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STATISTICAL MECHANICS OF LATTICE BOSON

FILLD THEORY*
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and
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A lattice approximation to Euclidean, Boson quantum field theory is
expressced in terms of the thermodynamic properties of a classical statis-
tical mechanical system near its critical point in a sufficiently general
wvay to permit the inclusion of an anomalous dimension of the vacuum.
Ueing the thermedynemlic properties of the luing model, one czan hegén te
construct non-trivial (containing scatiering) field theories in 2, 3 and
4 dimensions. 1t is argued that, depending on the choice of the bare
coupling constant, there are thrcee types of behavior to be expected (1)
the perturbation theory region, (1i) the renormalization group fixed point

region, and (iii) the lsing modcl region.
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SECTION 1. INTRODUCTLON AND SUMMARY

Since ics inception quantum fleld theory has proven a challenglng subject.
It was not clear at first, and is only now becoming apparent, that the formal
astructure of this theory doecs in fact define an actual theory. In additifon
there has remained a practical problem of the calculation of the predictions
of the theory. The only approach had been the perturbation theory in the
coupling constant, but this scrics was asymptotlc at best with a large value
of the coupling constant, and the terms past the first few are extremely diffl-
cult to compute.

The start of the modern progrese in the problem of constructing actual
field theories can perhaps be traced to the discovery by Symnnzik1 that 1f Lhe
time, t, in at least certain modcel field theories, is replaced by f t, then the
result was mathematically very similar to a classical statistical mechanical

aystem. Nclson® made a fundamentzl step forward when he proved that i{f one

had in Euclidean space a corrclated random field obeylng the Markov properl.yz'J
(roughly, if one has complete infermation about a4 system on the boundary of a
region, no additional information abcut the interior is gained by further
knowledge of the exterior) that one covld construct from it a quantum fiecld
theory which satisfied all the Wightman axioms4. This cequivalence leads to
the idea that the Euclidean random field might be usefully approximated by a
statistical mechanical system on a discrete lattice as was investigated by
Guerra, ct 315 and Bnkere. We continue this study in this article.

In the sccond soction we review a small part of what ir known of this
approach (For a fuller account, sec rcfercnces [6] and [7]). We differ with

the usual trcatment in that we consider the free cnergy defined by

f = B! tn {Tr [exp(RA)]} (1.1)



as the fundamental quantity lestead of the usual ;5 » ). This extra freedon
allows us tu recover non=triviai quantun ficld theorles tror statistical
mechanical systere that sati:fy only the acaling relations but pot the hyper=
scaling relations. By this remark 1 mean the tollowing. At the critical

point there Is sinpular behavior in various thermodynanic and statistical-
mechanical properties. Each such slnpularity 18 characterized near the critical
point, by a critical index which specifies how it diverges [(1 - TcIT)-ﬁl or
vanishes, as the case may be. These Indices are not all independent but are
related by variou:s vquntlonsa. Those cquations whicn dopund explicitly on the
spatial dirmension are called hyperszaling relations and are the only such
relations not satlsfied In the classical limit. It has been obsuerved by Slvl]9
that numerically at least all available data is conslstent witn the hyperscaling
relations If d, the spatial dimension, Is replaced by d-x'. where . 1a the so-
called anvalous dimeusion ol tiw viacuum.

The material of the second section Jdeals with the exintence, analyticity,
continuity of the free energy and the correlation functions in the Infinite
volume limit. The question of mans renormalizability is answered for the
g°=¢‘=d theorics.

In the third section we relate the behavior of the field theoretic renor-
malization constants to the size of the lattice spacing in the limit of small
lattice npacing. Thin relation is given in terms of the usual thermodynamic
function4, their amplitudes and indicen of divergence as the critical tempera-
ture is approached {rom above.

In the final section, studying g:@‘: theory, we use the representation
obtained in the third section and the approximate, critical-phenomena,

renormalizat lon=group recursion-relations as a guide Lo Lthe intuition to

argue that Lthere are three regions of the bare coupling constant which show



potentlally dirterent behavior.  There §x an Intereediate range of the bare

coupling coastant Ian which the renporcalisatlon nrvup'?'li‘|6

tixed point
dominates the behavior. There {a a range o1 weak bare coupling in which,

at least for a finite renornaliced eass, the converpence of the systen to
that fixed point is too slow 10r it to deternine the behavior, We antlcipate
that this region 1s the one in which Jdirvet suzzation of the perturbation
scries will be ponsnible (by appropriate methods). Flnally there is the
hyperatrony zoupling reglon where the bare coupling constant s much larger
than certaln fuactlons of the lattice sapacing. !n this reglon the hehavior

of the g:;‘:d theory in exactly controlled by that of the corresponding

Ising wodel.

SECTION 2. LATTICE FIELD THEORY

Nelnnnz has taken an jmaportant sxtep in the prohlem of conctreting a
self-interacting, HJoson quantua fleld theary. e has shown under mild
assumptions, that 1if one has given a2 Markov, random ficld defined over a
d-aimensional, Fuclide.n epace, one may construct from it a field theory
vhich satiafles all the Wightean axioms® for a relativistic field theory in
a Minkowskl space of d=-] space and one time dimension. We will confine our
attention to the roblem of conatructing a Markov random field in d=-diecnsional
Euclidean space in such a vway that the statistical mechanical methods developed
to treat the problems of magnetic order on a crystal lattlce can be used to
advantage.

In terme of the axiomatle approach, the ficld theury is completely
spec.“ied in terms of the set of Schwinger functions (complete Fucelidcean
Green's functions), Sy - The statistlical mechanical partition function

Z(H) ia, in ficld theoretic languapge, their generating functional



N
1(“) - Z l...' l!:l- -..dx . “(x ,.-.“‘:\‘._') s - (x pesay l:") (2.1)
oord h|.}r 1 N 1 N oa(h)\xX)

It 18 usual to think of these Schwinper functions us given by the functional

integral

2 = & 100 e~ faiiee - sone) (2.2)
wvhere Lthe Laprangian density L is a tfunction of the ficld variables 3, and
the Intepral In the vxponents is now over the d-dimensional Euclidean space.
The eonstant K is, of courre, infinite or zero and is defined formally to
imposce Lhe normalization condition,

2(0) =~ 1 (2.3)

The Impurtant quantities Lo be studled turn cut to be most convenlently expressed
io terms of Lhe free-cnerpy. It is given frem the partition function by

rany o« 7Y a2

Z ﬂ!-lf
& TN J 9%peeedxy H(xp). H(xK) Uy (xyeee.- xx) (2.4)
vhere the Uy are the Uracl]l Functions (or the connccted part of tho Green's
functious) and are defined by

U3 (x) = §)(x)

Ua(x;,.29) = 83(n3.x3) = S3(x3) S1(x4)

Uplxy,.xppxy) = Sy(x;,x3,x3) = Sa(xj,x3) Sy(x3)
= By(x,,33) 8,(x,) ~ $,(x,,x5) 53(x;) (2.5)

Tc sake a lattice approximation to eq. (2.2) we rcplace the usual

expresnion for a :i*f}): boson field theory

+
S - S aitn? + w22 + grr) (2.6)



by its direct, {inite difference approximation. We define a field varlable

¢(x) only on the points of that portion of a hypercubic latiice of spacing A
in a large box of length L on cach cdge. By P({) we mean a polynomial in &
of even degree with leading coefficient unity. With N = L/" we can then

vwrite

+o 2
N ) e I - &,)
Z(H) = K™ f . ..[ NI dd, exp 50 (_l- AN C LIRS ¢
- I-l t -1 Az

+ -o’ ¢i + 2g°(:P(¢t)=) - ZHI Qi)] (2.7)

->
vhere the sum over § is over half of the ncarest-neighbors, i.c. 3 = (1,0,...0),

(0.1.-...0). LN ] (o.o..-., 1)-
If 8, " 0, this action can bc diagonalized dire~:tly in terms of the

somentun traneformed variables

N
q! = ad ;: exp(271 -I:'-j:‘.) OI (2.8)
=1
as
by :.“'Zt::z:. 3}[4.\.".1..’({1{-3)1 + '01:"11"-: (2.9)

Tha double dots :P(3): denote the usual normal-ordered product with
respect to the free field (gb-O) on a discrete lattice (For the details here
and in the rest of this section the rcader is referred to laker‘). This can

be expressed in terms of the ficlds and their commutator as

(/2]
P.a e __pl _ ,-n_n p-2n
1op? g_:o 0" T 7 O Gy (2.10)

vhere the commutator is a sum over the lattice Grecn's function and is



¢ ;lrau’ + a7 Y w0’ (Renia )

L9 (4}
(2.11)
. j"’" j‘ dk
) T S
{o}

vhere the last line is the thermodvnamic limit ae 1 » @, ¥e can sce easily

from (2.11) that, 1if A is very small

C:A!-d d > 2
Ce - 2nlm,) d =2 (2.12)
C is [initc d < 2.

This potential infinity is one of the troublcsome problems of field theory.
To return to (2.6) {rom our lattice approximation, there arc two limits which
must be taken. They are L > », ani A » 0. We proceed in the way best suited
to the technigques of slaciaticval wechanios, nawely we [irst take the thermo-
dynamic limit L » « and then inalyze thc behavior #s A +» J. This latter
behavior will be intimately rclated to the problem of critical phenomenon,
as vec will ace.

The first problem in our approach is taking the limit as the box size, L,
becomes infinitely large, that is to say to take the thcrmodynamic limit.
As long as A > ) the commutator C is finite and so the interaction in field
thearetic language can be reduced by (2.11) to an ordinary, lower-semi-bounded
polynomial; the coefficient of the highcst power remains unchanged (and = 1
by convention). The main tool in establishing the cxistence and uniquencss
of the thermodynamic limzits is the extensive body of inequalities betwsen
correlation functions wvhich have becn eatabiished .or the statistical
mechanics of this typc of problem. In order to usc them we consider three

types of boundary conditions for (2.7). First, if in the sum over &, a field



variable lics outslde the box, we replace the whole tern by zerov.  These
are called free boundary conditions, and we use a subseript + to denote them.
Sccondly, if a field variable ‘] , Hes outside the boa, we replace it by

‘x
¢?+(1-N)3 « These are called periodic boundary conditions., We use no sub-
script in this case. Finally for Dirichlet boundary conditions we replace any
term in thc sum over 3 in (2.7) «hich contains a field variable ¢'+§ ou'side

h |

the box by %,2. We usc a subscript - here. Baker6 has showm that (.il,<h)
] i

£,(H) > £(H) > £_(1) (2.13)
Sn_(ll....zn) < S(xl.....xn) < Sn'b (2.14)

vhere

fxn exp[-i°m z.‘\dx2 = g:P(x):+:ihx]dx
(2.15)

o
- - o
n,b / np[-E(anoaﬂd + dﬂd-z)x? - ed:P(x) 4+ hxldx
o

In addition, f_ 1s monotonically decrcasing as a function of L and f_ and 5_

are monotonically incrcasing. These results are sufficient to show that

f = U4npltnz, = B iz = 1mptinz (2.16)
Lo Lo Lo

independent of boundary conditions. Further the limit

S0 " if: By o (Kpeeees X)) (2.17)

exists and is well defined. When h - 0% we can define the Sp, - by continuity.
Thus at ieast for Dirichet boundary conditions the theory ii wel. defined in
all dimensions for A > 0.

In Euclidean boson field theories, the mass of the boson is defined in

terms of the decay of the two particle correlation function. We have
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functien of the coctlicient r, of :xz: i :P(x):. By choosing thit coeificicit
sufficiently large and po:ltive, and sufficiently large and negative oae wan

6,15

show, that we can make m as larpe as we like and as small (posirvive) us

we like., It can be shown that (2.20) is cquivalent to (2.18), provided -z is
in a sultahle, dimension-dependent range for the spin-'y lsing model. Rosen16
has also fnvestigated the equivalence of a sglightly different definition.
The sccond half of the question of mass renormalizabllity is to show
that the m of (2.20) is a continuous function of Py- Ke have nol sucreedced

in proving this result in general, however in the speclial case of 30:1“: thecory

/ 4

we have. The proof involves uniform (in L) bounds on the derlvative \31/3Pz)-

6 for the detaila.) The reason this result can be established here

(Sce Baker
is that certain corrclation function inequalities hold here, but not 1in general.
Thus, since r/py) is a continuous, monotonically increasing function af p; in
the range 0<=(p2) < 3 we can always solve the ejquation

u = n(pp) (2.21)
for p; as a function of W, g, and A >0,

In the case of go:éh: theory a number of additional useful properties

can be established. Firstly the cluster property

0SS _(,eas By, By, oony Bp) = 8_(Fh.00s ?j) S_(8)s-e0s #p)
<K' exp(-up) (2.22)
vhere K' depends only on ] and © and p ias the shortes: distance () times
distance in terms of lattice spacings) between the group of T's and the group
of 8's. This cluster property allows the demonstration that the mass-
zenormalized Schwinger functions S_ and froe energy f. = f = [, are continuous

funccions of 8g-



The votivat ing question of congruet e guanrum Tiell] ey Ve hoeny
do the serivs expansions {n g, (or the 1enmzalized wariable g) detine a
non-trivial Mi{eld cheory. Ue have scen that the iimits L » « for roal
0 Bo ¢ = do exlst and define a theory, In the conplex repion Re(ey) - 0,
Iﬂolnoﬁﬁdi<<1 the expansion given by Baker® appendix E shows analyr jcity
of S_ and f. Heonce we can apply Carlecan's theorem en the uniqu ness of
analytic functions ta conclud: that the perturbatioan expansion in E, does
indced defiae this theo.y asx far as analytic continuation will take it. For
2Sd < 4, we know that mass renormal Lzation suffices to loave all teims of
the perturbation series finite (they only diverpe llke n!). In two dimensions
Eckmana ct all? and Dimockla have shown that the angular wedpe of analyriclty
doc> not shrink to zero as /. > 0. In three diaensions the saae results have
been csichlished by Magnen and Séncori9 and Feldmin and Osterwalden20. The
proofs have relicd on cluster expansion mcthods patterned after thoke of
statistical mechanlcs.

There remains to be investigatced for general coupling constant the limft
as A +» 0. All the properties nceded for a Euclidean field theory will hold
if this limit can be well defined, with one possible exception. That exception
is rotational iavarlance. It is believed to be a conscquence of thc approach
to the critical point, and is exactly true in the 2-dimensional lsing model
and also holds term by term in perturbation thecory. Of course, it can not

hold in lattice approximation with 4 > 0.
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SLLTIOG 6, CRTRReAl 0 o0 LEEAV.al AN e ULl -V, (el I F

An v poted dn the previow wootdon foge (E19) ], the emovel of the
ultra=violet cutats (¢ = 0) frplie. that the correlation lonpthe, 7, poci Lo
infinity. In thi -ectien we will relate the belavior of the ficld theory
renomallcatfon e tanl e Lo the behavior of varicus therzodvnneic quuntlll‘hzl'zz
in the lhadt a: the ernitical pelnt 1s approcched.  This approach ollows us
to rake une of the lorpe boedy of Inferzatlon tial has been derived about the
latter protlen hy exact calealztions and hiykly accurate numerical werk
bascd on Padd approniiant surzut ion of exact higk-temperature and other serics.

Be will introducy onee addit fonal renormalizat fon constant taat can be
thought of oIither as replacing coupling=cenntant renorralization, or as sicely
an additional noaorialization cewtant. It does not effect aay of the rerults
for the free field (Gauseian odel, gy = U) care, nince that action is
hnmopenccur ! deyree two in the tield varfables. Our proccdure i@ to attecpt
to construct non=-trivial Fuclidian ficld theorles rather than to adhere te the
precise procedures of the current presentations of fivld thenry.

We will treat specifically the gyii“iy field theory, We will, as
ment foned in section 2 malntain the commutator € with reepect to the physical
mass by treating only interactlons of the form

Boié:g + ﬁn’=¢==d (3.1)

with ém? adjurterd so as to maintain m?

in the previous mection if pgg < 5‘-“, én® may he formally cxpanded in powers

at a preamsigned value. As we observed

of gg:» in accordance with usual theory. Thus the fundamental equation (2.2)

becomes

- ?
Z(H) = K-lﬁfﬂdl‘-_ exp[—"!’.\ ‘2 E-L— > ‘)-— + -‘..;..I’
~ ¢ ‘lsj A
(3.2)
+ 2;0[;.'.:!- - sc;ll + 3c?] + 6.![""1: -Cc} - BEH! '?'f:]
1
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The unual procedure which wo follew is also at this peint to renormalize

1
the oxternal (magnetic) ficlds by the amplitude i1vnormalization factor 7.3" K]

ve rcplace
“I -» "'I 23"’ (3.3)
This change is conveniently absorbed by a change of variablos

W o=zt (3.4)

Thus, multiply Z(iI) by a simple power of 23 and rodefining K wo have

z(y) = r'j:-fﬂdb'!-f oxp[- ' dZ{: {zg{% (_*I—-:—gﬁ): + miz gt
+ 2:,:,’ ["'1. - sczs'lupi' + :c'zs"] + 5.:;3[‘,1: _ cz,"l]}

The conditions to ho imposcd to insure that we have a field theory are now

(3.3)

most simply exprcssod in terms of derivatives of the freoc enorgy derived from

(3.2). First the renormalired propragator is givon in the usual wvay as

d N1 .2 . 1
rnﬂ)("'“” - :_AE a||fa:!)' “P['z“i;']'ﬁ]r (3.6)
R ~ a1
The usual requlremonts aro
l‘.m(p.-r) = u + dntp? Ga.n

for p near zcro. Before wo oxprors (1.6) directly in torms of thermodynamic
quantities, it is conveniont to ro-express (3.5) so that it looks like a con-
tinuous spin lsing modcl. To this and lot



d-2 -
@z )% = o (3.9)
Then vo have, neglecting the change in K as wve are only concerned with

dorivatives of £(H),

Z(H) = l'lj‘z f .g""l axp [ ;{3; e O (3.9)

- li(2d + w?A® + a?a® - 120A% )0, " - g 670",

- i 2y }]

From eq. (3.9) ve can sce one evident, qualitative difference batween the
ordinary, d = 2 or 3 {icld theory and the ordinarcy apin % or continuous-spin
Ising modol. In the Ising model the spin distribution is two-peaked with
peaks at about 21, In tho ordinary field theory onc expects from lowcat

ordor perturbation theory that Sw’e(1+a'~"d

JRo with a logarithmic
divorgence replacing A' in 3 dimensions. Thus the spin-weight distribution
Jooks, to leading vrder in A like exp(-d 02) with corrections in the
exponent =-goA' (0, - A0,) with A of order unity or fnA in d = 2. Of
course, thesa corractions (d » 2) are sufficiont to significantly wodify the
longwavelength bohavior so cannot bo neglectod, but qualitatively therc may
be difforunces in bohavier,

If wve nov re-expross (3.6) from (3.9) in torms of the expectation

values of the d-!'l ve got

(2) - A e [ O]
Ip " (p-p) {(h)dl,g( ouo.’> up[ 2n1 3 M]} (3.10)

n)dz, _
3 X (1 + -‘2&0-'- ciap? + ... (3.11)

Al

14



vhere we have used the thermodynamic variables

N-1 . B JX uoo_j)
X = F 0,9 £ = A= (3.12)
=0 ﬁ (ooo 3?
=0

in terms of the Ising-like O variables. The definition of { is the moment

definition. The renormalization equationa comc from comparing (3.7) with
(3.11) and yield

(2n)dz
a! = = 3 X!

, nlgta? - 1 (3.13)

The final renormalization equation comes from the zero mommntum scattering
amplitude, This quantity is exprcssod in terms of the one particle irreducible
scattering amplitude which is defined as

_ae A1 ()

@’ £ o omnsn oy
ad =) £ (1 ‘
W 2 'ﬁl:%l;- n-o)

J=0
in the case vhere lim (UI) = 0, Re-expressing (3.14) in terma of tha a

=0
rlm(o.o.o.o) -

(3.14)

variables wve get

oy ()

r{""(o.o.o.o) - (3.15)

A2 »
( (21!)"23 ) X

vhers we have defined

2 u,.(oo,o .o...aI) (3.16)

3.k,2

15
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with ug as the fourth Ursell function as in (2.4) If we siuplify (3 15) hy

using (3.13) ve obtain

B n'd 2%
(*) - aH:
rn (0,0,0,0) (Zn)d " gd 8 (3.17)

vhere g is the renormalized counling constant.

Now, if following Wilson, we think of ¢m? as o temperaturc=likas variable
vhich we adjust to cnforce mass renormalization (e3. 3.13), then in terms of
the usual statist’cal mechanics notation (K is here a reciprocal dimensionless
temperature)

X ~ A1/, E = Dy(1-k/k)™

(3.18)

2% ~ - 80w, ¥ o @emu

vhere the critical indices arc those appropriate te the modcl doscribed by
(3.9).
Thus solving (3.11) and (3.17) we obtain
/2 v
A~ i‘; (RKe-K)

=-n n

Z. ™ _z_A'I'__(K-g)“" ~ A (Q)z '(_)TM

3 peremd C A0/ am

(3.19)
d

B~ (&' 5—*—2—*— (k) 274V

W
~ d=» ft:gig. !:]L. v
(=" ) B, (I'D+A

vhere we have introduced the anomalous dimension of the vacuvm by the relation

20 = y 4+ (d-w™)v (3.20)
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The renormalization group approach to critical phenumeni &8 presently

prescented i based, in our context on the idean that,

w* = max (0, d-4), B 1o finite (3.21)
Thus, (gnd_‘) muat be zero for d ® 4, (The case d = 4 is special and ."\-"““I
is replaced by =%n A.) In our approach we prefer to try to maintain a

prescribed value of gnd"

by allowing @ to vary with lattice spacing just am
én?, and Zy do. We will scc in the next scction that remormalization
constants which have finite term—by-term perturbation expansions necesnarily
bocome lattice spacing dopendent in the hyper-strong coupling, Ising model

limit.



SFCTION &, BEHAVIOR FOR VARIOUS VALUES O THE BARE COUFLING CONSTANT

Let un first examine the behavier of Fuclidean field theory for the
byper=atrong coupling limit,

g > Md" (4.1)

In equation (3 9) vwe mee that this condition will make the coefficient of
0-1' much largor than unity. In this situation, we will exactly simulate
a tpin~'s lsing aodvl and solve the maoss renormalization equation (3,.13)
(tho solution is, as we saw in Scction 2, unique) by choosing the coeificicnt
of 0,7 tobe

i

2K go 670" = 6CA? pg - d -k atA? - I éulAl (4.2)

by the adjustment of &m®. ‘he quantity K 1is, by(3.19)

R~k 4 (,ﬂ_;-*)m (4.3)

an A > 0. We emphanizo that &m® 1s nocesmarily of ordor A'l to

accoaplish this result. 1o this situation, by chooslng g, sufficiently
large, the spin=-wight factor hecomes as closcly preportionnl as we like, in

the sense of distributions, to the lsing mudel one
6(0" = K) (4.4)

Thus the hyper=strong coupling limit, i.e., the bare coupling constant
satinfying(4.1), In vxactly piven in termn of the solution to the corresponding
1sing model problem,

Before revicwing the relevant Ining model data, let us as guidance to the

intuition compute by the methad of Wilson'n approximate recurnion rulnuunnm'"

the expected behavior for very large and very small valuen of Ro: It im already

-d

well cstablished that at Jvast for 2<d<a and A" K = 0(1) that mothed



predicts the converpence under fteration of the Hamlltonian to a fixed point
with cocfficivnta of 2° and 0" of order unity.

These recursion relation coan be written (we use the hierarchical

mnodel) as
4o
L(x) = f dy exp[- y* - ) Q,(xty) =k Q,(x-y)] (4.5)
Qup(®) = -2 zn[:u(z'“"”"”’x)nuw)] (4.6)
vhere
Q(x) = g, B"A"d(gf- K)z (4.7)

in our casc. The functions Iu(x) are approximations to the distribution
function of x proportional to the mcan of the 2" apins in a box roughly
2"" on an edge. The idea is that i1f the correlation length is long
compared to 2“", then the distrihution of M Aapina should not be very
difforcnt from that of 2" spins and so the iteration of (4.5) aud
(4.6) will lead to a fixed point distribution function which allows onc to
deduce the thermodynamic properties. Clearly this method only is expocted
to work at or ncar the critical point. The quantity O in (4.6) is just
2-n in the notation of (3.18). 1f soﬂ'lhk-d << 1, then we may lincarize
(4.5) and (4.6) to yield

:'1"'1 = Zold (l'" +3 ul)

g1 2(2°,d-])ul (4.8)

Qx) ~ r, x2 + uy x"

1f we iterato (4.8) our allowad L = 10;2 g = =d logzlA stepq we find,
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=(2:=d) ,4=d “-l

“L o (hu) Fo
B (l'l.'-)z" miy |
- --'t.._---d—- (.'.i:t) fu ‘4.9)
A+’D+ B f’z

where use was made of (3.19). Plainly, whatever the values cf n, w*, ete,

=" 4n which the

may be, eq. (4.9) defines a lower range, g << (m")
fixed point (up = 0(1)) cannot be reached 1t woild seem intuitively
likely that the behavior in this region .an e recached perturbatively from
expansions about the free-ficld or gausmsian model. We speculate that it is
theee solutions which are being counstructed by highly rigorous metheds in

2 and 3 diwensions,

For By satisfying condition (4.1) we procced in a different fashion,

We start with (3.9) vhich wo rewrite for H=0 as

20 = &1 f : . f Ja oy exp [-'52_; {%(o-, - opp)°
i

(4.10)
+8F (o.:t’ - ’:u)’]
vhere
Bom o hpo fAY L au = 3B c ATk B AR Sty (4.11)
We know from (4.2) and (4.3) that by masa renormalization
/v
~ Kk o+ 20D + d Mgy (4.12)
"k (rz' ) fio

vhich im of order unity. Thus the starting Q for the recirsion relations

(‘.S) and (4-5) in

Q(x) = E(x? - u)? (4.13)

We calculate dircctly from (4.5) that



7N
1(x) = e"q"("z[ expl~- y2(1 + 6 § x?) - Qo(y) Iy
t (4.14)
~r2
- e-scf oxpl= E y* {1 +4 gu) y> -~ 6 £ y2 = § uldy

vhere we have used £ = x2 - u. For § very large and § very small, ve

can approximately evaluate the integral by neglecting the gy" term as

being of order § '. Thus

Ip(x) ~ /7 GKP['EEZ-‘!M(I-EEE%—]_)-iu’

(4.15)
- Jg tn(4gu + 1)]
Hence to order £2 and dominate order in % we have
J 3 2
R
(4.16)

8u"g?
+ i:rg“-—s']
vhich shows a fractional change in g and u of only order g~', By use of

(4.6) we compute

- ~ 2
o0 = 22 d)/d(! 3 i.%!') [xa . (1 - )

- 16 u"g?/(8ug = 3) (4.17)

Thus as long as we are in the range uf paramcters g large and u of order

unity or larger we obtain,

Qpx) = EI(I' -up? - g “i (4.18)
vith
By ~ 200700 (’ - "G:"'F.'; By

(4.19)

(d-0)/d 3
1~ 2 (1'au’§-3)“z
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In the allowed number L = [=d lopy( m)] of iteration we expect

change of paramcter ol approximately

a2 ul*
EL ~ (‘.‘m)d-ZU E = B*(Iﬂ! -~ ﬂ.’_ll ) fo
4 A+2 -~ g Y2

d-c
|

o ~ (&) - (-1_)d'2+"
L Am Am

It will be observed that in this ranc> of g the values of

the

(4.20)

u;, and g

do not move in the direction of the fixed point in spite of having correctly

specified u. This behavinr reflects one of the unrealistic aspects of the

approximate recursion relations. If we vary u in (4.13) to allow the

recursion relations to move towards the fixed point, we find that we must

choose
A

Then we have again to order &2
1,(x) = expl- § £% - a §% - bBL2]
The recursion relations (4.19) are replaced by

By ~ 200G g

(d-0)/d a
U ~ 2 (1 - iX?iLb3) ug

(4.22)

(4.22)

(4.23)

In order to maintain the relation (4.21) at the next iteration we select A

by holding uzzE fixed, i.e. we must choose

2
1l = 2(1 = 0) (1 - EX%I:ET)

(4.24)

It is easy to show that (a & b are functions of A) eq.(4.24) has a solution,

A = 0(1), which is valid and independent of §, for § large.

solution for b, we have now for the 145-‘-l iteration

Using thie

22
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To the extent that the approximate recursion relarfons are useful as a

)m*+2||-d lol‘.z(l-'-l'}so (4.25)

guide to intuition, we can now conclude that while it may be that the
eritical behavior as T - T, 1s described by a single renormallzation group
fixed point cver the whole range 0 <g, <, ir the ficld thcory context,
except in a restricted range of bare coupling paramcters, the initial
Hamiltonian is too far from the fixed point one for the fixed-point behavior
to become manifest on a length scale of order (An)-l. Although the
approximate rocursion relations are clearly artificial in a nuwber of ways,

they give, for 2 -nN<d < 4 - 2n, thrce regions

L
I g, << gy =(mA)” "

II, 8 << By << 8111 fixed point region
" Y
III. g, >> gyy; © (&m) anw” + d loga(1-b)

According to intuitive ideas, the bchuvior in regions I and III should

Imning region.

shuw cross—-over effects at very small |K¢ - ?| corresponding to correla-

tion lengths long compared to (as)~'. In this interpretation, the s 'n-

Ising modol itself (limit g, » =) the cross-over point moves to the critical
point and the "true" fixed point behavior is never seecn. (An exception to

this remark occurs for d = 1, because K, = @ and regions II and III

merge here. I am grateful to R, Schrader for a discussion of this point,)

In region 1, the apparent behavior could also be quite diffarent from that of

the fixed point .ugyion, as ccnvergence to that fixed point has not yet occurred,
For example, thore could be, as indecd has nowv been proven in 2 and 3 dimensional
Q‘ theory, a non-constant value of g(go), as the Schwinger functions are

analytic in an angular wedge for sufficiently small g,.
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In the region d > 4 = 2n, =, decreanes with £ for all valucs of
the bare coupling constant, Thie remark is In accord with the usual renormal-
ization group thenry that says that the fixed point becomes unstable relative
to the gausaiun (g = 0) onc, However, region I11 gurvives for sufficiently
large pggi: 1t cannot depart in the rcequired number of steps far from the high
g0 bchavior. Consequently, the Ising model in this range of dimensions
remaine a potential source for the construction of a field theory.

By way of reference the best available numerical information for the

21,21

spin-ls 1sing model for the critical indices by the Ligh temperature

serics mathods are given in Table I. These results will be seen to be
different than those for the renormalization group fixed point where it is
believed that w* = 0 for d = 3,4. It is to be noted that the uncertainty

in n for d = 4§ is so large that a value N = 0 1is not excluded. If

23

Moore's estimate®” of v 18 used then n = 0,02 only.

The various amplitudes involved in (3.19) are available in the litera-

21'23'2‘. With their aid oue can, from the available 1sing modei results,

25

ture
plus the computation of the momentum dependence of the propagator“”, and

the scattering function, ctc., F2gin the construction of a non~trivial field
theories at least in 2, 3, and 4 dimensions with prescribed values of the

renormalized coupling constant,
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Critical Indices for the Ising

Y
1.750
1.250 % 0.003
1.065  0.003

TABLE 1

n
0.25
0,041 ¢ 0.01

0.08  0.04

Model

0.044 * 0.004

0.54
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