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A lattlcc approxlmaLion LO Euclideun, Rotionquantum field Lhcory is

cxprcswl in tcrw of the thcrmoclynamlcproperties oi a classical statis-

tical mechanical sysr.cmnear it~ critical point in a ewfficicntly general

way to permit the inclusion of an anomalous dimension af the vacuum.

~t~i~~L]l~mL!,~I~l~=4yn~a~~F:opu~Lic: of :~,=~ui~~ malul, onc cwi bc#n tc

construct non-trivial (containing ScatLcril@ field theories in 2, 3 and

4 dimen~ions. lt ia argued thaL, dcpendin~ on the choice of the bare

coupling constant, there arc three types of behavior to be cxpcctd (S)

the purturbatinn theory region, the renormalization group fixed point

region, and (iii) the lsing model region.

●
Uork supporLod iIIp:lrtby the U.S. Energy Rcsenrch and Development
fklmin~trutlonand in purt hy the French CEA,

**On lCWJC from Los Alamos to Saclay.



SECTION1. IhTIU)DLKTIOXAND SUNMARY

Since its inc~’ptionquantum flcld tlk’ory has prov~tn a :h:lllcn};ln~ }:uh]vct.

It was not clear at first, und id only now lmcomlng appfirent,that the forml

structure of this theory dots in fact dcfjnu an actual theory. in mhliL!on

there has remained a practical problcm of the calculation of thu predictions

of the theory. The only approach had been the perturbation tlw’oryin the

coupling constant, but this ~crics was a~ymptntlc IItbusL with a large value

of the coupling constant, and the terms past the first fcw arc ~~xLrumclydiffi-

cult to compute.

The start of the ~dcrn progress in the problem of constructing acLua]

field theories can perhaps bc traced to the discovery by Symanzjk1 that if Lhc

time, t, In at least certain model flcld Lhcorfcs, 16 rcplacml by i t, then Lhc

result was ~thernatically very similar to a classical statisticillmechanical

system. Nclson2 made a fundamental ntcp fnruard when he provml thnt if mw

had in Euclidean space a corrcliltcdrandom field obcylng Lhe NlarkovpropcrLy2’3

(roughly, if one has complete information about a systcm on the.boundary of a

region, no additional information ab~ut the inLcrior is ~~incd by further

knowledge of the exterior) that onc could con~truct from it a quantum field

theory which satieficd all the Wlghtman axioms4. This cquivalcncc lends to

the idea that the Euclidean random field might bc usefully iipproxhantcdby a

●tutiatical mechanical system on a discrvtc lattice a~ wan Invcntigatcd by

Gucrra, ct als and Bakct6. Wc continue this study in this article.

In the second saction wc rcvi~w a small pnrt of what iP known of this

●pproach (For n fuller account, scc rcferoncc~ [6] and [7]). UC differ with

the usual treatment in that wc consider the free cner~y defined by

f - ~-1 En {Tr [exp(~)]) (1.1)
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(2.1)

functional

(2.2]

The cnmmant K 10, uf courrc, Infinilu

~mc Chc mr=lliz.ltim cundftim,

z(o)

Tim lmpurtinu qwntiLlus LO bv studlud

or zero and iu dufinud ~orually to

-1 (2.3)

turn cut to bc =UL convrnicntly oxprusmcd

in tl’rm of Lhr frw-mwrhy. It is ktvun fr~m the partition function by

f(n) ~ ,.-1 .n :(1:)

m g G]
dq...dxx ll(xj)m.all(s~) U* (xlva.= XX) (2.4)

*m tlw L’k arc tlu’ L’rmll FuncL~9nn (or tba connuctod parL of tho GrocnQa

function-) and mr dcfinml by

lq (x) - SJ(X)

Uz(xpmz) = S2(S1,112) - Sl(q) W*3)

U3(810X2BXJ) - $3(S1SX2BX3) - S2(X1,X2) Sl(iql

- s2(x1Baj) spa] - S2(X2,X3) $1(*1) (2.5)
● mm

-uba a lattlcr aprroxlution tn mqm (?.?) w rcplacc thu usual

●xprrmmion for n sf’f}): karm field theory

(2.6)



of oven

Vritc

degree with leading cocfflcicnt unity. UiLh N - L/F,ww cm LhL’11

(2.7)

ubere the mum over % is over half of the nearest-n~ighbor~, i.e. 3 = (1,0,...0),

(0,1,...,0), . . . (0,0,..., 1).

If so = 0, thim action can bc dfa~onalizcd dire.-slj in tcma of the

mmemtum transformed variables

(2.8)

(2. 9)

l’hodouble dote :P(~): denote the umal normal-ordered product with

respect to the free field (~-0) on ● diecretc lattice (For the dctailm here

●md in the rest of thiu section the rcador la

be expresued in terme of the fiolde and their

referred to Bakcr6). This can

cmutator ●

[D/21

1’
I(4 p : - E ‘-l)m (p-2n~ I nl 2

R -n ~n ~ ,p”zn

n-o 9
(2.10)

where the c-tator IS ● ●m met the lattice Crecn-a function and IS
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c.

+

(2.11)

where the last Iinc in Lhc thcrmodyn:lrniclimit ab 1.+ -. WC can sce easily

fr09 (2.11) thal, if A iS VCry small

~ = *z-d
d>2

(2.12)Ca “ ul(q.J d.z

c is finite dc2.

Thim poLcntial infinity Is onc oi the troublmomc problems of field theory.

To return to (2.6) from our latLicC approximation, there arc two limits which

mat bc taken, Thcy arc L ->=, and 3 + 0. We procccd in the way best suited

to the t&CtiniqUCS ilf CDLUUlaLiCalIWLh~IIi~h,nmwly w flrtit ta”kethe churm-

dynmndc limit L -bw and then mmlyze the behavior rs A - 0. This latter

behavior will be intimately related ro the problem of critical phenonmnon,

ae wc will see.

The first problem in our approach im taking the limit ae the box ●izc, L.

bee-s infinitely large, that is to sw to cake the thcrmxlynamic limit.

Ae long as A > J the cmtator C im finite and so the interaction In field

thcarctic language can be rcduccd by (2.11) to an ordinary, lover-semi-bounded

@.ynomiml; the coefficient of

by convention). The -in tool

of tk thcrmodynamjcli=its is

the highcet power remains unchanged (acd = 1

in establishing tho cxietence and uciquemmm

the ●xtensive body of imequclities bctueem

correlation function- which have been establish Am the ●tatietical

=chanics of thie typo of problcm. In order to usc them wc consider three

ty~s of boundary conditions for (2.7). First, if in the summer ~, a field

D



J

f+(tl) > f(H) ~ f-(n)

Sm-(xl,...xm) 4 S(xl,... ,xn) c Sn,b

where

! ‘Idxz - #:P(x):+,h*]dx# cxp[~~~mo .
m m o —.———— . .
‘nBb

J’”
24~ +&,●::p[-E(~imti i,

rl-z)x? - efl:P(x):+%hx]dx
o

In addition, f+ is monotonically decreasing as a funcLion of L

●re -otonicztlly Increasing. These rc~ulte arc sufficient to

f . lim ~-1 En Z& = limB-l h Z - limfl-l 2n Z-
L- ,

independent of boundary conditions.

s-n,-

emieta and is

Thus at ieaet

Mm SJml,..., q
L-

well defined. When h

for Dirichet boundary

●ll d-neions for A > 0.

—
L&

Purther the limit

+ 0+~ c~n define Ehc sn,-

A

(2.13)

(2.14)

(2.15)

and f- and S-

nhow thaL

(2.16)

(2.17)

bv continuity.

coaditiom the theory ii weli defined Jn

In Euclidean boeon field theoriee, the meoe of the boeon

tetu of the decay of the two particle correlation function.

ie defined in

we have



In the case of

can be establiahcd.

+’” theory a number of ●dditional usaful properties~:, .

Firstly the cluatur property

O< SJ*I,..., *,, 31, . . . . ~) - S&,..., *,) s-q,..., ‘~)

<K’ F!XP(-LIP) (2.22)

vhcre K’ depends only on ~ and~ and p ia tha shortcsl:distance (A ti-s

distance in terms of lattice spacings) betueen the group of ?s ●nd the group

of~’s. This cluster property allow the demonstration that

xonmmslizcd Schwingcr functions S- and frae energy f. = f =

funcciona of ~.

the masa-

f+ are continuous





of Pmm In arcordmrr with

kc-m

umual Lhuory. Thum the fumdamentml equation (2.2)

(3.2)
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w replace

(3.3)

Tbi# chanw is cawomientl~ absorbed by a chanw of vaciabloo

%
m Z3+ ~ (3.4)

lhw, mlti~ly 2(11) by m ●imple pmusrof 23 and radcfininR Kuo havo

Tho conditiom to ba iqwed to imum that we have ● fidd tlii~ ●a ❑aw

mmt dmply ●xprcnmtd in tam of dariva~ivao of the fmo ouorgy

(3.2). Firmt ths rooomalimd proprasator in Eivon in tha umual

Tho ueual rcqulrmanta am

r,c2)CPB+ = ■i + 4fl*p*

(3.6)

(3.7]

for p war zero. Zdoro w oxpmm (3.6) directly in to- of ttadyuamic

quantittim, it in cmmniont to ra-~xprcmm (3.S) ●o tbst it lookmlib ● con-
.

tinuous ●pin lain~ mdol. To thi- nod lot
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M ‘

Ylwn

dorivativm of f(U),

[1-1Z(H) = K ● m.

- 4(2d + ■zA2

h ●q. (3.9) w Can ●ee m ●videat, qualitative diffmmm batw,aa tk

ordinary, d = 2 or 3 field tbmy and tha ordinary spin % or continuous-npin

Imbg tiol. In tlm Imiug mdal tha spin distribution im tm-paAmd with

pmkn ●t ●bout Al. In the ordinaxy field theory ma axpectm f- kmt

ordar perturbaLioo thaorythat=W(lM’-2d)~ with ● logarf thmlc

divar~nce replacing A’ in 3 diuasiom. TIIW tho ●pim-wight dimributiom

looks, to laadiag mkr in A lib exp(4 u*) with corractiom in tlw

axpotuat=-&# 44(gtb - AUii) W.th A of ordar uaity

caurmsBthmo cormctiom (d * 2) am wfficiont to

lcm~awlength bohmvior no caanot bo neglactod, but

h difformcm in behavior.

If W w m-e8pram (3.6)from (3.9)h torn

Valmm of the q%

r ‘2)w -P) -u

m

ox Mind=

●i~iricmtly

qualitatively

2. of

Mnmy thm

tbmo uy

of tha ●8p9ctatien
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where wo bovc umcd the tllcrmdynamlc var~nbles

N-1
x-

F
au ,2=EC3

-0
“I

r

(Uu)

-0 ‘1

(3.12)

im teme of the Iming-lika u variables. The definition of L 10 the moment

dafimition. The renormalization cquationa cow from comparing (3.7) with

(3.11) and yield

(3.13]

The fioel renormalization equation C-M from the zero ~tummcattcrina

amplitude.

●attering

This quantity im exprcseod in terms of the one particle irreducible

amplitude which in defined ●m

And
x-l
V’ a’f(~l). ---- 1

(3.14)

b the eama where lim (q) - 0.

●

variables we get

tipreeeing (3.14) in term of thn a

- * (~)
r~)(o,o,o,o) -

()
ii2 ‘ x’

(2n)dz3

where we have dafinod

(3.15)

(3.16)
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with U4 am thu fourth Llrsu]l function m in (2.4) If w nhltlify (3 15) hy

using (3,13) uo obtain

0 m’-d g
“0rfho,o,o,o) =

(21r)d # kd
(3.17)

where s in the renormolizad coupling constant.

How, if following Wilnon, we think of dm2 as a temperature-liksvariable

uhichwa adjust to cnforco mass reoormmlization (eq. 3.13), then in termn of

the uoual statiat?cal wchanicm ❑otation (K is here

teaperaturc)

X m @K/Q-y, ~ - D+(l-K/Kc)-v

a2d
vhere the

(3.9).

Thum

Am

Z3 -

$ml

-

m - B+(l-K/KJ--2A, Y = (2-~)v

a reciprocal diuwmionleaa

(3.18)

critical Indices arc those appropriate tc the modol doacribed by

●olving (3.11)

~ (&K)v
*+

and (3.17) we obtaiu

-+ (Kc-ic)w

4E(2Tr)
- A+($~-’~

2D d
(IPd-’) * (Kc-K)2A~+~

(3.19)

wham we have intraluced

2A n y + (d+#)V

tho anmlous dimension of the vacuum by the relation

(3.20)
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The runurmallzntion ~roup npprmch Lo Cri LiLXll phmmrkm :IH prmwtly

prcecntml is ba~rd, in our Contuxt nn Lhc iL!LmH that,

# . max (O, d-4), B in flnitu (3.21)

fium, (~d-4) must bo zero for d S 4. (The cnuc d = 4 im apccial and A*}*

im replaced by -En A.) In our approach uo prcfm to try to wilntmin a

d-4
prc~cribcd value of gm by allowing B to vii~ with lattice spacing jwt tm

alma, ●nd 23 do. We will ccc in the next section that r@nO=li2aLiOn

constants which have finite term-by-term perturbation cxpmsimm ncccmmrily

bocom lattice spacing dopendcnt In the hypcr-Btrong coupling, Ioing MOdL’1

limit ●



SECTION 4. BFJIAVICUt PCQt VAIUWS \’ALIM W TIIE MM

kl UII flraL wxamine tlw brluwjm of Euclidvan

bypor-mronc coupl inn limit,

cmm:wLXNST,\Rr
field theory for Lho

(4.1)

In ~quatian (3 9) ww nc~ that thiu condilion will make tho coefficient of

9

t
uIch larmr than unity. In this ●i~uation, ua will exactly mimulata

● cpin-% lmin8 ~ul and IIOIVU

(thu solution in, am w aau h

of Cli? to b?

rho M88 rcno-lization ●quation (3.13)

Section 2, mique) by chooming tha cmffici~nt

2K~fi-’A’4 - 6CAP~-d -&mEA8-bdmzAn (4.2)

by tha adJuomm of dm*. Xho quantity K i-, by(3.19)

(4.3)



~+l(x) - - [(2 E* 1,, 2-(l+d) /2
)q

x / (o)

QJx) m
\*= ~-’flh-d(;’-K,

(4.6)

(4.7)

arc approximations to the distribution

man of the 211 spine in a box roughly

if the correlation length ie long

in our caec. Tho functione Iu(x)

functioa of x proportional to the

2~/d ~ an ●dge. The idea la that

mmparod tn 2V’d, then thr diatrlhution of 2M mpinn mhmld nnt bc very

difforont from that of 21’-1 ●pine and 00 the iteration of (4.5) md

(4.6) will lmad to a fixed point dietributlon function vhich allouo one to

deduce tho thermodynamic propartice. Cluarly this mthod only in expoclcd

to work at or near tho critical

Z-n in the notation of (3.18).

(4,5) and (4.6) to yidd

point. The quantity U in (4.6) ie just

lf &#-’A’-d << 1, then w may liacariae

2a/d (rL+ 3 Ul)
‘&l “

%1 “
2(Wd-l)u& (4,8)

If uo itmato (4.8) our allwod L = 10E2 g = 4 10S2~ etop~- find,
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fixed point (lIL = O(l)) cannot bc rcarhcd lt wo~ld

likely that the behavior in this region t.fin 5C rcachcd

expansions about the free-field or gaunstan -del. We

thoilc

2 and

solutions which nrc

3 dlmmwiom.

For ~ satisfying

W mtmrt with (3.9) which

#+=

[4.9)

Cf q, w*, Ctc.

In which the

intuitively

perturbatively from

Swcuhtc that it iS

bclng cunntructcd by highly rigorous uwsthodnin

condition (4.1) we proceed in a different fashion.

wo revrito for H = O as

1+8E(a.*-4u)2
uharc

; - 4* fi-’h’-~ , 2U=3

Us know from (4,2) and (4.3) thnt by

(4.10)

B c Ad-*- h B Ad-z(~+ &2)& (4.11)

~na renormalization

tiich in of order unity. TIIuutho atartlng

(4.5) mid (4.6) iS

Q#) = ~(xz - u)~

,
h calculate directly from (4.5) that

(4.12)

Q for the rCCLrniOli rclationn

(4.13)
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L
+

lo(x) . =40(%) C%p[- y2(l + 6 ~ X2) - ~(y)]dy

m
L

(4.14)
=-x’ *oxp[-~yb-(1+4~u, # - 6~ E yz -~u2]dy

where we have uecd ~ = X2 - u. For ~ very large and ~ very emall, wc

can ●pproxbtely ●valuate the inLcgral by neglecting the ~jm term ae

being

Uence

which

(4.6)

(4.15)

of order ~’. Thue

[

Io(x) ~ = C%p - ~ {2 - ~-5u2Mn(l-4gu+l

1
)-5ln(4& + 1)

to ordar E* and dominate order M ~ we have

b(x)ixo(o) -
“p[-( ’-*) (X2-U-=J

+ -&iL3
1

(4.16)

●houo a fractional chmgc in ~ and u of only ordor ~-’. By use of

uo compute

Q1(X) = ‘(’”-d)’d(’+)[X2‘u (1-=4=)2(’4)”]‘
- 16 u“~2/(8U2~ - 3) (4.17)

Thue am long am we am in the range uf parmotcra ~ large ●nd u of order

unity or larwr wo obtain,

Qg(x) u Eg(x2 - ug)2 - @l; (4. 10)

with

(4.19)
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L = [- c1lo)’,~( m)] of iLurntion wc cx:lectthe

approxlm.ntcly

1-1 d-c

()1
d-2+11

()‘L- & u ‘ G
Kc

(4.20)

lt will br observed that in thiti rim:s of g the values of “L and gL

do not move in the direction of the fixed point in spite of having correctly

specified u. This behavior reflcct~ one of tht’ unrealistic aspects of the

approximate rrcursion relations. If we vary u In (4.13) to allow Lhe

recursion rrlntiom to mow towards the fixed point, wc find that we must

choose

Then wc have ngnin to order [2

The recursion relationa (4.19) are replaced by

E&l - Z(m-tilld(l - b)~g

‘w “ (

Jd+/d ~
)-- ‘R

(4.2:)

(4@~*)

(4.23)

In order to muintain the rclatim (4.21) at the next iteration we select A

by holding ufiz~ fixed, l.c. wc must choose

(
2

lm2(l- )b) l-- (4.24)

It io easy to show

A = O(l), whj.ch is

solution for b, we

that (a & b arc functions of A) eq.(4.24) has a solution,

valid and indcpcnclcnt of ~, for ~ large. Using this

have mu for the 1* iteration



(4, 25)

To the cxtmt that

guide to intuition,

critical behavior as T

the approxiumtc rL”curnfon rclarions are u~cful as a

wc can now cuncludr that uhilc Lt mny bc that the

+ Tc in dcscribod by a singlw r~~morminllzationgroup

fixed point cvor the whole rm~c O <~ < u’, in the field theory context,

emcopt in ● restricted ranga of bsrc coupling parmutrru, the initjnl

Hamiltonlan la too far from the fixed point one for the fi=d-point behavior

-1
to become manifeat on n length scale of order (Am) . Although the

●pproximtc racuruion relations

theygive, for 2-~<d<4-

arc clearly artificial in a uumbcr of ways,

2rl, three reflions

●lww

tion

According to intuitive ideas, the bchaviot in regions I and 111 ehould

croon-over ●ffects at very mill I& - ?[ corresponding to correla-

len@ho long compared to (AM)-’. In this interpretation, the s-CU+

ImfaE modol itself (limit go+ CO)the cross-over point WVOO to the critical

point and the %ruair fimed point behavior is never eecn. (A~ ●xception to

thim remrk occurs for d = 1, because Kc =- and regions 11 and 111

merga here. I em grateful to R. Schradar for a diecusoion of this point,)

In region 1, tho apparent behavior could also be quite diffmntt from that of

the fixed poin~ LGU1OM, mm ccnvargence to that fimod point ham not y=t occurred.

Fbr ●mampla, there could be, an indeed haa ECU been proven in

$* theory, a non-conetant value of g(~), ●n the Schwimger

enalyticin an angular wedge for sufficiently ●ull ~.

2 and 3 dimensional

functione are



In lhc rvl:l”m d ~ 4 - Zq, ml ducrt~a:.t~qwifh ~ for n]] va]ww of

the bmrc cou~lin~ com:tmt. TIIis rwmrk is in accord with Lhc usual rcnorml-

imtlon group thcmry ~hat says ~ha~ the fiwd paint becorxm unGtablc ruiatlvc

to the ~UIM3i~Ill (8 = 0) one. I!owvcr, region Jll survives for mufficirntly

large ~; it cannot depart in ti~crequired number of ~tcps far from the high

~ bchavlor. Comcqumtly, the Infng modul In Lhis range of dimcnaime

rmins a potential aourcc for the construction of a field theory.

By way of reference the beat available numerical infmmction for Lk

Epin+ lsin3 ~dcl
21,23

for the critical indices by the high temperature

series methods are given in Table I. Thcoc rrnultfi will be seen to be

different than those for the renormalization group fixed point where it la

believed that U* = O

inqford=4im

?ioore’memtimcLe2301

for d = 3,4.

eo large that a

v ie used then

It ia to

value q

q - 0.02

The variouu amplitudes involved in (3.19)

ture21,23,24
. With their aid tic can, from the available Iaing mdei reeult~,

be noted that the uncextalnty

= O ie not excluded. If

only.

are available in the litera-

plue the computation of the -ntum dependence of the propagator25, amd

the ●cnttcring function, etc., Fzgin the construction of a non-trivial field

theoriee at leaet in 2, 3D and 4 dimmeione with premcribcd valum of the

remotmclized coupling comtant.

.



d Y n W*

2 1.750 0.25 0

3 1.250 * 0.003 0.041 * 0.01 0.044 + 0.004

4 1.065 t 0.003 0.06 * 0.04 0.54 1 0.08
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