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Abstract

In this thesis I discuss possible nonperturbative continuum regulariza-

tion schemes for quantum field theory which are based upon the Langevin

equation of Parisi and Wu.

Breit, Gupta and Zaks made the first proposal for new gauge invari-
ant nonperturbative regularization. The scheme is based on smearing in
the “fifth-time” of the Langevin equation. An analysis of their stochastic
regularization scheme for the case of scalar electrodynamics with the stan-
dard covariant gauge fixing is given. Their scheme is shown to preserve the

masslessness of the photon and the tensor structure of the photon vacuum

polarization at the one-loop level.

Although stochastic regularization is viable in one-loop electrodynamics,
two difficulties arise which, in general, ruins the the scheme. One problem
is that the superficial quadratic divergences force a bottomless action for
the noise. Another difficulty is that stochastic regularization by fifth-time
smearing is incompatible with Zwanziger’s gauge fixing, which is the only

known nonperturbative covariant gauge fixing for nonabelian gauge theories.

Finally, a successful covariant derivative scheme is discussed which avoids
the difficulties encountered with the earlier stochastic regularization by fifth-
time smearing. For QCD the regularized formulation is manifestly Lorentz

invariant, gauge invariant, ghost free and finite to all orders. A vanishing



gluon mass is explicitly verified at one loop. The method is designed to

respect relevant symmetries, and is expected to provide suitable regular-

ization for any theory of interest. Hopefully, the scheme will lend itself to

nonperturbative analysis.
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Chapter I: Introduction

The dream of nonperturbative covariant-derivative regularizaticz for con-
tinuum gauge theory came essentially to a stop in 1972, when Lee and Zinn-
Justin [1] observed that the regularization of the propagators was cancelled
by high-derivative vertices at the one-loop level. Slavnov (2,3] has since pro-
posed a hybrid action scheme, superposing an intricate special treatment of
one-loop diagrams, in the Faddeev-Popov approach (4] to covariant gauges.
Until the Gribov ambiguity [5| in this approach is resclved, however, this
scheme must be considered as a perturbative prescription. At least two geo-
metric [6,7] approaches to the problem have also been proposed, but, in both

cases, we are unaware of detailed perturbative analysis.

In 1981, Parisi and Wu (8] introduced stochastic quantization, an ex-
tension to quantum field theory of earlier work in the theory of stochastic
processes [9]. The program reduces quantum field theory to a Gaussian
stochastic process called the Langevin equation, which usually runs in an
auxiliary “fifth-time”. At first sight, stochastic quantization appears to be
no more than an zmusing alternative to conventional Hamiltonian and action
formulations. In fact, however, the approach has given birth to a number
of new ideas which are by no means obvious in the conventional formula-
tions. Among these we mention Zwanziger’s gauge-fixing (10,11,12|, large

N quenching [13,14], large N master fields [14], stochastic stabilization (15},



stochastic regularization [16,17,18,19,20], the QCD, maps which run in or-
dinary time [21], and numerical applications of the Langevin equation in

lattice gauge theory [22].

Stochastic regularization by fifth-time smearing as proposed by Breit,
Gupta and Zaks [17] was the first proposal fer new gauge-invariant regular-
ization, and is based on the ideas inherent in stochastic quantization. How-
ever, the conclusion reached by these autho:s was that the applicability of
their stochastic regulari;ation to perturbative computations is problematic.
The claim was, that although the symmetries of the theory are preserved,
the naive conservation laws are not preserved, so that stochgstic regulariza-
tion may not be a satisfactory scheme. However, the relevance of this fact to
regularization and renormalization is not clear. For example, Slavnov’s hy-
brid higher covariant derivative method ruins the conservation of the naive
Noethy+ currents, but is certainly a good perturbative regularization scheme

for gauge theories [3)].

Furthermore, Breit, Gupta and Zaks attempted to apply their idea to
fermionic QED which is unfortunately clouded by technical difficulties as-
sociated with the nonequilibration of the naive Langevin equation [23]. As
first pointed out by Ishikawa [24], and later analyzed in detail by Kalfuss
and Meissner [25], the breakdown of gauge invariance encountered by Breit,
Gupta and Zaks can be traced to their use of a Langevin equation which

was not manifestly gauge invariant. Ishikawa has also prcposed a Langevin



equation for fermions which avoids these problems [24].

To avoid the technicalities associated with the stochastic quantization
of fermi fields, we chose to analyze the Briet, Gupta, and Zaks stochastic
regularization scheme in scalar electrodynamics (SED), a discussion of which
is given in Chapter IIT as well as Ref. (19]. In contrast to their results
for fermions, for SED the scheme preserves the masslessness of the photon
and the tensor structure of the photon vacuum polarization at the one-loop
level. Furthermore, the scalar wavefuncticn renormalization, Z,, is shown to
be equal to the cne-photon vertex renormalization, Z,, to all orders of the

stochastically regularized theory.

Although the original difficulties encountered by Briet, Gupta and Zaks
have been circumvented, further difficulties arise which are discussed in
Chapters ITII and IV as well as in Ref. {26]. One problem is that the su-
perficial quadratic divergences of gauge theories force a bottomless action
for the noise which ruins the nonperturbative quality of the scheme. An-
other difficulty is that fifth-time smearing is incompatible with Zwanziger's
gauge fixing (10|, which is the only known nonperturbative [11] covariant
gauge fixing for nonabelian gauge theories. Furthermore, the resulting non-
Markovian evolution loses much of the formal machinery of the unregulated

Markov process, making the analysis of the system quite difficult.

To avoid the problems associated with stochastic regularization by fifth-



time smearing, we have developed [27] a covariant derivative regularization
scheme which is also based on stoch.astic quantization. We retain in distinc-
tion to Ref. [17], all the technical advantages of a Markov process, including
closed fom.1 equilibrium equations, which are the Schwinger-Dyson equaticns,
and Zwanziger's gauge fixing if desired. The resulting r=gularized theory is
manifestly Lorentz invariant, gauge invariant, ghost-free and ultraviolet fi-

nite to all orders. We are hopeful that the formulation will lend itself to

nonperturbative analysis.!

In chapter V, the Langevin formulation of the covariant derivative reg-
ularization scheme is set up for the case of Yang-Mills. Also, a one-loop
computation of the vanishing gluon mass is included as an explicit verifica-

tion of gauge invariance. Further details of the acheme can be found in the

series of papers Refs. [29,30,31,32].

The first paper I {29] in the series is on scalar field theory and is de-
signed partiy as a pedagogical vehicle to introduce, in the simplest possible
context, the relevant regularized Langevin and regularized Schwinger-Dyson
techniques. The scalar context is also the simplest in which to study the
curious feature that the scheme is not an action regularization, a fact which
is crucial to its success ini regulating theories with local symmetries. A renor-

malization program is checked through one loop, including a computation of

!After the completion of this work, a nonperturbative analysis appeared 28 using the

scalar prototype regulator described in Ref. {29)].



the f-function in ¢3 and a check of unitarity of the renormalized theory.

The second paper II (30| dicusses the case of gauge theories in detail.
Among the topics covered are regu'arized Langevin equations and diagrams
for Ya.ng-l\/-ﬁlla, regularized Schwinger-Dyson equations and diagrams, finite-
ness of the Green functions to all orders and regularized functional Lapla-

cians,

The third paper III [31] discusses the one-loop Yang-Mills A-function in
the scheme, demonstra_ting that the vaual results are obtained. Finally, the

fourth paper in the series IV [32] discusses some further aspects of renormal-

ization.

Two additional papers describe the case when an exponential (heat kernel

[33]) is used as the regulator function [34] and the case when fermions are

introduced into the system [35].



Chapter II. Overview of Stochastic Quantization

Stochastic quantization is based upon some well known ideas in nonequi-
librium statistical mechanics (9. For simplicity, at first, the stochastic quan-
tization of a single scalar field, ¢, with action, 5(¢|, will be considered. The

usual atarting point of stochastic quantization (8| is the Langevin equation,

a«tg,t) _ _éil:lt) +n(zt) (1.1)

in which ¢ is a fictitious fifth-time variable, not to be confused with physical
time and z represents the four physical space-time dimensions. Here, nis a

five dimensional random field with Gausasian probability distribution,

[ Dn Flé(n)] ex'p(—} [n¥(z,¢) d‘zdt)

(Flé(n)]), [ Dn exp(-%f'."(-‘h t) dtzdz)

(1.2)

By evaluating the generating functional, <e.xp ( [Jn d‘zdt))n. all the n-point
n correlation functions can easily be calculated. After a simple calculation

the two point correlation is found to be

(n(z,t)n(,t"), =28z -2")6(t - 1), (1.3)
while all other connected n correlations vanish.

The connection to the standard formulation of quantum field theory is

arrived at by evaluating the equal fifth-time expectation values. That is, it

is possible to prove that

st
lim (821, 6)8(21,) .. B(2m,1)), = 22 *"(")I*”l(;f)e'_'s‘(fl’(‘")‘ = ()




where S[4] is the four dimensional action. Note that on the right hand side
of the equation the field, ¢, is a function of the four physical space-time
dimensions, while on the left hand side of the equation, ¢ is a function of
the five dimensional extended space. By starting the Langevin system at
to = —oo, the system is equilibrated for any finite fifth-time, so there is no
need to take the limit of infinite fifth-time to make the correspondence to

the standard formulation of field theory.

There are quite a few proofs in the literature of the equivalence of stochas-
tic quantization to the standard procedures of quantization. One way to
make the connection is by defining the Fokker-Planck probability {36], which
deacribes the probability density of inding the field ¢ at a given value under
the Langevin dynamics. By deriving an evolution equation for the Fokker-
Planck probability, it is possible to show that for essentially arbitrary ini-
tial conditions, at equilibrium, the Fokker-Planck probability reduces to the
probability density of the urdinary formulation. There are also proofs based
on the various perturbative expansions of stochastic quantization {37]. An-

other rather elegant proof makes use of a hidden supersymmetry (38].

The Langevin equation can be used to perturbatively solve quantum field
theories. In general, the lagrangian will consist of a kinetic term plus an

interaction potential. Thus, the Langevin equation is

—a¢g:' d + (=3% + m))¢(z, t) = =V'(é(z,t)) + n(z,t) , (1.5)



where V'(¢) is the derivative of the potential with respect to the field ¢. One

way to handle this equation is with the method of Green functions.

0G(e= 2t =t) | (gt 4 mi)Gla- - ) = e =)= F) . (19

The causal Green function in coordinate space is
p ) = ) d‘p —ip(a—a') ~(pI+m3)(t-¢')
G(z -2t - )—O(t-t)f(—zﬂ_—)‘-e e . (L.7)

The Green {unction can be used to rewrite the differential equation as an

integral equation,

é(z.t) = / &'z /_ : &' G(z -2t - ') [n(z" ') = V'($(=,t))] ,  (L8)

that contains the initial condition that the field vanishes at {5 = —, as

well as the causality requirement. To simpiify matters, a compact notation

is introduced.
Ga = G(z—zl,t—tl) ’ ms= ﬂ(:l,h) s -/l = /d‘:x /-oo dt‘ . (1.9)
By iteration the integral equation (1.8) can be solved as a perturbative series.

é(z,t) = /lGn'h -/lGuV'(/: Gu'h*'/,GuV'('/; Gasns —)) . (1.10)

An explicit example of how the the Langevin equation can be used to

generate a perturbation series is the massive scalar ¢* theory. To the first



order in the coupling constant the field is given from equation (1.10) to be

é(z,t) = j;Gsl'Tl - %/;Gsl [/; Gn'hr o (1.11)

The tree diagrams corresponding to the perturbation series are given in
Fig. II-1. Each line corresponds to a Green function, while the crosses at
the ends of the diagrams represent the noise term, r;. The vertex factors are

the same as for ordinary Feynman diagrams, up to a possible combinatoric

factor.

The loop diagrams come about by piecing together the tree diagrams

(Fig. II-2). For example, the two point correlation function is

(d(z,)e(Z,t)), = </;[IGHG3’2'71”2>"

- % ( fl f, [Ga1Gus + GenGaa] M [ j; Gu'lar> +0(2%) .
" (112)

From equation (1.2), the n-point n correlation functions are sums of products
of delta-functions. The delta-functions can be thought of as glue that holds
the tree diagrams together to form the n-point ¢ correlations. As will be
discussed in the next section, stochastic regularization consists of smearing

the delta-function glue in fifth-time.

The zeroth order contribution is given by

(#(z,t)d(z, ') = D(z -2t - t)



10

= ZLGnGgl]_ (1.13)
d‘P —ip(z~=o' e—(p’+m’)|t-l'|
=/ 7S ey (1.14)

Therefore, in momentum space, the zeroth order free propagator is given by

e~ (PP+mi)iti =ty

Dulp) = —— (1.13)

where the subacript on Dia(p) refers only to the fifth-time coordinate. After
replacing the n correlations with the appropriate delta-functions and com-

bining terms that differ only by dummy indices, the first order contribution

is given by

(¢(=J)¢(=’.t'))s,u = "2l_/;_/;/3[G-1Gs'3GnG:sta + Ge1G2GnG13Gasl .

(1.16)

By explicit evaluation, it is easy to check that for ¢ = ¢/, the same result is

obtained as by using ordinary Feynman diagrams.



11

Chapter III: Stochastic Regularization of Scalar

Electrodynamics

This chapter discusses the stochastic regularization {17,18] of scalar elec-
trodynamics, further details of which can be found in Ref. [19]. The infinite
part of the photon self energy is calculated to one loop order using the
stochastic regularizer and the infinite part of the photon vacuum polariza-
tion tensor is shown autpmatica.lly to come out transverse, as it should. The
photon does not acquire a masa at the one-loop level, because at zero exter-
nal momentum the photon vacuum polarization is shown to vanish. By a
diagrammatic analysis, it is8 shown that the Ward identity that equates the
scalar wavefunction renormalization, Z; to the one photon vertex renormal-

ization, Z;, holds to all orders of the stochastically regularized theory.
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1. Stochastic Regularization

Since an extra dimension is present in the Langevin approach, the in-
finities can be smeared without destroying any relevant symmetries of the
corresponding four dimensional theory. The preservation of the symmetries
that are present in the infinite theory is crucial to finding a satisfactory regu-
larization scheme. A time smeared system is known as a non-Markovian sys-
tem [9]. In general, such a system can be expected to be less divergent than
its Markovian counterpart. From the perturbative point of view, stochastic
regularization can be thought of as preventing the loops of the correlation

functions from completely closing on themselves in the fifth-time.

There are at least two choices for fifth-time smearing the Langevin sys-
tem. Either the Langevin equation or the probability distribution of the
random noise, 7, can be smeared. By studying the first order correction

in the A¢* theory, it is possible to show that the non-Markovian Langevin

equation,

a¢(.—.. 1) _ f d' aq(t - )L .s¢(sl¢l') +n(z.t) (1.1)

where a, is a smearing function, can at best only remove two degrees of
divergence in the perturbation theory. Quadratically divergent integrals be-

come logarithmically divergent, and there does not exist a regularization

function that does better.

The other possibility is to smear the n probability functional {17,18].
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In this scheme, the Langevin equation is left alone, while equation (1.2) of

chapter II is replaced by

_J Dn Flé(n)] exp(=1 [ n(z,t) a7’ (t — ') n(z, ') d*zdid?!)
(Flo(mi, = [ Dn exp(=} [ n(=z,t)az (t — t')n(z,t') d*zdtdt!)

(1.2)

This changes the n correlation to

(n(z,t)n(, "), =28z — =) ault - ¥') . (1.3)

The smearing functions a4 and a;‘ are functional inverses of each other, in

the sense that
f 4" au(t -t ag (t" - t) = 6(t ~ ) . (1.4)
The hope is that, because
Jim aa(t =€) = (e~ ¢), (1.5

as A becomes infinite, the original theory is recovered with all relevant sym-

metries intact.

Since the Langevin equation is unaffected by the stochastic regularization,

the physical field is the same as in the unregularized case, so that

(¢(z,t)¢(z’,t‘))f,°) =/;/;G.xG-': (mna), . (1.8)

In this case, however, the two point n correlation is given by equation (1.3).
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Working in physical momentum space the zeroth order propagator is

Diy(p) =2 [ dts [ dty Grs(p) Gua(p) aults = ) (L

. ¢ t
=2 _; dty /:_:, dt e~ (r=t0) P +m?) o =(ta=t)(P>-m%) o (¢4 — £,) (1.8)

— dE -i.!(ll—ij) aA(E)
—2/ 2T © (P +m3)3+ E3’

(1.9)
where the Fourier transform of the smearing function, a4(E), has been
introduced. Since there is an extra power of p? in the denominator over the
ordinary Feynman propagator, a reduction of two degrees of divergence can
be obtained, if a4(E) cuta off for large values of E. Since all loops in the

perturbative expansion of an arbitrary theory contain at least one factor of

ay(E), the logarithmically divergent loops can be expected to be rendered

finite.

It is a liftle more difficult to regularize a theory whose diagrams are
quadratically divergent. For example, the first order correction to the scalar

propagator in ¢* theory, ia

Blzu )bz )V = - ( . f [G14Gis + GrsGaa} s [f G“”“r>
/

¥) Gus(k ][2)‘

It is possible to find a necessary condition on the set of functions that can

(1.10)
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be used as regularizers by studying the loop of the first order correction {17].
In this case, the loop is decoupled from the rest of the diagram, so the loop

can be studied by itself. The loop is given by

d'p .
L = (2—,'6; D¢ (p) (1.11a)

= 2_/:' dt, '/:‘ dts/ (—:;L)‘ e'(""'")(”""'")a,,(t. —t) (1.11h)

~ 2—6‘7()2—) o' % (1.11c)

In order for the mtegnl to be finite, a necessary condition on the regular-

ization function is that [17]

C!A(O) =0. (1.12)

Using the Fourier transform of the smearing function, ‘a4(E), condition

(1.12) can be rewritten as

dE
e as(E)=0. (1.13)

Therefore, to remove quadratic divergences, the support of a,(E) is not
positive. The generating functional in Euclidean space, in general, won’t be
well defined as can be seen by looking at the generating functional written
in terms of the Fourier transformed fields.

21 < 127 R (= 1 EE (Lo, B/ au(E) - 10, B)6(p, E)))
[0n exp(=f 5 E [Hn(p B/ au(B)])

(1.14)
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This action is unbounded from below, which seems to rule out the nonper-
turbative usefulness of the stochastic regularizer for quadratically divergent
theories (39]. For logarithmically divergent theories, such as supersymmetric
theories, tl;te nonperturbative usefulnesa of the stochastic regularizer is not

ruled out.
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3. Stochastic Regularization of Perturbative Scalar Electrodynamics

The manifestly covariant gauge-fixed four dimensional action of euclidean

scalar elect;rodyna.mics is

Sl 9] = [ @'z [~3Au(T + ~Lu)3 A, + (3, - ieA,) 9P +migf]

(2.1)
Using the standard Feynman diagrammatical techniques, the quantum cor-
rections to the vacuum polarization in scalar electrodynamics can easily be
calculated. In doing the calculation, care must be taken, because the dia-
grams are infinite. For example, the first order correction to the vacuum

polarization in euclidean space is given by (Fig. II-1):

_ dp 1 dp (2p + k).(2p + k),
Mt = =20 [ ok s+ | G e e il o)

(2.2)

Using a naive momentum cutoff, 4, on the integrals, to leading order in the

cutoff, one obtains

(k) ~ --:-;%5,, . (2.3)

Thus, this naive regularizer explicitly breaks gauge invariance by giving the

photon a mass.

An example of a well known gauge invariant regularization scheme is
dimensional regularization {40|. In this scheme the dimension of space-time
is “analytically continued” to 4 — ¢ dimensions, where the integral is finite.

In this case, the photon mass contribution of each diagram just vanish to
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give a gauge invaiiant vacuum polarization,

1 C: k: A:
(k) = 375 (kuky — k*6,) In — +regular terms,  (2.4)

where the usual connection, 2 « In A? has been made and where 4 is a

cutoff parameter with units of momentum.

As first discussed by Parisi and Wu [8], it is possible to formulate gauge
theories without the need for gauge-fixing, by using stochastic quantization.
The gauge invariance manifests itself by a nonequilibrating random walk in
the gauge parameter space. Since the physically interesting quantities are
gauge invariant, the wandering in the gauge parameter space is essentially
irrelevant. In fact, as Parisi and Wu pointed out, it is possible to rewrite the
Langevin equations in terms of gauge invariant fields. Another simple way
to avoid the nonequilibration of the abelian gauge field is by introducing a
simple gauge-fixing term, since the property that gauge-fixing is unnecessary

is unimportant for this study of regularization.

The Langevin equations of the gauge-fixed scalar electrodynamics are
5 = (8* — m?) ¢ — ieA,Bud — iedyu(Aud) - A, Aud + 1 (2.5a)

5 = (a' - m=) P +1eA,0,0° + 1ed,(Au9") - A AP+ (2.5b)

aA — —
2 = (Td” + -:-;-L,,,&')A, —ie¢" (B, =B - 2 A6 b+, . (2.5¢)
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with unsmeared expectation values defined by

_ [ Dn,Dn"Dn F[A,, 4", 4] exp(——f[nv + 2n°n| d*zdt)

(Fler8". 80 = =150 D Drexp(—1 [[Z + 2n°7] dVzdt)
(2.6)
The causal Green function for the photon Langevin equation is
4 2
Gz, e e T® e s L ], )
while in the unregularized theory the zeroth order propagator is
Dy (2,t) = (Au(z.1)4.(0,0)
(2.8)

= /' (:;’;‘ ~ihz [_T_u;g‘_) eh kﬂ(k) —h’t/a] ,

where T, (k) and L, (k) are respectively the transverse and longitudinal
projection operators. The two point functions for the scalars are given in
equations (1.7) and (1.14) of chapter II. As with ordinary Feynman diagram-
matic calculations the simplest gauge to use is Feynman gauge, where a = 1.

Henceforth, the Feynman gauge will be used exclusively.

An example of a function that satisfies the condition of equation (1.12),

and renders the loops finite, is [17)

4p _p ,
as:)(t - t') - 4 |t tle-A’\c-cl ,

- (2.9)

The superscript refers to the fact that the Fourier transform of the above
regularization function has a double pole structure. For calculational pur-

poses it is easier to use a function whose Fourier transform has a single pole
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structure. Namely,

A!
Nt -1t = 5 AN (2.10)

which does not satisfy the requirements of a quadratic divergence regular-

ization function. The two functions are related by

)y
P —-t) = -4 ai’ [—L‘ (jz t')] : (2.11)

Therefore, al*! can be used until a divergent integral is to be evaluated, where

equation (2.11) will be used to replace af:) with a(f’, within the calculation.

Since this section is only concerned with the perturbative one loop ex-
pansion of the photon propagator, the photon random noise field need not be
fifth-time sameared, since only scalars appear within the loops. Using equa-

tions (1.8) and (2.10), the zeroth order regularized scalar two point function

is
(1) = g~i~tal(p?+m? 4 - - ]
D{Z(p) = e~t1—tl ) P+m)(pP+mi+47) (p?+m3)?-Al
A3t =ty A’
+¢Al‘ I(p’-l-m:):—d".

(2.12)

Note that the apparent singularity at p* + m? = +42 is fictitious.

The seven Langevin diagrams of the one-loop correction to the photon
propagator in scalar electrodynamics are given in Fig. III-2. Since only

physical expectation values are of interest, the external fifth-times are taken
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to be equal. Introducing the simplifying notation
e=p’+m?, b=(p+kP+m?, (2.13)

the diagrams with no external momenta in the loop (Fig. III-2a) are given

by
PO (k) = —4e%,. [ dt DE (k) G33 (%)

dp ( .0\ [DP
e (4 aAz){ e }(""“‘)

2¢35,,  d'p 44 )
Tk @n) et 2 (2.148)

The other diagrams are significantly more complicated because of the inter-
twining of the external legs with the loop. In order to simplify the expres-

sions, the vertex factors will be written as

Ve = 2(2p+ k), (2p + k), . (2.15)

The diagram in Fig. ITI-2b is given by
d¢
POk) = [an [t GR(R GE k) [ Taas Vo DU (e + K) DY (p) (2.160)

__smsﬂv( « 9 )( 4 .a ) d'p 1 1
Tk 4 a4, 4 d44* / (2x) V‘“’b= - 4;%a? - 4,¢

4,242 44? _ 4}
abla+b+k?) ala+k?+4,%) b(b+k?+ 4,°)

(2.16b)

1
+
(kz + sz 4= Azz)]

Ay=Aq=4

_smaﬂ'( 4 d )( 4 a ) d‘p 2
=22 (-ntsT) (-4 f s Yok
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x (4% + @ +b+ k) ds* + (42* + a + b+ k%) 4y
+ (3k? + 2b + 2a) 4,2 4;* + k*(2k? + 3b + 3a)(4:® + 4,%)
+ (a + 5)*(4,% + 45%) + k*(k* + 2b + 2a)
+k?(a? + 3ab + b%) + ab? + a®b]
/ [ab(a + b+ k%) (4. + 8)(4a” + a) (41 + 6 + &?)
X (42! +b+ k) (40 + 427 + 7))

Ayzdg=A (2.16¢)

where the two regularization parameters are distinguished, in order to be

able to differentiate individually each of the two regularization functions

contained within the diagram. Later 4, will be set equal to 4;. The diagrams

in Fig. III-2¢ contribute a value of

PO (k) =2 [ a1, [ dt, DE(k) GE3(k)

x (;"T").V..»DS:’(ﬁk)cu(p) (2.172)

_ Souboy d'p v [ 9 { 1
ke (2x)s ™ 943 ) b — A

- A 2.17b
X [k3+o+A=“b(k=+a+b)]} (2175)

byl [ d'P )
=% (mr)*"““( a7

a43

y (k2 + a + b + 4%)
b(b+ A%)(a + b+ k?)(a + k2 + A7)

(2.17¢)

Similarly the last two diagrams can be evaluated. The values are identical
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to the diagrams just calculated, as can be shown either by symmetry or by

shifting the variables of integration. Therefore, the diagrams in Fig. III-2d

contribute a value of

P@*(k) = PY’ (k) . (2.18)

In order to make the theory finite the results obtained by using af:)
are taken and differentiated in order to obtain the results by using af,d). For
calculational purpoees it is better to use the form of the vacuum polarization

that contains no apparent singularities. After truncating the external photon

lines the vacuum polarization of the photon is

a9 (k) = 19 (k) + T (k) + IO (k) + IO (k) (2.19)

where

d'p A4

1
mg) (k) = -2¢%6,, (27)* a(a + 4%)2°’

(2.20)

) = (-l () | v
X (41 +a+5+ k) 42" + (4 + a+ b+ k) 4y
+ (3k? + 2b -+ 2a) A, 4, + k?(2k? + 3b + 3a) (4, + 4,%)
+ (@ + 0)} (4, + 43) + k*(k* + 26 + 2a)
+k?*(a? + 3ab + b?) + ab® + a’b]

/ [abla + b+ k) (40 +8) (42* + a) (4% + @ + k?)
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X (42® +b+ k) (41! + 4 + k)] lm=a,=4 . (2.21)

S,y d'p A(2p+ k) (2p + k),
me (k) = ’1/ (2m)¢ b(b + A%)(a + b+ k3)(a + k3 + 43)

a+b+kP+4> a+b+kP+ 42
[ ey < pry R G

. _ d'p A'(2p+ k). (2p + k).
T2 (k) =¢ / (27)¢ a(a+ 4%)(a + b+ k2) (b + k2 + 4?)

a+b+k2+42 a+b+kP+ A2
{ Py it ey By IR

Although these integrals may seem quite formidable, only a few of the terms

will contribute to the infinite part of the vacuum polarization.

A fundamental consequence of the gauge invariance of scalar electro-
dynamics is that the photon does not acquire a mass by the higher order
corrections to the vacuum _olarization. Setting the external momentum to

zero, the exact mass correction to the photon can be found. Explicitly,

(o) = @' (0) + 211 0) (2.24)
where,
1 dip At
Hg.) (0) = —833'[ (21)‘ (p’ - m:)(pz T A’)’ (2.25)
and

@3g) = apdes [ G2 _ P 1
2ITL7(0) = 44% / (27)¢ p* +m? [(pz + m?)(p? + m? + A?)?

e mzz ~ A:),] (2.26a)
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= dd' ’f dz/m ::), ,+:;p:_ oL (2.26b)
= 84l 2/ dz ./-m (:: 2 (p* + :::p:- z42)3 (2.26¢)
= 8¢* /' (2:)" CETl p;‘:_ i (2.26d)
Thus, the desired result is
o) =o, (2.27)

and the mass correction vanishes.

A direct evaluation of the finite parts of the vacuum polarization with the
stochastic regularizer is fairly invoived and will not be discussed here. We
have computed only the infinite part of the vacuum polarization for nonzero
external momentum. The contribution to the vacuum polarization of the

simplest diagrams is from equation (2.20).

4
IO (k) = -2¢%,, [ 22 4

(27) (® + m3)(p® + m? + 4%)° (2.28a)
=—§':-r;s [A=—m In ("":,‘")] . (2.28b)

The next contribution is given by equation (2.21). By power counting, the
integral in equation (2.21) is finite even before differentiating with respect
to 4?2, Note that the only possible singularity as 4 — oo is logarithmic.
In fact, since an ultraviolet divergence in 4? can only occur when there is
an infrared divergence in m?, the terms with no such divergence in m? can

immediately be eliminated as being finite. As a further simplification, k? can
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be set to zero within the integral, without affecting the leading order in 43.
Also m? can be be neglected except whgre it is needed to prevent an infrared

divergence within the integral. After performing all these simplifications,

equation (2.21) is reduced to

(a2 444225 3
;. (k) = 41%41%¢*k*§ 3 ﬂaA, f(ZW)‘ 2p3(p3+m3)
A% 4,7
+ regular terms.
(p: +A12)2(P’+Aj) Ay=44=4

(2.29)
This integral can be evaluated with the usual Feynman parameterization to

arrive at the result,

3
H(‘”(k) 1 "(:’:)z In — + regular terms, (2.30)

where all terma that are finite as 4 — oo have not been calculated. In
the remaining contributions from equations (2.22) and (2.23), k® can be
neglected compared to 43. As usual, this type of integral is done by first
Feynman parameterization and then evaluating the momentum integrals.

After neglecting all the terms that are finite as 4 — oo, the result is

T (k) = M9 (k)

e 2 e 5, A 1 A?
= - = - =kn = | + ckk, In =
(4m)? [6‘"' (A m’In m3 12’c mi) " Bk" la m3

+ regular terms.
(2.31)

By adding everything together, the momentum independent pieces cancel
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and the infinite part of the one-loop vacuum polarization is found to be

@=1 L (e k5 s I 2
Iy = 5(4”)2 ( Ky — ,.,) n— + regular terms. (2.32)

This is precisely the correct value, as was obtained by using dimensional

regularization.
As discussed by Ishikawa [24], a modification in the identity

<¢(31)§¢s;-[;'¢,']')-> = 6‘(:1 - 33) (2.33)

can occur in stochastically regularized quadratically divergent scalar field
theories. The leading behavior of quadratically divergent loops is propor-
tional to A?, while the external legs of the Langevin diagrams may poasess
a A~? dependence. The combination of these two factors can yield an extra

finite nonzero contribution, in the limit that the cutoff becomes infinite.

Although it is not clear what the relevance of this fact is to regularization
and renormalization, it is straightforward to show that no problem occurs
at the one loop level in the gluon channel of stochastically regularized scalar

electrodynamics. In order for there to be a possibility of modifying

(At ttl) < g4 - ), (2.34)

where S[A,, ¢*, 9] is the action of scalar electrodynamics (2.1), the photon
random noise field should also be fifth-time smeared. Keeping only the lead-

ing behavior of the quadratically divergent loops, explicit calculation shows
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that there is no modification of identity (2.34). The coefficients of the various
factors of A? that occur in the one-loop evaluation of the left hand side of
equation (2.34) can be obtained by comparison to the results for the various
contributic;m to the photon vacuum polarization. Just as the quadratic di-
vergences proportional to A? have cancelled in the vacuum polarization, the
quadratic divergences cancel in the explicit evaluation of the left hand side of
(2.34), and no modification of the identity occurs in the stochastic regulariza-
tion of scalar electrodynamics. Of course, in the charged scalar channel, the
identity analogous to (2.33) would again be quadratically divergent. In the
case of pure Yang-Mills or QCD with fermions, one would expect the whole

phenomenon to disappear, because all quadratic divergences are spurious.
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3. Diagrammatic Proof of the Ward Identity to All Orders

By working with the standard Feynman diagrams, it is pessible to prove

the Ward identity [41], (in Feynman gauge)

lgq’va(p,p -q)= -e-a—g% ' (3.1)

where V,(p, p - q) is the complete three point function (Fig. III-3) and S(p)
is the complete scalar propagator (Fig. [II4). A regularization scheme that
preserves this identity implies that Z; = Z;. The proof using the Langevin
formulation is antlogou.s to the proof using ordinary Feynman diagrams. The
main difference is that there are two types of two point functions to consider.
In the Langevin perturbative expansion, the external photon line can either
be D!2(q) or G13((q). In this section all orders of perturbation *heory are
being considered, so the probability density of the photon noise tield must

also be fifth-time smeared. In Feynman gauge, the stochastically regularized

two point functions, using a(“’, are

GR(Q) = 6»1"-"(“‘“)0(‘1 -ta), (3.2a)
and
) o gt [ (L1
Dw(q) - 6‘5011 343 e~ qz(qz ; ,13) q‘ Y

(3.2b)

=42ty =ts] 1
+e ! ’—M] .

Since G.3(g) does not have a pole at g = 0, vertex diagrams whose
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external photon line is G}3(g), do not contribute to the Ward identity (3.1).
Vertex diagrams whose external photon line is D13 (g) do contribute, but in

a simple way, because

lima* D2 (g) = b - (3.3)

The proof of the Ward identity will proceed by showing that inserting a
photon at zero momentum, ¢, at a given point in a typical Langevin diagram
and then multiplying by ¢3, is the same as differentiating that part of the
Langevin diagram with respect to the momentum flowing through that point.
Summing over all the possible ways to insert the photon into a diagram is
therefore equal to summing over all the possible ways of differentiating with
respect to the momentum flowing through the scalar lines. The sum over a
closed scalar loop vanishes, because the loop momentum is integrated over.
Thus, only the derivatives with reapect to the momentum flowing through

the scalar line that begins and ends externally are left. This is just the Ward

identity (3.3).

All that remains to be done is to explicitly check that inserting a pho-
ton at zero momentum at a given point in a Langevin diagram is indeed
equivalent to differentiating that part of the diagram with respect to the
momentum flowing through the scalar. There are two types of scalar two

point functions that appear within a typical Langevin diagram and one type
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of vertex factor that explicitly contain momentum dependence. Since

[ ! : 2 ] = Gua(k) = e WHmIimtlg(yy — 1) (3.4)
—cb-‘;—'-Gu(k) = 2¢k, (t, - tz) Gualk) , (3.5)

where £k = p — ¥ p;, p is the scalar line momentum, and the p; are the

momenta of internal photons that are attached to the scalar. On the other

(3.8)

= 2¢k. (tl - tg) Glz(k) .

hand,

Therefore, diagrammatically,
=4 ] pa -
T [1 2 ] = limg [' L 2] : (3.7)

Dus(k) = [ dtsdty o Gus(k) Gaa(k) (3.8)

Similarly,

—e : [ ! 32;— 3] - 261:,/&:,4;“ a3y [(t1 = ts) + (t2 = t4)] Gra(k) Gaa(k) -
(3.9)

Attaching the photon in the two possible ways results in

limg’ ["T' 'T""] = 2¢k, / dts / dts / dts ad, Gis(k) Gas(k) G (k)

+ 2eks f dts / dt, /' dts ad, Gus(k) Gsa(K) Gau(K)
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(3.10)
= 2¢k, [ dty [ dte adiGrs(k)Gas(k)
x[(ts =) + (t2 — ta)] . (3.11)
Thus, diagrammatically,

"ai, [x a'h? ] = limg’ [—T T] (3.12)

The reader may have noted that the fact that adding an external truncated

photon to Dy(k) is equivalent to differentiating with respect to the momen-
tum flowing through the scalar is already contained in the fact that attach-
ing an external truncated photon to G)3(k) is equivalent to differentiating
G\a(k). However, the point was to explicitly show that the regularizer does
not affect the resulta. Dierentiating the one photon vertex factor yields the

two photon vertex factor.

—e£—: [e (2p -2 2 pi — pj)“] = -2, , (3.13)

or diagrammatically,

a - = =F,
-=a—,,,[‘ L,""'] 15%4['.,/\2’ ] (.14

where only the vertex factor is to be differentiated on the left hand side.

Thus, it follows that the Ward identity (3.1) holds to all orders of perturba-

tion theory.
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4. nclusions

In this chapter we showed that the stochastic regularizer does, in fact,
yield the correct gauge invariant infinite part of the one-loop photon vac-
uum polarization. The Ward identity that equates the scalar wavefunction
renormalization to the one photon vertex renormalization was shown to hold
to all orders of perturbation theory. Of course, it is possible that above the
one-loop level, stochastic regularization breaka‘dawn, but the Ward identity
would still hold. These results seem to indicate that the stochastic regular-
izer may be useful as a regularizer that preserves the symmetries and relevant

identities that are present in the corresponding infinite theory.

Although no apparent difficulties appear in SED at the one-loop level, as
we shall see in the next chapter, a serious problem arises when the stochastic
regularization scheme is used in conjunction with Zwanziger’s gauge-fixing.
In terms of the attempt to construct a nonperturbative regularization, this
incompatibility is quite serious since Zwanziger's gauge-fixing is the only

known nonperturbative covariant gauge-fixing for nonabelian gauge theories.
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Chapter IV: Incompatibility of Stochastic

Regularization and Zwanziger’s Gauge Fixing

1. Stochastic Regularization with Zwanziger's Gauge Fixing

Two outstanding developments in stochastic quantization [8] have been
Zwanziger's gauge fixing {10} and stochastic regularization [17,18]. The pur-
pose of this chapter is to point out the failure of the synthesis of these two
ideas, which leads to explicit gauge dependence in gauge invariant quantities.

Further details can be found in Ref. [26].

In Yang-Mills theory, the two ideas are combined in the Langevin system

A" (z,t) = DPF,,(z,t) + D3 2*(z,t) + n%(z, t) (1.1)
(n2(z. t)nd(2, ) =2a,(t - t') 66,8 (z - =) , (1.2)

where D% = §%3, + gf*€AS is the covariant derivative. The Zwanziger

function, Z, provides the gauge fixing, while the fifth-time smearing a,(t)
[d:m(t) =1, Jim ey (8) = 8(t) (1.3)

provides the regularization. In the absence of gauge fixing, the stochas-
tic regularization is manifestly gauge invariant, and presumably provides a

perturbative? regularization of gauge invariant quantities, since at least one

3The condition a,(0) = O is required for regularisation of theories with quadratic diver-

gences, as discussed in Chapter III. This is not a satisfactory non-perturbative regular-
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noise-regulated propagator appears in every closed loop. The Zwanziger term
stops the random walk in gauge space, allowing the computation of gauge
non-invariant quantities such as the Green functions. It is crucial, however,

to demonstrate that gauge invariant observables have no Z-dependence.

A standard [42) Langevin argument seems to augur well for the synthesis.

If G® is the generator of gauge transformations and & is a gauge invariant

observable, then

[ 2 2%(=,56" (=, 1)8(A( 1)) = 0, (1.4)
G‘(z,t) = I‘ H‘—?——) . (1.5)

It follows from eqs. (1.1) and (1.4) that

BAC O = ([ @2DER= ) +riln g (06)

which contains no explicit dependence on the Zwanziger function {42]. This
argument certainly shows that # picks up no Z-dependence during the first
instant of fifth-time evolution, but, unfortunately, one must be suspicious
of further, regulator dependent, Z-dependence lurking in the n-term of eq.

(1.8). Further investigation of this term leads one closer to Zwanziger’s

original Fokker-Planck language, which we now briefly review.

In the unregulated case, Zwanziger [10] analyzes the Fokker-Planck equa-

isation, since the resulting action for the noise is bottomless.
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tion, whose formal solution is
pre(Ast] = e~tmtlErlay [ 4;00] (1.7)
where

L=[dezp— Aa < [DEl(a) - 5 Ag(z)], L= d':m—g-(:—)vg‘z'(z),

(1.8)

and
pra(A;to] = 6[A() — A(, to)] . (1.9)

Here functional derivatives act on everything to the right, and Aj(z,t) is
the initial condition of the Langevin equation. The observables are then

computed from eqs. (1.7) and (1.9) as

(PAst]) = / DAD(A(")] prrlA;t] (1.10)
= "N gl A (), (1.11)

where

Lt=— [ @2 [DPFL () + 5

A:(z)]aA:(z) i L= [#22(m)60)

(1.12)
are the dual operators and the subscript zero means to evaluate at A(z) =
A(z,ty). The Zwanziger term, L!, which generates a gauge transformation,
vanishes to all orders in (¢ - ¢o) when & is gauge invariant, since L} is always

applied to the gauge invariant objects {(L')"$#}. As we shall see below, this



is not the case in the presence of stochastic regularization.

37
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2. Incompatibility in Yang-Mills

When the Langevin noise is fifth-time smeared, the system is non-Mark-
ovian, and the simple Fokker-Planck formulation is lost. There remains a
body of standard techniques, including the memory kernel analysis (43], from

which we draw here only the simplest aspects.

We begin by considering the Langevin equation (1.1) as a flow equation

of the form Z = #. The density functional for the flow
plA()it] = 8[A() - A(,1)] (2.1)
is related to the Fokker-Planck density as
ore[A()it] = (p(A();8]) (2.2)
and satisfies the equation of continuity (4 + V - (7p) = 0)
A()it] + (Lo + L, + La()) plA()it] = 0. (2.3)

Here

-frz

and L, is defined in eq. (1.8). As a result, we have a formal construction of

FOUELE) . L) = [ At (24)

5A°( )

the Fokker-Planck density
peelA()it] = (Texp|- [" dr Lo+ Lu + Lo(r)]]Jorn(A()its]  (2.50)

= e'(""’)(t“’*"')(Texp[— ./.: dr i"(r)]>Prr[A('); to] , (2.5b)
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valid for any stochastic regularization®. Here T denotes time ordering, while

in eq. (2.5b) we have introduced an interaction picture with
L,,(t) = f‘,(t—ca)(t..,-o»z..)L"(t) e-(l-lo)(Lo+L.) . (2.6)
The corresponding results for the observables are

@AC, D] = (T exp[= [ dr(Lh+ L + ZLI])BIACN  (2.72)
= (T exp[- [[ dr B} ()]t EriD ala()o (2.7
= (T‘ exp[—- /: dr EI,(T)])G-('-“)L; P(A()]la » (2.7¢)

where T* is anti-time ordering, L! = ~L,, and so on. In eq. (2.7c) we have
assumed @ to be gauge invariant and noted that LI(L})"® = 0, since L} is
gauge invariant. It is not difficult to check that our results, eqs. (2.3) and

(2.7), reduce to eqs. (1.7) and (1.11) when the regulator is removed.

We are now in a position to see how stochastic regularization induces
Z-dependence in expectations of gauge invariant quantities. The basic prob-
lem is that the Zwanziger L! terms inside the n-average of eq. (2.7c) are

“shielded” by factors of L!, so that L! hits gauge covariant but not gauge

3We note in passing that stochastic regularisation is almost certainly not an action reg-
ularisation schame, since the Fokker-Planck equation is not completely regularised: The
operator Lo haa an explicit §2(0) divergence in D-dimensions. This does not occur in L},
which operates on the observables, but is a warning that there may be unfamiliar pitfalls

in any renormalisation scheme for stochastic regularisation.
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invariant objects, and fails to annihilate. To exhibit this clearly, we expand

eq. (2.7c) thru second order in L}, using eq. (1.2), to obtain
(B{A(-1)]) = et g

+2 [ dty [ dtg e B fo(r, -yt gy
t t
o o (2.8)

The shielding effect, due to the functional derivative in LI,, is clearly seen in

the factor

8 (ta=t)(Li+L}) § (2.9)

K(t: —h) = G‘(tg - t;)/;‘z SA;(..-.) JA;(z) .

The L! terms in K(¢; — ¢,) do not annihilate when applied to objects like

{8(LY) #/5 A3}, since these are only gauge covariant and not gauge invariant,

6 "
L! A (E) (ZH"d #£0. (2.10)

Similar shielding is found to all orders in L!. It is also easy to see that the
shielding disappears when we set a,(t) —t;) = §(t3 — ¢t,), which results in a

Z-independent form for eq. (2.8).

We have also studied the form (2.7a) as a power seriesin A = ¢ — to (and
the coupling ¢). With a,(t) = 4%|t| exp[—4?|t||/2, the Z-dependence sets in
at O(g9A*) for a generic Zwanziger function Z, and at O(gA®) for the popular
choice aZ°% = 3. A%. [t is not clear how seriously to take these results however,
since the power series in 4 is afflicted with “secular divergences”, related to

the ultraviolet behavior of the expansion exp|-p*A] = L (-p*4)"/n!.
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As a check on our finite time arguments above, we computed the (infinite
time) one loop correction to the gauge field mass using aZ® = 9 - A® and
the techniques of Ref. [19]. We find an o dependent mass, which diverges as

4 — 00, in accord with the arguments above.

The diagrams contributing to the gluon mass are shown in Fig. VI-1.
For simplicity, we only consider here the Zwanziger-Feynman gauge (where
the gauge parameter a = 1), so that the gluon Langevin Green functions
are diagonal in tensor iqdices. Since similar computations have already been
presented for the case of scalar electrodynamics in Chapter III, we will omit

the details here.

In this case the sum of the contributions of the diagrams in Fig. IV-1a,

which are equal, is

6 / dt, DS (85, 11: k) G2 (to, t; k) V. /'

nval

D(d ., tl,tl,p) (211)

(2 )4

where

Vil = =g |1 (Buubir = Busin)
+ [ (6,,60 = 8u06.) (2.12)

+ f‘l,'f." (5;“5;«) - suuas.\)
is the four-point Yang-Mills coupling, G:‘,(tl,t,;k) is the Langevin Green

function for the gluon, while

D9 = 24, 5% / dts / dt, G% G* o)ty — ¢,) (2.13)
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and the regulator function a A)('r) is the given in eq. (2.9) of chapter ITI.

Truncating the external legs near p = 0, performing the integrations
and contracting the indices yields the zero momentum contribution to the

vacuum polarization

am% o) = -3 1: = N 646,41 (2.14)

for SU(N).

A similar, although more tedious computation for the diagrams in Fig. IV-

1b, yields the vacuum polarization contribution

oo () =2 —‘”— N§®§,, 42 (2.15)

Since the sum of the two contributions does not vanish we find an ezpliest
verification of the breakdown of gauge invariance caused by the incompat-
ibility of Zwanziger's gauge fixing with stochastic regularization. We have

also computed the one-loop vacuum polarization for arbitrary a and find

similar results.
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3. Incompatibility in Scalar Electrodynamics

The incompatibility of Zwanziger's gauge fixing and stochastic regular-
ization persists for any interacting gauge theory. In the case, e.g., of scalar

electrodynamics, the gauge-fixed and regularized Langevin system is

: 58

A, = —E +0,2 +n, (3.1a)
= —rf_ +1g¢Z +n (3.1b):

O _6_'5. —_rch® .
¢ - 6¢ 'g¢ z + ” ] (3.1(:)

where

§ = [d's[}FuFu +1(9, — igA,)81"] (3:2)
(nu(z, t)n(2',t)y = 2a4(t ~ t') 5., 6%(z - 2') (3.3a)
(n*(z, t)n(z,t'))g = 28,4(t =) 64z~ 2') . (3.3b)

Follawing our reasoning above for Yang-Mills, we find analogous Z-depend-
ence in gauge-invariant observables. If the observable in question, $[A], is
a functional of only A,, we find that the Z-dependence sets in at O(g3),
two orders higher than Yang-Mills. The reason is that 6P(A)/64, is still
gauge invariant in the abelian case, so that two powers of the interaction are
necessary to obtain shielding. As a consequence of this counting, a photon
mass should not occur until two loops. In an explicit computation, we have

confirmed that the photon picks up no mass at the one loop level.
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Chapter V: Covariant Derivative Regularization

1. Regulariced Langevin Systems for Gauge Theory

For SU(N) Yang-Mills theory in d-dimensions, we introduce the Marko-

vian regularized Parisi-Wu [8] Langevin system

As(zt) =~ (@) + DR (@0 + [(@)RE@ nbw)  (L1a)

(na(z,t) nu (v, t))n = 286, 6(t — ¢')6%(z - v) (1.1b)

together with the usual prescription for the computation of Euclidean Green

functions
(FIA())) = fim(FlA( &), (L.1c)

where F[A] is any equal fifth-time functional of the gauge field A3[n]. Our

notation here is

= ;/(dz)F:y(z)F:y(:), F:, = a“A: - avA; "'gf‘“A:‘Az
(1.2)
D:.=5“a,.+gf°“A;, (d-‘l)Edd:

and we have chosen* to add to a Zwanziger gauge-fixing term D:" Z%, which
we will specify as aZ® = 9 - A° for computational purposes. We will also

check below, at the Schwinger-Dyson level, that gauge-invariant quantities

do not depend on the gauge-fixing.

‘Although Zwansiger's gauge-fixing is desirable and natural in our scheme, other gauge-

fixings, such as that of Ref. [44], may also be employed.
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The regulator R2}(4), which multiplies the white noise n; is a function
of the covariant Laplacian
a3 = [(d2)(D)Z(D)3

(1.3)
(Du)3y = Dpt(2)é%(z - v)

so that R!3(4) = R2(4). In the absence of the gauge-fixing term, this
construction, a gauge-covariant parallel transport of the noise, guarantees

the gauge covariance of the regularized Langevin system under the local

d-dimensional gauge transformation

As(z,t) — 0% (z) AL(z,2) (1.4a)
na(z,t) — Q*(z) nz(:, t) (1.4b)
R2(4) — a*'(z) 0¥ (y) REY () (1.4¢)

where (1(z) ¢ SO(N? - 1) is in the adjoint representation of SU(N).

Our scheme is therefore the natural generalization of the simple scalar
prototype regularization studied in I {29]. As discussed in that reference, the
hope for regularization lies in the fact that we have applied a gauge-covariant
ultraviolet softening to the noise, which controls the quantum behavior of
the theory. In particular, every closed loop contains at least one noise con-

traction, and therefore a certain amount of regularization.

To maintain the naive large cutoff limit, we must also require that R(q)

approach unity as the cutoff A goes to infinity. This leaves a very large class
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of possible regulator functions, from which we study here only the simplest

set

n AN~"
R()=(1—F) . n=12,-.-- (1.5)

although we mention that analytic forms such as the heat kernel regulator®
R = exp(A/A?) may be technically superior for nonperturbative analysis.
The technical details of the important result that Yang-Mills theory in d-

dimensions is successfully regulated to all orders when we choose

n> [d—;—l . (1.6)

where [z] is the greatest integer less than or equal to z can be found in
Ref. [30]. When explicit examples are needed however, we shall concentrate

on the four dimensional case, for which Yang-Mills is finite when n > 2.

The conventional first step in the weak coupling expansion of the Langevin

equation (2.1) is the equivalent integral formulation
a ¢ ! ab !
Al(z,t) = /_“dt (dy) Gou(z — y,t — t)
x [Vi(v,t) + Ly, oy + [ (dz) R¥ n(2,t")] (1.7)
» ? a » ] ("7 B 1)
in which

G::(-" -yt —t) =8%9(¢t - t') /(dp)¢~"n-(=—v)

X [Tuwe ) + Ly,em 4] (18)

8The heat kernel regulator is discussed in Ref. {34].
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is the Langevin Green function, and T,, (L,,) is the standard transverse

(longitudinal) projection operator. Here we have defined the interaction

terms
V) = —gf*d[a,(As A2) - (3,42) A2 + (3, 45) A]
(1.92)
- g’f”“’f‘f‘A‘{A:A:
Y!=gstd4d9 . a° (1.9b)

which come, respectively, from the action and the Zwanziger term, and also
employed the technica.l.device of choosing ¢y = —oo, so that the system has
equilibrated at any finite fifth-time.

Before attempting an iterative weak coupling expansion of eq. (1.7), it is
necessary to expand the regulator in powers of the coupling. As a first step

in this expansion, we write

Ay

- =5t == U" +g(N)5 + * ()% (1.10)

where the regulator “vertices” I} and I; are defined as
()% = f¢(3345(2) + AL(z) 83)6%(z - y)/4° (1.11a)

(L2)3y = 20 AL () A5(2) 6%(z - ) /47 . (1.11b)

In (2.11) the derivatives 3% act on everything to the right. In an obvious

matrix notation, we may then expand R(!) to all orders as

RW(4) = 1_-—-14_/517 = io[Ro(gI', +9'03)|"Ro (1.12)
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where
(Ro)% = 6*((1 - O/4%)7] " (1.13)

Similarly, using the fact that R™ = (R(1))", we may expand R™ to arbi-

trarily high order as

R™ = R} + 3 bure,ar1 RE(gD + ¢*I3) RE
[y

(1.14)
+ Y Oatesmnsa RegN REgD RY +0(gd) .

M & mm]

Further discussion of these expansions, as well as a tree-graphical represen-

tation of the expansions to all orders is given in Appendix B of Ref. [30].

Having expanded the regulator to any desired order, as above, the integral

equation (2.7) may be iterated in a conventional [8] fashion to expand the

Langevin field
- ,
Adnl =3 ™AL, (1.15)
m=0

to arbitrarily high order as well. As an example, the result for the regulator
R(3(4), which is minimal for the Langevin system (2.1) in d = 4 dimensions,

takes the form,

A“”:(z,,tl) = _/;G::(zl - z3,t; — ta)(R§n)} (2, t2) (1.16a)
gA“):(zhtl) = /;G::n(zl el T tz){gV(Q):,(zz,t-_») + g% Y(D):(Iz,tz)

+9 [(dzs) [RAT{ Ro + Ro I RE]'" (22, 75:2) m5 (2s,14)}
(1.16b)
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a 1
g’A(z)“(fvhtl) = /;G:‘,(z; — I3, - t:) {g’V(I):(zz.tz) + gzzy(l):(zhtz)
+* [ (dzs) [RAT{VRo + RoI{" R} + RoI{" B} + RIPRo
+ RO BRI Ry + R\ RATO Ry

+ R, RQFI(O)R.?,]:(I:- T3; ta)ng (2, ‘z)}
(1.16¢)

where

vim =A™, Y™ =v(am),

™ = ra™y, r{™ = r(a™), (1.17)

/;5 /(d.-:l)dtl.

More useful at arbitrary order is the equivalent description in terms of
Langevin tree graphs, which are easily derived from eqs. (1.7) or (1.16),
using the tree-graphical expansions of the regulator given in Appendix B of
Ref. [30]. The Langevin tree graphs in the case n = 2 through O(g?) are
shown in Fig. V-1. These diagrams may be constructed to all orders using

the Langevin tree rules given in Fig. V-2.

We call attention to some salient features of the n = 2 Langevin trees

and their rules:

1. Vertices: In addition to the two ordinary Yang-Mills vertices (which
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include the Zwanziger contributions), there are exactly two extra regu-
lator vertices proportional to A=2, which represent I} and I'; discussed
above. To help distinguish these regulator vertices from the ordinary

Yang-Mills vertices, we have placed a dot at the center of each regulator

vertex.

2. Propagators: The wavy lines are Langevin Green functions, which
are represented by directed lines because they are retarded in fifth-
time. We will refer to these as field lines. Additionally, there are
two types of regulator propagators, being single (Ro) and double (R32)
solid lines, which count the number of free regulator factors Ry(p?) =
(1+p2/4%)"}, where [(dp)e®(*-V)Ry(p?) = (Ro)sy. We remark that the
regulator propagators are irutantaneous in fifth-time, as seen explicitly

in eq. (1.16). This reflects the Markovian property of our regulariza-

tion.

Note also that the Langevin trees contain regulator strings of regulator
propagators. These strings, which correspond to the regulator expansion
discussed in Appendix B of Ref. (30|, consist of sets of single or double
regulator line propagators laid end to end at regulator vertices. In addition
to any number of single-line regulator propagators, each such regulator string
contains exactly one double-line regulator propagator, as seen explicitly in

eq. (1.16). This is a characteristic of the R(¥ regulator function. Whatever
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its length, of course, the entire string occurs at the same instant of fifth-time.

The tree rule regulator vertices for R(™), are the same as shown for n = 2
in Fig. V-2, while a regulator propagator in an R(™) string may contain up

to the nth power of Ry. Further details are given in Appendix B of Ref. (30].

The Langevin diagrams themselves are finally constructed by contracting
the tree diagrams with the rule (2.1b) in the prescription (2.1¢). Following
Refs. [27] and [29], we place a cross at each such noise contraction. In general,

therefore, a cross is the joining of two regulator strings of arbitrary length,

and the entire contracted pair of strings is instantaneous.

As the simplest example, we mention the zeroth order two-point function
shown in Fig. V-3. This diagram contains two Langevin Green functions G5,

and two powers of R(? in the combination

D2 (tr,taip) = 2/:.':., dty /_: dt Gy (ty = ta; p) Gio (82 — taip) 6(ts — t4) R3(p?)

A.

= s ~p3t - -p3ti=ta|/a
=46 [T‘we Pliti=tal + al,e? th=tal/ ] W .
(1.18)
The result for the regularized free gluon propagator is therefore
(Ad(z1) A (1)) = /(dp)e""(""’)D:f,(tn.tx:p)
' (1.19)

.1 -ip-(%y - As
= 6 L /(dp)e p(x1 31) [T‘“’ + aLuy] p_z(pz T 4_2)4 .

Other free Green functions are constructed according to the usual Wick

expansion in terms of the result (1.19).
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In general, any line in a Langevin diagram of the form of Fig. V-3 is repre-
sented by D:f,(tl,t,; p). We shall call this simplest type of contraction (with

no regulator vertices) a simple contraction, since it was the only possible

contraction in the scalar prototype [29].

In the next section, we apply these Langevin rules to the computation of

the one-loop gluon maass.



53

3. Vanishing Gluen Mass

As an introduction to the loop structure of our regularization scheme, and
also as an explicit check of gauge-invariance, we will verify in this section that
the QCD, gluon mass remains zero at the one-loop level, with the regulator
R®), At the end of the computation, we will also discuss the failure of R(!)

to regularize the theory.

As noted in our previous letter [27], there are forty-seven distinct Langevin
graphs in the two-point function at order g?, where diagrams trivially related
by symmetry are not included in the count and will be included in the com-
putations of this section via appropriate combinatoric factors. On closer ex-
amination, however, it is seen that only thirteen make non-zero contributions
to the mass renormalization, while only two contribute to the wavefunction

and gauge parameter (a) renormalizations.

We have found it convenient to group the forty-seven diagrams into four
classes, of which only the first class contributes to the wavefunction and
a-renormalizations, and only the first two classes contribute to the mass
renormalization. The third class contributes only to the finite part of the
vacuum polarization, which will not be considered in this paper, while the

diagrams in the fourth class vanish identically.
Class_1, (three ordinary diagrams).

These diagrams, shown in Fig. V-4, are the ordinary non-vanishing Langevin
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diagrams that contain only (Zwanziger gauge-fixed) Yang-Mills vertices, no
regulator vertices, and therefore only simple contractions. This class includes
all the dia.gra.ms that contribute to the wavefunction and a-renormalizations
(p? In A? behavior), but, by themselves, these diagrams would yield a non-
vanishing gluon mass (proportional to 4?), since they are regularized by what
amounts to a naive gauge non-invariant cutoff, the free regulator Ry;. Our
scheme, of course, automatically provides other diagrams, with regulator

vertices, to maintain the gauge-invariance.

Class 3. (eleven eztra regulator contributions). The diagrams in this class
(Fig. V-5) contain at least one I} or I; regulator vertex, and provide the
additional gluon mass contributions needed to cancel the contribution of the
ordinary graphs of class 1. Since a regulator vertex carries an explicit factor
of A=%, the leading logarithmic behavior of any diagram with a regulator
vertex is at moat (In 4?)/4%. It follows that diagrams with regulator vertices

do not contribute to wave function or a-renormalizations.

Class 3 (twelve diagrams which are finite as 4 — o0). These diagrams,
shown in Fig. V-6, also contain regulator vertices, but contribute only to
the finite part of the vacuum polarization. The absence of contributions
to mass renormalization follows on dimensional grounds, looking only at
external legs: These diagrams never have two G's contracting into a D (as
in eq. (1.18)) on an external line. This means that they lack a factor of

p~? relative to the diagrams of class 2. After truncation, therefore, these
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diagrams contribute nathing to I7,,(0). Finiteness as 4 — oo then follows,

since the diagrams contain regulator vertices, and so cannot contribute to

the wave function or a-renormalizations.

Class 4 (twenty-one diagrams which vanish identically). This final class
of diagrams is shown in Fig. V-7. The tadpole loops vanish as usual by
f*¢ antisymmetry. The remaining diagrams vanish due to the (fifth-time)
retarded property of the Langevin Green functions, which contribute a factor

of 8(t, —t3) 8(¢3 —t,) = 0 to each diagram.

As an explicit example, we evaluate the ordinary diagram V-4b, shown
with all relevant indices in Fig. V-8. Using the Langevin tree rules of Fig. V-
2, we obtain for this diagram
8 f dt, f dt f (dk) G2 (to t1; p) D2 (to,t1: p) V241 (0, =k, k)

(2.1)
x chb("kv k,0) D: (t1,ta; k) G.{:(th ta; k)

where D:f, (ta, 1; p), corresponding to each simple contraction of the diagram,
is defined in eq. (1.18). We have also neglected the dependence of the vertex
factors on the external momentum p, since we are only interested here in the

contributior ¢ the gluon mass. After performing the fifth-time integrations,
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and some tensor algebra, we obtain the value for this diagram near p =0 as

[ﬁeu(Tr;gp) + aL;;(P) )]

[29 fsflfifﬁé (8 + 3&) /(dk)F(—kzii;:A_z);] (2.2)

% [aa(Tv;gp) + QL;(P))] )

Truncation near p = 0 is accomplished by removal of the two factors in
brackets, resulting in this diagram’s contribution to the mass renormalization

A.

310 e

(2.3)
(5 + 3a) 5 6§42

for SU(N). In units of N 9’6,..,6"4’ / (41r)’, this result is recorded with Fig. V-

4b.

The contributing diagrams with regulator vertices are generally easier to
evaluate. In the case, for example, of diagram V-5e, shown with all indices

in Fig. V-9, we obtain for p = 0
to
2 [ dnGialto tiip) Ro(p) [ (d)GY5 (11, i )

(0 =k, k)rlwl( k,O,k)ﬁl'\&;.Dﬁ(to,h;p)

- [5e-(TM(P) Lm(P))]

o +a p (2.4)
kz

[_-g*Nﬁ"‘a a [ (dk)(‘,;?:p)—.]

p3 + p2

% [554(Tv0(p) aL,, (P))] :
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in which we have used
" — 1 g ‘
Ga(t1,t1, k) = 56 Ocs. (2.5)
Then, truncating as above, this diagram’s contribution to the gluon mass is
(2 P ]
TWL(0) = —2 == 66,4 (2.6)

as recorded under diagram V-Se.

The value of each of the remaining contributions in this computation is
recorded, in units of N¢?6,,6*4?/(4x)3, under its diagram in Figs. V-4 and
V-5. The reader may easily verify that the sum of all contributions is zero,

so the gluon remains massless to this order.

The computation of the wavefunction and gauge parameter (a) renor-
malizations, which are controlled entirely by logarithmic contributions from
the usual diagrams V-4b and V-4c, has been given in Ref. [30]. We remark
here only that the results are the same as that obtained by dimensional reg-
ularization of the Zwanziger gauge-fixed theory. This comes as no surprise,

since these diagrams contain no regulator vertices.

We finally comment on the inadequacy of the regulator R(!) in four di-
mensions. In fact, the “ordinary” diagrams of class 1 are :‘egul.arized by
any member of the regulator family including R(!), but n 2 2 is required
for finiteness of certain class 2 diagrams, which contain regulator vertices.

This is easily seen by looking back, for example, at diagram V-5e, and the
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corresponding eq. (2.4). With R(?)| the loop integration of this diagram had
the form [ d*kk*R3(k) < oo, whereas, with R(!), the double regulator line

in the loop would be replaced by a single regulator line. This results in

[ d*kk*R3(k), which is logarithmically divergent.

For n > 2 more powers of the regulator propagators will appear in these
one-lcop diagrams, rendering the momentum integrals even more conver-
gent, and the same vanishing gluon mass will be obtained. Finiteness of the

regularized theory to all orders, when n > 2, has been discussed in Ref. (30].
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Chapter VI: Conclusions

We discussed continuum regularization schemes for quantum field theory

which were based upon the Langevin equation of Parisi and Wu.

The Breit, Gupta and Zaks stochastic regularization scheme [17]| was
analyzed for the case of scalar electrodynamics with the standard covariant
gauge-fixing. Their scheme was shown to work, at least at the one-loop level,
contrary to the ciaim in their original paper. (Other authors [24,25] have
traced their results to difficulties associated with their use of a fermionic

Langevin equation which was not manifestly gauge invariant.)

Although stochastic regularization may be viable perturbatively, diffi-
culties arise which rule out its usefulness as a nonperturbative continuum
regularization scheme. One problem is that the superficial quadratic diver-
gences force a bottomless noise action. Another difficulty is that stochastic
regularization by fifth-time smearing is incompatible with Zwanziger’s gauge
fixing.

Finally, a successful covariant derivative scheme is discussed, which avoids
the difficulties encountered with the earlier stochastic regularization by fifth-
time smearing. The regularized formulation is manifestly Lorentz invariant,
gauge invariant, ghost free and finite to all orders. The gluon mass was
shown to vanish at one loop All the technical advantages of a Markov pro-

cess are retained, including closed form equilibrium equations, which are the
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Schwinger-Dyson equations, and Zwanziger’s gauge Fxing if desired. Further
details can be found in Refs. (29,30,31,32,34,35]. We are hopeful that the

scheme will lend itself to nonperturbative analysis.
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Figure Captions

PFig. [-1: Perturbative Langevin expansion of ¢ in “—%‘- theory.
Fig. I1-2: Expansion of two point function in =5~ theory.

Fig. ITI-1: One Loop correction to the photon propagator in SED using ordinary Feynman

diagrams.

Fig. II-2: Cne Loop correction to the photon propagator in SED using Langevin diagrams.
Fig. III-3: Complete three point function in scalar electrodynamics.

Pig. IIl-4: Complete scalar propagator in scalar electrodynamics.

Tig. IV-1: Diagrams that contribute to the gluon mass.

Fig. V-1: Langevin tree diagrama through O(g3).

Fig. V-3: Langevin tree rules using R(?,

Flg. V-8: A simple contraction.

Pig. V-4: “Ordinary® non-vanishing Langevin diagrams.

Pig. V-5: Diagrams with regulator vertices that also contribute to gluon mass.
Pig. V-6: Diagrams with regulator vertices, which are finite as 4 — oo.

Fig. V-T: Diagrams that vanish identically.

Pig. V-8: Diagram 3.1b with relevant indices.

Fig. V-9: Diagram 3.2« with relevant indices.
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