported by: Energy Research & Development Administration
Division of Biomedical and Environmental Research

Date of Report: March 1, 1977

NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

MASTER

TABLE OF CONTENTS

Abstract

I Introduction

II Protocol for Tissue Procurement

III Plutonium-242 Tracer

IV Plutonium Radiochemical Methodology

V Alpha Spectrometry

VI Stable Calcium Rationale and Methodology

VII Sample Information - Computer Compilation

VIII Pu-239, 240 Results in Tissues of NYC Residents

IX References

Appendix 1 - Sample Data

ABSTRACT

The following study reports on the Pu-239,240 concentrations in various tissues obtained from individuals residing in New York City. Twenty-six tissue samples have been analyzed for their Pu-239,240 content, which include sections from the right lung, the liver, bone (4th and 5th vertebrae) and the kidney. The tissues were obtained at autopsy from a selected population not occupationally exposed to plutonium and whose deaths were the result of causes other than metabolic disorders.

A detailed description is presented of the radiochemical procedures employed to separate Pu and electrochemically deposit plutonium isotopes prior to alpha spectrometry with Si surface-barrier detectors. Results of these measurements are given as activity per gram wet weight and activity per gram of calcium in the individual tissue. All results have been compared to similar measurements made at other laboratories and with estimates of concentration based on metabolic models.

To date, the magnitudes and the distribution of the measured values are consistent with the values inferred from the ICRP lung model and measured concentrations of air.

I. INTRODUCTION

Aside from localized productions and accidental releases of plutonium from nuclear reactors, weapon losses and underground nuclear detonations, the major source of generalized plutonium release to the environment has been from atmospheric weapons testing. The most reliable and best estimate of the amount so produced in above ground nuclear weapons testing was first made by Harley⁽¹⁾ and later updated by Wrenn⁽²⁾, who concluded that a total of approximately 440,000 Ci of Pu-239,240 had been produced and distributed in the atmosphere. Estimates of the activity produced are given in Table 1 which includes the space nuclear releases to the atmosphere.

Most of the activity is associated with Pu-239, although almost 40% is associated with Pu-240, and 3% with Pu-238. From a practical point of view, both Pu-239 and Pu-240 have long half-lives and the alpha energies of the emitted alpha particles are generally indistinguishable with conventional counting techniques. The salient feature of this source is that essentially all of it, (on the order of 0.4 MCi), has been released to the environment to date.

There have been many studies which describe the transport of plutonium to man beginning with Pu-239 which has been released into the environment from nuclear weapons

Table 1.

GLOBALLY DISTRIBUTED AMOUNTS OF ALPHA EMITTING PLUTONIUM FROM ATMOSPHERIC INJECTIONS

SOURCES	AMOUNT (CURIES)	% ACTIVITY BY ISOTOPE		
		Pu-238	Pu-239	Pu-240
ATMOSPHERIC TESTING 1945-74				
DEPOSITED NEAR TESTING SITE	110,000	3	58	39
DEPOSITED WORLD WIDE	330,000	3	58	39
SPACE NUCLEAR	17,000	100	—	—
TOTAL	457,000			
TOTAL GLOBAL EXCLUDING NEARIN TO TESTING SITE	347,000			

testing. In brief, the major transport vector to date appears to have been air; Bennett⁽³⁾ has shown, in fact, that plutonium present in human tissues from a non-occupationally exposed population of New York City can be accounted for by applying the ICRP inhalation model⁽⁴⁾ to the observed concentrations of plutonium in ground level air in the New York area.

In view of the extreme radiotoxicity of this element and its importance in man's energy economy, it is essential that the distribution and concentration of plutonium in various human organs from non-industrially exposed individuals be studied on a systematic, long-term basis.

Analysis of organ burdens of fallout plutonium is essential in defining those parameters used to estimate the transfer of plutonium from the environment to man.

In the present report, preliminary results will be presented for the Pu-239,240 concentration of 20 different tissue samples from 12 autopsy cases from a non-occupationally exposed population of New York City. By comparison of these results with calculated values derived from lung modeling techniques and air concentration data, we will eventually be able to verify transport models of these materials in the environment and their metabolism and kinetics in the body. In addition, we will establish accurate background

values for these radionuclides in the body to act as a reference point for assessing the impact of increased sources of intake in a plutonium economy.

II. PROTOCOL FOR TISSUE PROCUREMENT

The autopsy tissue samples included in this study were selected preferentially from accident victims or others where sudden death had occurred. Severe disease cases, alcoholics, and drug addicts were avoided as non-representative of the general population. When possible, subjects were lifelong residents of New York City and within the age range of 20 to 45 years old. Fifty sets of autopsy tissues have thus been obtained from New York City residents. Each set of tissues included the right lung, 500 grams of liver, one kidney, the hilar lymph nodes, blood and half the bodies of three thoracic vertebrae. In a few cases, the bronchial tubes were also included. A few cases of drug overdose are involved in the study, but the individuals were on a methadone program and reportedly free of intravenous injections for at least one year prior to death. Therefore, acute drug poisoning was the cause of death. A breakdown of the age groups and causes of death are tabulated in Table 2.

The tissue samples were taken at the time of autopsy by the prosector who investigated the entire case and determined the cause of death and established the evidence for the presence of pathological changes. All wet weights of specimens were established at the time of autopsy.

Table 2. Age Groups and Cause of Death for
New York City Tissue ^{239}Pu Analyses

<u>Age Group</u>	<u>Cause of Death</u>		
	<u>Accidental</u>	<u>Overdose/ Poisoning</u>	<u>Other</u>
15-20	5	3	0
21-30	9	13	1 (Leukemia)
31-40	9	3	2 (TB, Diabetes)
41-50	3	0	1 (MS)
Over 60	<u>0</u>	<u>1</u>	<u>0</u>
	26	20	4

Epidemiological data included smoking and drug habits, past medical history and occupation of the subject.

Histological evidence indicated normal organ function with respect to chronic changes. The autopsy technique usually involved the Rokitansky method of removing each organ through a thoraco-abdominal incision.

The lung was weighed prior to any incision to determine how much congestion was present. The pulmonary arterial tree was opened from one side, and the bronchial tree from another. In order to inspect the lung for any lesions, a long coronal section was made along the lateral border through the lung to the hilum.

The liver was excised, weighed and sliced in sections. Each section was again inspected and palpated for any lesions. The kidney with the perirenal fat was next removed. The capsule of the kidney was taken off, and then the organ weighed. The kidney was then split along the midline and a microscopic section taken for examination.

The lymph nodes were taken in the following manner: the paratracheal and peribronchial nodes along the two mainstream bronchi were stripped, the hilar nodes, which often are embedded within the pulmonary parenchyma, were searched for in the manner of a surgical pathologist looking for nodes involved with cancer in a resected specimen. To complete the sampling, a section of bone including half of three thoracic vertebrae was taken.

A complete explanation of the histological protocol followed with these tissues has been previously published^(5,6).

III. Pu-242 TRACER

Plutonium-242 tracer solution employed in this study was obtained from the U.S. Energy Research and Development Administration's Health and Safety Laboratory (HASL), New York.

The solution was originally prepared by the Lawrence Livermore Laboratory (LLL), California⁽⁷⁾. The mass spectrometer analysis of the solution performed by LLL and the gross alpha and alpha spectrometry measurements performed by HASL⁽⁸⁾ are given in Table 3.

Plutonium-242 was chosen in preference to Pu-236 for several reasons. First, the Pu-242 alpha energy of 4.90 MeV is significantly lower than the 5.15 MeV alpha energy of Pu-239, thus eliminating the problem of degraded alpha energy in the region of interest. Second, the Pu-242 half-life of 3.79×10^5 years permits use of a single, highly purified solution for the duration of the project. Finally, no decay corrections need be applied to the tracer activity.

Table 3
 ^{242}Pu Tracer Purity Certification⁽⁷⁾

Isotopic analysis by mass spectrometric measurement⁽⁸⁾

Atom ratio

$^{239}\text{Pu}/^{242}\text{Pu}$	$0.0000006 \pm .0000002$
$^{240}\text{Pu}/^{242}\text{Pu}$	$0.0000004 \pm .0000002$
$^{241}\text{Pu}/^{242}\text{Pu}$	$0.0000030 \pm .0000004$

Using the half-lives of

^{242}Pu	3.79×10^5 y
^{239}Pu	2.44×10^4 y
^{240}Pu	6.58×10^3 y
^{241}Pu	13.2 y

yields the following activity percentages:

	Total Activity	Alpha Activity
^{242}Pu	92.0667%	99.9968%
$^{239},^{240}\text{Pu}$	0.0030%	0.0032%
^{241}Pu	7.930%	---

The mass spectrometric measurements were performed in August 1971.

IV. PLUTONIUM RADIOCHEMICAL METHODOLOGY

The chemical procedure employed in isolating plutonium from the sample matrix is described in this section. The basics of the analysis are adapted from the HASL method for the radiochemical determination of plutonium in tissue⁽⁹⁾. The procedure is composed of three major divisions which can be designated: (1) sample preparation, (2) ion exchange separation, and (3) electrodeposition.

A. Sample Preparation

The tissue samples, are received by our laboratory, and initially digested with concentrated nitric acid^(5,6). After wet ashing, the concentrations of the solutions are adjusted to approximately 8M and the final sample volume made up to either 25, 100 or 250 ml depending on the original sample size. Prior to the initial ashing procedure, an appropriate amount of Pu-242 tracer solution is added to the samples in order to quantitate the chemical recovery of the Pu-239,240. To insure that the samples are completely free of organic materials which interfere in the isolation of the plutonium, an equal volume of concentrated H_2SO_4 is added to each sample which is then digested again until dense sulfur trioxide fumes are evolved, and organic removal is complete.

Although H_2SO_4 is effective in removing residual organic material, it is necessary at this step to quantitatively remove sulfate from the solution since strong complexes are

formed between the Pu^{+4} and the sulfate ions which strongly interfere in the ion exchange separation. To effect the separation, 300 ml of 1:3 HCl with 1 mg of iron carrier is added to the sample, and through the subsequent addition of concentrated NH_4OH , the plutonium is coprecipitated with iron in the hydroxide form. The precipitate is filtered from the solution using Whatman 42 (ashless) filter paper and the filtrate is discarded. The precipitate is washed, and the filter paper and the precipitate are transferred to the original beaker and ashed with concentrated nitric acid. In order to insure complete separation of the plutonium from the sulfates, all cations are reprecipitated, in a similar manner, the precipitate is washed and transferred to the original beaker and ashed.

The solution is then adjusted to 100 ml in 1:1 HNO_3 and visually inspected for suspended particulates. If particulate matter is observed, it is filtered (using Whatman #40 filter paper) and transferred to a platinum dish where it is dried at 110°C and ignited at 600°C in a muffle oven. The residue remaining in the dish is dissolved in 25 ml HF and taken to dryness, whereupon it is redissolved in 25 ml of 1:1 HNO_3 and recombined with the filtrate.

B. Ion Exchange Separation

The sample is now ready for the ion exchange separation. The ion exchange resin used in this procedure, Bio-Rad AGL-X4, specifically binds plutonium and thorium under specified conditions. The conditions critical for preferential

binding are 1) that the solution normality be adjusted to 8N, and 2) that the plutonium be in the +4 valence state. The normality adjustment is accomplished by calculating the normality of a 100 μ l aliquot via standard acid-base titration and diluting the solution with the appropriate volume of deionized-distilled water. To adjust the valence of the plutonium to the +4 state, the sample is heated to 90° C and 100 mg of NaNO_2 added to the solution.

The ion exchange separation is performed in two steps using a large ion exchange column, followed by a smaller column. The first column contains 25 ml of wet resin which is conditioned before use with 1:1 HNO_3 to convert it from the chloride to the nitrate form. Approximately one-half of the resin in the large column is washed into the sample solution which is then agitated for five minutes to promote contact of the resin beads with the plutonium containing solution. This solution is then passed through the column at maximum flow rate. Plutonium has a strong affinity for the resin at the adjusted normality while all the other elements (excluding thorium) have very little or no affinity. When the solution reaches the top of the resin column, the plutonium and thorium that are bound to the column are eluted with 200 ml of 0.4N HNO_3 - 0.01N HF solution and the eluent taken to dryness.

After twice adding 5 ml of HNO_3 to the residue of the evaporated eluent and taking it to dryness, the sample is prepared for the second column which contains 5 ml of wet

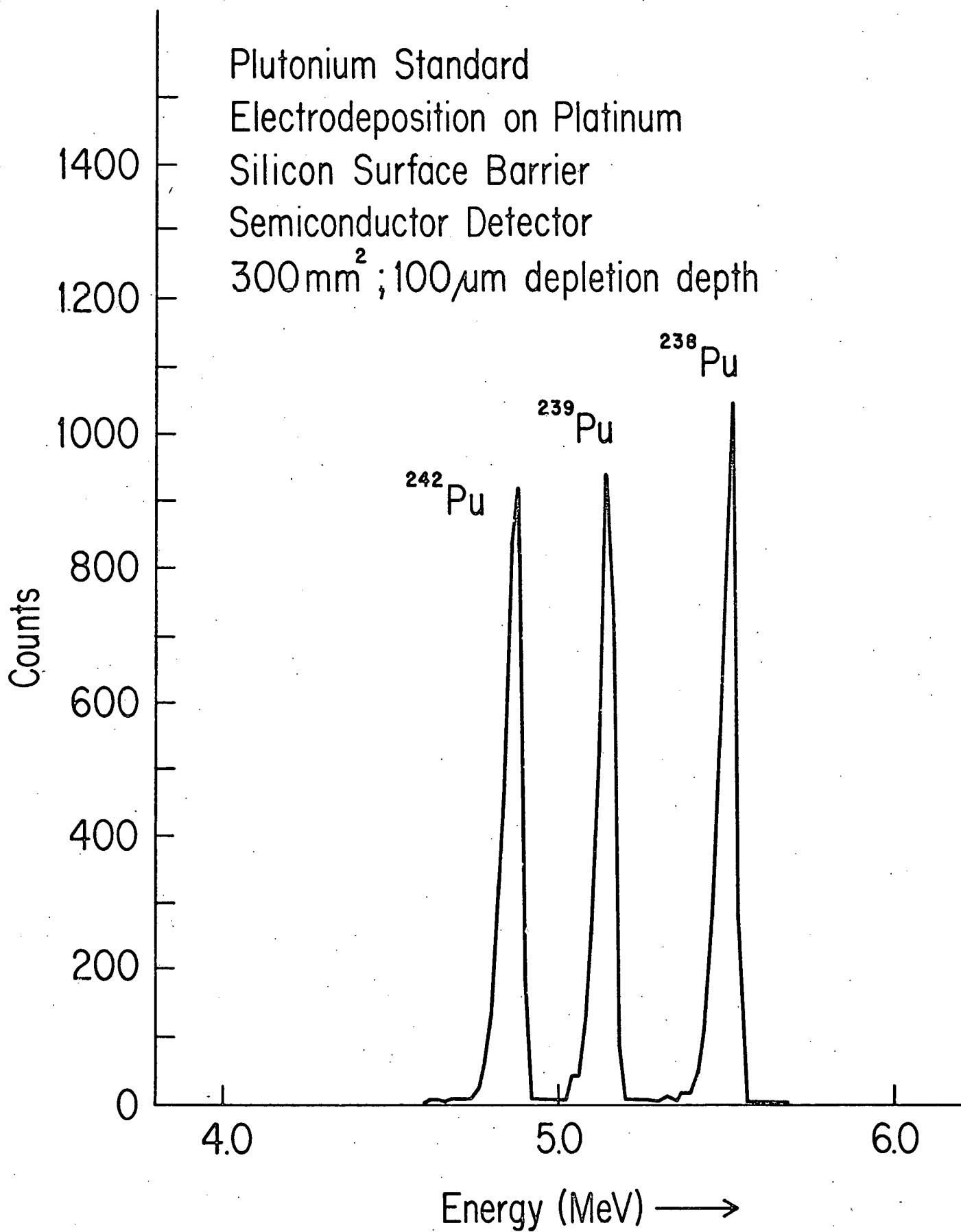
resin. Preparation of the sample solution for this purpose is exactly the same as for the large column, except that the residue is dissolved in only 15 ml of 1:1 HNO₃. Once the solution has passed through the small column, three 5 ml additions of HCl are allowed to flow through the resin to strip thorium ions from the column. This step preferentially removes any thorium bound to the column leaving any plutonium untouched. After the third HCl wash, three 10 ml washes of 1:1 HNO₃ are performed to wash any residual HCl from the column. Finally, the plutonium is eluted from the column into a separate beaker using 100 ml of 0.4 N - 0.01 N HF solution, and the eluent is again taken to dryness.

C. Electrodeposition

The final step in the procedure involves the electrodeposition of the eluted solution containing plutonium onto a platinum planchet. The first step involves the conversion of the eluted plutonium from the nitrate to the chloride form. Once this is accomplished, the plutonium is dissolved in 1 ml of HCl and transferred to a plating cell where the acidity of the solution is adjusted with NH₄OH to a pH of 2.8 using thymol blue indicator (pH range 1.2 to 2.4) to minimize the formation of polymeric plutonium. Two drops of 2 N HCl are then added to reduce the pH slightly since the efficiency of electrodeposition is increased at a slightly lower pH. Plutonium is then electroplated onto the platinum planchet at a constant current of 1.2 amps for a period of

one hour, whereupon the platinum disc is removed from the cell, washed with deionized-distilled water, ethanol and then flamed with a bunsen burner. The sample is then counted by alpha spectrometry as described in the next section.

V. ALPHA SPECTROMETRY


In order to measure the expected ultra low-level concentrations of Pu-239, 240 in tissues from unexposed persons, two state-of-the-art solid state alpha spectrometry systems were acquired and installed in a temperature and humidity controlled counting room. Each of the systems consists of a Gamma Products vacuum chamber with reproducible sample positioning, an ORTEC 300 mm² ruggedized Si surface barrier solid state detector having a 100 μm depletion depth, and various high stability electronic modules including charge sensitive preamplifier, high voltage supply and biased amplifier.

The alpha spectra are collected in a 512 channel multi-channel analyzer over the energy range of 4000 to 8000 keV. The energy calibration and efficiency of the solid state detectors are measured with electrodeposited standards consisting of a mixture of Pu-242 (4.9 MeV), Pu-239 (5.15 MeV), and Pu-238 (5.5 MeV). The resolution of the systems with the calibration standard to detector distance of 1 mm is about 30 keV FWHM (Fig. 1). The counting efficiency of the detectors at this same distance is about 25%. The detector and planchet blank background in the region of 4.9 - 5.5 MeV is less than 1 count/1000 minutes.

The systems have proven quite stable with no spectral shifting. This parameter is extremely important since long counting periods, up to 5000 minutes, have been employed in determining the plutonium activity of the tissue samples.

Figure 1 -- Plutonium Calibration Standard

[Pu-242 (4.9 MeV), Pu-239 (5.15 MeV) and
Pu-238 (5.5 MeV) electrodeposited on
platinum.]

VI. RATIONALE AND METHODOLOGY FOR STABLE CALCIUM MEASUREMENTS

Reports of fallout ^{90}Sr in the skeleton have demonstrated that the direct comparison of bone concentration data from numerous investigations could be best accomplished through expression of data on a "per gram of calcium" basis. Since calcium content is usually directly proportional to ash weight of most tissues, dry ashing at elevated temperatures can be avoided if the calcium content is independently determined. With the advent of sophisticated measurement systems, such as, atomic absorption spectrophotometry, the accurate measurement of stable calcium in all human tissues is possible. Furthermore, since no naturally occurring stable chemical congener of plutonium has been identified and plutonium has been shown to be a "bone seeker," it is advantageous for comparison purposes to determine calcium and to express the data as "per gram of calcium" in the present program. Finally, certain pathological disorders (e.g., calculi) can be identified and the tissues excluded from statistical analysis due to the presence of abnormal concentrations of calcium. In the future we will utilize measurements of Fe content to subtract that part of the wet weight value due to the presence of blood.

The atomic absorption (AA) method of stable element determination is capable of detection in the part per million (ppm) range.

A tissue sample wet ashed in nitric acid is adjusted to a known volume, usually 100 ml. A 1 ml aliquot of the sample is diluted to an appropriate volume with a 1% lanthanum in 1:19 nitric acid solution. The lanthanum acts as a hold-back carrier to eliminate possible interferences from aluminum, phosphorus, silicon, sulfur and their anions.

The atomic absorption spectrophotometers used in that study are available to us for measurement of the metabolically important alkaline earth element, calcium, in all tissues.

At present, stable calcium concentration has been measured in each sample prior to analysis for plutonium on one of the three instruments listed below:

1. Perkin-Elmer Model 303 with Boling burner head and acetylene-filtered compressed air.
2. Jarrell-Ash Model 82-270 with Boling burner head and acetylene-filtered compressed air.
3. Instrumentation Laboratory Model 453 with automatic background subtraction, a Boling burner head and an acetylene-filtered compressed air.

A set of calcium standards ranging from 0 to 50 ppm are employed to obtain a calibration curve. Least squares fitting of the standard curves has given linear correlation coefficients greater than 0.98 for each instrument used to measure calcium.

To date we have measured the stable calcium content of each tissue sample prior to radiochemical analysis for ^{239}Pu . The stable calcium data are listed in Table 4. The error term associated with an individual value is < 10%. The mean values obtained at New York University are compared in Table 5 with the calcium values estimated by ICRP and LLL. Thus far all NYU values are well within the ranges reported elsewhere.

Table 4
Stable Calcium in New York City Autopsy Samples

<u>Age at Death</u>	<u>Sex</u>		<u>μg calcium/g wet weight</u>		
			<u>Lung</u>	<u>Liver</u>	<u>Kidney</u>
15	M			45	326
18	M			41	100
18	M			35	87
19	M			46	145
22	M			63	86
22	M			-	-
					56,525
23	F			67	86
24	F	100	25	104	27,400
25	F			29	92
28	M			77	-
29	F			43	49
30	M			43	68
33	M			31	-
37	F			50	116
38	M			45	106
43	F			31	90
Unknown	Unknown	69	49	138	56,400
$\bar{X} \pm 1$ S.E.			45±14	114±66	44,185±19,120
Number of Samples		2	16	14	5

Table 5
Comparison of Measured Stable Calcium in Human Tissue

Mean Values in $\mu\text{g/g}$ Calcium in Tissue Wet Weight				
	<u>Lung</u>	<u>Liver</u>	<u>Kidney</u>	<u>Bone</u>
NYU Sample Range	85 ± 22 (69-100)	45 ± 14 (25-77)	114 ± 66 (49-326)	$44,185 \pm 19,120^*$ (19,700-60,900)
ICRP 80% Range	87 (40-120)	50 (24-94)	94 (58-171)	100,000 (63,000-160,000)
LLL Sample Range	121 (70-176)	63 (29-144)	108 (57-176)	119,400 (119,400-119,400)

*Vertebrae only.

VII. SAMPLE INFORMATION - COMPUTER COMPILATION

A ready reference computer card listing has been developed as a means of rapid data retrieval and identification of tissue sample status (see Appendix 1). The open coded system lists the New York University case number, the specific tissue code number, name of the tissue, the age, sex, smoking history, cause of death and occupation of the subject. The data section of the card includes the tissue wet weight, percent of the wet weight analyzed for plutonium, pCi Pu-239 per kg of wet weight and μ g stable calcium per gram of wet weight. Space is also available to list the measured values of the eight trace metals previously determined^(5,6). The card listing can be used to interrelate plutonium values with trace metal concentrations, age, sex or year of death and for general data entry and statistical operations.

VIII. Pu-239, 240 RESULTS IN TISSUES OF NEW YORK CITY

RESIDENTS

To date the largest number of autopsy tissue samples from New York City have been analyzed by the Los Alamos Scientific Laboratory (LASL)^(10,11). Small sample sizes of New York City tissues were analyzed at LASL (< 50 g of lung, < 50 g of liver, < 10 g of bone and < 10 g of gonad) with a detection limit quoted as ~ 0.015 pCi Pu-239. The LASL data were plotted as log normal distributions and the 50th percentile of the distribution was reported. The LASL data from the 1973 and 1976 reports are summarized in Table 6.

The detection limit per organ depends on the sample size analyzed as well as the detection limit per planchet. Since our sample sizes were generally ten times larger than the LASL samples, and since our detection limit for each analysis is about the same as theirs, our technique is able to measure 1/10 the amount found by the LASL study.

In addition, HASL⁽¹²⁾ reported results for plutonium concentration of six vertebral samples (50 to 75 g of ash) from New York City residents. The reported mean was 0.0012 pCi Pu-239/g ash, yielding a calculated value of $0.31 \pm .02$ pCi Pu-239/kg wet weight.

We have now completed the analyses of twenty-six New York City tissue samples for Pu-239. These data are tabulated in Tables 7 and 8 and a sample spectrum of one liver sample is given in Figure 2. The wet weights of tissue analyzed were 500-600 g of lung, 150-700 g of liver,

Table 6. LASL 50th Percentile Distribution
of ^{239}Pu in New York City Tissues

Tissue	pCi $^{239}\text{Pu}/\text{kg}$	
	1973	1976
Lung	0.18 (26)*	0.30 (36)
Liver	0.77 (26)	0.62 (32)
Vertebrae	0.90 (25)	0.37 (32)
Gonad	0.45 (26)	0.34 (33)

* () Number of Samples Analyzed.

Table 7. NYU Pu-239, 240 Results in New York City Tissues

Year of Death	Age of Death	Sex	Cause of Death	pCi Pu-239, 240/kg wet weight				
				Lung	Liver	Kidney	Vertebrae	Nodes
1973	-	-	-		0.38±.16	0.11±.08	0.87±.39	
1974	15	M	Acc		0.39±.07	0.27±.17	-	
1974	18	M	Acc		0.52±.12	-	-	
1974	18	M	Acc		-	0.65±.31	-	
1974	23	F	OD		0.71±.06	0.09±.11	0.29±.23	
1974	25	F	OD		0.73±.51	-	-	
1974	27	M	OD	0.45±.09	0.54±.09	0.02±.01	0.54±.18	0±1.3
1974	28	M	OD		0.37±.07	-	-	
1974	30	M	Acc		-	0.09±.13	-	
1974	37	F	Acc		0.51±.29	0.08±.14	-	
1974	43	F	Acc		0.14±.01	0.12±.12	0±2.6	
1974	47	M	OD	-0.09±.09	0.20±.09	-1.1 ±1.1	-	

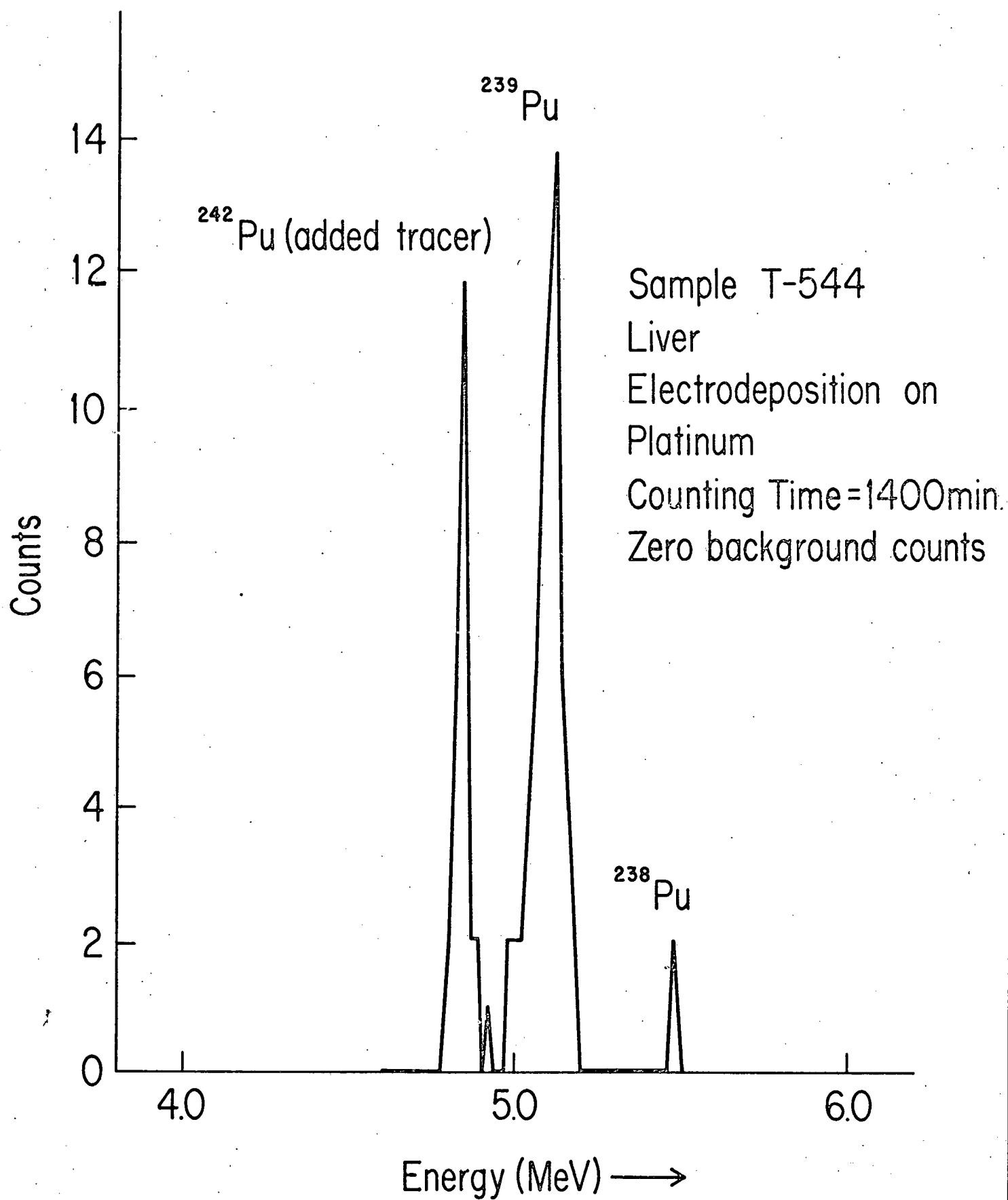

Number of Samples	2	10	9	4	1
Mean		0.45	0.04	0.43	
Median	.39 to .51	.09	.29 to .54		

Table 8. pCi Pu-239, 240/g Ca in New York City Tissue

<u>Year of Death</u>	<u>Age at Death</u>	<u>Sex</u>	<u>Cause of Death</u>	<u>pCi Pu-239, 240/g Ca</u>		
				<u>Liver</u>	<u>Kidney</u>	<u>Vertebrae</u>
1974	15	M	Acc	8.67±1.56	0.83±0.52	
1974	18	M	Acc	14.85±3.43	-	
1974	18	M	Acc	-	6.50±3.10	
1974	23	F	OD	10.60±0.90	1.05±1.28	.01±.01
1974	25	F	OD	25.17±17.59	-	
1974	27	M	OD	-	-	
1974	28	M	OD	4.81± 0.91	-	
1974	30	M	Acc	-	1.32±1.91	
1974	37	F	Acc	10.20±5.80	0.69±1.21	
1974	43	F	Acc	4.52±0.32	1.33±1.33	

Figure 2

**Sample T-544 Liver Counting
Time 1400 Minutes**

90-130 g of kidney, 50-150 g of vertebrae and 10 g of lymph nodes. To insure meaningful data, the analyses of lymph nodes are being held in abeyance for possible judicious compositing.

Assuming the ICRP⁽¹³⁾ wet weight values for standard man (1 kg lungs, 1.8 kg liver, 0.31 kg kidneys and 5 kg bone) and that our samples were representative of the whole organs, we may estimate the organ burdens from our measured values. Since, with one exception, the year of death was 1973, we may compare the New York City organ burdens with those calculated by Bennett for the year 1974.

An additional comparison with Bennett's estimate of content in bone may be made on the basis of activity per gram of calcium. This normalization procedure is important since Bennett's measured estimates of bone concentration were based on ashed vertebrae while our current estimates are based on vertebrae wet weights. Since the typical U.S. vertebrae specimen analyzed at ERDA's Health and Safety Laboratory (HASL) contains 0.37 g Ca/g ash, we may compare our measured values of Pu-239 and stable calcium in vertebrae with the HASL values on the basis of calcium content. These computations give an NYU vertebrae mean ($n = 4$) of 2.7×10^{-3} pCi Pu-239/g Ca in agreement with the HASL vertebrae mean of 3.2×10^{-3} pCi Pu-239/g Ca.

It is expected that the additional cases will yield the high quality information required for refined modeling of Pu-239 distribution in environmentally exposed humans.

In the final table (Table 9), a comparison is made between the organ burdens inferred from our preliminary data and the burdens calculated by Bennett using measured air concentrations and the ICRP model. Both the magnitudes and the distributions of the mean measured values are consistent with the values inferred from the ICRP model and measured air concentrations. Because the number of samples is so small for all organs, this result must be considered only suggestive and preliminary. It will be necessary to have the full complement of tissue samples before firm conclusions can be drawn.

Table 9. Measured and Calculated Pu-239
Organ Burdens for New York City

<u>Organ</u>	# <u>Samples</u>	NYU Measured Average (1973)	pCi Pu-239	
			Calculated (1974)	Bennett* Measured
Lung	2	0.18	0.12	-
Liver	10	0.81	0.91	-
Kidney	9	0.01	0.02	-
Bone	4	1.0**	1.0	1.6

* Bennett's estimates are based on the use of air sample measurements measurements as an input to the ICRP lung and metabolic model for Pu (4).

**Durbin⁽¹⁴⁾ as shown in the monkey that the concentration of Pu in vertebrae is about 2.2 times the average skeletal concentration. And if it can be assumed that this same ratio can be applied to man, the estimate of the Pu in the skeleton becomes 1 pCi with an approximately equal amount in liver plus lung.

IX. REFERENCES

1. Harley, J.H., "Worldwide Plutonium Fallout from Weapons Tests," p. 13-19, Proceedings of Environmental Plutonium Symposium LA4756, Los Alamos, New Mexico (1971).
2. Wrenn, M.D., "Environmental Levels of Plutonium and the Transplutonium Elements, AEC Presentation at the EPA Plutonium Standards Hearings, Washington, D.C., December 10-11, 1974.
3. Bennett, B.G., "Fallout ^{239}Pu Dose to Man," USAEC Quarterly Summary Report, Health and Safety Laboratory, HASL-278 (January, 1974).
4. ICRP Task Group on Lung Dynamics, "Deposition and Retention Models for Internal Dosimetry of the Human Respiratory Tract," Health Phys. 12:173 (1966).
5. Eisenbud, M. and T. Kneip, "Trace Metals in Urban Aerosols," EPRI 117, Final Report, New York University, October 1975.
6. Bernstein, M.D., "The Influence of Airborne Trace Metals on the Human Body Burden of Trace Metals," Doctoral Dissertation in Press, N.Y.U. Medical Center, 1977.
7. Fisenne, I., Health and Safety Laboratory, Personal Communication, 1976.
8. Fisenne, I., Health and Safety Laboratory, Personal Communication, 1976.
9. Procedures Manual (John H. Harley, Ed.), U.S. ERDA HASL-300, Revised August 1976.
10. Campbell, E.E., M.F. Milligan, W.D. Moss, H.F. Schulte, J.F. McInroy, "Plutonium in Autopsy Tissue," LA-4875, UC 48, January 1973.

11. "Plutonium in the Tissues of the General Population," LA-6313-PR, UC 48, Progress Report, Biomedical and Environmental Research Program of the LASL Health Division, January-December 1975, Issued April 1976.
12. Bennett, B.G., "Transfer of Plutonium from the Environment to man," International Symposium on the Management of Wastes from the LWR Fuel Cycle, July 11-16, 1976, Denver, Colorado.
13. "Report of the Task Group on Reference Man," A Report Prepared by a Task Group of Committee 2 of the International Commission on Radiological Protection (W.S. Snyder, Chairman), ICRP-23, Pergamon Press, New York (1975).
14. Durbin, P.W. and N. Jeung, "Reassessment of Distribution of Plutonium in the Human Body Based on Experiments with Non-Human Primates," The Health Effects of Plutonium and Radium (Webster S.S. Jee, Ed.) J.W. Press, Salt Lake City, Utah, pp. 297-313 (1976).

Appendix 1

Sample Data -- Number, Age, Tissue, Sex
Smoking History, Cause of Death, Occupation
Wet Weight, Pu-239, 240 DPM and
Trace Metal Concentrations

T143 LUNG 19 F 99	PRISONING	HOUSEWIFE	0.2504	2.966	20000	100	15	500	4	21	1	
T144 LIVER 19 F 99	PRISONING	HOUSEWIFE	0.5077	3.604	8200	540	148	1600	84	2	47	5
T145 KIDNEY 19 F 99	PRISONING	HOUSEWIFE	0.0962	3.300	51300	20	62	2000	510	1	40	61
T147 VRT 19 F 99	PRISONING	HOUSEWIFE	0.0511	2.850	6100	37	2	2600	1	1	115	1
T148 BLOOD 19 F 99	PRISONING	HOUSEWIFE	0.0541	NA	37200	102	13	830	6	2	20	6
T149 LY 40 19 F 99	PRISONING	HOUSEWIFE	0.0057	2.426	9800	75	18	570	15	15	61	
T142 LG BK				4.148								
T152 LUNG 36 F 00	CARD ART	HOUSEWIFE	0.4344	0.214	10100	100	9	400	2	4	13	17
T153 LIVER 36 F 00	CARD ART	HOUSEWIFE	0.5326	0.236	LOST							
T154 KIDNEY 36 F 00	CARD ART	HOUSEWIFE	0.1655	0.193	11000	210	76	1400	410	1	35	95
T156 VRT 36 F 00	CARD ART	HOUSEWIFE	0.0709	0.181	4700	51	3	2900			194	
T157 LY 40 36 F 00	CARD ART	HOUSEWIFE	0.0037	0.191	11800	123		610	108	54	14	
T151 LG BK				0.192								
T160 LUNG 37 M 01	AUTO ACC	PARK DEPT	0.4629	0.164								
T161 LIVER 37 M 01	AUTO ACC	PARK DEPT	0.6595	0.142								
T162 KIDNEY 37 M 01	AUTO ACC	PARK DEPT	0.1811	0.153								
T163 VRT 37 M 01	AUTO ACC	PARK DEPT	0.0929	0.231								
T165 BLOOD 37 M 01	AUTO ACC	PARK DEPT	0.0699	NA								
T166 LY 40 37 M 01	AUTO ACC	PARK DEPT	0.0073	0.255								
T169 LY 40 37 M 01	BRON PNE	TEANECK	0.5404	0.170	3400	120	2	700	1	13	16	
T170 LIVER 27 M 99	BRON PNE	TEANECK	0.6774	0.189	1800	290	42	4200	31	64	34	
T171 KIDNEY 27 M 99	BRON PNE	TEANECK	0.0992	0.178	7100	190	90	2200	1500	58	233	
T172 VRT 27 M 99	BRON PNE	TEANECK	0.0448	0.023	15000	67	11	2100	1	320	140	
T174 BLOOD 27 M 99	BRON PNE	TEANECK	0.0694	NA	13400	75	7	450	3	12	9	
T175 LY 40 27 M 99	BRON PNE	TEANECK	0.0067	0.137	4600	60	0	422	0			
T168 LG BK				0.161								
T177 LUNG 25 M 99	HCM STAR	UNKNOWN	0.5181	0.155	14600	81	4	700	37	21	26	
T178 LIVER 25 M 99	HCM STAR	UNKNOWN	0.4588	0.082	800	260	12	260	0	9	11	13
T179 KIDNEY 25 M 99	HCM STAR	UNKNOWN	0.1960	0.225	5000	200	93	3000	1600	74	18	
T180 VRT 25 M 99	HCM STAR	UNKNOWN	0.0509	0.201	530	26	1	1300	1	31	94	
T182 BLOOD 25 M 99	HCM STAR	UNKNOWN	0.0268	NA	17300	143	8	350		25		
T183 LY 40 25 M 99	HCM STAR	UNKNOWN	0.0101	0.201	6200	80	10	700	18			
T176 LG BK				0.258								
T186 LUNG 21 M 99	DO METH	UNKNOWN	0.5936	0.129	19700	90	6	830	38	23		
T187 LIVER 21 M 99	DO METH	UNKNOWN	0.3925	0.123	2000	920	30	3200	110	116	90	
T188 KIDNEY 21 M 99	DO METH	UNKNOWN	0.1176	0.205	10100	310	68	2400	1270	77		
T189 VRT 21 M 99	DO METH	UNKNOWN	0.0576	0.162	31	1	410	1		16		
T191 BLOOD 21 M 99	DO METH	UNKNOWN	0.0055	0.175	20900	129	19	250		22		
T185 LG BK												
T194 LUNG 25 M 00	AUTO ACC	DRIVER	0.2533	0.196	21200	120	12	1000	6	7	53	35
T195 LIVER 25 M 00	AUTO ACC	DRIVER	0.4047	0.169	2800	130	130	3700	44	2	100	146
T196 KIDNEY 25 M 00	AUTO ACC	DRIVER	0.1094	0.184	3000	220	90	3300	1450	29	87	176
T198 BLOOD 25 M 00	AUTO ACC	DRIVER	0.0655	NA	44700	110	4	710		51	14	
T193 LG BK				0.144								
T201 LUNG 30 M 99	AUTO ACC	UNKNOWN	0.2987	0.227	20700	150	20	1200	77	9	20	
T202 LIVER 30 M 99	AUTO ACC	UNKNOWN	0.4540	0.198	800	350	21	3300	10	22	8	
T208 KIDNEY 30 M 99	AUTO ACC	UNKNOWN	0.0929	0.242	5200	200	60	3100	1600	16	56	
T203 VRT 30 M 99	AUTO ACC	UNKNOWN	0.0265	0.141	19200	19	34	3500		820	87	
T205 BLOOD 30 M 99	AUTO ACC	UNKNOWN	0.0234	NA	46700	76	9	640		25	13	
T206 LY 40 30 M 99	AUTO ACC	UNKNOWN	0.0084	0.179	12300	18	48	600		30		
T200 LG BK				0.211								
T210 LUNG 22 M 00	INFARCT	STUDENT	0.4239	0.161	23000	130	12	940	37	31	25	
T211 LIVER 22 M 00	INFARCT	STUDENT	0.4727	0.176	800	110	12	3700	53	10	164	11
T212 KIDNEY 22 M 00	INFARCT	STUDENT	0.1059	0.174	8500	360	77	2300	550	76	940	

CASE	SAMPLE	AG	S	SI	CAUSE OF DEATH	KG. WEIGHT	T	PPM	PP239	CALCIUM (MICROGRAMS X 100/GRAM WET WEIGHT)	FE, CU, MN, ZN, CU, CR, PB, NI								
											FE	CU	MN	ZN	CU	CR	PB	NI	
T050	LUNG	30	F	99	SHOT	UNKNOWN	0.4000	0.682		14500	120	8	1100	9	7	26			
T051	LIVER	30	F	99	SHOT	UNKNOWN	0.4000	0.968		4000	150	34	1900	630	1	40	2		
T054	VERT	30	F	99	SHOT	UNKNOWN	0.0312	1.133		25500	27	2300	1	191	111				
T052	BLOOD	30	F	99	SHOT	UNKNOWN	0.0272	NA		49500	78	66	1040	5	6	60	16		
T053	LY	40	F	99	SHOT	UNKNOWN	0.0017	0.234		14300	130	44	1420	116		15			
T056	LG	8K					1.088												
T060	LUNG	30	7	99	STABBED	UNKNOWN	0.3511	1.160		4700	100	9	7500	13	6	60	80		
T062	LIVER	30	7	99	STABBED	UNKNOWN	0.4260	1.012		21100	460	110	5500	157	1	64	12		
T061	KIDNEY	30	7	99	STABBED	UNKNOWN	0.1194	1.088		17200	210	66	3300	1020	6	54	88		
T066	VERT	30	7	99	STABBED	UNKNOWN	0.0439	NA		2500	72	2900	1	♦44	140				
T064	BLOOD	30	7	99	STABBED	UNKNOWN	0.2163	NA		26000	192	15	1260	1	49	344	68		
T065	LY	40	7	99	STABBED	UNKNOWN	0.0052	NA											
T071	LUNG	33	F	99	AUTO ACC	UNKNOWN	0.2634	0.615		6300	100	6	1400	91	9	16	16		
T072	LIVER	33	F	99	AUTO ACC	UNKNOWN	0.3890	0.929		5700	400	200	5000	297	7	77	11		
T073	KIDNEY	33	F	99	AUTO ACC	UNKNOWN	0.1591	0.279		2100	150	80	4700	2400	11	51	31		
T074	VERT	33	F	99	AUTO ACC	UNKNOWN	0.0410	NA		11000	19	3100		456	90				
T075	BLOOD	33	F	99	AUTO ACC	UNKNOWN	0.0298	NA		74800	72	5	1290	5	5	67	69		
T076	LY	40	33	F	99	AUTO ACC	UNKNOWN	0.0043	LOST										
T077	LG	8K					1.137												
T081	LIVER	20	F	99	00	UNKNOWN	0.1199	1.048		8000	140	11	1900	520	5	36	8		
T082	VERT	20	F	99	00	UNKNOWN	0.0551	NA		4700	62	3500	10	22	267				
T083	LUNG	99	9	99	UNKNOWN	UNKNOWN	0.3461	2.025		2500	94	23	800	36	2	21	39		
T084	LIVER	99	9	99	UNKNOWN	UNKNOWN	0.4247	1.530		2000	310	20	800	30	1	61	9		
T085	KIDNEY	99	9	99	UNKNOWN	UNKNOWN	0.0626	1.235		2700	400	32	4400	1160	10	51	139		
T086	VERT	99	9	99	UNKNOWN	UNKNOWN	0.0228	NA		21900	68	1	220	10	22	167	1		
T086	BLOOD	99	9	99	UNKNOWN	UNKNOWN	0.0544	NA		94	20	950	17	6	36	4			
T087	LY	99	9	99	UNKNOWN	UNKNOWN	0.01354	1.240		2400	94	9	150	33	9	78	420		
T087	LG	8K					1.250												
T114	LUNG	99	9	99	UNKNOWN	UNKNOWN	0.3022	1.427		6700	66	4	590	6	12	0			
T112	KIDNEY	99	9	99	UNKNOWN	UNKNOWN	0.1507	1.147		9200	50	2	2900	6	84	301	1		
T111	VERT	99	9	99	UNKNOWN	UNKNOWN	0.0219	NA		7600	92	7	750	10	35				
T113	LY	40	99	9	99	UNKNOWN	0.0036	0.990											
T115	LUNG	99	M	99	AUTO ACC	UNKNOWN	0.2135	1.860		9300	120	7	750	35	19	5			
T116	LIVER	99	M	99	AUTO ACC	UNKNOWN	0.1790	1.151		3100	690	58	5300	15	151	21			
T113	VERT	99	M	99	AUTO ACC	UNKNOWN	0.1050	NA		27	4	2600	2	46	350				
T117	HEART	99	M	99	AUTO ACC	UNKNOWN	0.1131	1.414											
T119	LUNG	38	M	99	HOMICIDE	POW DPR	0.4631	0.785		12100	100	4	910	81	3	26	56		
T120	LIVER	38	M	99	HOMICIDE	POW DPR	0.5042	3.354		12600	240	40	840	14	3	70	3		
T121	KIDNEY	38	M	99	HOMICIDE	POW DPR	0.1662	3.171		1000	140	40	2600	2700	13	72	100		
T122	VERT	38	M	99	HOMICIDE	POW DPR	0.0710	3.207		18100	28	1	1440	6	20	347			
T123	BLOOD	38	M	99	HOMICIDE	POW DPR	0.0525	NA		11400	80	10	450	1	20	30			
T124	LY	40	38	M	99	HOMICIDE	POW DPR	0.0076	NA		5000	90	1	610	14	90	1		
T111	LUNG	24	F	02	00	TRANQ UE	0.3773	84.0	0.972	100	3	3000	100	6	600	44	3	20	27
T114	LIVER	24	F	02	00	TRANQ UE	0.5518	91.5	0.465	25	11	7300	400	56	3500	52	9	47	2
T135	KIDNEY	24	F	02	00	TRANQ UE	0.1143	84.5	0.749	104	7	6700	198	69	3000	2300	33	55	39
T117	VERT	24	F	02	00	TRANQ UE	0.0314	87.0	1.111	27400	1	8700	51	10	2300	2	38	369	1
T120	BLOOD	24	F	02	00	TRANQ UE	0.0421	NA		43	34400	78	11	53	10	5	17	5	
T138	LY	40	24	F	02	00	TRANQ UE	0.00459	28.0	1.351	6500	420	6	450	25	111	33		

T213	VENT	22	M	00	INFARCT	STUDENT	0.0452	0.176		15500	115	22	2700	13	515	122		
T215	PL0000	22	M	00	INFARCT	STUDENT	0.0706	NA		2000	289	21	1300	35	34	10		
T216	LY	40	22	M	00	INFARCT	STUDENT	0.0019	0.156		6000	50	17	600				
T221	LG	8K					0.165											
T212	LUNG	25	F	99	00	UNKNOWN	0.5705	0.121		8000	100	3	700	3	11	12		
T220	LIVER	25	F	99	00	UNKNOWN	0.5842	0.140		5300	460	29	4900	59	38	9		
T221	KIDNEY	25	F	99	00	UNKNOWN	0.1116	0.222		6300	330	47	4600	850	40	29		
T222	VENT	25	F	99	00	UNKNOWN	0.0731	0.156		4500	26	3	2200	8	306	87		
T224	PL0000	25	F	99	00	UNKNOWN	0.0568	NA		23300	150	6	1760	13	35	14		
T225	LY	40	25	F	99	00	UNKNOWN	0.0037	0.137		9500	122	7	20	47	69		
T219	LG	8K					0.103											
T228	LUNG	35	M	00	PULM TR	MENTL INST	0.2615	0.178	LOST									
T229	LIVER	35	M	00	PULM TR	MENTL INST	0.3196	0.196		5200	210	29	2300	47	13	8		
T230	KIDNEY	35	M	00	PULM TR	MENTL INST	0.0697	0.145		5100	250	67	2800	950	30	1		
T231	VENT	35	M	00	PULM TR	MENTL INST	0.0290	0.123		7400	103	3	4200	7	839	121		
T233	PL0000	35	M	00	PULM TR	MENTL INST	0.0645	NA		11000	120	12	530	20	11	8		
T234	LY	40	35	M	00	PULM TR	MENTL INST	0.0040	0.140		7500	103	16	1440	16	91	56	
T235	PL	TR	35	M	00	PULM TR	MENTL INST	0.0112	NA		5200	71	36	890	13	38	22	
T227	LG	8K					0.005											
T232	LUNG	36	M	00	NAT DIAB POSTL	CLRK	0.5706	0.196		4200	70	4	1300	6	15	7		
T233	LIVER	36	M	00	NAT DIAB POSTL	CLRK	0.7648	0.231		4600	600	51	7700	94	92	7		
T240	KIDNEY	36	M	00	NAT DIAB POSTL	CLRK	0.1924	0.193		5200	130	70	2600	1310	35	65		
T241	VENT	36	M	00	NAT DIAB POSTL	CLRK	0.0522	0.165		5600	23	1900	8	180	82			
T243	PL0000	36	M	00	NAT DIAB POSTL	CLRK	0.0623	NA		25000	56	600		23	8			
T244	LY	40	36	M	00	NAT DIAB POSTL	CLRK	0.0028	0.198									
T227	LG	8K					0.245											
T246	LUNG	23	F	99	00	UE	0.4917	0.250		9300	130	9	800	33	24	9		
T247	LIVER	23	F	99	00	UE	0.7054	0.249		1400	120	78	3000	47	43	14		
T248	KIDNEY	23	F	99	00	UE	0.1474	0.224		5300	210	51	3100	2500	34	7		
T249	VENT	23	F	99	00	UE	0.0234	0.212		5900	47	4	3300	17	436	173		
T250	PL0000	23	F	99	00	UE	0.0285	NA		32100	114	20	770	22	31	13		
T251	LY	40	23	F	99	00	UE	0.0029	0.220		9300	190	800	52	52	26		
T252	LG	8K					0.237											
T253	LUNG	24	M	02	00	METH	CAR DRIVER	0.4691	0.261		32000	90	9	800	33	6	29	
T254	LIVER	24	M	02	00	METH	CAR DRIVER	0.3423	0.215		10200	29	105	1100	19	4	73	
T255	KIDNEY	24	M	02	00	METH	CAR DRIVER	0.1175	0.145									
T256	VENT	24	M	02	00	METH	CAR DRIVER	0.1080	0.277		3400	25	1	2700	1	43	245	
T258	PL0000	24	M	02	00	METH	CAR DRIVER	0.0561	NA		54000	89	5	730	1	2	29	
T259	LY	40	24	M	02	00	METH	0.0174	0.116		8500	57	26	680	7	1	13	
T260	PL	TR	24	M	02	00	METH	CAR DRIVER	0.0235	NA		14000	213	47	444	19	4	33
T252	LG	8K					0.237											
T263	LUNG						0.3563	0.112										
T264	LIVER						0.5115	0.080										
T265	KIDNEY						0.0761	0.234										
T266	VENT						0.0562	0.084										
T268	PL0000						0.0425	NA										
T269	LY	40					0.0016	0.159										
T262	LG	8K					0.102											
T263	LUNG						0.3563	0.112										
T264	LIVER						0.5115	0.080										
T265	KIDNEY						0.0761	0.234										
T266	VENT						0.0562	0.084										
T268	PL0000						0.0425	NA										
T269	LY	40					0.0016	NA										
T262	LG	8K					0.102											
T272	LUNG	24	M	99	00	WHITE COL	0.4453	0.117		7800	90	1	700		11	11		
T273	LIVER	24	M	99	00	WHITE COL	0.6224	0.107		8000	190	21	3300	10	22	9		
T274	KIDNEY	24	M	99	00	WHITE COL	0.1093	0.126		7000	270	90	4500	2560	52	16		
T275	VENT	24	M	99	00	WHITE COL	0.0439	0.117		5000	75	9	4600	153	150	150		

T277 PL000 24 M 99 00	WHITE COL	0.0682*	NA	7800	92	1	700	11	1	
T278 LY ND 24 M 99 00	WHITE COL	0.0064	0.103	7000	125	31	630	8	74	
T279 LG BK			0.145							
T280 LUNG 37 M 01 AUTO ACC BANKGUARD		0.4229	0.109	7800	90	10	920	17	2	
T281 LY VERT 37 M 01 AUTO ACC BANKGUARD		0.4845	0.129	700	410	11	1900	29	8	
T282 KIDNEY 37 M 01 AUTO ACC BANKGUARD		0.1081	0.163	3500	190	104	6000	24	18	
T283 VERT 37 M 01 AUTO ACC BANKGUARD		0.1370	0.111	4500	36	1	2800	152	50	
T284 BLOOD 37 M 01 AUTO ACC BANKGUARD		0.0530*	0.101	9800	89	2	400	12	8	
T285 LY ND 37 M 01 AUTO ACC BANKGUARD		0.0090*	0.100	3500	64	8	1330	3	25	
T287 LG BK			0.281							
T288 LUNG 45 F 03 MULT SCR RED RIDDEN		0.5906	0.198	3000	90	4	720	27	8	
T289 LIVER 45 F 03 MULT SCR RED RIDDEN		0.6547	0.132	700	310	35	4900	78	9	
T290 KIDNEY 45 F 03 MULT SCR RED RIDDEN		0.1714	0.157	3000	190	66	3500	49	16	
T291 VERT 45 F 03 MULT SCR RED RIDDEN		0.0528	0.125	7800	63	3000	8	920	90	
T294 BLOOD 45 F 03 MULT SCR RED RIDDEN		0.0326*	NA	3400	103	3	540	3	22	
T295 LY ND 45 F 03 MULT SCR RED RIDDEN		0.0148*	0.153	4400	86	10	640	19	19	
T296 LUNG 36 F 99 00	UNKNOWN	0.4413	0.215	10400	180	24	1100	22	20	
T297 LIVER 36 F 99 00	UNKNOWN	0.5329	0.159	700	290	32	2100	33	19	
T298 KIDNEY 36 F 99 00	UNKNOWN	0.1516	0.238	5500	250	94	5500	59	67	
T299 VERT 36 F 99 00	UNKNOWN	0.1013	0.176	1100	48	1	2100	420	60	
T300 PL000 36 F 99 00	UNKNOWN	0.0026*	NA	16100	196	19	3100	130	135	
T301 LY ND 36 F 99 00	UNKNOWN	0.0116*	0.205	3300	97	9	1160	22	19	
T302 BR TR 36 F 99 00	UNKNOWN	0.0160*	NA	2200	139	16	940	20	16	
T305 LUNG 27 M 01 LEUK	FACT WRK	0.6305	0.161	12000	140	6	870	10	6	
T306 LIVER 27 M 01 LEUK	FACT WRK	0.4541	0.129	52000	270	60	7700	290		
T307 KIDNEY 27 M 01 LEUK	FACT WRK	0.1804	0.162	4100	230	26	800	13	170	
T308 VERT 27 M 01 LEUK	FACT WRK	0.0922	0.152	10000	64	2	1700	1	29	
T309 ND JR 27 M 01 LEUK	FACT WRK	0.0123*	0.152	10000	140	10	870	1	18	
T310 ND TR 27 M 01 LEUK	FACT WRK	0.0120*	0.152							
T311 BR TR 27 M 01 LEUK	FACT WRK	0.0214*	NA	3000	98	5	580	5	11	
T312 LG BK			0.166							
T314 LUNG 19 M 99 ACCTRAN UNKNOWN		0.2998	0.171	10000	110	19	1000	5	11	
T315 LIVER 19 M 99 ACCTRAN UNKNOWN		0.5271	0.164	1000	660	38	****	2	6	
T316 KIDNEY 19 M 99 ACCTRAN UNKNOWN		0.1543	0.111	3000	430	71	4200	2	26	
T317 VERT 19 M 99 ACCTRAN UNKNOWN		0.0822	0.173	6200	51	2	2200	34	60	
T318 PL000 19 M 99 ACCTRAN UNKNOWN		0.0097*	NA	27000	180	10	3900	18	10	
T319 LY ND 19 M 99 ACCTRAN UNKNOWN		0.0045*	0.162	6800	310	56	78	72	150	
T320 BR TR 19 M 99 ACCTRAN UNKNOWN		0.0220*	NA	2000	202	30	4500	14	30	
T323 LUNG 38 F 03 HERT ATT HOUSEWIFE		0.3619	0.132	660	120	1	1600	5	3	
T324 LIVER 39 F 03 HERT ATT HOUSEWIFE		0.5064	0.143	700	410	4	4700	24	5	
T325 KIDNEY 39 F 03 HERT ATT HOUSEWIFE		0.0863	0.169	10000	230	56	4400	2200	3	
T326 VERT 39 F 03 HERT ATT HOUSEWIFE		0.0372	0.134	4900	24	4200	48	141	55	
T327 BLOOD 39 F 03 HERT ATT HOUSEWIFE		0.0592*	NA	22000	131	9	1230	1	13	
T328 LY ND 39 F 03 HERT ATT HOUSEWIFE		0.0164*	0.167	12000	160	15	810	15	11	
T329 BR TR 39 F 03 HERT ATT HOUSEWIFE		0.0210*	NA	850	380	38	74	1	37	
T330 LG BK			0.158							
T332 LUNG 27 M 03 BARR POI WHT COLLAR		0.6198	81.5 0.302	0.45 0.09	3700	120	2	1500	14	6
T333 LIVER 27 M 03 BARR POI WHT COLLAR		0.6012	80.0 0.169	0.54 0.09	7600	530	15	8000	103	12
T334 KIDNEY 27 M 03 BARR POI WHT COLLAR		0.1222	84.5 0.145	0.02 0.01	15000	210	78	4200	62	9
T335 VERT 27 M 03 BARR POI WHT COLLAR		0.0444	84.0 0.168	0.54 0.18	10800	36	7	5600	117	74
T336 PL000 27 M 03 BARR POI WHT COLLAR		0.0283*	NA	13800	240	19	2200	1	33	
T337 LY ND 27 M 03 BARR POI WHT COLLAR		0.0118*	40.8 0.099	0.00 1.30	9500	108	19	1460	21	34
T338 BR TR 27 M 03 BARR POI WHT COLLAR		0.0231*	NA	870	168	2	7500	111	2	53
T341 LUNG 29 F 01 00 BARR SECRETARY		0.4196	0.143	17900	95	7	1050	4	18	20
T342 LIVER 29 F 01 00 BARR SECRETARY		0.7199	0.156	400	580	13	2500	12	24	12
T343 KIDNEY 29 F 01 00 BARR SECRETARY		0.1109	0.179	7100	230	87	3200	140	320	
T344 VERT 29 F 01 00 BARR SECRETARY		0.1269	0.158	8763	26	1	38	67	31	
T345 PL000 29 F 01 00 BARR SECRETARY		0.0633*	NA	43000	160	4	830	7	15	21

T347	LV	90	29	F	01	00	ABRR	SECRETARY	0.0107*	0.164	10200	163	19	1200	29	22	39	14			
T348	LG	BR								0.168											
T350	LUNG	15	F	01	PCISON	STUDENT		0.2396	0.165			20000	120	6	920	2	59	17	21		
T351	LIVER	15	F	01	PCISON	STUDENT		0.2398	0.156			3000	900	31	6200	44	17				
T352	KIDNEY	15	F	01	PCISON	STUDENT		0.0749	0.137			89500	390	77	3100	710	2	56	930		
T353	VERT	15	F	01	PCISON	STUDENT		0.1448	0.135			1520	20	3	1240	1	17	105	39		
T354	BLOOD	15	F	01	PCISON	STUDENT		0.0454*	NA			35400	109	2	590	3	2	17	19		
T355	LY	ND	15	F	01	PCISON	STUDENT	0.0070*	0.150			9600	197	64	540	0	19	21	25		
T356	BR	TB	15	F	01	PCISON	STUDENT	0.0127*	NA			4000	108	14	1100	10	8	24	26		
T358	LUNG	29	9	99	UNKNOWN	UNKNOWN		0.3500	0.140			11400	97	16	690	5	7	25	23		
T359	LIVER	90	9	99	UNKNOWN	UNKNOWN		0.6228	0.129			7500	750	20	59	32	5	141	18		
T360	KIDNEY	90	9	99	UNKNOWN	UNKNOWN		0.0873	0.142			5300	240	90	4000	2500	11	66	31		
T361	VERT	90	9	99	UNKNOWN	UNKNOWN		0.0713	0.126			3200	29	7	1700	1	36	461	69		
T362	BLOOD	90	9	99	UNKNOWN	UNKNOWN		0.0305*	NA			20200	57	5	350	3	3	19	15		
T363	LY	ND	90	9	99	UNKNOWN	UNKNOWN	0.0100*	0.133			6500	63	13	700	3	13	23	33		
T364	BR	TR	90	9	99	UNKNOWN	UNKNOWN	0.0203*	NA			11000	78	12		5	5	21	13		
T367	LG	BR							0.161												
T368	LUNG	19	M	02	00	UE		0.3255	0.096			16000	100	6	920	35	7	25	19		
T369	LIVER	19	M	02	00	UE		0.4586	0.159			2400	4430	23	4400	22	2	60	13		
T370	KIDNEY	19	M	02	00	UE		0.0892	0.139			12100	230	85	4400	2350	10	72	47		
T371	VERT	19	M	02	00	UE		0.0810	NA			8000	60	20	3300	5	54	458	70		
T372	BLOOD	19	M	02	00	UE		0.0544*	NA			32600	95	5	740	1	1	25	15		
T373	LY	ND	19	M	02	00	UE	0.0127*	0.148			3900	112	4	610	12	3	35	24		
T374	BR	TR	19	M	02	00	UE	0.0173*	NA			4800	91	18	1100	16	6	22	24		
T376	LUNG	30	M	03	CRSH	SKL	ROBBERY	BLW	0.4352	0.229			17400	173	10	960	39	16	20	18	
T377	LIVER	30	M	03	CRSH	SKL	ROBBERY	BLW	0.5643	0.146			700	145	6	1260	7	8			
T378	KIDNEY	30	M	03	CRSH	SKL	ROBBERY	BLW	0.1161	0.125			4700	150	44	4100	2320	1	59	11	
T379	VERT	30	M	03	CRSH	SKL	ROBBERY	BLW	0.1207	0.172			7200	38	0	2200	3	53	620	130	
T380	BLOOD	30	M	03	CRSH	SKL	ROBBERY	BLW	0.0240*	NA			42900	119	4	720	1	5	32	11	
T381	LY	ND	30	M	03	CRSH	SKL	ROBBERY	BLW	0.0182*	0.160			11100	63	6	520	6	19	51	
T382	BR	TR	30	M	03	CRSH	SKL	ROBBERY	BLW	0.0220*	NA			1900	75	11	670	17	5	25	9
T385	LG	BR							0.181												
T388	LUNG	15	M	00	DROWNED	STUDENT		0.3462	0.156			32400	90	12	1040	8	5	14	12		
T384	LIVER	15	M	00	DROWNED	STUDENT		0.5046	75.0	0.158	0.39	0.07	45	3200	2500	120	7000	145	1	56	10
T385	KIDNEY	15	M	00	DROWNED	STUDENT		0.0939	69.5	0.124	0.27	0.17	326	8400	250	108	3400	930	6	46	14
T386	VERT	15	M	00	DROWNED	STUDENT		0.1013	0.140			5700	86	7	2900	5	57	80	135		
T387	BLOOD	15	M	00	DROWNED	STUDENT		0.0146*	NA			26900	313	12	1280	26	3	27			
T388	LY	ND	15	M	00	DROWNED	STUDENT	0.0115*	0.096			5400	76	13	720	2	90	29			
T389	BR	TR	15	M	00	DROWNED	STUDENT	0.0195*	NA			2800	310	24	1600	42	6	0	18		
T390	LG	BR							0.181												
T393	LUNG	15	M	00	AUTO	ACC	STUDENT	0.4679	70.0	0.155			41	5168	2855	1644	8224	115	65	2	
T394	LIVER	15	M	00	AUTO	ACC	STUDENT	0.1169	70.0	0.162	0.65	0.31	100	5143	232	90	3599	1199	33		
T397	KIDNEY	15	M	00	AUTO	ACC	STUDENT	0.1146	0.078			9407	66	4	3297	3	79	1			
T398	BLOOD	15	M	00	AUTO	ACC	STUDENT	0.0608*	NA			32039	102	2	403	11					
T399	LY	ND	15	M	00	AUTO	ACC	STUDENT	0.0176*	0.154			11018	118	7	893	3	36	1		
T400	BR	TR	15	M	00	AUTO	ACC	STUDENT	0.0129*	0.096			6812	117	26	643	8	5	26		
T393	LG	BR							0.181												
T401	LUNG	44	M	99	SUICIDE	UE		0.3203	0.152			35479	126	11	998	50	48	19	1		
T402	LIVER	44	M	99	SUICIDE	UE		0.5768	0.160			7609	451	33	3358	274	39	5			
T403	KIDNEY	44	M	99	SUICIDE	UE		0.1069	0.165			1597	243	49	5037	3635	30	43			
T404	VERT	44	M	99	SUICIDE	UE		0.0560	0.147			12605	59	11	4579	11	354	4			
T405	BLOOD	44	M	99	SUICIDE	UE		0.0129*	NA			32676	127	5	842	30	24				
T406	LY	ND	44	M	99	SUICIDE	UE	0.0306*	0.152			6482	72	8	521	14	29	44	1		
T407	BR	TR	44	M	99	SUICIDE	UE	0.0204*	NA			379	114	18	983	58	26	1			
T413	LUNG	37	F	02	SKLL	FRT	SECRETARY	0.6314	0.128			23103	192	15	1458	193	5	14	1		
T414	LIVER	37	F	02	SKLL	FRT	SECRETARY	0.4542	70.5	0.143	0.51	0.29	50	3582	957	51	4060	396	45	1	
T415	KIDNEY	37	F	02	SKLL	FRT	SECRETARY	0.0902	70.0	0.135	0.08	0.14	116	8904	187	55	4445	3251	7	87	
T416	VERT	37	F	02	SKLL	FRT	SECRETARY	0.0873	0.122			3295	57	3281	6	174	12				
T417	BLOOD	37	F	02	SKLL	FRT	SECRETARY	0.0403*	NA			16414	406	29	1389	179	2	12	1		

T410	LY	ND	37	F	02	SKLL	FRT	SECRETARY	0.0362*	0.118	882	532	23	1464	119	18	15					
T410	PR	TR	37	F	02	SKLL	FRT	SFCRETARY	0.0131*	NA	7343	160	27	1019	65	21	40					
T412	LG	BK							0.299													
T420	LUNG	19	M	00	AUTO	ACC	INSUL	WORK	0.3338	0.137	25093	25	7	1448	7	1	18	9				
T421	LIVER	19	M	00	AUTO	ACC	INSUL	WORK	0.5131	74.0	4765	1012	71	9515	156	132	121					
T422	KIDNEY	19	M	00	AUTO	ACC	INSUL	WORK	0.0841	68.5	9510	287	94	4970	1055	64	14					
T423	VERT	19	M	00	AUTO	ACC	INSUL	WORK	0.0930	0.129	11366	42	3958	1	98	62	62					
T424	BLOOD	19	M	00	AUTO	ACC	INSUL	WORK	0.0649*	NA	30087	91	535		21		8					
T425	LY	ND	19	M	00	AUTO	ACC	INSUL	WORK	0.0044*	0.156	10057	170	841				17				
T426	BR	TR	19	M	00	AUTO	ACC	INSUL	WORK	0.0199*	NA	1427	77	9	474	5	6	8				
T427	LUNG	30	M	00	AUTO	ACC	LONG	SHORM	0.5198	0.206	15513	124	25	1066	52	6	18	8				
T428	LIVER	30	M	00	AUTO	ACC	LONG	SHORM	0.6522	70.0	17436	1052	82	7251	101	89	89					
T429	KIDNEY	30	M	00	AUTO	ACC	LONG	SHORM	0.1474	69.0	0.137	0.09	0.13	68	56479	235	65	1775	39	10		
T430	BLDR	30	M	00	AUTO	ACC	LONG	SHORM	0.0703*	NA	33044	134	1	469	2	2	21	6				
T431	LY	ND	30	M	00	AUTO	ACC	LONG	SHORM	0.0197*	0.128	6230	72	10	425	11	11	10				
T432	PR	TR	30	M	00	AUTO	ACC	LONG	SHORM	0.0105*	NA	3376	277	32	1572	81	3	18	6			
T433	LG	BK							0.171													
T440	LUNG	29	F	00	HERT	ATT	FILE	CLERK	0.4173	0.214	30990	200	9	1076	17	2	14					
T441	LIVER	29	F	00	HERT	ATT	FILE	CLERK	0.3739	0.455	9829	330	115	4244	252	29	16					
T442	KIDNEY	29	F	00	HERT	ATT	FILE	CLERK	0.0731	0.150	7419	302	55	4993	1675	1	21					
T443	VERT	29	F	00	HERT	ATT	FILE	CLERK	0.1091	0.168	9251	36	2	4154	4	1	78					
T444	BLDR	29	F	00	HERT	ATT	FILE	CLERK	0.0256*	NA	36279	121	4	628	23	5	69					
T445	LY	ND	29	F	00	HERT	ATT	FILE	CLERK	0.0144*	0.130	23108	132	12	750	14	7	10				
T446	PR	TR	29	F	00	HERT	ATT	FILE	CLERK	0.0130*	NA	10944	148	13	708	17	13	29				
T447	LUNG	23	F	99	00	YETH	UNKNOWN	UNKNOWN	0.4005	0.463	1158	113	814	46	18	11						
T448	LIVER	23	F	99	00	YETH	UNKNOWN	UNKNOWN	0.3663	77.0	0.337	0.71	0.06	67	3975	625	51	4530	172	81	154	
T449	KIDNEY	23	F	99	00	YETH	UNKNOWN	UNKNOWN	0.1003	80.0	0.672	0.09	0.11	86	4	12493	214	56	1570	1359	13	34
T450	VERT	23	F	99	00	YETH	UNKNOWN	UNKNOWN	0.1021*	92.2	0.563	0.29	0.23	19700	1	8198	89	10	3562	29	42	260
T451	BLDR	23	F	99	00	YETH	UNKNOWN	UNKNOWN	0.0127*	0.433	28898	173	8	972	33	22	16					
T452	LY	ND	23	F	99	00	YETH	UNKNOWN	0.0175*	0.394	12256	119	7	660	23	24	17					
T453	PR	TR	23	F	99	00	YETH	UNKNOWN	0.0106*	0.315												
T454	LG	BK							0.477													
T460	LUNG	33	M	99	UNKNOWN	UE			0.6264	0.250												
T461	LIVTR	33	M	99	UNKNOWN	UE			0.6737	0.389												
T462	STUCH	33	M	99	UNKNOWN	UE			0.1977	0.323	1104	191	15	1190		33	20					
T463	STIE	33	M	99	UNKNOWN	UE			0.0196*	0.380												
T464	SM	BK							0.272													
T467	LUNG	18	M	01	CRSHD	HD	COKE	PLANT	0.3221	0.745	2294	83	1	914	39	1	19	4				
T468	LIVER	18	M	01	CRSHD	HD	COKE	PLANT	0.4074	78.0	0.631	0.52	0.12	35	1914	1069	22	4809	58	122	7	
T469	KIDNEY	19	M	01	CRSHD	HD	COKE	PLANT	0.1128	72.0	0.605			87	6737	247	75	2571	526	1	63	
T470	VERT	18	M	01	CRSHD	HD	COKE	PLANT	0.1330	0.575	6431	30	1	1144		29	27	150				
T471	BLOOD	19	M	01	CRSHD	HD	COKE	PLANT	0.0074*	0.392	57905	81	3	364		67	23					
T472	LY	ND	18	M	01	CRSHD	HD	COKE	PLANT	0.0134*	0.455	6111	63	7	574	3	6	18				
T473	PR	TR	18	M	01	CRSHD	HD	COKE	PLANT	0.0135*	0.388	10470	259	22	1964	22	24					
T474	LUNG	28	M	02	00	UE	/FURRIER		0.9062	0.581	1546	94	33	950	13	2	10	5				
T475	LIVER	28	M	02	00	UE	/FURRIER		0.5698	75.5	0.555	0.37	0.07	77	3450	284	52	3536	47	2	48	
T476	KIDNEY	28	M	02	00	UE	/FURRIER		0.1596	0.518	LOST											
T477	VERT	25	M	02	00	UE	/FURRIER		0.0935	0.397												
T478	FLDR	28	M	02	00	UE	/FURRIER		0.0218*	0.168	59667	121	24	1279	9	2	24	6				
T479	LY	ND	25	M	02	00	UE	/FURRIER	0.0265*	0.253	16226	78	15	915	7	5	12					
T487	LUNG	25	F	03	00	STUDENT			0.5649	0.643	7386	84	1	395	11	1	14					
T488	LIVER	25	F	03	00	STUDENT			0.5296	64.5	0.651	0.73	0.51	29	5038	379	26	2452	10	50	10	
T489	KIDNEY	25	F	03	00	STUDENT			0.1343	70.0	0.559			92	4548	297	22	2499	32	2	29	
T490	VERT	25	F	03	00	STUDENT			0.0644	0.527												
T491	BLOOD	25	F	03	00	STUDENT			0.0699*	0.503	19580	88	3	4010	7	38	399	142				
T492	LY	ND	25	F	03	00	STUDENT		0.0172*	0.436	64872	202	11	833	23	3	17					
T493	PR	TR	25	F	03	00	STUDENT		0.0147*	0.657	14670	114	10	747	26	10	37	17				
T494	SM	BK	25	F	03	00	STUDENT		0.659		6612	115	10	758	29	119	13					

T497 LUNG 43 F 00	SUFFICTE	HOUSEWIFE	0.3548	0.520			6916	101	5 1008	16	2	17			
T498 LIVER 43 F 00	SUFFICTE	HOUSEWIFE	0.6784	65.0	0.747	0.14	31								
T499 KIDNEY 43 F 00	SUFFICTE	HOUSEWIFE	0.0929	0.722	0.12	0.12	90	4118	194	51 6851	7	39	13		
T500 VERT 43 F 00	SUFFICTE	HOUSEWIFE	0.0443	0.649	0.00	2.56	60900	21342	74	4 1294	38	462	81		
T501 BLOOD 43 F 00	SUFFICTE	HOUSEWIFE	0.0232*	0.675				76196	112	7 1088	5	3	27		
T502 LY ND 43 F 00	SUFFICTE	HOUSEWIFE	0.0160*	0.592				11756	173	34 1103	10	70	21		
T503 BR TR 43 F 00	SUFFICTE	HOUSEWIFE	0.0143*	0.713				12030	170	45 1144	29	21	33		
T506 LG BK				77.0	0.512								73		
T507 LUNG 99 9 99	UNKNOWN	UNKNOWN	0.4158	0.594				9687	69	6 535	21	8	9		
T508 LIVER 99 9 99	UNKNOWN	UNKNOWN	0.3147	74.5	0.586	0.38	0.16	4459	467	110 4049	99	5	61		
T509 KIDNEY 99 9 99	UNKNOWN	UNKNOWN	0.1372	84.0	0.657	0.11	0.08	3789	198	75 2928	3371	2	21		
T510 VERT 99 9 99	UNKNOWN	UNKNOWN	0.0364	77.5	0.734	0.97	0.39	61000	4554	43	2917	5	41	326	
T511 BLOOD 99 9 99	UNKNOWN	UNKNOWN	0.0377*	0.565				21580	96	2 362	5	1	5		
T512 LY ND 99 9 99	UNKNOWN	UNKNOWN	0.0082*	0.660				6605	1	24 1028	57	21	36		
T513 BR TR 99 9 99	UNKNOWN	UNKNOWN	0.0148*	0.610				6597	97	13 728	39	11	15		
T514 LUNG 47 M 00	UNKNOWN	PARK DEPT	0.4449	82.5	0.538	-0.09	0.09	49	4 6639	1	503	2	2	7	
T515 LIVER 47 M 00	UNKNOWN	PARK DEPT	0.5666	84.0	0.564	0.20	0.09	49	4 3216	46 7880	145	1	57		
T516 KIDNEY 47 M 00	UNKNOWN	PARK DEPT	0.1182	83.5	0.659	-1.1	1.12	138	6 5927	60 3808	1799		27		
T517 VERT 47 M 00	UNKNOWN	PARK DEPT	0.0860	83.5	0.682	LQST	56400	4 17058	3 2524	4 124	170				
T518 BLOOD 47 M 00	UNKNOWN	PARK DEPT	0.0354*	0.726				31694	86	2 688	15	4	12	24	
T519 LY ND 47 M 00	UNKNOWN	PARK DEPT	0.0238*	0.558				17436	122	7 1097	6	25	79	37	
T520 BR TR 47 M 00	UNKNOWN	PARK DEPT						9704	195	25 1145	14	4	25	64	
T521 SH BK				0.429											
T522 LUNG 32 M 02 00	STUDENT		0.4554	0.239				22419		8 926	16	4	19		
T523 LIVER 32 M 02 00	STUDENT		0.6349	0.270				11935		51 1760	36	1	60		
T524 KIDNEY 32 M 02 00	STUDENT		0.1117	0.315				12551		97 2904	1058	7	60		
T525 VERT 32 M 02 00	STUDENT		0.1406	NA											
T526 BLOOD 32 M 02 00	STUDENT		0.0116*	0.370				40711	165	6 575	6	10	47		
T527 LY ND 32 M 02 00	STUDENT		0.0295*	NA				66398	68	29 650	10	12	9		
T528 BR TR 32 M 02 00	STUDENT		0.0166*	NA				10066	64	18 603	3	6	58		
T529 SH BK				0.336											
T530 LT BK				0.393											
T531 LUNG 38 M 03	HEART ATT	COINST WRK	0.5135	0.262				99005	116	6 924	51	6	21	7	
T532 LIVER 38 M 03	HEART ATT	COINST WRK	0.9201	83.5	0.293			11646	589	81 2323	180	1	44	3	
T533 KIDNEY 38 M 03	HEART ATT	COINST WRK	0.1560	80.0	0.396			6314	161	62 2551	1259	1	34	8	
T534 VERT 38 M 03	HEART ATT	COINST WRK	0.1057	0.346				6970	31	2032	1	94	282	185	
T535 BLOOD 38 M 03	HEART ATT	COINST WRK	0.0226*	0.160				29849	67	2 224		2	1	15	
T536 LY ND 38 M 03	HEART ATT	COINST WRK	0.0315*	0.302				14002	118	18 1023	16	7	5	30	
T537 BR TR 38 M 03	HEART ATT	COINST WRK	0.0213*	0.279											
T538 LUNG 92 M 00	PCISON	STEEL WRK	0.5672	0.250				12658	51	3 233	1	6	2	6	
T539 LIVER 92 M 00	PCISON	STEEL WRK	0.3945	0.264				10434	1179	90 5148	11	2	20	8	
T540 KIDNEY 92 M 00	PCISON	STEEL WRK	0.1329	0.278				312	6	2 113	53				
T541 VERT 92 M 00	PCISON	STEEL WRK	0.1027	0.196				10808	41	2182	1	75	133	139	
T542 BLOOD 92 M 00	PCISON	STEEL WRK	0.0634*	0.309				44676	240	3 614	5	2	3		
T543 LY ND 92 M 00	PCISON	STEEL WRK	0.0165*	0.349				13790	37	18 266	1	19			
T544 BR TR 92 M 00	PCISON	STEEL WRK	0.0287*	0.255				6047	91	10 746	7	7	3	3	
T545 LUNG 35 M 01 00	SHIPP CLK		0.6398	0.181				19690	84	10 928	23	7	17	9	
T546 LIVER 35 M 01 00	SHIPP CLK		0.5521	0.412				6028	448	87 3349	35	1	78	8	
T547 KIDNEY 35 M 01 00	SHIPP CLK		0.1375	0.340				5257	194	77 6493	3439	8	76	10	
T548 VERT 35 M 01 00	SHIPP CLK		0.0949	0.389				10445	59	14 4325	4	52	177	36	
T549 BLOOD 35 M 01 00	SHIPP CLK		0.0504*	0.381				54412	177	7 908	4			168	
T550 LY ND 35 M 01 00	SHIPP CLK		0.0287*	0.354				15070	85	14 785	12				
T551 BR TR 35 M 01 00	SHIPP CLK		0.0171*	0.384				11067	94	20 1107	25				
T552 LUNG 22 M 02 00	UE		0.6657	0.430				10714	95	2 803	8	2	8	11	
T553 LIVER 22 M 02 00	UE		0.5036	70.5	0.442			63	5812	578	37 3496	7	3	34	12
T554 KIDNEY 22 M 02 00	UE		0.1010	76.0	0.410			86	6084	213	50 3832	1554	3	42	10
T555 VERT 22 M 02 00	UE		0.1245	80.5	0.397										
T556 BLOOD 22 M 02 00	UE		0.0639	0.396				23299	257	13 ++++	4	4	9	13	