

22
6-2-77
as up to NTIS

ORNL/TM-5892

Design and Construction of a Resistive Energy Dump Device for Bipolar Superconducting Magnet Systems

Martin J. Mohan

NOTICE

PORTIONS OF THIS REPORT ARE ILLEGIBLE. It
has been reproduced from the best available
copy to permit the broadest possible avail-
ability.

MASTER

OAK RIDGE NATIONAL LABORATORY
OPERATED BY UNION CARBIDE CORPORATION FOR THE ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

DISSEMINATION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Printed in the United States of America. Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road, Springfield, Virginia 22161
Price: Printed Copy \$4.00; Microfiche \$3.00

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Energy Research and Development Administration/United States Nuclear Regulatory Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

ORNL/TM-5892

Contract No. W-7405-eng-26

FUSION ENERGY DIVISION

DESIGN AND CONSTRUCTION OF A RESISTIVE ENERGY
DUMP DEVICE FOR BIPOLAR SUPERCONDUCTING MAGNET SYSTEMS

Martin J. Mohan

Date Published: May 1977

NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

NOTICE This document contains information of a preliminary nature. It is subject to revision or correction and therefore does not represent a final report.

Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37830
operated by
UNION CARBIDE CORPORATION
for the
ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

MASTER

DISSEMINATION OF THIS DOCUMENT IS UNLIMITED

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

ABSTRACT

When superconducting magnets quench, the resistance of the conductor material rises rapidly to its normal value. This increase in resistance can result in catastrophic heating in the magnet unless stored field energy is quickly removed from the system.

Phase inversion is the normal mode of energy removal. SCR's in the power supply are phased back, the output of the supply is inverted, and magnetic field energy is directed back into the utility grid.

Under certain conditions, however, the power supply may fail to invert properly, and an alternate energy removal scheme must protect the superconducting magnet system. Composed of an isolation switch, a semiconductor switching module, and a dump resistor, the resistive dump device provides a viable protection scheme.

Operationally, several conditions are capable of activating the isolation switch and triggering the bipolar SCR switching module. Manual dump commands, for instance, permit the operator to dump field energy in the event of observed abnormalities. A special voltage tap quench detector senses the aforementioned abnormal power supply output inversion and also fires the dump circuit.

Regardless of the nature of the trigger input, however, activation of the energy dump device diverts coil current through the dump resistor. I^2R losses over time then safely dissipate stored magnetic field energy.

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

ACKNOWLEDGMENTS

The author would like to thank Mr. R. E. Schwall, of the Superconducting Magnet Development Division at Oak Ridge National Laboratory, for his help in defining design parameters and providing technical information on superconductor theory. Mr. E. W. Pipes, of the Y-12 Plant Electrical Engineering Department, also deserves special recognition for his tireless assistance and seemingly limitless technical expertise. Mr. Pipes developed the semiconductor switching circuit at the heart of the dump device.

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

CONTENTS

ABSTRACT	iii
ACKNOWLEDGMENTS	v
LIST OF FIGURES	ix
1. INTRODUCTION	1
2. THE ENERGY DUMP DEVICE	3
2.1 THE SEMICONDUCTOR SWITCHING MODULE	3
2.1.1 Design Considerations	3
2.1.2 Construction	7
2.2 THE DUMP RESISTOR	10
2.2.1 Operating Parameters	10
2.2.2 Construction	10
2.3 THE ISOLATION BREAKER	14
2.3.1 Design Considerations	14
2.3.2 Isolation Breaker Operating Parameters . . .	14
3. DUMP STAGING	16
3.1 TRIGGER INPUTS	16
3.2 DESCRIPTION OF CIRCUIT OPERATION	16
4. CONCLUSION	21
APPENDIX A	22
APPENDIX B	26
APPENDIX C	27
REFERENCES	30

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

LIST OF FIGURES

<u>Figure</u>		
1	Critical J-H-T Surface Separating Normal and Superconductive Conductor Regions	2
2	Assembly of the Dump Device	4
3	Dump Device Control Elementary Diagram (See Appendix C)	5
4	SCR Power Dissipation Curves.	6
5	SCR Thermal Circuit	8
6	Assembly of the Switching Module.	9
7	Construction Procedures for the Switching Module	11
8	Dump Resistor Power Dissipation Curves	12
9	Dump Resistor Support Detail.	13
10	Switching Module Construction Details	17
11	Quench Detector Block Diagram	19

1. INTRODUCTION

Superconducting materials are bounded in their resistanceless behavior by critical values of temperature, magnetic field and current density (See Figure 1) which, if exceeded, cause the superconductor to quench or return to its normal conducting state.¹ When present in magnet systems, the quenched superconductor creates a serious problem in dealing with energy stored in the field of the magnet. Unless current in normal portions of the magnet is shunted to a highly conductive normal conductor (usually copper) surrounding the superconductor and field energy is quickly and safely removed from the system, catastrophic heating may result.² In the event of failure of phase inversion techniques where field energy is fed back into the utility grid, energy dissipation in the superconducting magnet system described must occur through an appropriate energy dump device.

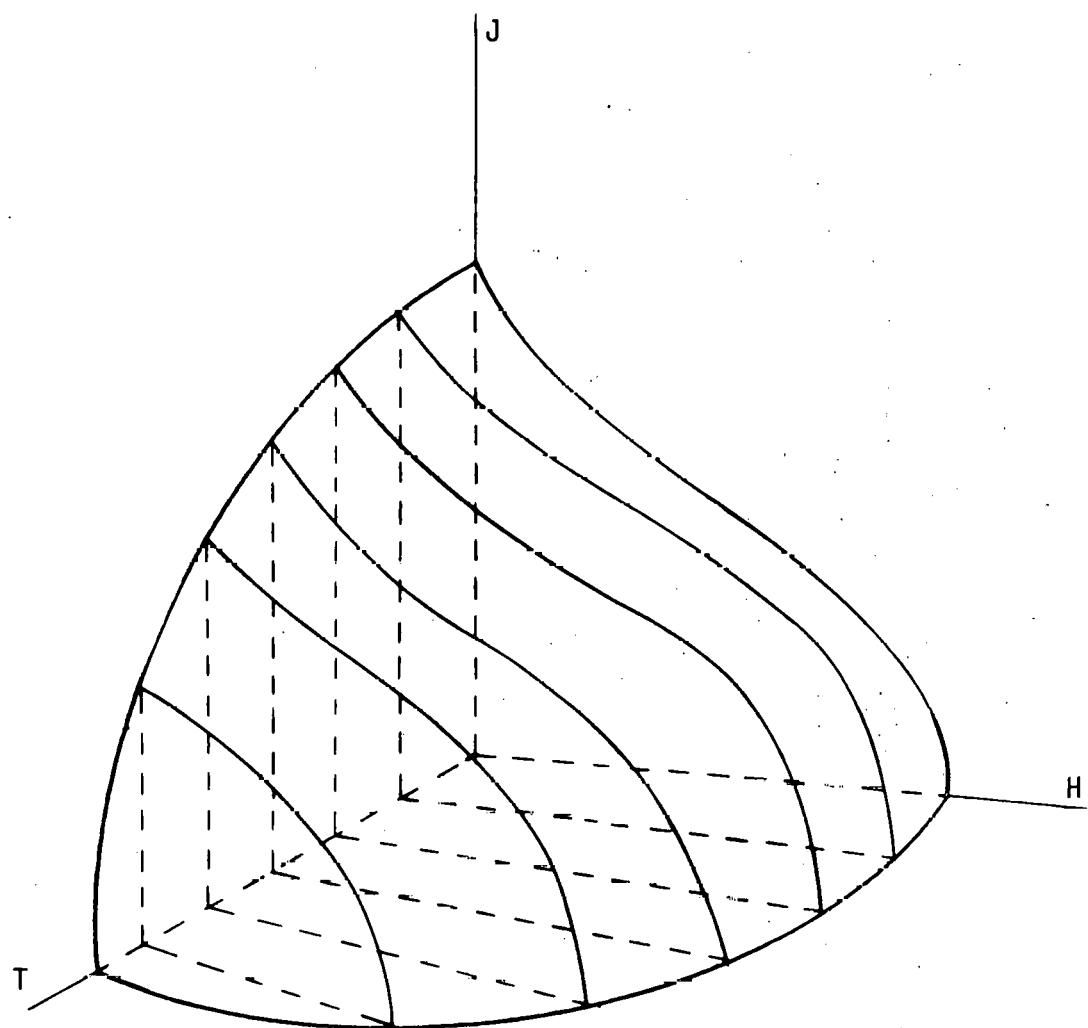


Fig. 1. Superconducting region bounded by critical J-H-T surface.
Superconducting region below surface, resistive "normal"
region above surface. (From Ref. 3)

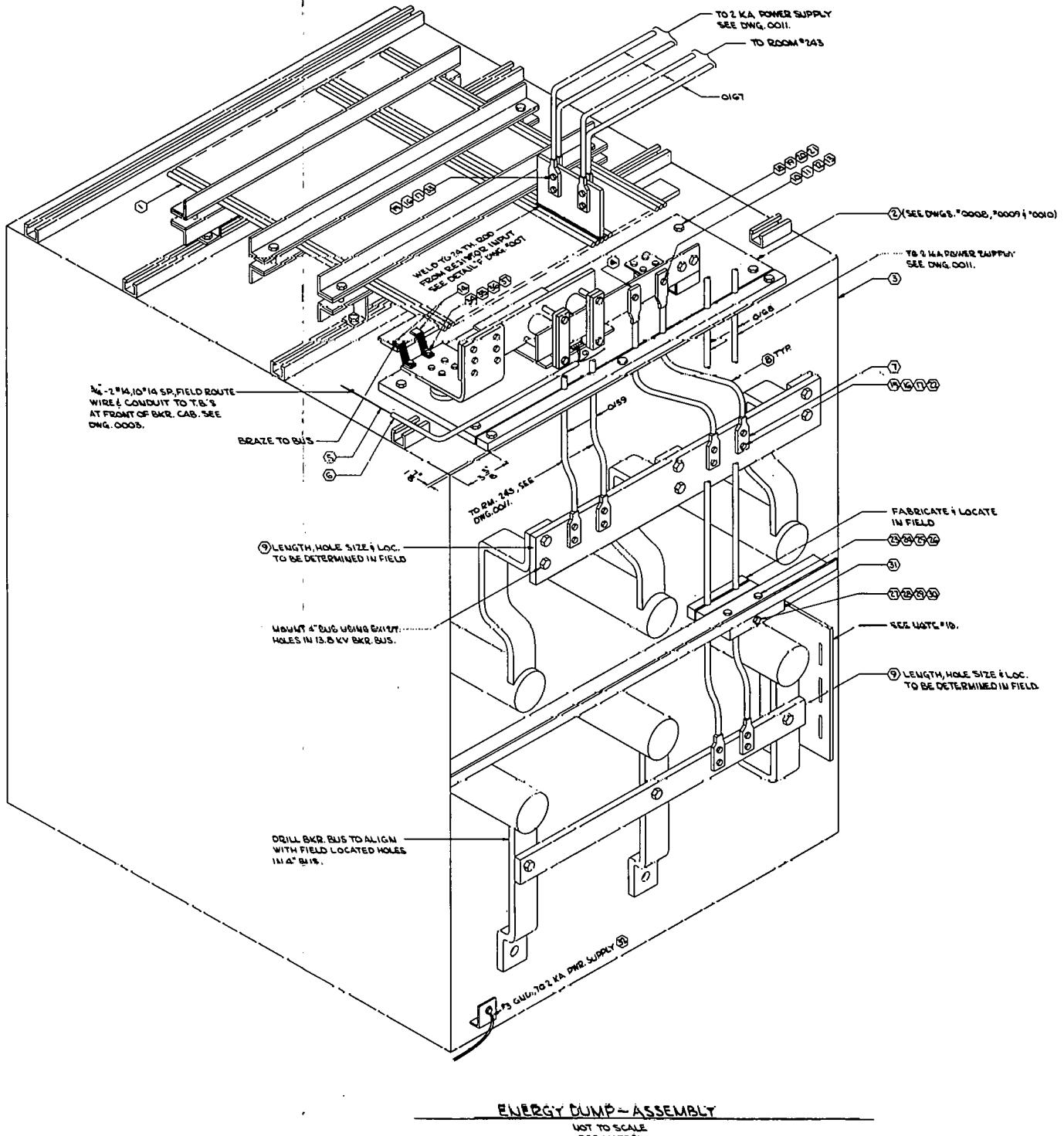
2. THE ENERGY DUMP DEVICE

The circuit described is designed for use with a 2 kA, 300 V bipolar power supply. The three major elements of the dump device are a semiconductor switch, a dump resistor, and a 13.8 kV ac circuit breaker used as an isolation switch. (See Figure 2)

2.1 THE SEMICONDUCTOR SWITCHING MODULE

2.1.1 Design Considerations

The purpose of the semiconductor switch is to provide a path for coil current through the dump resistor. See Figure 3. Because of the bipolar nature of the power supply, the switch must be capable of accommodating current in two directions but not short the output of the supply under normal operating conditions. Also, the switch must have a minimum forward blocking voltage greater than 300 V and be capable of enduring a current decaying exponentially from 2000 A at a maximum time constant of 3 seconds.


The switching device chosen was a Westinghouse Type T920 Pow-R-Disc SCR, manufacturer's number T920121003 DW.* Data sheets are contained in Appendix A.

The rated 1200 V maximum forward blocking voltage of the device well exceeds minimum design requirements. It will be noted, however, that the device is rated for 1000 A average and 1570 A RMS forward current. It was therefore necessary to determine whether or not the junction temperature of the SCR would rise unacceptably during a dump procedure.

A worst case estimate of temperature rise was made by converting the power input curve shown in Figure 4a to the series of pulses shown in Figure 4b as described in reference 4. Next, the transient thermal impedance of the SCR and thermal impedance between the SCR case and heat-sink were determined from manufacturer's data.

*Reference to a company or product name does not imply approval or recommendation of the product by Union Carbide, the Oak Ridge National Laboratory, or the U. S. Energy Research and Development Administration to the exclusion of others that may be suitable, equal, or superior.

1. PERFORM THE FOLLOWING WORK ON THE 13.8 KV BKR. CABINET:

- A. DISCONNECT P.T. LEADS ON P.T. COMPARTMENT SIDE; COIL LEAD IN BKR. COMPARTMENT AND I FAVE INTACT
- B. DISCONNECT BUS WHERE IT IS PRESENTLY JOINED TO VERTICAL BUS BARS LEADING TO THE LOWER ROW OF BKR. RECEPTACLES.
- C. REMOVE THE P.T. COMPARTMENT AND GND. BAR.
- D. BOLT INSULATING BUS BAR SUPPORT PHIL. AT REAR OF BKR. COMPARTMENT INTO PLACE.
- E. DISCONNECT EXISTING BUS AT THE JOINT IMMEDIATELY TO THE POthead SIDE OF THE C.T.'S.
- F. REMOVE THE POthead AND ATTACHED BUS.
- G. SHORT C.T. OUTPUT TERMINALS AT THE TRANSFORMER AND AT THE CORRESPONDING TERMINAL BLOCK LOCATIONS AT THE FRONT OF THE BKR. COMPARTMENT.
- H. REMOVE JUNCTION BOX AT FRONT RIGHT HAND SIDE OF BKR. COMPARTMENT.
- I. MOVE THE BKR. COMPARTMENT TO THE LOCATION INDICATED ON DWG. #0011.

2. INSTALLATION SHALL COMPLY WITH ES 1.4-5.

3. FOR LEGEND AND REFERENCE DWGS., SEE DWG. #0001.

ITEM	DESCRIPTION
①	RESISTOR, DIMP, TAPPED AT 15 OHM PER DMG. 0006, ON HAND
②	DUMP LOGIC & SWITCHING MODULE. SUPPLIED BY HCC-ND
③	15.8 KV BKR. & CABINET, ON HAND
④	LUG, CABLE, ALUMINUM, ONE HOLE, FOR 1000 MCM CABLE, T & B CAT. NO. 60184
⑤	WIRE, COPPER, #14, SOLID, TFE INSULATION
⑥	CONDUIT, EMT, 3/4"
⑦	LUG, CABLE, ALUMINUM, TWO HOLE, FOR 1000 MCM CABLE, T & B CAT. NO. 60284
⑧	CABLE, COPPER, 1000 MCM, 61 STRAND, 600 V., FURNISHED BY UCC-ND
⑨	BUS, COPPER, 4 IN. WIDE X 1/2 IN. TH.
⑩	SCREW, CAP, HEX, SILICONE BRONZE (S.B.), 5/8-11 X 2 IN. LONG
⑪	WASHER, FLAT, S.B., TYPE A, WIDE SERIES PER ANSI STD. D27.2, FOR 5/8 IN. DIA. BOLT
⑫	WASHER, LOCK, S.B., FOR 5/8 IN. DIA. BOLT
⑬	NUT, HEX, S.B., 5/8-11 THD.
⑭	BRAID, COPPER, FIFXTHL, BURNDY (CAT. NO. 54017)
⑮	WASHER, FLAT, S.B., TYPE A, WIDE SERIES PER ANSI STD. D27.2, FOR 1/2 IN. DIA. BOLT
⑯	WASHER, LOCK, S.B., FOR 1/2 IN. DIA. BOLT
⑰	NUT, HEX, S.B., 1/2-13 THD.
⑱	SCREW, CAP, HEX, S.S., 1/2-13 X 2 IN. LONG
⑲	WASHER, FLAT, S.S., FOR 1/2 IN. DIA. BOLT
⑳	WASHER, LOCK, S.S., FOR 1/2 IN. DIA. BOLT
㉑	NUT, HEX, S.S., 1/2-13 THD.
㉒	SCREW, CAP, HEX, S.B., 1/2-13 X 2 IN. LONG
㉓	SCREW, CAP, HEX, S.S., 3/8-16 X 1-1/2 IN. LONG
㉔	WASHER, FLAT, S.S., FOR 3/8 IN. DIA. BOLT
㉕	WASHER, LOCK, S.S., FOR 3/8 IN. DIA. BOLT
㉖	NUT, HEX, S.S., 3/8-16 THD.
㉗	BOLT, HEX HEAD, S.S., 1/4-20 BY LENGTH AS REQ'D
㉘	WASHER, FLAT, S.G., FOR 1/4 IN. DIA. BOLT
㉙	WASHER, LOCK, S.S., FOR 1/4 IN. DIA. BOLT
㉚	NUT, HEX, S.S., 1/4-20 THD.
㉛	SHRKT, MALARIA, 5/4 IN. TH.
㉜	WIRE, COPPER, #3, SOLID
㉝	SCREW, CAP, S.B., HEX HEAD, 1/2-13 X 2-1/2" LONG
㉞	SCREW, CAP, S.B., HEX HEAD, 3/8-16 X 1-1/2" LONG
㉟	NUT, HEX, S.B., 3/8-16 THD.
㉟	WASHER, FLAT, S.B., FOR 3/8" DIA. BOLT
㉟	WASHER, LOCK, S.B., FOR 3/8" DIA. BOLT
㉟	BUSHING, INSULATING, END, FOR 3/4" EMT

Fig. 2. Assembly of the dump device.

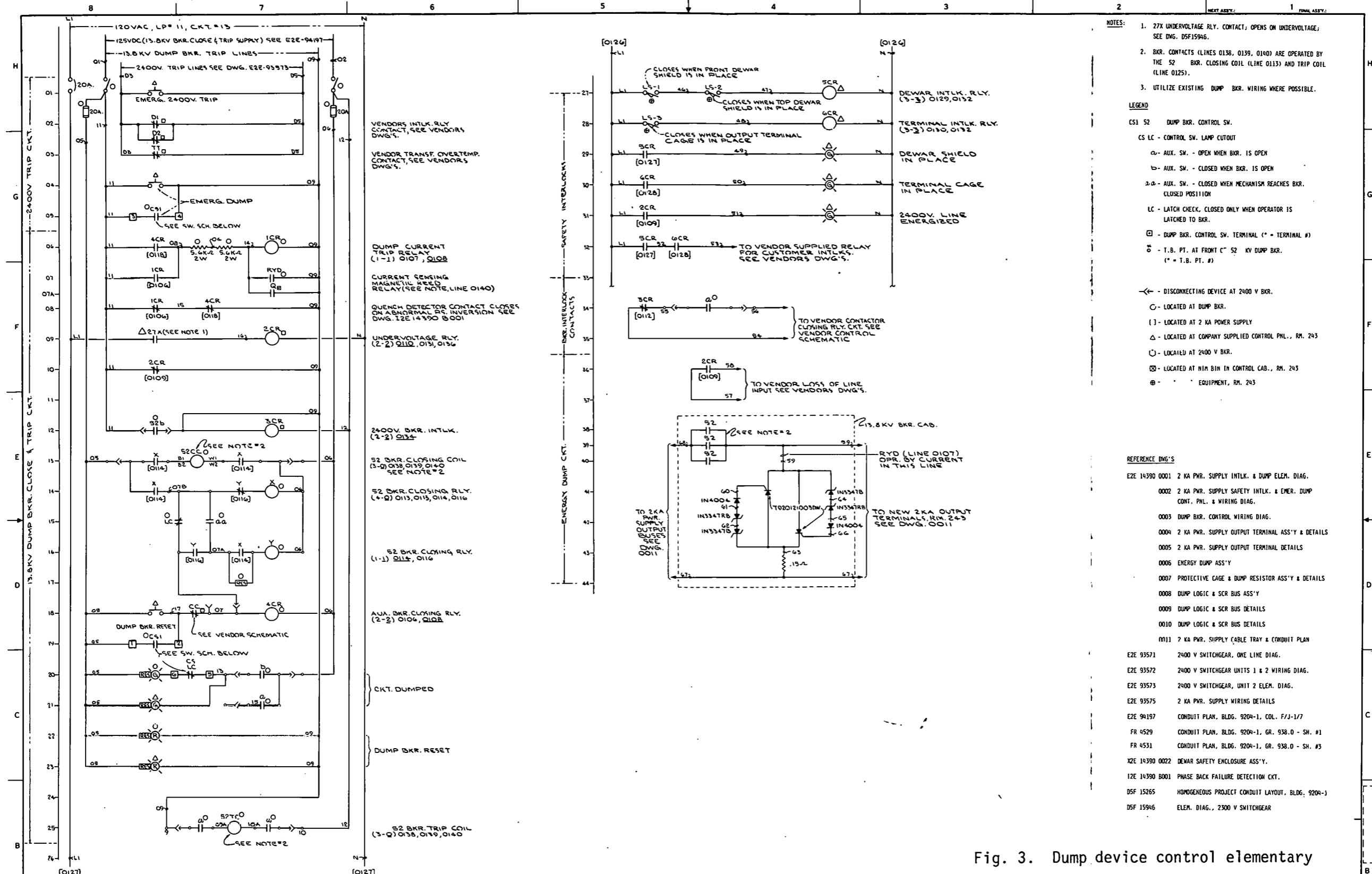


Fig. 3. Dump device control elementary diagram (See Appendix C).

DUMP BKR. CONTROL SW. (CS1)				
CONTACT	POSITION			
	TRIM	AFTER TRIM	AFTER SWING	CLAMS
1-2				X
3-4	X			
5-6	X	X	X	X

X-----DENOTES CLOSED CONTACT

		TOLERANCES UNLESS OTHERWISE SPECIFIED	DEF. OF MOHAN (PIPE) 2-77	UNION CARBIDE CORPORATION - NUCLEAR DIVISION 10000 N. MICHIGAN AVENUE, CHICAGO, ILLINOIS 60610 TELEGRAMS: UNIONCARBIDE, CABLE: UNIONCARBIDE, FAX: 312-528-4000
FRAC. OF INCHES	1	DEF. OF YANT 2-77		
XXX IN DECIMALS	1	DEF. OF E-12 4-77		
INCHES	1	DEF. OF E-77		
DECIMALS	1			
ALL TOLERANCES	1			
PRINTED	1			
FINISHED	1			
A-1		2-77		
UCC - NO		2-22		
ERDA		5-77		
PO	SE	2 AD	SCALE	REV
			NONE	0
			10	E2E143900001
			DATE	0
			ORIGINATING APPROVALS	

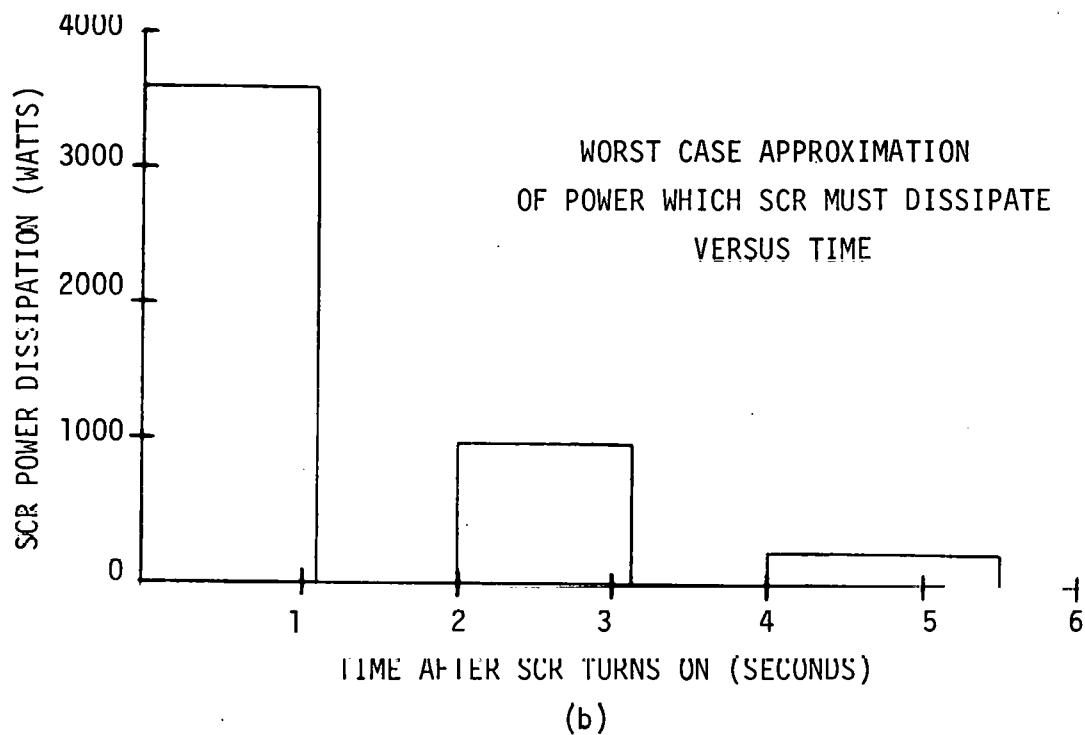
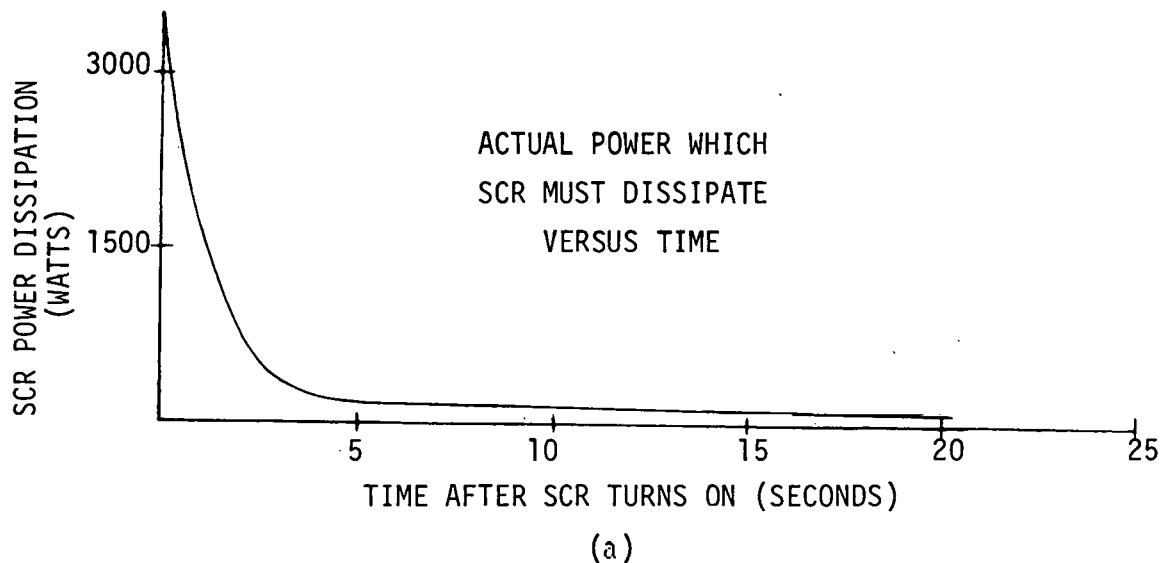



Fig. 4. Actual and Approximated SCR Power Dissipation Versus Time.

In order to complete the thermal circuit of the SCR and to calculate a junction temperature rise, characteristics of the heatsink were considered. Transient thermal impedance of the heatsink, $\theta_{(t)F}$, was calculated from the expression:

$$\theta_{(t)F} = \frac{1}{hxA} (1 - e^{-t/RC}) \text{ } ^\circ\text{C/Watt},$$

where h is the total heat transfer coefficient of the heatsink in $\text{watts/in}^2 - ^\circ\text{C}$, A is the sink's surface area in in^2 and RC is the thermal time constant of the system in seconds. Substituting known values for A and RC , $\theta_{(t)F}$, was expressed as a function of h . A graph of the relation, however, indicates $\theta_{(t)F}$ varies only approximately $1 \times 10^{-5} \text{ } ^\circ\text{C/Watt}$ while h varies from 10^{-8} to $10^{-2} \text{ watt/in}^2 - ^\circ\text{C}$. The short electrical time constant of the circuit thus limits the significance of heatsink configuration. After approximating h from nomographs in reference 4 to insure $10^{-8} < h < 10^{-2}$, $\theta_{(t)F}$ was estimated at $1.5 \times 10^{-3} \text{ } ^\circ\text{C/Watt}$.

The complete thermal circuit is shown in Figure 5. Calculation indicates that with $T_{\text{ambient}} = 25^\circ\text{C}$, the SCR junction temperature will rise to a maximum of 122.4°C . No junction overheating difficulties are therefore foreseen as maximum rated junction temperature is 125°C and the estimate is based on a ~~worst~~ case.

Finally, a symmetrical switch assembly, described more fully under "Description of Circuit Operation", allows the required bidirectional dump current.

2.1.2 Construction

An assembly view of the SCR switch is shown in Figure 6. A modular concept was adopted so that the device could be assembled and tested under controlled conditions.

The base of the switching module is one inch thick laminated phenolic board. The L shaped end brackets are held by 6 inch high

P = SCR power dissipation, Watts; See Fig. 3b.

$\theta(t)_{J-C}$ = Transient thermal impedance between SCR junction & case
See Appendix A.

$\theta(t)_{C-S}$ = Transient thermal impedance between case & heatsink
 $\approx 0.01^{\circ}\text{C}/\text{Watt.}$

$\theta(t)_{S-A}$ = Transient thermal impedance between heatsink & ambient
 $\approx 0.0015^{\circ}\text{C}/\text{Watt.}$

T_j = junction temperature, $^{\circ}\text{C}$

T_c = SCR case temperature, $^{\circ}\text{C}$

T_s = heatsink temperature, $^{\circ}\text{C}$

T_a = ambient temperature, $^{\circ}\text{C}$

Fig. 5. SCR Thermal Circuit.

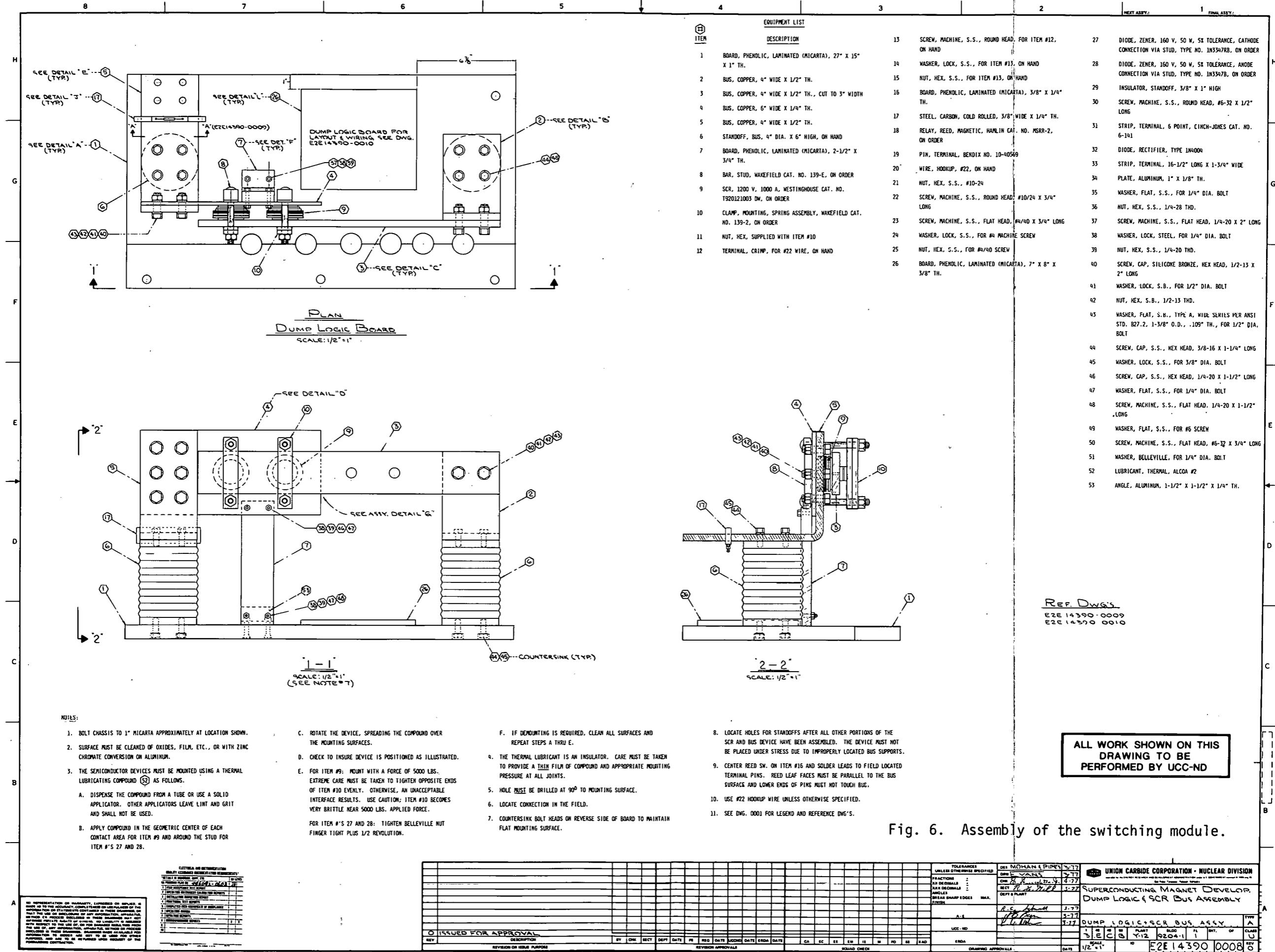


Fig. 6. Assembly of the switching module.

porcelain bus supports. The vertical bus bars which make electrical and thermal connection to the SCR's are prepared per Figure 7. Assembly procedures are extremely important and manufacturer's recommendations must be followed to prevent excess thermal and electrical impedance at the SCR case to heatsink junction.

2.2 THE DUMP RESISTOR

2.2.1 Operating Parameters

Actual dissipation of energy in the dump circuit is seen as heat in a stainless steel resistor. Since at maximum coil current it is desired to see only approximately 300 volts across the dump resistor, the resistance value required is 0.15Ω . Also, the temperature of the resistor must not rise to an unacceptable level when maximum dump energy input is 1 MJ.

Performing the conversion on the curve shown in Figure 8a to obtain the pulses shown in Figure 8b and determining the transient thermal impedance of the resistor as described earlier, a maximum resistor temperature of 92°C is expected when $T_{\text{ambient}} = 25^\circ\text{C}$. Since the insulation of cables attached to the resistor is rated for 75°C , the conductors have been attached far enough away from the resistor to prevent overheating as described below.

2.2.2 Construction

The resistor used in the 300 V, 2 kA application was an existing device constructed of parallel four foot lengths of 1/2 inch diameter 304 stainless steel rods welded in series. Twenty-four such rods are required for 0.15Ω total resistance. See Reference 5.

Electrical connections are made via 1/2 inch thick stainless steel plates welded to the rods. The entire device is insulated thermally and electrically from aluminum angle support members by 1/2 inch thick strips of Marinite inserted between 2" x 2" x 1/4" sections of aluminum angle. See Figure 9.

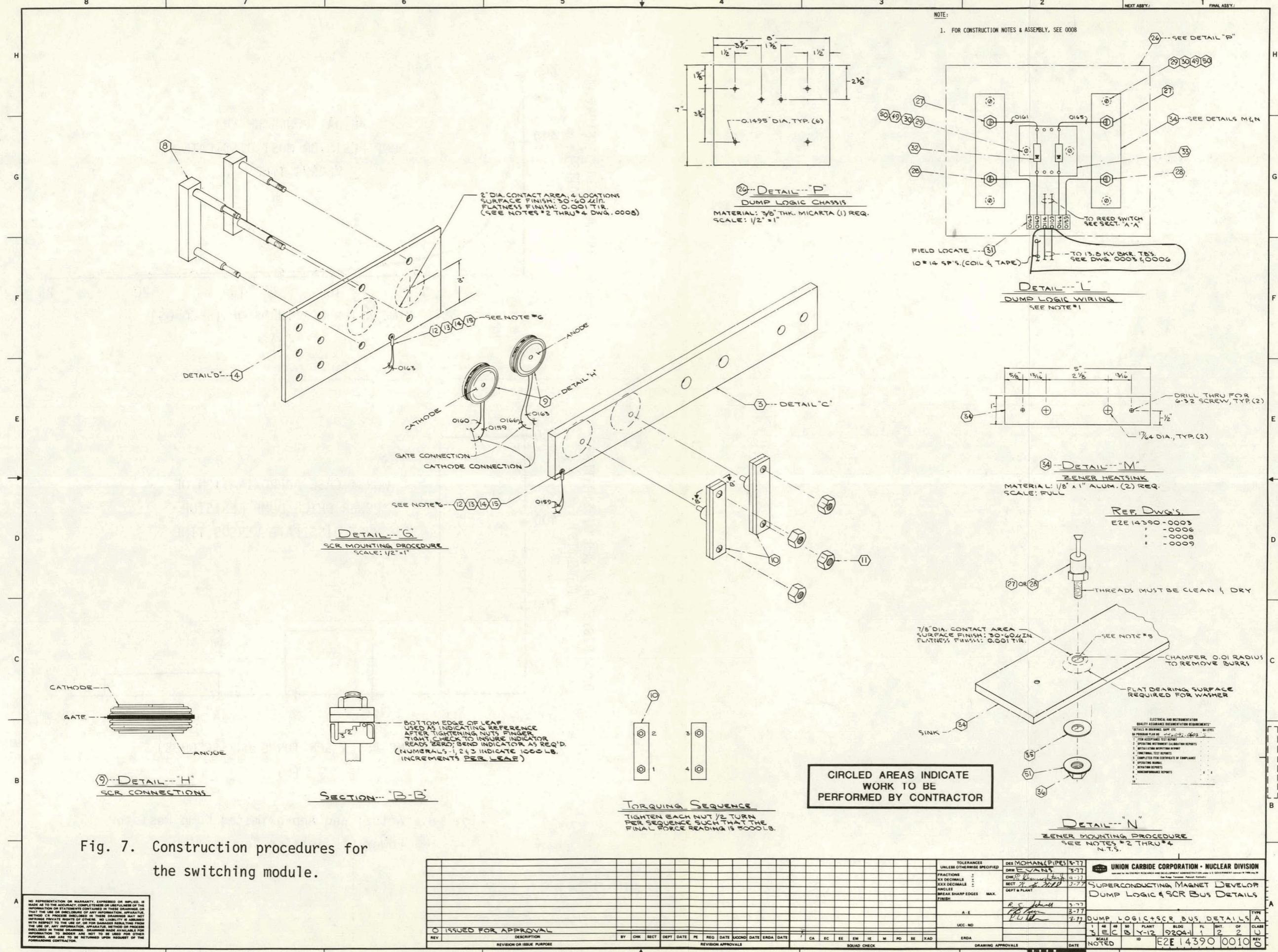


Fig. 7. Construction procedures for the switching module.

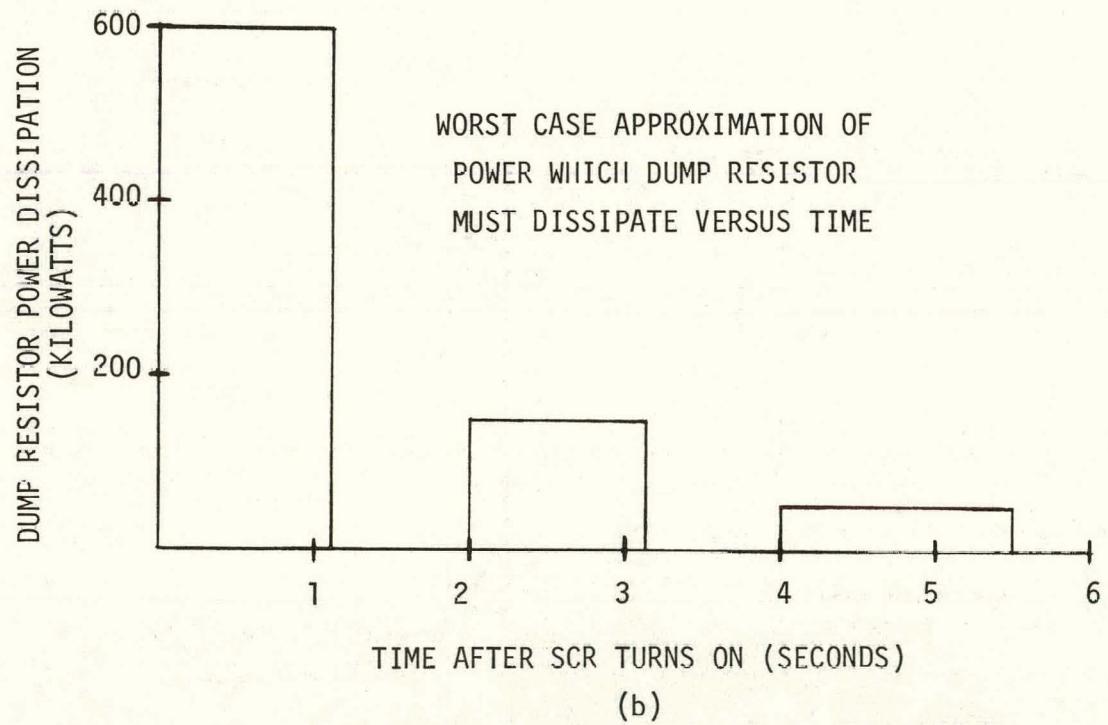
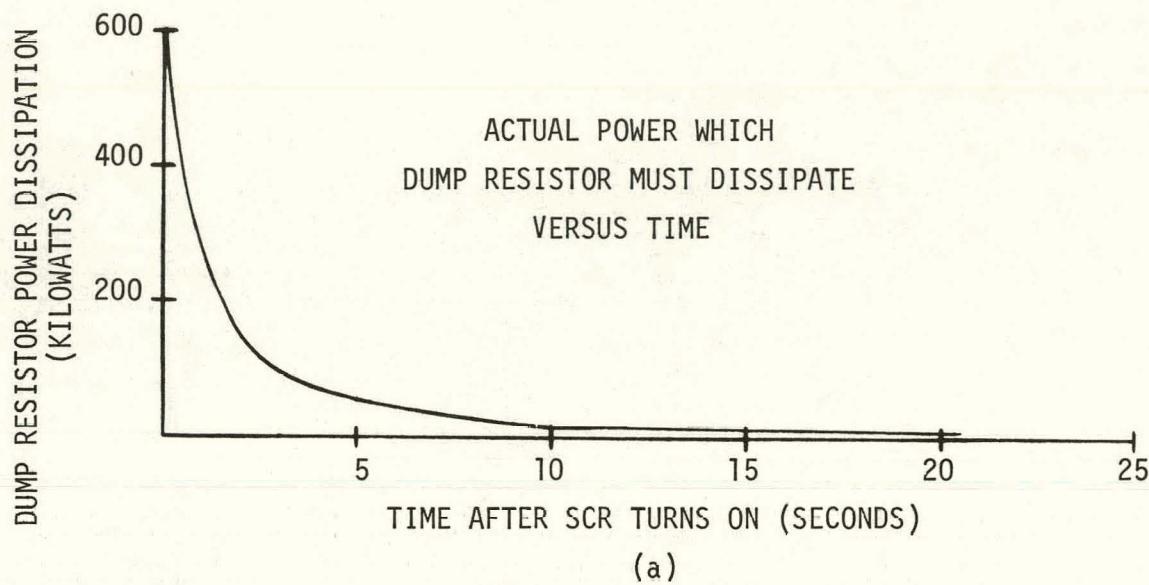



Fig. 8. Actual and Approximated Dump Resistor Power Dissipation Versus Time.

ORNL-DWG 76-1612

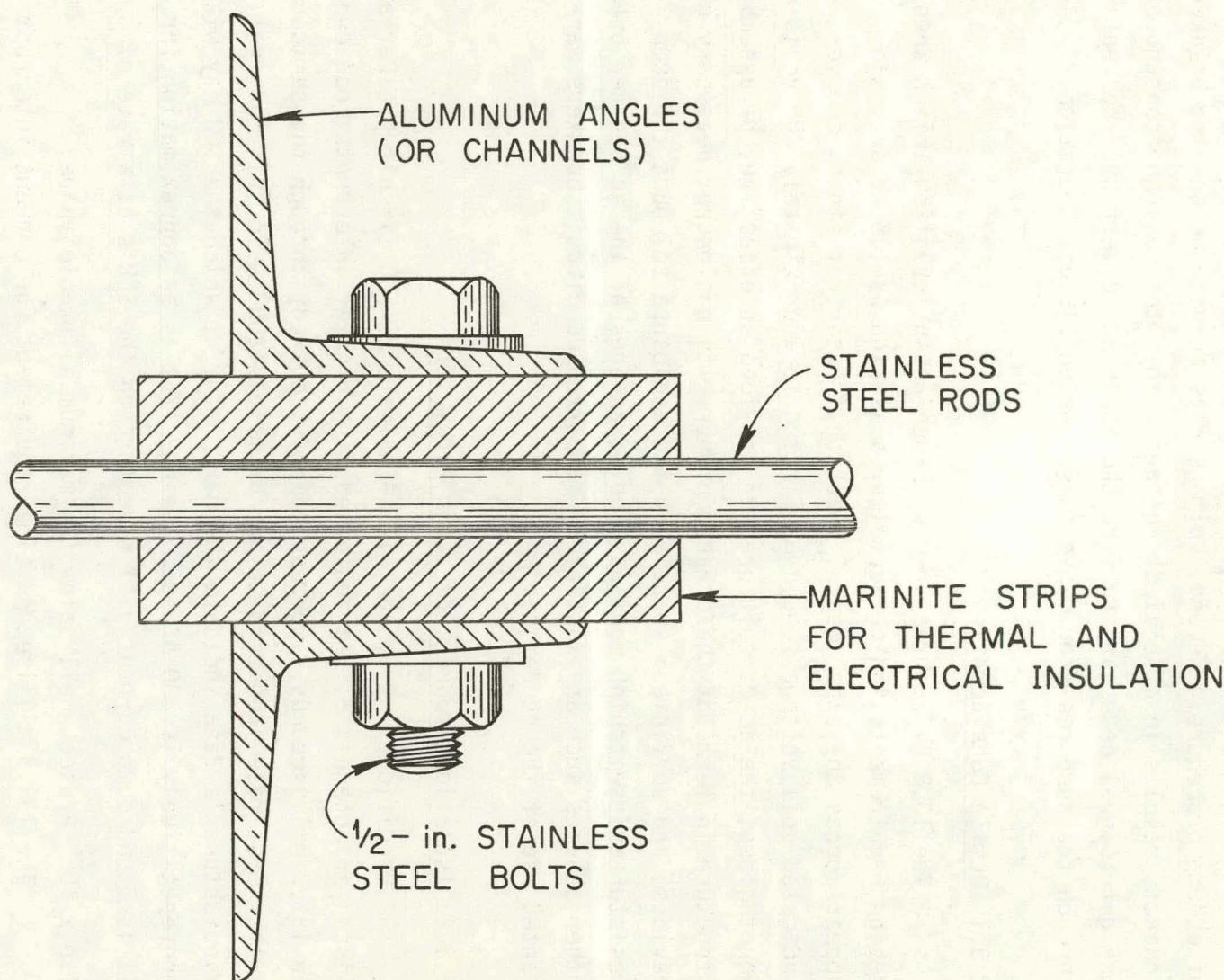


Fig. 9. Dump Resistor Support Detail.

2.3 THE ISOLATION BREAKER

In the present application, the role of the dump breaker is twofold. First, it isolates the power supply from the loadside conditions of a dump procedure. Second, voltage rise across the opening breaker contacts results in a $-L \frac{di}{dt}$ voltage across the coil and consequently the gate signal necessary to fire the SCR's and divert coil current through the dump resistor. See "Description Circuit Operation."

2.3.1 Design Considerations

The 13.8 kV ac breaker was chosen as an isolation switch when design requirements indicated voltages as high as 1.5 kV dc could appear across the experimental inductor. Later revisions, however, indicated coil voltage should be limited to approximately 300 volts dc. Nonetheless, the ac circuit breaker provided an effective, preassembled structure in terms of the breaker proper, its enclosure, necessary control devices, and sufficient space atop the enclosure to mount the dump resistor and switching module. The advantages of the ac breaker over other schemes such as elaborately supported dc circuit breakers warranted use of the ac device.

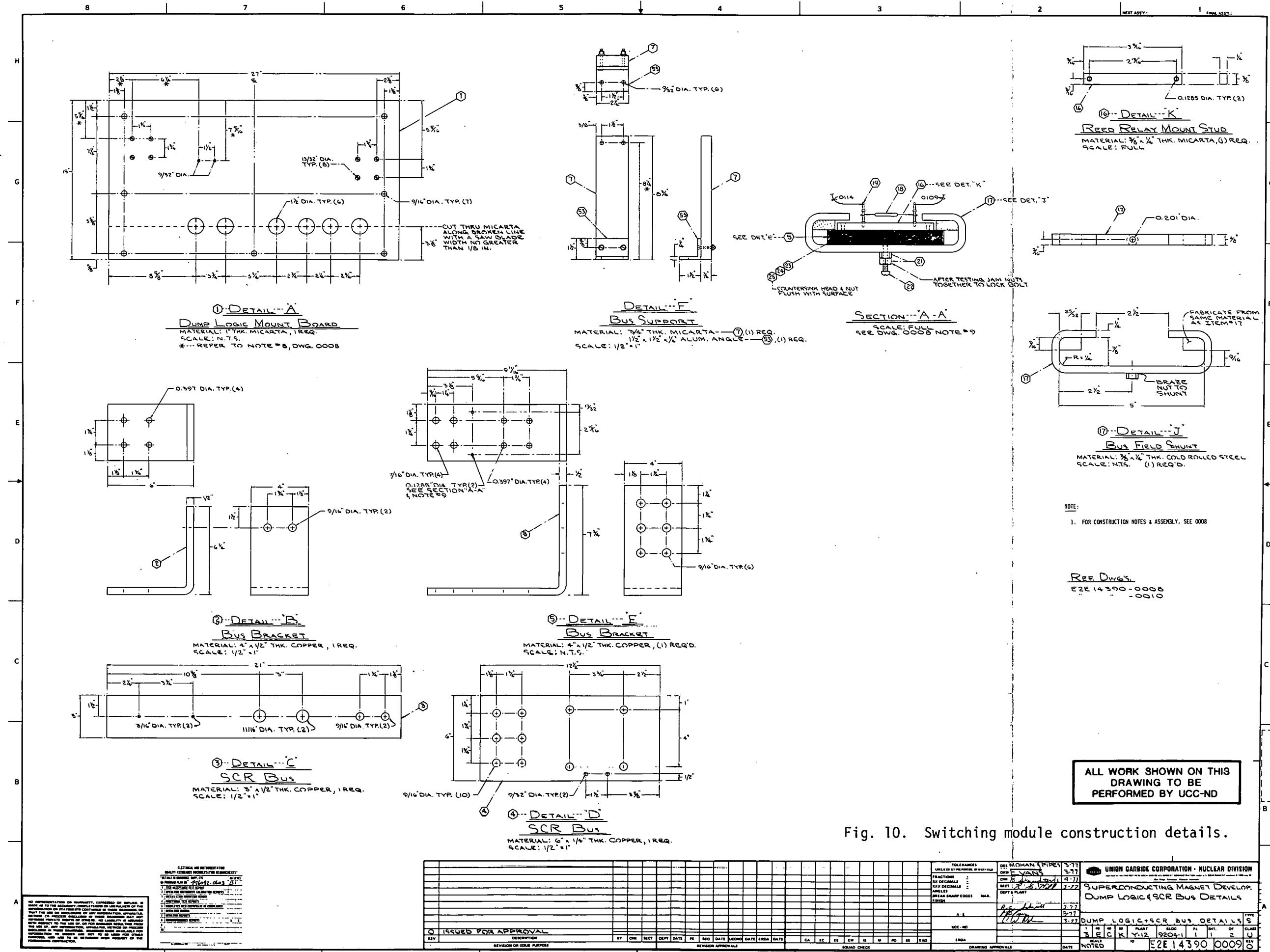
2.3.2 Isolation Breaker Operating Parameters

Specifications of the Allis-Chalmers MC-500 circuit breaker are listed in Appendix B. As indicated, the breaker interrupts load current in 133.3 milliseconds. Correspondingly, current through the semiconductor switch must rise from zero to approximately 2000 A in this interval. Manufacturer's data indicate the maximum di/dt which the SCR may withstand nonrepetitively is $800 \text{ A}/\mu\text{sec}$. Using $\Delta i/\Delta t$ as an approximation for di/dt , it is found dump current will rise through the SCR's at a rate of $1.5 \times 10^{-2} \text{ A}/\mu\text{sec}$, well below the maximum allowable value.

The 133.3 millisecond time requirement for current interrupt also implies field energy dissipation before experimental coils are damaged by hot spot formation. For example, the time scale describing magnet heating characteristics during a quench depends upon the current

density, magnetic field, and heat transfer characteristics of the magnet. Choosing the low representative values of maximum field $B_m = 1.8$ tesla and current density $J = 1.7$ kA/cm², magnet temperatures will reach 100°K in four minutes and 300°K in 7.4 minutes when adiabatic heating at constant current is assumed. Higher representative values such as $B_m = 8$ tesla and $J = 4.2$ kA/cm² suggest a temperature of 100°K in only 24 seconds.⁶ Higher values for B_m and J therefore indicate sufficient isolation switch operating speed, but illustrate the need for automatic dump signals as described in the next section.

3. DUMP STAGING


3.1 TRIGGER INPUTS

Consideration of operating contingencies led to a list of conditions which, if existing, should initiate a signal to dump stored magnetic energy. The first condition is based on operator judgment. Should abnormal operation be observed, a manual switch may trigger the energy dump device. Second, should power supply output inversion fail to discharge a quenched inductor, the dump mechanism is automatically activated. Third, loss of primary power must initiate a dump command as line loss implies no utility grid for the inversion process. Finally, a current sensing magnetic reed relay located at the semiconductor switching module insures full dump staging in the event a short current pulse passes through the SCR switches or device failure permits excess leakage current through the dump device.

3.2 DESCRIPTION OF CIRCUIT OPERATION

Circuit operation during a dump procedure is characterized first by the opening of the isolation switch, second by consequent - Ldi/dt inductor voltage rise, and third by energy dissipation in the dump resistor. Considering dump breaker operation, Figure 3 indicates all the previously described trigger inputs provide a low resistance path across the trip lines of the 13.8 kV dump breaker. The manual switches located at a remote control panel and at the dump breaker tie the trip coil (line 25) directly across the 125 VDC battery supply, opening the circuit breaker.

Operation of the reed relay is more subtle, however. First, as shown in Figure 10, the relay is positioned so as to be activated by field lines created by dump current. The relay used is designed to pull in 17.5 ± 7.5 ampere-turns magnetomotive force. Considering the bus in section A-A, Figure 10, as a single turn, the relay may not operate until a dump current of 25 amperes flows. To increase the sensitivity of the device, the field shunt (item 17, Figure 10) may be

adjusted to control magnetization of the reed leaves and thus the current level necessary for operation. At required current, the reed relay contacts (RYD) touch, shorting out 1 CR, de-energizing the normally closed 1 CR relay contact in line 08, Figure 3 and tripping the dump breaker.

Third, loss of 2400 V utility power is detected by an under-voltage relay which opens the 27 X relay contact in line 09, Figure 3. Control relay 2 CR de-energizes and the dump breaker is opened.

Fourth, a specially designed quench detector circuit may open the dump breaker. See Figure 11. By monitoring resistive voltage across an experimental inductor,⁷ the detector circuit senses a quenching coil and commands power supply SCR's to phase back and route magnetic field energy back into the utility grid. If however, coil voltage does not lie between 270 V and 330 V within a period of 80 milliseconds, the power supply is assumed to have failed to invert and contact Q in line 07A closes. Subsequent dump staging is then identical to that in the event of an RYD contact closure. Next, should the 2400 V primary power circuit breaker open, the 52b contact in line 12 closes and trips the dump breaker.

Finally, if the integral contactor in the power supply is opened under load conditions, manufacturer provided circuits detect abnormal inductive voltage rise internal to the power supply and provide an output appropriate to activate the energy dump device.

Considering next semiconductor switch operation, assume wire number 68 (Figure 3) is the positive leg and wire number 67 is the negative leg of the power supply. When the breaker contacts are closed, a very low voltage, positive on top, is seen across the inductor and both SCR's are in the off state. When the breaker contacts begin to open as a result of some trigger input, however, voltage on the coil reverses polarity and rises as the inductor attempts to maintain constant current. Voltage will continue to rise across the dump device and at 320 V, the left hand series combination of IN3347, 160 V, zener diodes will break over and gate current will be drawn in the left hand SCR. The gate signal is limited, however, by the 180Ω impedance of the

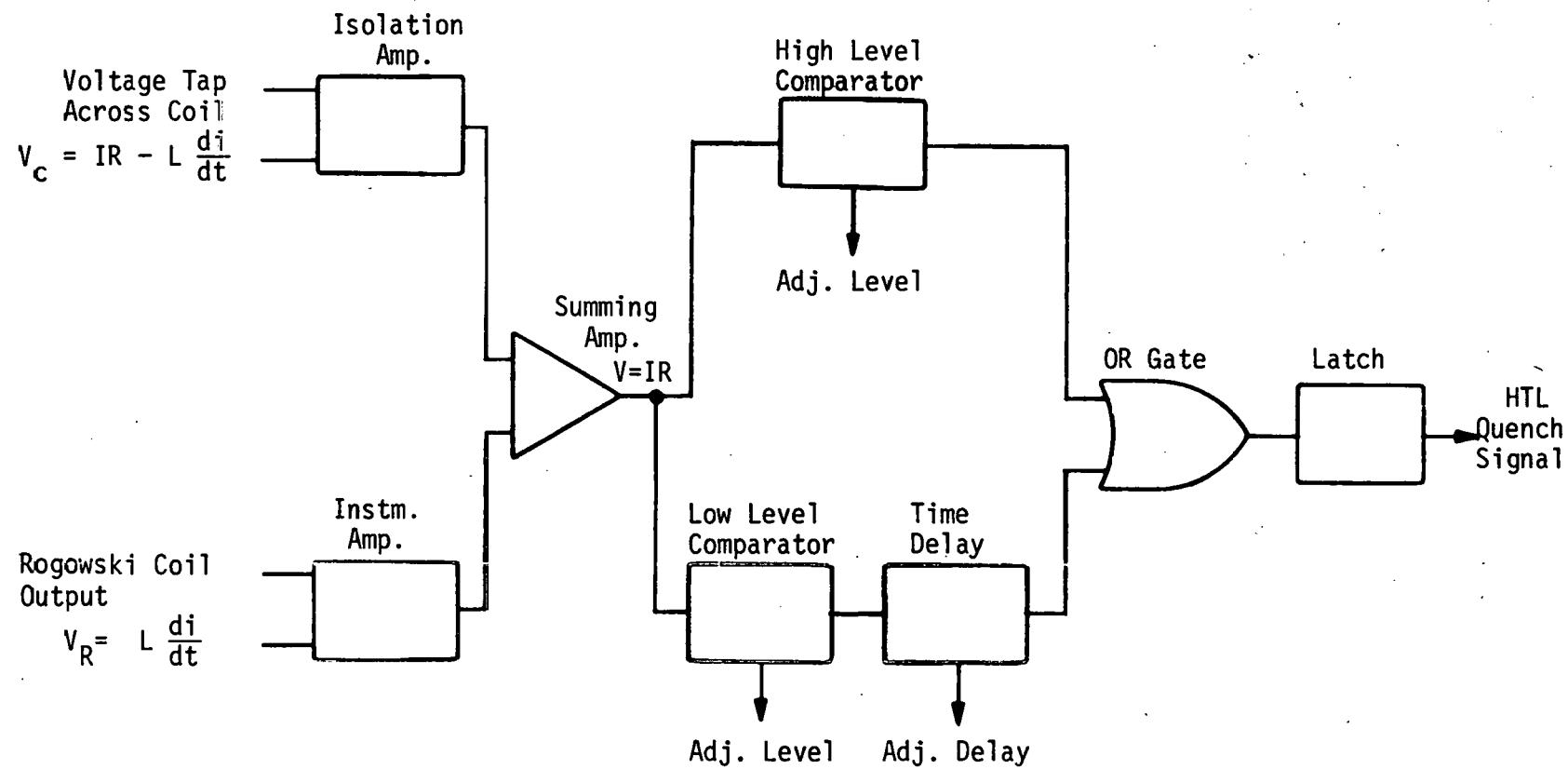


Fig. 11. Block Diagram of Voltage Tap Quench Detection Circuit (From Ref. 10)

gate circuit.

Since the SCR will trigger over a gate signal range from 100 to 200 mA ($V_D = 12$ V), worst case calculations indicate the left hand SCR will switch to the on state for coil voltages between 338 V and 356 V.

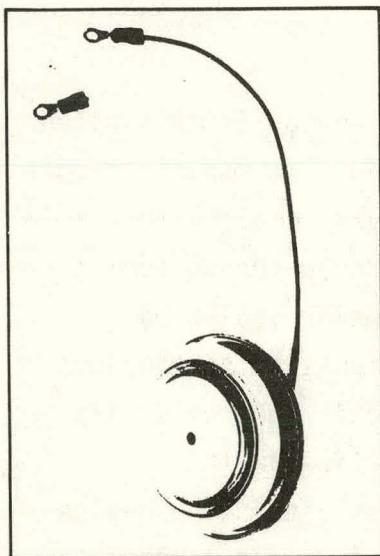
As the SCR begins conducting, coil current is diverted through the 0.15Ω dump resistor and magnetic field energy is converted to heat. Dissipation continues until dump current falls below the 150 mA holding current of the SCR.

Should the polarity of the power supply be reversed, an identical analysis of the right hand SCR and gate circuit is applicable.

4. CONCLUSION

The problem of dealing with stored energy in a normal going superconducting magnet is significant. Unless coil current is shunted around the superconductors or energy is quickly removed from the system, coil damage is likely. In the case of energy removal schemes, failure of the primary discharging technique requires a reliable energy dump device to insure maximum operating safety.

In the 300 V, 2 kA design, magnetic field energy is dissipated as heat on signal from a variety of inputs ranging from manual triggering to line loss indication. The device effectively deals with the bipolar power supply by using a symmetrical semiconductor switching module in conjunction with a modified circuit breaker isolation switch and a stainless steel dump resistor. Reliability of the dump device is increased by the capability of the circuit to provide its own gate signal via voltage rise across the isolation switch.


Considerable streamlining, however, is possible in the design. For instance, commercial heatsinks could be used in place of the bus bars shown in Figure 7 so that less chance of improper assembly would exist. Simpler bus supports and connections could also be incorporated with a commercial heatsink installation.

As a final consideration, the dump device does not trigger immediately when a dump signal is received since isolation switch voltage rise is not instantaneous. Delayed operation, however, is not severe enough to compromise design effectiveness because of the comparatively long time scale associated with temperature rise in a quenched superconducting magnet.⁶

The dump system described meets design requirements for the 300 V, 2 kA installation and modification can permit other applications where rapid magnetic field energy removal is required.

APPENDIX A

Westinghouse

SCR Data**Features**

- *di/namic* Gate design
- All diffused design
- Guaranteed dv/dt (300v/ μ s)
- Low gate current with soft gate control
- Low VTM
- Low Thermal Impedance
- High surge current capability
- Compression Bonded Encapsulation
- I^2 package rating

Pow-R-Disc Thyristor package offers:

- Single or double-sided cooling
- Reversible mounting polarity
- Compact size and weight
- Long creepage & strike paths
- Hermetic seal

Westinghouse Lifetime Guarantee

Westinghouse warrants to the original purchaser that it will correct any defects in workmanship or material, by repair or replacement, F.O.B. factory or, at its option, issue credit at the original purchase price, for any silicon power semiconductor bearing this symbol during the life of the equipment in which it is originally installed, provided said device is used within manufacturer's published ratings and applied in accordance with good engineering practice.

di/namic Gate
**Pow-R-Disc Thyristor
Silicon Controlled Rectifiers
Type T920**

Forward Current 1415 to 1570 Amps RMS
900 to 1000 Amperes Half-Wave Average
Forward Blocking Voltages to 1600 Volts

**Dimensions in Inches
(and Millimeters)**

Approximate Weight 16 oz. (454 gms.)

Outline T92

Air-cooled and water-cooled heat exchangers are available.

Ordering Information

Type	Voltage		Current		Turn off		Gate current		Leads	
Code	V _{DRM} and V _{HRM} (V)	Code	I _{TRIV} (A)	Code	t _q μ sec	Code	I _{GT} (ma)	Code	Case	Code
T920	100	01	900	00	150 (typical)	0	200	3	T92	DW
	200	02								
	300	03	1000	10						
	400	04								
	500	05								
	600	06								
	700	07								
	800	08								
	900	09								
	1000	10								
	1100	11								
	1200	12								
	1400	14								
	1600	16								

Example

Obtain optimum device performance for your application by selecting proper order code.

Type T920 rated at 1000 A average with V_{DRM} = 1000V, I_{GT} = 200 ma, and standard 12 inch leads—order as:

Type	Voltage	Current	Turn Off	Gate Current	Leads
T 9 2 0	1 0	1 0	0	3	D W

February 1975
Supersedes TD 54-568
pages 39-42, dated
October 1974

Dynamic Gate
Pow-R-Disc Thyristor
Silicon Controlled Rectifiers
Type T920

Forward Current 1415 to 1570 Amps RMS
 900 to 1000 Amperes Half-Wave Average
 Forward Blocking Voltages to 1600 Volts

Voltage

Blocking State Maximums (T _J = 125°C)		Symbol
Repetitive peak forward blocking voltage	, V	V _{DRM}
Repetitive peak reverse voltage ^① , V		V _{RRM}
Non-repetitive transient peak reverse voltage, V ≤ 5.0 msec		V _{RSM}
Forward leakage current, mA peak		I _{DRM}
Reverse leakage current, mA peak		I _{RRM}

100	200	300	400	500	600	700	800	900	1000	1100	1200	1400	1600
100	200	300	400	500	600	700	800	900	1000	1100	1200	1400	1600
200	300	400	500	600	700	800	900	1000	1100	1200	1300	1500	1700

Current

Conducting State Maximums (T_J = 125°C)

	Symbol	T920-09	T920-10
RMS forward current, A	I-T(rms)	1415	1570
Ave. forward current, A	I-T(av)	900	1000
One-half cycle surge current ^② , A	I-TSM	25,000	27,000
3 cycle surge current ^③ , A	I-TSM	18,700	20,200
10 cycle surge current ^③ , A	I-TSM	15,400	16,700
I ² t for fusing (t=8.3 ms) A ² sec	I ² t	2,600,000	3,040,000
Max I ² t of package (t=8.3 ms), A ² sec	I ² t	90 x 10 ⁶	90 x 10 ⁶
Forward voltage drop at I _{TM} = 1500A and, T _J = 25°C, V	V _{TM}	1.55	1.35

Gate

(T _J = 25°C)	Symbol	Min	Typ	Max
Gate current to trigger at V _D = 12V, mA	I _{GT}	100	200	
Gate voltage to trigger at V _D = 12V, V	V _G	1.5	3.0	
Non-triggering gate voltage, T _J = 125°C, and rated V _{DRM} , V	V _{GDM}			.15
Non-triggering Gate Current at V _D = 12V, mA	I _{GN}	20		
Peak forward gate current, A	I _{GTM}		4	
Peak reverse gate voltage, V	V _G		5	
Peak gate power, Watts	P _{GM}		16	
Average gate power, Watts	P _G (av)		3	

Switching (T_J = 25°C)

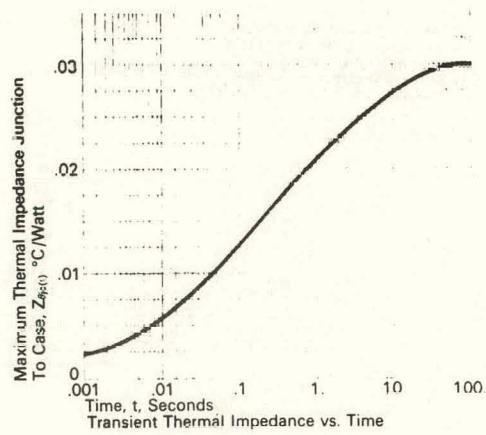
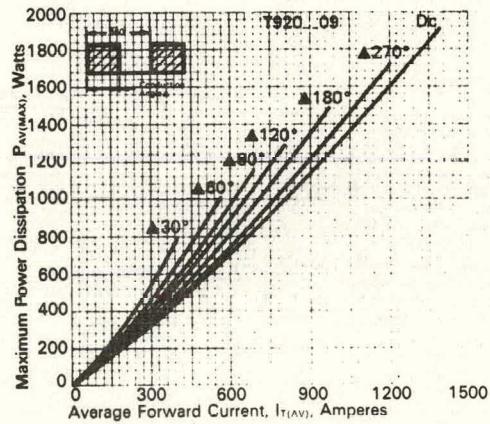
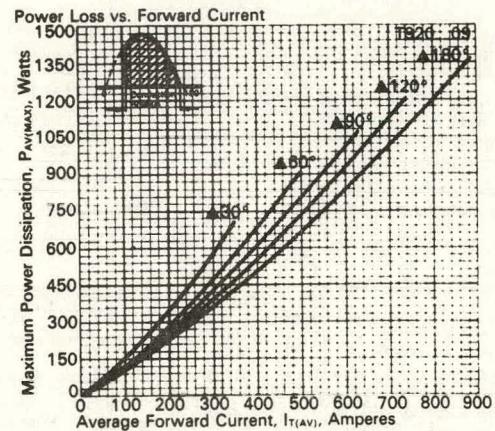
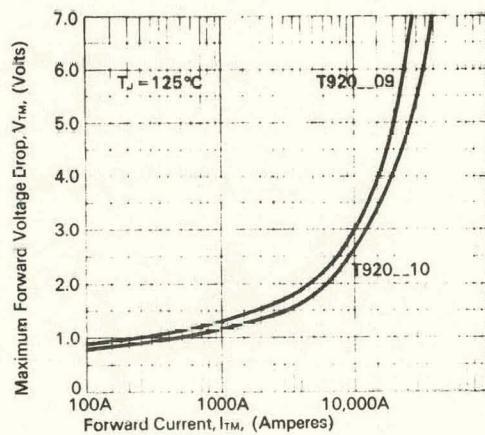
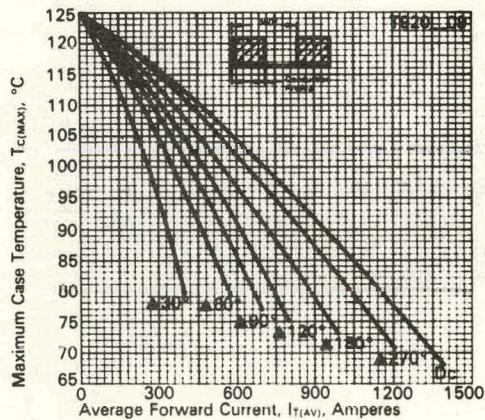
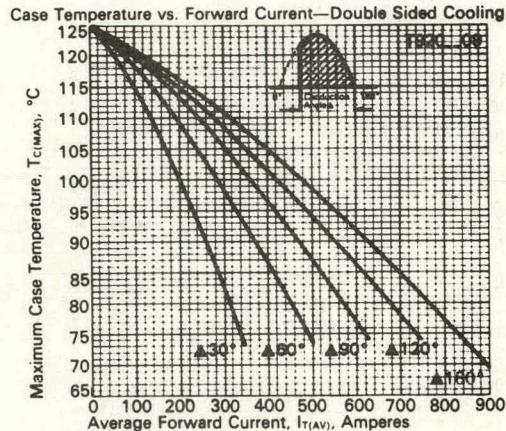
	Symbol	Min	Typ	Max
Turn-off time, I _T = 250A				
T _J = 125°C, dI _T /dt = 50 A/ μ sec				
A/ μ sec reapplied dV/dt = 20V/ μ sec linear to 0.8 V _{DRM} , μ sec	t _q	150		
Turn-On and Delay Time				
I _{TM} = 1000A ^④ , t _p = 450 μ sec	t _{on}	2.5		
V _D = 600V, μ sec	t _d	1.0		
Critical dv/dt exponential to V _{DRM}				
T _J = 125°C, V/ μ sec ^⑤	dv/dt	300	1000	
dI/dt ^⑥ (non-repetitive, JEDEC Std. #7 Sec. 5.1.2.4, A/ μ sec)	dI/dt		800	
Latching Current ^⑦				
V _D = 75V, mA	I _L	300	500	
Holding Current ^⑧				
V _D = 75V, mA	I _H	150	250	

Thermal and Mechanical

	Symbol	Min	Typ	Max
Oper. junction temp., °C	T _J	-40	125	
Storage temp., °C	T _{stg}	-40	150	
Mounting force, lb. ^⑨		5000	5500	
Thermal resistance with double sided cooling ^⑩				
Junction to case, °C/Watt	R _{θJC}	.028	.03	
Case to sink, lubricated, °C/Watt	R _{θCS}	.008	.01	

^① For information on Mounting Procedures and Techniques refer to AD 54-050.

^② Applies for zero or negative gate voltage.

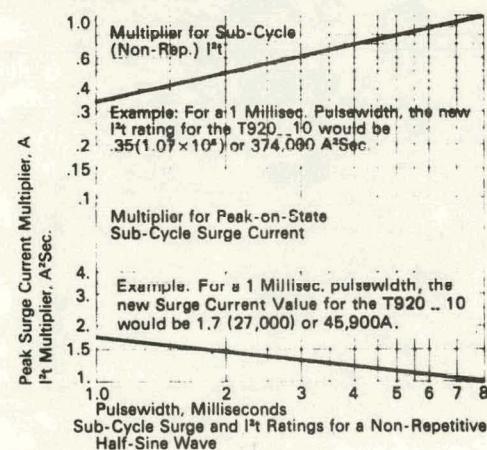
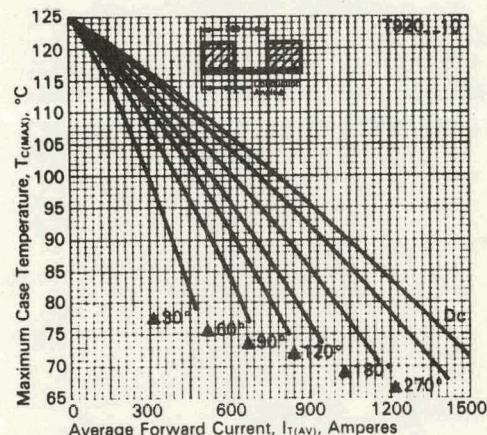
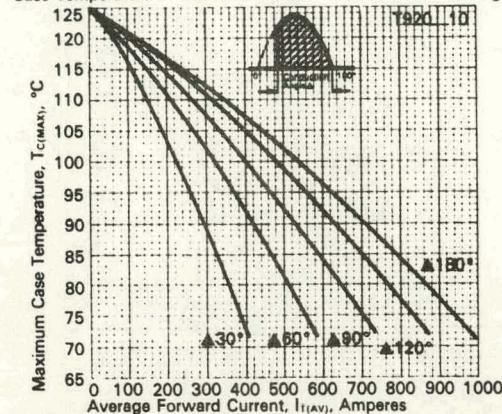






^③ At 60 Hertz, with V_{RRM} after Surge.

^④ With recommended gate drive, 20 volts, 40 ohms, rise time—1.0 sec.

^⑤ JEDEC Standards 6.201.1.6 and 6.201.1.7.

d/ynamic Gate
Pow-R-Disc Thyristor
Silicon Controlled Rectifiers
Type T920-09

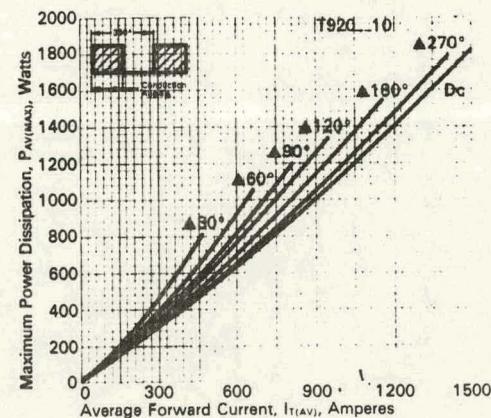
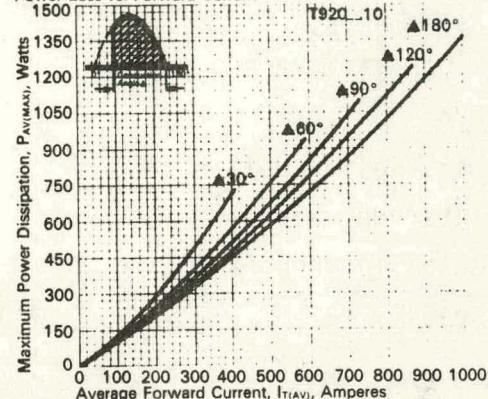
Forward Current 1415 Amps RMS
 900 Amperes Half-Wave Average
 Forward Blocking Voltages to 1600 Volts

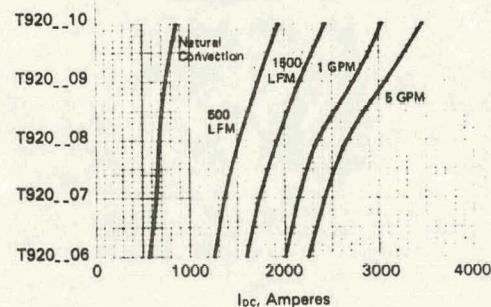
Technical Data 54-568

Dynamic Gate
Pow-R-Disc Thyristor
Silicon Controlled Rectifiers
Type T920-10

Forward Current 1570 Amps RMS
 1000 Amperes Half-Wave Average
 Forward Blocking Voltages to 1600 Volts



Case Temperature vs. Forward Current—Double Sided Cooling

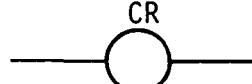
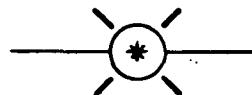
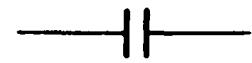
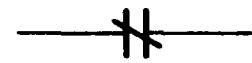
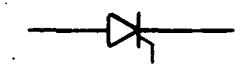
Westinghouse Electric Corporation
 Semiconductor Division, Youngwood, Pa. 15697


Printed in U.S.A.

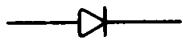
Power Loss vs. Forward Current

WESTINGHOUSE T920 CURRENT RATINGS

Three Phase Full Control Bridge Circuit
 On A9 Heatsink ($\theta_{JA} = 40^\circ\text{C}$)
 On W9 Heatsink ($\theta_{JW} = 25^\circ\text{C}$)






APPENDIX B

Allis-Chalmers Circuit Breaker Data


Type	MC 500
Rated Volts	13,800
Rated amps,	
3Ø at 13,800 volts	1,200
MVA	500
Max. design volts	15,000
Interrupt amps at rated volts	21,000
Rated interrupting time, cycles	8
Weight, Lbs.	1,650

APPENDIX C


Elementary Diagram Symbol Legend and Numbering System

<u>SYMBOL LEGEND</u>	
	CONTROL RELAY COIL
	PILOT LIGHT (* = CAP COLOR)
	RELAY CONTACT, NORMALLY OPEN (N.O.)
	RELAY CONTACT, NORMALLY CLOSED (N.C.)
	PUSH BUTTON SWITCH, MOMENTARY, N.O.
	PUSH BUTTON SWITCH, MOMENTARY, N.C.
	SWITCH, N.O.
	LIMIT SWITCH, N.O.
	RESISTOR, FIXED, VALUE (IN OHMS) ADJACENT TO SYMBOL
	SILICON CONTROLLED RECTIFIER

APPENDIX C (continued)

SYMBOL LEGEND

DIODE

ZENER DIODE

WIRE NUMBERING SYSTEM

WIRE NUMBERS ARE SHOWN ON EACH SHEET AS TWO-DIGIT NUMBERS: (E.G. 01, 02, 10, 42, ETC.). IN ALL CASES, THE COMPLETE WIRE NUMBER (WHICH APPEARS ON THE ACTUAL WIRES IN THE EQUIPMENT AND ON THE TERMINAL BOARDS) IS A 4-DIGIT NUMBER. THE FIRST TWO DIGITS INDICATE THE NUMBER OF THE ELEMENTARY DIAGRAM SHEET ON WHICH THE WIRE ORIGINATES AND THE LAST TWO DIGITS INDICATE THE WIRE ON THAT SHEET. THUS 0342 INDICATES WIRE NUMBER 42 ORIGINATING ON SHEET 03 OF THE DIAGRAM.

MAPPING SYSTEM

1. IN THE MARGIN OF THE DIAGRAM, BESIDE EACH DEVICE OPERATING COIL, TWO NUMERALS SEPARATED BY A DASH AND FNCI QSFED TN PARFNTHFSFS () ARE SHOWN. THE FIRST NUMBER GIVES THE TOTAL NUMBER OF NORMALLY OPEN CONTACTS ON THE DEVICE. THE SECOND NUMBER (UNDERSCORED) GIVES THE TOTAL NUMBER OF NORMALLY CLOSED CONTACTS ON THE DEVICE.
2. AGAIN, IN THE MARGIN OF THE DIAGRAM, ONE OR MORE 4-DIGIT NUMBERS ARE SHOWN. THESE NUMBERS GIVE THE LOCATION OF THE DEVICE CONTACTS. THE FIRST TWO DIGITS INDICATE THE SHEET NUMBER AND THE LAST TWO DIGITS, THE LINE NUMBER WHERE THE CONTACT WILL BE FOUND. IF THE 4-DIGIT NUMBER IS UNDERSCORED, IT INDICATES THE CONTACT IS NORMALLY CLOSED; IF NOT UNDERSCORED, THE CONTACT IS NORMALLY OPEN, THUS:
0362 INDICATES A NORMALLY OPEN CONTACT, LOCATED ON LINE 62 OF SHEET

3 OF THE ELEMENTARY DIAGRAM.

0364 INDICATES A NORMALLY CLOSED CONTACT, LOCATED ON SHEET 03,
LINE 64.

3. UNDER EACH CONTACT, A 4-DIGIT NUMBER IS SHOWN IN BRACKETS. THIS NUMBER INDICATES THE SHEET AND LINE NUMBERS WHERE THE OPERATING COIL OF THE DEVICE WILL BE FOUND.
4. WHERE A WIRE IS CONTINUED FROM ONE DIAGRAM SHEET TO ANOTHER, A 4-DIGIT NUMBER IN BRACKETS IS SHOWN AT THE END OF THE WIRE. AGAIN, THIS NUMBER INDICATES THE SHEET AND LINE NUMBERS WHERE THE WIRE CONTINUES.

REFERENCES

1. I. M. Firth, Superconductivity, London: Mills and Boon Limited, 1972, p. 8.
2. G. Woods, "Coil Energy Dump Systems," ORNL Superconducting Magnet Development Note #193, Sept., 1975.
3. W. A. Fietz, C. H. Rosner, "Advances in Superconductive Magnets and Materials," IEEE Transactions, Vol. MAG-10, No. 2, June 1974, pp. 239-259.
4. GE SCR Manual, third edition, 1964, pp. 21-31, pp. 279-282.
5. G. W. Donaldson, "Dump Resistors Up to One Giga Joule," ORNL Engineering Sciences Memo No. 197, March 1976.
6. H. T. Yeh, "Considerations of Coil Protection and Electrical Connection Schemes in Large Superconducting Toroidal Magnet System," ORNL Technical Memo No. 5043, March 1976.
7. S. Y. Hsieh, et al., "Summary of Existing Superconducting Magnet Experience and Its Relevance to the Safety of Fusion Magnet," Proc. of 6th Symp. on Engr. Prob. of Fusion Research, San Diego, Nov., 1975, pp. 116-119.
8. Westinghouse Technical Data 54-568, Feb., 1975, pp. 39-42.
9. Westinghouse SCR Designer's Handbook, second edition, 1970, pp. 10-10 & 10-11.
10. J. Goddard, ORNL, private communication.

ORNL/TM-5892

INTERNAL DISTRIBUTION

1. Myer Bender
2. J. F. Clarke
- 3-7. R. E. Hill
8. M. S. Lubell
9. R. V. Miskell
- 10-19. M. J. Mohan
20. F. S. Patton
21. E. W. Pipes
22. R. E. Schwall
- 23-24. H. G. Smith
25. A. J. Thompson
- 26-27. Laboratory Records
- 28-29. Central Research Library
30. Document Reference Section
31. Laboratory Records, ORNL - RC
32. ORNL Patent Office
- 33-34. Fusion Energy Division Library
35. Fusion Energy Division Reports Office

EXTERNAL DISTRIBUTION

36. Director, Research & Technical Support Division, ERDA-ORO
- 37-63. Technical Information Center, P.O. Box 62, Oak Ridge, TN 37830
- 64-66. Dr. C. A. Rodenberger, P.E.
Cooperative Education Director
Room 204 Zachry
Texas A&M University
College Station, Texas 77843