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Abstract 

In this thesis I discuss possible nonperturbative continuum regulariza-

tion schemes for quantum field theory which are based upon the Langevin 

equation of Parisi and Wu. 

Breit, Gupta and Zaks made the first proposal for new gauge invari­

ant nonperturbative regularization. The scheme is based on smearing in 

the "fifth-time" of the Langevin equation. An analysis of their stochastic 

regularization scheme for the case of scalar electrodynamics with the stan­

dard covariant gauge fixing is given. Their scheme is shown to preserve the 

masslessness of the photon and the tensor structure of the photon vacuum 

polarization at the one-loop level. 

Although stochastic regularization is viable in one-loop electrodynamics, 

two difficulties arise which, in general, ruins the the scheme. One problem 

is that the superficial quadratic divergences force a bottomless action for 

the noise. Another difficulty is that stochastic regularization by fifth-time 

smearing is incompatible with Zwanziger's gauge fixing, which is the only 

known nonperturbative covariant gauge fixing for nonabelian gauge theories. 

Finally, a successful covariant derivative scheme is discussed which avoids 

the difficulties encountered with the earlier stochastic regularization by fifth-

time smearing. For QCD the regularized formulation is manifestly Lorentz 

invariant, gauge invariant, ghost free and finite to all orders. A vanishing 
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gluon mass is explicitly verined at one loop. The method is designed to 

respect relevant symmetries, and is expected to provide suitable regular-

ization for any theory of interest. Hopefully, the scheme will lend itself to 

nonperturbative analysis. 
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Chapter I: Introduction 

The dream of nonperturbative covariant-derivative reguiarizaticn Tot con­

tinuum gauge theory came essentially to a stop in 1972, when Lee and Zinn-

Justin [1] observed that the regularization of the propagators was cancelled 

by high-derivative vertices at the one-loop level. Slavnov [2,3] has since pro­

posed a hybrid action scheme, superposing an intricate special treatment of 

one-loop diagrams, in the Faddeev-Popov approach [4] to covariant gauges. 

Until the Gribov ambiguity [5] in this approach is resolved, however, this 

scheme must be considered as a perturbative prescription. At least two geo­

metric [6,7] approaches to the problem have also been proposed, but, in both 

cases, we are unaware of detailed perturbative analysis. 

In 1981, Parisi and Wu [8] introduced stochastic quantization, an ex­

tension to quantum field theory of earlier work in the theory of stochastic 

processes [9]. The program reduces quantum field theory to a Gaussian 

stochastic process called the Langevin equation, which usually runs in an 

auxiliary "fifth-time". At first sight, stochastic quantization appears to be 

no more than an causing alternative to conventional Hamiltonian and action 

formulations. In fact, however, the approach has given birth to a number 

of new ideas which are by no means obvious in the conventional formula­

tions. Among these we mention Zwanziger's gauge-fixing [10,11,12], large 

JV quenching [13,14], large N master fields [14], stochastic stabilization [15], 
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stochastic regularization [16,17,18,19,20], the QCD4 maps which run in or­

dinary time [21], and numerical applications of the Langevin equation in 

lattice gauge theory [22]. 

Stochastic regularization by fifth-time smearing as proposed by Breit, 

Gupta and Zaks [17] was the first proposal for new gauge-invariant regular­

ization, and is based on the ideas inherent in stochastic quantization. How­

ever, the conclusion reached by these autho/s was that the applicability of 

their stochastic regularization to perturbative computations is problematic. 

The claim was, that although the symmetries of the theory are preserved, 

the naive conservation laws are not preserved, so that stochastic regulariza­

tion may not be a satisfactory scheme. However, the relevance of this fact to 

regularization and renormalization la not clear. For example, Slavnov'a hy­

brid higher covariant derivative method ruins the conservation of the naive 

Noetht currents, but is certainly a good perturbative regularization scheme 

for gauge theories [3]. 

Furthermore, Brett, Gupta and Zaks attempted to apply their id?a to 

fermionic QED which is unfortunately clouded by technical difficulties as­

sociated with the nonequilibration of the naive Langevin equation [23]. As 

first pointed out by Ishikawa [24], and later analyzed in detail by Kalfuss 

and Meissner [25], the breakdown of gauge invariance encountered by Breit, 

Gupta and Zaks can be traced to their use of a Langevin equation which 

was not manifestly gauge invariant. Ishikawa has also proposed a Langevin 
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equation for fermions which avoids these problems [24]. 

To avoid the technicalities associated with the stochastic quantization 

of fermi fields, we chose to analyze the Briet, Gupta, and Zaks stochastic 

regularization scheme in scalar electrodynamics (SED), a discussion of which 

is given in Chapter HI as well as Ref. [19]. In contrast to their results 

for fermions, for SED the scheme preserves the masslessness of the photon 

and the tensor structure of the photon vacuum polarization at the one-loop 

level. Furthermore, the scalar wavefuncticn renormalization, 2i, is shown to 

be equal to the one-photon vertex renormalization, Z\, to all orders of the 

stochastically regularized theory. 

Although the original difficulties encountered by Briet, Gupta and Zaks 

have been circumvented, further difficulties arise which are discussed in 

Chapters HI and IV as well as in Ref. [26]. One problem is that the su­

perficial quadratic divergences of gauge theories force a bottomless action 

for the noise which ruins the nonperturbative quality of the scheme. An­

other difficulty is that fifth-time smearing is incompatible with Zwanziger's 

gauge fixing [10], which is the only known nonperturbative [ll] covariant 

gauge fixing for nonabelian gauge theories. Furthermore, the resulting non-

Markovian evolution loses much of the formal machinery of the unregulated 

Markov process, making the analysis of the system quite difficult. 

To avoid the problems associated with stochastic regularization by fifth-
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time smearing, we have developed [27] a covariant derivative regularization 

scheme which is also based on stochastic quantization. We retain in distinc­

tion to Ref. [17], all the technical advantages of a Markov process, including 

closed form equilibrium equations, which are the Schwinger-Dyson equations, 

and Zwanziger's gauge fixing if desired. The resulting regularized theory is 

manifestly Lorentz invariant, gauge invariant, ghost-free and ultraviolet fi­

nite to all orders. We are hopeful that the formulation will lend itself to 

nonperturbative analysis.1 

In chapter V, the Langevin formulation of the covariant derivative reg-

ularization scheme is set up for the case of Yang-Mills. Also, a one-loop 

computation of the vanishing gluon mass ia included as an explicit verifica­

tion of gauge invariance. Further details of the scheme can be found in the 

series of papers Refs. [29,30,31,32]. 

The first paper I [29] in the series is on scalar field theory and is de­

signed partly as a pedagogical vehicle to introduce, in the simplest possible 

context, the relevant regularized Langevin and regularized Schwinger-Dyson 

techniques. The scalar context ia also the simplest in which to study the 

curious feature that the scheme is not an action regularization, a fact which 

is crucial to its success La regulating theories with local symmetries. A renor-

malization program is checked through one loop, including a computation of 

'After the completion of this work, a nonperturbative analysis appeared [28j using the 

scalar prototype regulator described in Ref. (29|. 
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the /^-function in <t>l and a check of unitarity of the renonnalized theory. 

The second paper II [30] dicusses the case of gauge theories in detail. 

Among the topics covered are regularized Langevin equations and diagrams 

for Yang-Mills, regularized Schwinger-Dyaon equations and diagrams, finite-

nesa of the Green functions to all orders and regularized functional Lapla-

cians. 

The third paper EI [31] discusses the one-loop Yang-Mills ^-function in 

the scheme, demonstrating that the uaual results are obtained. Finally, the 

fourth paper in the series IV [32] discusses some further aspects of renormal-

ization. 

Two additional papers describe the case when an exponential (heat kernel 

[33]) is used aa the regulator function [34] and the case when fermions are 

introduced into the system [35]. 



Chapter II. Overview of Stochastic Quantization 

Stochastic quantization is baaed upon some well known ideas in nonequi-

librium statistical mechanics [9], For simplicity, at first, the stochastic quan­

tization of a single scalar field, <f>, with action, S{4>], will be considered. The 

usual starting point of stochastic quantization [8] is the Langevin equation, 

~^r -~^(xTo + r , ( x' 0' ( L 1 ) 

in which t is a fictitious fifth-time variable, not to be confused with physical 

time and x represents the four physical space-time dimensions. Here, 17 is a 

five dimensional random field with Gaussian probability distribution, 

/ Dn exp (~ i / r;J (x, t) d*xdt) 

By evaluating the generating functional, («xp(/ Jtjd*xdtjj , all the n-point 

rj correlation functions can easily be calculated. After a simple calculation 

the two point correlation is found to be 

<!»(«,«)H(*\0>, - 2**(* - x')S(t - I") , (1.3) 

while all other connected n correlations vanish. 

The connection to the standard formulation of quantum field theory is 

arrived at by evaluating the equal fifth-time expectation values. That is, it 

is possible to prove that 

Um {<p(xut)<p[xltt)...^{x^t))^ = / p ^ e-s|»| ' ( L 4 ) 



7 

where S[<t>] is the four dimensional action. Note that on the right hand side 

of the equation the field, <£, is a function of the four physical space-time 

dimensions, while on the left hand side of the equation, 4> is a function of 

the five dimensional extended space. By starting the Langevin system at 

t 0 = — oo, the system is equilibrated for any finite fifth-time, so there is no 

need to take the limit of infinite fifth-time to make the correspondence to 

the standard formulation of field theory. 

There are quite a few proofs in the literature of the equivalence of stochas­

tic quantization to the standard procedures of quantization. One way to 

make the connection ia by defining the Fokker-Planck probability [36], which 

describes the probability density of finding the field ^ at a given value under 

the Langevin dynamics. By deriving an evolution equation for the Fokker-

Planck probability, it is possible to show that for essentially arbitrary ini­

tial conditions, at equilibrium, the Fokker-Planck probability reduces to the 

probability density of the ordinary formulation. There are also proofs based 

on the various perturbative expansions of stochastic quantization [37]. An­

other rather elegant proof makes use of a hidden supersymmetry [38]. 

The Langevin equation can be used to perturbativeiy solve quantum field 

theories. In general, the lagrangian will consist of a kinetic term plus an 

interaction potential. Thus, the Langevin equation is 

£ ^ i £ l + (_a» + ms)^(i,t) = -*"(*(*, t)) + n(x,tj, (i.5) 



where V'(<£) is the derivative of the potential with respect to the field <f>. One 

way to handle this equation is with the method of Green functions. 

a C ( I - I ' ' t - t ' ) + ( - 3 » + m ») G ( I - I ' i t - t ' ) = i'(x- I')f(t-t'), (1.6) 
at 

The causal Green function in coordinate space is 

G{x -xl,t-H) = 9{t- 0 J ^ e-<p("')e-(pa+<»1H'-'') . (1.7) 

The Green function can be used to rewrite the differential equation as an 

integral equation, 

*(*,«) = / ^ / l * G ( * - * ' . * - 0 M x ' , 0 - ^ W , * ' ) ) ] , (1.8) 

that contains the initial condition that the field vanishes at t0 = -oo, as 

well as the causality requirement. To simplify matters, a compact notation 

is introduced. 

C , i s G ( x - x i , * - t i ) , ihs ir tx t . t i ) , fafdtxij^dti.iis) 

By iteration the integral equation (1.8) can be solved as a perturbative series. 

* ( * , 0 » / 1 G . i f ? t - / i C 7 . i V , ( ^ G u n a - ^ G f l , v ( | a G 1 s f ? 3 - • • • ) ) • (MO) 

An explicit example of how the the Langevin equation can be used to 

generate a perturbation series is the massive scalar <j>* theory. To the first 



order in the coupling constant the field is given from equation (1-10) to be 

*(x,<) = f G . m - - f G«i J G urjj 
3 

+••• (1.11) 

The tree diagrams corresponding to the perturbation series are given in 

Fig. n-1. Each line corresponds to a Green function, while the crosses at 

the ends of the diagrams represent the noise term, TJ. The vertex factors axe 

the same aa for ordinary Feynman diagrams, up to a possible combinatoric 

factor. 

The loop diagrams come about by piecing together the tree diagrama 

(Fig. II-2). For example, the two point correlation function is 

<0(x,O*(z\i ,)>„ = (JJ2G.iG**1iV*) 

(1.12) 

From equation (1.2), the rt-point TJ correlation functions are sums of products 

of delta-functions. The delta-functions can be thought of as glue that holds 

the tree diagrama together to form the n-point 4> correlations. As will be 

discussed in the next section, stochastic regularization consists of smearing 

the delta-function glue in fifth-time. 

The aeroth order contribution is given by 

Mx,tMx,0>! . 0 ) =D(x-x',t-t') 
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= 2J r

iG, iG gi 1 (1.13) 

r d4p •, «8-(p'+"»')i«-«'i 
J (2ir)*e p' + m> • U ' 1 4 ) 

Therefore, in momentum space, the zeroth order free propagator is given by 

e-(p 2+« a)l«.-«al 

where the subscript on Du(p) refers only to the fifth-time coordinate. After 

replacing the TJ correlations with the appropriate delta-functions and com­

bining terms that differ inly by dummy indices, the first order contribution 

ia given by 

{*(*,«)*(*'. 0>i l ) = -2A fJJjG.xG*tGtlGnG7i + G^Gn2GnGnGw] . 

(1.16) 

By explicit evaluation, it is easy to check that for t = t', the same result is 

obtained as by using ordinary Feynman diagrams. 
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Chapter III: Stochastic Regularization of Scalar 

Electro dynamics 

This chapter discusses the stochastic regularization [17,18] of scalar elec­

trodynamics, further details of which can be found in Ref. [19]. The infinite 

part of the photon self energy is calculated to one loop order using the 

stochastic regularizer and the infinite part of the photon vacuum polariza­

tion tensor is shown automatically to come out transverse, as it should. The 

photon does not acquire a mass at the one-loop level, because at zero exter­

nal momentum the photon vacuum polarization is shown to vanish. By a 

diagrammatic analysis, it ia shown that the Ward identity that equates the 

scalar wavefunction renormalization, Zj to the one photon vertex renormal-

ization, Z\, holds to all orders of the stochastically regularized theory. 
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1. Stochaatic Regularization 

Since an extra dimension is present in the Langevin approach, the in­

finities can be smeared without destroying any relevant symmetries of the 

corresponding four dimensional theory. The preservation of the symmetries 

that are present in the infinite theory ia crucial to finding a satisfactory regu­

larization scheme. A time smeared system is known as a non-Markovian sys­

tem [9]. In general, such a system can be expected to be less divergent than 

its Markovian counterpart. From the perturbative point of view, stochastic 

regularization can be thought of aa preventing the loops of the correlation 

functions from completely closing on themselves in the fifth-time. 

There are at least two choices for fifth-time amearing the Langevin sys­

tem. Either the Langevin equation or the probability distribution of the 

random noise, tf, can be smeared. By studying the first order correction 

in the \<fi* theory, it is possible to show that the non-Markovian Langevin 

equation, 

- g j - - - y d * ^ ( f - l j - j p - j +„(x,0 , (1.1) 

where a^ ia a amearing function, can at beat only remove two degrees of 

divergence in the perturbation theory. Quadratically divergent integrals be­

come logarithmically divergent, and there doea not exist a regularization 

function that does better. 

The other possibility ia to smear the n probability functional [17,18]. 
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In this scheme, the Langevin equation ia left alone, while equation (1.2) of 

chapter II is replaced by 

_SDnF[4>(n)\^{-\Ifi{^t)a-A

l(t^t')r,(x,t')d}xdtdt') 
Vmvmn - fDT1vxp(-ijnfrt)a-l(t-t')T,(x,t<)d*xdtdt>) • 

(1.2) 

This changes the TJ correlation to 

(r,(x,«)'7(x',0), = 26*(x-x') aA(t - t') . (1.3) 

The smearing functions aA and ajl are functional inverses of each other, in 

the sense that 

/ dtT aA[t - t") a ; l ( f - 0 - 6(* - *') • (1.4) 

The hope is that, because 

Jim « * ( e - 0 - * ( < - * • ) . (1-5) 

as A becomes infinite, the original theory is recovered with all relevant sym­

metries intact. 

Since the Langevin equation is unaffected by the stochastic regularization, 

the physical field is the same as in the unregularized case, so that 

(*(z,0*(*',0>! r

0 1 = / i / i G, 1 G, . , ( r 7 l f 7 2 ) F r . (1.6) 

In this case, however, the two point rj correlation is given by equation (1.3). 
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Working in physical momentum space the zeroth order propagator is 

D*3(p) s2JdtafdtiGls{p)G2i{p)aA(ti-tA) (1.7) 

= 2 P <fc3 /"' <ft4e-(«»-«.)(i'J+«»:,)e-('»-'«)(pJ—3)a/1(ts - i<) (1.8) 

• 2 / ~ «-"('»-> ^ ( f ) , (i .9) 
/ 2JT (p 2 + m 2 ) 2 + £ s v ' 

where the Fourier transform of the smearing function, ctA[E), has been 

introduced. Since there is an extra power of p 2 in the denominator over the 

ordinary Feynznan propagator, a reduction of two degrees of divergence can 

be obtained, if aA(E) cuts off for large values of E. Since all loops in the 

perturbative expansion of an arbitrary theory contain at least one factor of 

<XA{E), the logarithmically divergent loops can be expected to be rendered 

finite. 

It is a little more difficult to regularize a theory whose diagrams are 

quadratically divergent. For example, the first order correction to the scalar 

propagator in <p* theory, is 

<*(xi,«iM*i.e«))j,l, = - | ( / , / 4 ( G " G » + G » G '«! * [fs

G*im\) 

+ ^ 3 ( f c ) G 1 3 ( A : ) ] / ^ _ D s » . 
(1.10) 

It is possible to find a necessary condition on the set of functions that can 
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be used as regularizers by studying the loop of the first order correction [17]. 

In this case, the loop is decoupled from the rest of the diagram, so the loop 

can be studied by itself. The loop is given by 

= 2 jH dt< jf" *• / 4jk . - ^ M ^ W * * " *•) (l."b) (ar) 

(4») 

In order for the integral to be finite, a necessary condition on the regular-

^ / > i . (LIU) 

ization function is that [17] 

«A(0) = 0 . (1.12) 

Using the Fourier transform of the smearing function, aj,(E), condition 

(1.12) can be rewritten as 

j % o u ( * ) » 0 . (1.13) 

Therefore, to remove quadratic divergences, the support of O-A{E) is not 

positive. The generating functional in Euclidean space, in general, won't be 

well defined as can be seen by looking at the generating functional written 

in terms of the Fourier transformed fields. 

Z[J] = JP»«p(-J t f r8 [jM**)IV a.CSW>,gMr,s)]) 

(1.14) 
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This action is unbounded from below, which seems to rule out the nonper-

turbative usefulness of the stochastic regularizer for quadratically divergent 

theories [39]. For logarithmically divergent theories, such as supersymmetric 

theories, the nonperturbative usefulness of the stochastic regularizer is not 

ruled out. 
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3. Stochastic Regularlzatlon of Ferturbative Scalar Electrodynamics 

The manifestly covaxiant gauge-fixed four dimensional action of euclidean 

scalar electrodynamics is 

S[ i4 , , * • ,* ! - /** [-lA^ + ^L^d'Av + Kd^-icAjtl' + mtW . 

(2-1) 

Using the standard Feynman diagrammatical techniques, the quantum cor­

rections to the vacuum polarization in scalar electrodynamics can easily be 

calculated. In doing the calculation, care must be taken, because the dia­

grams are infinite. For example, the first order correction to the vacuum 

polarization in euclidean space is given by (Fig. IH-1): 

!!„,{*) - ze V . J ( 2 j r ) 4 ^ + m , + J J5JJ; [ ( f c + p ) , + m , ] ( p 2 + m 3 ) • 
(2.2) 

Using a naive momentum cutoff, A, on the integrals, to leading order in the 

cutoff, one obtains 

Thus, this naive regularizer explicitly breaks gauge invariance by giving the 

photon a mass. 

An example of a well known gauge invariant regularization scheme is 

dimensional regularization [40]. In this scheme the dimension of space-time 

is "analytically continued" to 4 — t dimensions, where the integral is finite. 

In this case, the photon mass contribution of each diagram just vanish to 
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give a gauge invariant vacuum polarization, 

TI„{k) = j T ^ u (fcM^ - fcI^) ^ — + regular terms , (2.4) 

where the usual connection, \ «-> hi .A2, has been made and where A is a 

cutoff parameter with units of momentum. 

As first discussed by Parisi and Wu [8], it is possible to formulate gauge 

theories without the need for gauge-fixing, by using stochastic quantization. 

The gauge invariance manifests itself by a nonequilibrating random walk in 

the gauge parameter space. Since the physically interesting quantities are 

gauge invariant, the wandering in the gauge parameter space is essentially 

irrelevant. In fact, as Parisi and Wu pointed out, it is possible to rewrite the 

Langevin equations in terms of gauge invariant fields. Another simple way 

to avoid the nonequilibration of the abelian gauge field is by introducing a 

simple gauge-fixing term, since the property that gauge-fixing is unnecessary 

is unimportant for this study of regularization. 

The Langevin equations of the gauge-fixed scalar electrodynamics are 

d$ 
-£ = (a 2 - m') 4> - ieA^d^ - ied^A^) - e2AllA^ + rj (2.5a) 

dp ~ - a (d2 - m a ) <j>* + ieA^f + ied^A^') - e3A(iAIA^ + ij* (2.5b) 

dA 1 — <-
-=?• = (T^d2 + -L^d2)Au - ieaVfo - djfi - 2e2All<j>'<f> + ^ , (2.5c) 

ul Ct 
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with unsmeared expectation values defined by 

_ J DVJTI'DTI FjA., <f>\<j>] exp(-l /[ty» + 2r,'n] d*xdt) 

(2.6) 

The causal Green function for the photon Langevin equation is 

<**.(*. 0 = »(t) f ^ e'1" [T^(k] «"*'• + L^{k) «-*'«/•] , (2.7) 

while in the unregularized theory the zeroth order propagator is 

D J U , (x,t)s(A ( l (x 1 *)A.(0,0)); , ) 

_ f <f** -.*» ^„(fc) k,t OtL^jk) k»t/e 
~ y (2*)« *» + * » 

(2.8) 

(2*)< 

where T|U,(fc) and ^^(fc) are respectively the transverse and longitudinal 

projection operators. The two point functions for the scalars are given in 

equations (1.7) and (1.14) of chapter II. As with ordinary Feynman diagram­

matic calculations the simplest gauge to use is Feynman gauge, where a = 1. 

Henceforth, the Feynman gauge will be used exclusively. 

An example of a function that satisfies the condition of equation (1.12), 

and renders the loops finite, is [17] 

^ ) ( t _ 0 = £!^le-^-.'l, ( 2 .9) 

The superscript refers to the fact that the Fourier transform of the above 

regulamation function has a double pole structure. For calculational pur­

poses it is easier to use a function whose Fourier transform has a single pole 
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structure. Namely, 

i )(t-o = 4 ^ 3 M i i , (2.10) 

which does not satisfy the requirements of a quadratic divergence regular-

ization function. The two functions are related by 

# (,_ 0._*£ A* 
(2.11) 

Therefore, a^ can be used until a divergent integral is to be evaluated, where 

equation (2.11) will be used to replace ay with atf\ within the calculation. 

Since this section is only concerned with the perturbative one loop ex­

pansion of the photon propagator, the photon random noise field need not be 

fifth-time smeared, since only scalars appear within the loops. Using equa­

tions (1.8) and (2.10), the zeroth order regularized scalar two point function 

is 

A2 A* £iV(p) - 1 ^ 1 - 1 ^ * * " ) (ps + m')(pa + m» + 4») (p2 + m') 1 - A\ 

+ e-a»|i»-i,| A* 
(p» + m J ) 1 - A* ' 

(2.12) 

Note that the apparent singularity at p2 + m* = ±Ai ia fictitious. 

The seven Langevin diagrams of the one-loop correction to the photon 

propagator in scalar electrodynamics are given in Fig. Ill-2. Since only 

physical expectation values are of interest, the external fifth-times are taken 
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to be equal. Introducing the simplifying notation 

aSp1 + m2 , b={p + k)2 + m2 , (2.13) 

the diagrams with no external momenta in the loop (Fig. III-2a) are given 

by 

P$\k) = - 4 e 3 ^ J At Uff (fc) GSr(fc) 

* "if-1 JftP a(a + A*)* ' ( 2 ' 1 4 b ) 

The other diagrams are significantly more complicated because of the inter­

twining of the external legs with the loop. In order to simplify the expres­

sions, the vertex factors will be written as 

V^ = e»(2p + fc)„(2p + *)„ . (2.15) 

The diagram in Fig. III-2b is given by 
» 

P$\k) ^f^fdttGZWCKWj^V^DWip + VDWip) (2.16a) 

- * « . W ,4 9 \( A* * \ [ d4P V * l 

" *J V " l JX?) \~A* dl7) J W? V 6 » - V a J - At* 
f Ai2A7

7 Aj* Ai2 

[ab(a + b + k*) a(o + ifcJ + V ) b{b + Jfc* + A2

2) 

I 
* WTA7TAT)\\A^=A 

(2.16b) 
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x [ ( V + a + 6 + k2)A2* + (At

2 + a + 6 + k2) AX

A 

+ (3** + 26 + 2a) W + k2(2k2 + 36 + 3a) ( V + V ) 

+ (a + 6 ) ' ( V + At3) + *4(fcJ + 26 + 2a) 

+fca(a' + 3a6 + 61) + a6' + a36] 

/ [a6(a + 6 + k2) [AS + 6) [A2

2 + a) ( V + a + k2) 

x U , " + * + * « ) ( V + * ' + * • ) ] h . ^ -(2-16C) 

where the two regularization parameters are distinguished, in order to be 

able to differentiate individually each of the two regularization functions 

contained within the diagram. Later A\ will be set equal to 4 3 . The diagrams 

in Fig. III-2c contribute a value of 

(2*) 

s t t k 

* y (2*)« ^ * di lVl4*- i i« 

x [*« + i + ^ " 6lFToT6)J} ( 2 , 1 7 b ) 

""~F~y ( 2 ^ " v ^ v 
( * + « + » + * L (2.17c) 

6(6 + A*)[a + 6 + Jfe2)(a + fcJ + ^ ) 

Similarly the last two diagrams can be evaluated. The values are identical 
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to the diagrams just calculated, aa can be shown either by symmetry or by 

shifting the variables of integration. Therefore, the diagrams in Fig. III-2d 

contribute a value of 

P£]\k) = PP'(k) . (2.18) 

In order to make the theory finite the results obtained by using a^ 

are taken and differentiated in order to obtain the results by using a^'. For 

calculational purposes it is better to use the form of the vacuum polarization 

that contains no apparent singularities. After truncating the external photon 

lines the vacuum polarization of the photon is 

n${k) = n$\k) + n$\k) + J7ji>a(jfc) + n}£\k), (2.19) 

where 

1 I « ' , * , — f c - ^ / ^ j - p ^ p . (2.20) 

X [{Ax* + a + 6 + k3)V + ( V + a + 6 + k3) Ax* 

+ (3k* + 26 + 2a) W + k3{2k3 + 36 + 3a) ( V + A2

7) 

+ (a + 6)J( V + V ) + k*(k3 + 26 + 2a) 

+fc,(aI + 3a6 4- 61) + a6a + a* 6] 

/ [a6(a + 6 + Jfc1)^1 + b){At* + a ) ^ 1 + a + fc1) 
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x ( V + & + * J ) ( 4 i J + V + * 2 ) ] [ l i = j l a a i l , (2.21) 

' V W e J fa)* 6(6 + 
A*(2p + k)lt{2p + k)l 

4 2 ) (a + 6 + ife2)(a + Jfc2 + il 2) 
r t t + 6 + * 2 + 4 2 a + 6 + fc2 + i 2 1 
[ 6+ 4' + a + *2 + A2 " J ' [ 2 ) 

* « * ( * ) — ' / 
4 4 (2p + fc)M(2p + fc), <**P 

(2*)* a(a + 4 s ) (a + 4 + Jfc2)(6 + it3 + A3) 

a + 6 + k2 + A2 a + 6 + fc2 + A1 

a + 4 2 6 + fc2 + 4 2 - 1 . (2.23) 

Although these integrals may seem quite formidable, only a few of the terms 

will contribute to the infinite part of the vacuum polarization. 

A fundamental consequence of the gauge invariance of scalar electro­

dynamics is that the photon does not acquire a mass by the higher order 

corrections to the vacuum polarization. Setting the external momentum to 

zero, the exact mass correction to the photon can be found. Explicitly, 

where, 

tf#(°)~tfli,!(0) + 2J7<J3(0) 

jr«*(0) - -8e l f - £ * ^ 
"•' { } J (2*)* (p 2 + m W + m 2 + A 1 ) 2 

(2.24) 

)(P 2 A 2 ) 3 
(2.25) 

and 

WlffVO) - u V / j g t - ^ (2*)« p 2 + m 2 (p 1 + m 2 ) (p 2 + m J + A2)1 

2 
(p 2 + m 2 + 4 2 ) s (2.26a) 
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= 8 ^ ' / ' ^ / ' ^ , . 2 ? ' „,,, (2.26c) 
Jo Jo (4TT)2 (p2 + m 2 + zA2)3 

= 8 e V ( 2 ^ (p» + m»)(p> + FFi» + 4*)» • ( 2 " 2 6 d ) 

Thus, the desired result is 

J 7 i ! ( 0 ) = 0 , (2.27) 

and the mass correction vanishes. 

A direct evaluation of the finite parts of the vacuum polarization with the 

stochastic regularizer is fairly involved and will not be discussed here. We 

have computed only the infinite part of the vacuum polarization for nonzero 

external momentum. The contribution to the vacuum polarization of the 

simplest diagrams is from equation (2.20). 

fljJ'M = -*H.J *fr ( p, + m , K / + m , ^ , ) , (2.28.) 

. - ^ [ i W I. ( = £ £ ) ] . (2.28b, 

The next contribution is given by equation (2.21). By power counting, the 

integral in equation (2.21) is finite even before differentiating with respect 

to A2. Note that the only possible singularity as A ~* oo is logarithmic. 

In fact, since an ultraviolet divergence in A2 can only occur when there is 

an infrared divergence in m 2, the terms with no such divergence in m2 can 

immediately be eliminated as being finite. As a further simplification, k2 can 
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be set to zero within the integral, without affecting the leading order in A2. 

Also m J can be be neglected except where it is needed to prevent an infrared 

divergence within the integral. After performing all these simplifications, 

equation (2.21) is reduced to 

iTji)J(*) = V V i V ^ ^ ^ g i / ^ 2p'(p> + m') 

-t- regular terms. 

(2.29) 

This integral can be evaluated with the usual Feynman parameterization to 

arrive at the result, 

n{£ (*) = 2**- (4^j i k ^ i + Te^lax t e n D f l ' ( 2- 3°) 

where all terms that are finite as A —» oo have not been calculated. In 

the remaining contributions from equations (2.22) and (2.23), k2 can be 

neglected compared to 4 a . As usual, this type of integral is done by first 

Feynman parameterization and then evaluating the momentum integrals. 

After neglecting all the terms that are finite as A —• oo, the result is 

nif(k) - 77SS4(fc) 
.1 ^ ( ^ - m M n ^ - i , M n i ; ) + i ^ ^ ; 

+ regular terms. 
(2.31) 

By adding everything together, the momentum independent pieces cancel 
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and the infinite part of the one-loop vacuum polarization is found to be 

n*" = 5(4^* (*"*" ~ ^ ^ ^ m 1 + r e g u l a r t e T m a - (2*3 2^ 

This is precisely the correct value, as was obtained by using dimensional 

regularization. 

As discussed by Ishikawa [24], a modification in the identity 

can occur in stochastically regularized quadratically divergent scalar field 

theories. The leading behavior of quadratically divergent loops is propor­

tional to A1, while the external legs of the Langevin diagrams may possess 

a A~* dependence. The combination of these two factors can yield an extra 

finite nonzero contribution, in the limit that the cutoff becomes infinite. 

Although it is not clear what the relevance of this fact is to regularization 

and renormalization, it is straightforward to show that no problem occurs 

at the one loop level in the gluon channel of stochastically regularized scalar 

electrodynamics. In order for there to be a possibility of modifying 

{A*M'S6Mt)*]) = ^ 4 ( X l ' Zi)' {2'34) 

where 5[i4„<£*,<£] is the action of scalar electrodynamics (2.1), the photon 

random noise field should also be fifth-time smeared. Keeping only the lead­

ing behavior of the quadratically divergent loops, explicit calculation shows 
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that there is no modification of identity (2.34). The coefficients of the various 

factors of A1 that occur in the one-loop evaluation of the left hand side of 

equation (2.34) can be obtained by comparison to the results for the various 

contributions to the photon vacuum polarization. Just as the quadratic di­

vergences proportional to A2 have cancelled in the vacuum polarization, the 

quadratic divergences cancel in the explicit evaluation of the left hand side of 

(2.34), and no modification of the identity occurs in the stochastic regulariza-

tion of scalar electrodynamics. Of course, in the charged scalar channel, the 

identity analogous to (2.33) would again be quadratically divergent. In the 

case of pure Yang-Mills or QCD with fermions, one would expect the whole 

phenomenon to disappear, because all quadratic divergences are spurious. 
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a. Diagrammatic Proof of the Ward Identity to All Orders 

By working with the standard Feynman diagrams, it is possible to prove 

the Ward identity [41], (in Feynman gauge) 

W V < r ( p , p - ? ) = - e ^ | M , (3.1) 

where V„ (p, p — q) is the complete three point function (Fig. HI-3) and S(p) 

is the complete scalar propagator (Fig. IH-4). A regularization scheme that 

preserves this identity implies that Z\ — Zj. The proof using the Langevin 

formulation is analogous to the proof using ordinary Feynman diagrams. The 

main difference is that there are two types of two point functions to consider. 

In the Langevin perturbative expansion, the external photon line can either 

be Dl^[q) or G]£({q). In this section all orders of perturbation *heory are 

being considered, so the probability density of the photon noise held must 

also be fifth-time smeared. In Feynman gauge, the stochastically regularized 

two point functions, using ay, are 

G£(«) - S^'^'Mti " *.) , (3.2a) 

and 

Dl*(a) = -6 A* d fr-"'-««!«' ( 1 L 
A* 

+ e - * i * . - n i _ _ l 
(3.2b) 

q*-A*\ " 

Since G™u(q) does not have a pole at q2 = 0, vertex diagrams whose 
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external photon line is Gl£,(q), do not contribute to the Ward identity (3.1). 

Vertex diagrams whose external photon line is D%,[q) do contribute, but in 

a simple way, because 

lim9

aD£(<7) = ^ . (3.3) 

The proof of the Ward identity will proceed by showing that inserting a 

photon at zero momentum, q, at a given point in a typical Langevin diagram 

and then multiplying by q1, is the same as differentiating that part of the 

Langevin diagram with respect to the momentum flowing through that point. 

Summing over all the possible ways to insert the photon into a diagram is 

therefore equal to summing over all the possible ways of differentiating with 

respect to the momentum flowing through the scalar lines. The sum over a 

closed scalar loop vanishes, because the loop momentum is integrated over. 

Thus, only the derivatives with respect to the momentum flowing through 

the scalar line that begins and ends externally are left. This is just the Ward 

identity (3.3). 

All that remains to be done is to explicitly check that inserting a pho­

ton at zero momentum at a given point in a Langevin diagram is indeed 

equivalent to differentiating that part of the diagram with respect to the 

momentum flowing through the scalar. There are two types of scalar two 

point functions that appear within a typical Langevin diagram and one type 
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of vertex factor that explicitly contain momentum dependence. Since 

a Gl2(Jb) = e-<* ,+m'H ,«- |«>0(< l - « , ) , (3.4) 

ap9 

(3.5) 

where * = P - E f t , P i« the scalar line momentum, and the p% are the 

momenta of internal photons that are attached to the scalar. On the other 

hand, 

lima3 

t -o 

k 
lima3 

t -o ' H 
Therefore, diagramxnatically, 

a k 
~dp9 I 2 

= 2ekttfdtiGu(k)Gn{k) 

«2cM*i - t , ) G u ( * ) . 

(3.6) 

= lima1 

t-o 
* * ; 

(3.7) 

Similarly, 

Dl2(k) . J dt^dU o& (?„(*) <Ja4(Jb) , (3.S) 

yields 

—e dp* i J< 2 
= 2ck, f dtadt< a£ [{h - h) + (t, - t4)] Gis(fc) GM(*) 

(3.9) 

Attaching the photon in the two possible ways results in 

lima1 

i - o * 
I B 1 2 + l I 2 = 2db„ | i t s | dc« J its «2» <?„(*) G„(fc) G*{k) 

+ 2efc, y <tts J dU J dts a£» Gis{k) GSi{k) G7i{k) 
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(3.10) 

= 2e*„ / ctt, f dt4 <Gl3(ife)G„(Jb) 

^ [(«i " '«) + (*i - *a)I • (3.11) 

Thus, diagrammatically, 

—e dp. 
fc 

3< 
limo3 (3.12) 

The reader may have noted that the fact that adding an external truncated 

photon to Da(k) is equivalent to differentiating with respect to the momen­

tum flowing through the scalar is already contained in the fact that attach­

ing an external truncated photon to Gu(k) is equivalent to differentiating 

Gn[k). However, the point was to explicitly show that the rcgularizer does 

not affect the results. Differentiating the one photon vertex factor yields the 

two photon vertex factor. 

-«£[*fa-25:*-ft)( 
= -2e1Si \ta i (3.13) 

or diagrammatically, 

—€• 
Bpm *> 

* - P ; as lima1 

•-o 7\r (3.14) 

where only the vertex factor is to be differentiated on the left hand side. 

Thus, it follows that the Ward identity (3.1) holds to all orders of perturba­

tion theory. 
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4. Conclusiona and Comments 

In this chapter we showed that the stochastic regularizer does, in fact, 

yield the correct gauge invariant infinite part of the one-loop photon vac­

uum polarization. The Ward identity that equates the scalar wavefunction 

renormalization to the one photon vertex renormalization was shown to hold 

to all orders of perturbation theory. Of course, it is possible that above the 

one-loop level, stochastic regularization breaks down, but the Ward identity 

would still hold. These results seem to indicate that the stochastic regular­

izer may be useful as a regularizer that preserves the symmetries and relevant 

identities that are present in the corresponding infinite theory. 

Although no apparent difficulties appear in SED at the one-loop level, as 

we shall see in the next chapter, a serious problem arises when the stochastic 

regularization scheme is used in conjunction with Zwanziger's gauge-fixing. 

In terms of the attempt to construct a nonperturbative regularization, this 

incompatibility is quite serious since Zwanziger's gauge-fixing is the only 

known nonperturbative covariant gauge-fixing for nonabelian gauge theories. 



34 

Chapter IV: Incompatibility of Stochastic 

Regularization and Zwanziger's Gauge Fixing 

1. Stochastic Regularlzatlon with Zwanziger'a Gauge Fixing 

Two outstanding developments in stochastic quantization [8] have been 

Zwanziger's gauge fixing [10] and stochastic regularization [17,18]. The pur­

pose of this chapter is to point out the failure of the synthesis of these two 

ideas, which leads to explicit gauge dependence in gauge invariant quantities. 

Further details can be found in Ref. [26]. 

In Yang-Mills theory, the two ideas are combined in the Langevin system 

A; a ( i , 0 = D*F^{x, t) + £>»'Z'(x, t) + !£(«, 0 (1.1) 

(»>:(«.0*i(*.0) = 2 a j i ( i - i ' ) r t ^ 4 ( * - * ' ) , (1.2) 

where Djf = 6**3M + g/a**A l̂ is the covariant derivative. The Zwanziger 

function, Z, provides the gauge fixing, while the fifth-time smearing aA(t) 

[dtaA{t) = l, Um aA(t)=6{t) (1.3) 

provides the regularizatian. In the absence of gauge fixing, the stochas­

tic regularization ia manifestly gauge invariant, and presumably provides a 

perturbative* regularization of gauge invariant quantities, since at least one 
3Th« condition 04(0) » 0 is required for regulariiation of theories with quadratic diver­

gences, u discussed in Chapter III. This is not a satisfactory non-perturbative regular-
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noise-regulated propagator appears in every closed loop. The Zwanziger term 

stops the random walk in gauge space, allowing the computation of gauge 

non-invariant quantities such as the Green functions. It is crucial, however, 

to demonstrate that gauge invariant observables have no Z-dependence. 

A standard [42] Langevin argument seems to augur well for the synthesis. 

If G* is the generator of gauge transformations and # is a gauge invariant 

observable, then 

/ ^iZ'(i ,t)"C(x,t)#U(-,()] = 0 , (1.4) 

^-^nsbr (L5) 

It follows from eqs. (l . l) and (1.4) that 

<*[A(.,0])„ = (f *x[D*Fl,{*,t) + n ; ( s , t ) ] ^ M l ) , (1.6) 

which contains no explicit dependence on the Zwanziger function [42]. This 

argument certainly shows that # picks up no Z-dependence during the first 

instant of fifth-time evolution, but, unfortunately, one must be suspicious 

of further, regulator dependent, Z-dependence lurking in the rj-term of eq. 

(1.6). Further investigation of this term leads one closer to Zwanziger's 

original Fokker-Planck language, which we now briefly review. 

In the unregulated case, Zwanziger [10] analyzes the Fokker-Planck equa-

iiation, tines the resulting action for the noise ia bottomless. 
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tion, whose formal solution is 

p„[A; t\ = , - M K W . ) p „ [ A i t0] , (1.7) 

where 

(1.8) 

and 

p„(A;«o] = fi[A(.)-A(-,t0)l. (1.9) 

Here functional derivatives act on everything to the right, and AJ(x,i 0) ia 

the initial condition of the Langevin equation. The observables are then 

computed from eqs. (1.7) and (1.9) as 

<*[A;t]) = f DA*[A{')]p„[Ait] (!•">) 

= e - (« -« . ) (^t t ) # ( A ( . ) ] | 0 > ( L 1 1 ) 

where 

L< = - / * . [ ! * * ( . ) + J^pjlj^r i Xi -/*.*•(,)<>.(,) 
(1.12) 

are the dual operators and the subscript zero means to evaluate at A(x) = 

A{x,t0). The Zwanziger term, L£, which generates a gauge transformation, 

vanishes to all orders in (t — to) when <P is gauge invariant, since L\ is always 

applied to the gauge invariant objects {{V)n$}. As we shall see below, this 
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is not the case in the presence of stochastic regularization. 
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2. Incompatibility in Yang-Mills 

When the Langevin noise is fifth-time smeared, the system is non-Mark-

ovian, and the simple Fokker-Planck formulation is lost. There remains a 

body of standard techniques, including the memory kernel analysis [43], from 

which we draw here only the simplest aspects. 

We begin by considering the Langevin equation (1.1) as a flow equation 

of the form x — v. The density functional for the flow 

p[A(.);t\=6[A(-)-A«(;t)\, (2.1) 

is related to the Fokker-Planck density as 

p„[A(-);tl-(p[A(.)-,«l) (2.2) 

and satisfies the equation of continuity (p + V • (up) = 0) 

p[A{-ytt] + ( lo + I . + L„{t))p[A(-y,t} = 0 . (2.3) 

Here 

W * * ^ 1 * ^ ^ I,(0-/^<(x, t )^ (2.4) 

and L9 is defined in eq. (1.8). As a result, we have a formal construction of 

the Fokker-Planck density 

P„\M')'A = ( r e x p [ - ^ dr[Lo + L. + Ln(r)]])p1.1.[A(-);to] (2.5a) 

= c-(i-l^L*+l-\Texv[-fjTL^T)])pFMUM ,(2.5b) 



39 

valid for any stochastic regularization3. Here T denotes time ordering, while 

in eq. (2.5b) we have introduced an interaction picture with 

£„(*) = e ( , -* o , ( L o + 1 ' , L l | (0 e-( J-'«HLo + L') . (2.6) 

The corresponding results for the observables are 

<#[*(•. ODi = ( 2 " « p [ - far [ 4 + L\ + H(r)l])#[il(.)]lo (2.7a) 

= ( r exp[- £ dr lJ( r)])«-(t-i.)Ct!«i) #[il(.)]Io (2.7b) 

= ( r ex P [ -£dr iJ r (r ) ] )e - ( -«^#[ J 4( . )Ho , (2.7c) 

where T" is anti-time ordering, £* = ~£ip and so on. In eq. (2.7c) we have 

assumed # to be gauge invariant and noted that L\(L\)n$ = 0, since £ 0 is 

gauge invariant. It is not difficult to check that our results, eqs. (2.5) and 

(2.7), reduce to eqs. (1.7) and (1.11) when the regulator is removed. 

We are now in a position to see how stochastic regularization induces 

^•dependence in expectations of gauge invariant quantities. The basic prob­

lem is that the Zwanziger L\ terms inside the ^-average of eq. (2.7c) are 

"shielded" by factors of Lj,, so that L[ hits gauge eovariant but not gauge 

3W« note in paaaing that itoehaatic regularuation if almoat certainly not an action reg-

ulariiatioa •cheme, eince th« Fokker-Planck equation ia not completely regularised: The 

operator Lo h u an explicit SD[Q) divergence in ^-dimension!. Thii does not occur in LQ, 

which operate* on the obeervablea, but ia a warning that there may be unfamiliar pitfalls 

in any renormalisation scheme for ttochaetic regulariiation. 
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invariant objects, and fails to annihilate. To exhibit this clearly, we expand 

eq. (2.7c) thru second order in Lj,, using eq. (1.2), to obtain 

<#[A(. ,OJ>=«- ( ' - ' o ) i S *lo 

+ 2 / ' dtx P dt7 e-^-Wo+^Kih - tJe'W-l <P|0 + • • • 
J to Jto 

(2.8) 

The shielding effect, due to ths functional derivative in Lj,, is clearly seen in 

the factor 

The L\ terms in K(t% — tx) do not annihilate when applied to objects like 

{£(Lo)"#/Jvl^}, since these are only gauge covariant and not gauge invariant, 

Similar shielding is found to all orders in L\. It is also easy to see that the 

shielding disappears when we set ou(rj — t t ) = S(t3 — ti), which results in a 

^•independent form for eq. (2.8). 

We have also studied the form (2.7a) as a power series in A = t —1 0 (and 

the coupling g). With ou(t) = 4 4 | t |exp[-4 J | t | ] /2, the ^-dependence sets in 

at 0{gA<) for a generic Zwanziger function Z, and at 0(gAs) for the popular 

choice aZ* = d-A". It is not clear how seriously to take these results however, 

since the power series in A is afflicted with "secular divergences", related to 

the ultraviolet behavior of the expansion exp[—p1A\ = '£,[~p1A)n/n]. 
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As a check on our finite time arguments above, we computed the (infinite 

time) one loop correction to the gauge field mass using aZa = d • Aa and 

the techniques of Ref. [19]. We find an a dependent mass, which diverges as 

A —* oo, in accord with the arguments above. 

The diagrams contributing to the gluon mass are shown in Fig. VI-1. 

For simplicity, we only consider here the Zwanziger-Feynman gauge (where 

the gauge parameter a = 1), so that the gluon Langevin Green functions 

are diagonal in tensor indices. Since similar computations have already been 

presented for the case of scalar electrodynamics in Chapter HI, we will omit 

the details here. 

In this case the sum of the contributions of the diagrams in Fig. IV-la, 

which are equal, is 

6 / 4 l ^ ( t , l J f l * ) ^ ( t o , t l i * ) V * ! / j ^ ; Z ) M i ( « l , t l ; p ) (2.11) 

where 

/ " * / " ' ( * M A A - * * A . ) v«w I 

is the four-point Yang-Mills coupling. G£t,(ti,ti; k) is the Langevin Green 

function for the gluon, while 

D{dC = 2 ^ *'d / dt> / *« Gw G" °1A (*s - t*) (2-13) 
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and the regulator function a^(r) is the given in eq. (2.9) of chapter m. 

Truncating the external legs near p = 0, performing the integrations 

and contracting the indices yields the zero momentum contribution to the 

vacuum polarization 

i r ( l , i ( ° ) - - s i S i ^ ' " ' * ^ 1 (2-14) 

for SU(N). 

A similar, although more tedious computation for the diagrams in Fig. IV-

lb, yields the vacuum polarization contribution 

Since the sum of the two contributions does not vanish we find an explicit 

verification of the breakdown of gauge invariance caused by the incompat­

ibility of Zwanziger'a gauge fixing with stochastic regularization. We have 

also computed the one-loop vacuum polarization for arbitrary a and find 

similar results. 



A M = • + d„Z + r7M 

* = 
ss 

+ ig<j>Z + TJ 

«£• = . SS 
" s<j>' 

- ig<fZ + rj* , 
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3. Incompatibility In Scalar Electrodynamics 

The incompatibility of Zwanziger's gauge fixing and stochastic regular-

ization persists for any interacting gauge theory. In the case, e.g., of scalar 

electrodynamics, the gauge-fixed and regularized Langevin system is 

(3.1a) 

(3.1b) 

(3.1c) 

where 

S = / d*x[\F^F^ + | (3, - igAM\2\ (3-2) 

<%(x,t)i7„(z',t,)>, = 2etA(t - t ' ) ^ 5 4 ( x - *') (3.3a) 

(n-(x,t)r,(x',t')U = 2aA{t-t')6*(x-x') . (3.3b) 

Following our reasoning above for Yang-Mills, we find analogous Z-depend-

ence in gauge-invariant observables. If the observable in question, $\A}} is 

a functional of only AM, we find that the Z-dependence sets in at 0(^ s ) , 

two orders higher than Yang-Mills. The reason is that 6^{A}/SAli is still 

gauge invariant in the abelian case, so that two powers of the interaction are 

necessary to obtain shielding. As a consequence of this counting, a photon 

mass should not occur until two loops. In an explicit computation, we have 

confirmed that the photon picks up no mass at the one loop level. 
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Chapter V: Covariant Derivative Regularization 

1. Regularized Langevin Systems for Gauge Theory 

For SU(N) Yang-Milla theory in d-dimenaiona, we introduce the Marko-

vian regularized Pariai-Wu [8] Langevin system 

KM = -jjl(^) + D^Zk(x,t) + J(dy)R^)ril(y,t) (l.la) 

« ( x , 0 r?t(y,0), = 26«6lit,6(t - t!)6d{x - y) (Lib) 

together with the usual prescription for the computation of Euclidean Green 

functions 

<J^(0]) = U m ^ ^ - , : ) ! ) , (Lie) 
%—*OQ 

where F[A\ is any equal fifth-time functional of the gauge field J4J(»?]. Our 

notation here is 

S = i f{d»)F^(x)F^(x)% F% 3 d>Al - dvA% - gf^A^Al 
(1.2) 

Df « 6*d, + gf^A^ (<**) s «*z 

and we have chosen4 to add to a Zwanziger gauge-fixing term D^Z*, which 

we will specify as a2* = d • A* for computational purposes. We will also 

check below, at the Schwinger-Dyson level, that gauge-invariant quantities 

do not depend on the gauge-fixing. 

* Although 2wansiger'i gauge-fixing if desirable and natural in our scheme, other gauge-

fixings, tuch M that of Ref. [44], may also be employed. 
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The regulator RZy{A), which multiplies the white noise r^ is a function 

of the covariant Laplacian 

< = /(dz)(DM)«(D,)J 
(1.3) 

so that Aya(<4) = R^(A). In the absence of the gauge-fixing term, this 

construction, a gauge-covariant parallel transport of the noise, guarantees 

the gauge covariance of the regularized Langevin system under the local 

(dimensional gauge transformation 

AS(*,0-n a*(i)A*(x,t) (1.4a) 

^ ( x . o - n ^ * ) ^ ! , * ) (i.4b) 

R$(A) -+ n-'(x) n"'(y) R£'(A) (1.4C) 

where O(x) e SO(N* — l) is in the adjoint representation of SU(N). 

Our scheme is therefore the natural generalization of the simple scalar 

prototype regularization studied in I [29]. As discussed in that reference, the 

hope for regularization lies in the fact that we have applied a gauge-covariant 

ultraviolet softening to the noise, which controls the quantum behavior of 

the theory. In particular, every closed loop contains at least one noise con­

traction, and therefore a certain amount of regularization. 

To maintain the naive large cutoff limit, we must also require that R(A) 

approach unity as the cutoff A goes to infinity. This leaves a very large class 
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of possible regulator functions, from which we study here only the simplest 

set 

J 2 ( " ) = ( l - | F ) ~ ' \ n - 1 , 2 , - . - (1.5) 

although we mention that analytic forms such as the heat kernel regulator5 

R — exp{A/A7) may be technically superior for nonperturbative analysis. 

The technical details of the important result that Yang-Mills theory in d~ 

dimensions is successfully regulated to all orders when we choose 

where [x] is the greatest integer less than or equal to z can be found in 

Ref. [30]. When explicit examples are needed however, we shall concentrate 

on the four dimensional case, for which Yang-Mills is finite when n > 2. 

The conventional first step in the weak coupling expansion of the Langevin 

equation (2.1) is the equivalent integral formulation 

A»(x,0 = f* dt'(dy)Gi,{x-y,t-t') 
J-oa 

in which 

G£(x - y, t - f) = 6a> 9(t - t') / ( d p ) * - * - ' ) 

x [r^e-'^-'J + L^e'^1-^"] (1.8) 

5The heat kernel regulator ia discussed in Ref. [34]. 
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is the Langevin Green function, and T^ [L^) is the standard transverse 

(longitudinal) projection operator. Here we have defined the interaction 

terms 

(1.9a) 

-g*fiedfeftAlAlAt 

Yt = gfuiAid -A' (1.9b) 

which come, respectively, from the action and the Zwanziger term, and also 

employed the technical device of choosing to = — oo, so that the system has 

equilibrated at any finite fifth-time. 

Before attempting an iterative weak coupling expansion of eq. (1.7), it is 

necessary to expand the regulator in powers of the coupling. As a first step 

in this expansion, we write 

^ - ^ T P + rtAtt + a'CAtt (i.io) 

where the regulator 'Vertices" J\ and fj are defined as 

( i i )S = r»r»M'M(x)A* (x) 5 d(x - y)/A> . (1.11b) 

In (2.11) the derivatives d* act on everything to the right. In an obvious 

matrix notation, we may then expand i? ( 1' to all orders as 

R { l ) ( A ) = i - \iA* = £ [ ^ » A + g ' A ) ] " ^ (1.12) 
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where 

(J2o)*S « " [ ( ! - D M 1 ) " 1 ] , , , . (1.13) 

Similarly, using the fact that R(n) = {Rw)n, we may expand .R ( n ) to arbi­

trarily high order as 

* , * • ! 
(1.14) 

n 

Further discussion of these expansions, as well as a tree-graphical represen­

tation of the expansions to all orders is given in Appendix B of Ref. [30]. 

Having expanded the regulator to any desired order, as above, the integral 

equation (2.7) may be iterated in a conventional [8] fashion to expand the 

Langevin field 

Ajifl = £ l - A W W , (1.15) 
mmQ 

to arbitrarily high order as well. As an example, the result for the regulator 

JJ ( , )(d), which is minimal for the Langevin system (2.1) in d = 4 dimensions, 

takes the form, 

A ( 0 ) > t , * i ) = J%G%{xx - *,,(, - tiHifriMx,.*,) (1.16a) 

9AW[xt,h) = ^ G%(*i - *:, h - h) [gVKi***«i) + 9^ Y^(x2) t,) 

+ ^(<fx 3 ) [ i i ! a

2 r i

( 0 , ^ + i2or i

( 0 , /2 0

2 ]^(x 2 l i s ; t l )^(x3 , t 1 ) } 
(1.16b) 
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+ g* f(dxs) [B*lil>Ro + Rolil)S* + Jfcif > J$ + Uj rJ°>Jfc 

+ j t y f f l j w f >*> + iZQA(0)iz|r;o)/Zo 

+ i 2 0 r i 0 ) i 2 o r i

( 0 ^ ] ^ ( x 1 , x s ; t s K ( x s , t 1 ) } 
(1.16c) 

where 

A ( m ) a A(A<»>), /-, ( m ) = A ( A ( m ) ) , ( I -" ) 

More useful at arbitrary order is the equivalent description in terms of 

Langevin tree graphs, which are easily derived from eqs. (1.7) or (1.16), 

using the tree-graphical expansions of the regulator given in Appendix B of 

Ref. [30]. The Langevin tree graphs in the case n = 2 through 0{g2) are 

shown in Fig. V-1. These diagrams may be constructed to all orders using 

the Langevin tree rules given in Fig. V-2. 

We call attention to some salient features of the n = 2 Langevin trees 

and their rules: 

1. Vertices: In addition to the two ordinary Yang-Mills vertices (which 



50 

include the Zwanziger contributions), there are exactly two extra regu­

lator vertices proportional to A~3, which represent J\ and Tj discussed 

above. To help distinguish these regulator vertices from the ordinary 

Yang-Mills vertices, we have placed a dot at the center of each regulator 

vertex. 

2. Propagators: The wavy lines are Langevin Green functions, which 

axe represented by directed lines because they are retarded in fifth-

time. We will refer to these as field lines. Additionally, there are 

two types of regulator propagators, being single (RQ) and double (R$) 

solid lines, which count the number of free regulator factors Roip1) = 

(l + p 'M 1 ) - 1 , where J(ip)e*<"-»>flo(p») = (.RoW We remark that the 

regulator propagators are instantaneous in fifth-time, as seen explicitly 

in eq. (1-16). This reflects the Markovian property of our regulariza-

tion. 

Note also that the Langevin trees contain regulator strings of regulator 

propagators. These strings, which correspond to the regulator expansion 

discussed in Appendix B of Ref. [30], consist of sets of single or double 

regulator line propagators laid end to end at regulator vertices. In addition 

to any number of single-line regulator propagators, each such regulator string 

contains exactly one double-line regulator propagator, as seen explicitly in 

eq. (1.16). This is a characteristic of the R^ regulator function. Whatever 
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its length, of course, the entire string occurs at the same instant of fifth-time. 

The tree rule regulator vertices for R^, are the same as shown for n = 2 

in Fig. V-2, while a regulator propagator in an R^ string may contain up 

to the nth power of RQ. Further details are given in Appendix B of Ref. [30]. 

The Langevin diagrams themselves are finally constructed by contracting 

the tree diagrams with the rule (2.1b) in the prescription (2.1c). Following 

Refs. [27] and [29], we place a cross at each such noise contraction. In general, 

therefore, a cross is the joining of two regulator strings of arbitrary length, 

and the entire contracted pair of strings is instantaneous. 

As the simplest example, we mention the zeroth order two-point function 

shown in Fig. V-3. This diagram contains two Langevin Green functions C£, 

and two powers of RW in the combination 

D^[tut1;p) = 2fU dtJH diiGZ(tl-ti;p)G1:o(t1-ti\P)S(ti^U)R*{p1) 

(1.18) 

The result for the regularized free gluon propagator is therefore 

M;(r,)4(x,)> =• /Krte-*- '"-" 'D£(ti,l.;p) 

Other free Green functions are constructed according to the usual Wick 

expansion in terms of the result (1.19). 

(1.19) 
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In general, any line in a Langevin diagram of the form of Fig. V-3 is repre­

sented by Dj^,(t l,tj;p). We shall call this simplest type of contraction (with 

no regulator vertices) a simple contraction, since it was the only possible 

contraction in the scalar prototype [29]. 

In the next section, we apply these Langevin rules to the computation of 

the one-loop gluon mass. 
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3. Vanishing Gluon Mass 

As an introduction to the loop structure of our regularization scheme, and 

also as an explicit check of gauge-invariance, we will verify in this section that 

the QCD« gluon mass remains zero at the one-loop level, with the regulator 

RW. At the end of the computation, we will also discuss the failure of J2'1' 

to regularize the theory. 

As noted in our previous letter [27], there are forty-seven distinct Langevin 

graphs in the two-point function at order g1, where diagrams trivially related 

by symmetry are not included in the count and will be included in the com­

putations of this section via appropriate combinatoric factors. On closer ex­

amination, however, it is seen that only thirteen make non-zero contributions 

to the mass renormaiization, while only two contribute to the wavefunction 

and gauge parameter (a) renormalizations. 

We have found it convenient to group the forty-seven diagrams into four 

classes, of which only the first class contributes to the wavefunction and 

a-renormalizations, and only the first two classes contribute to the mass 

renormaiization. The third class contributes only to the finite part of the 

vacuum polarization, which will not be considered in this paper, while the 

diagrams in the fourth class vanish identically. 

Class 1. (three ordinary diagrams). 

These diagrams, shown in Fig. V-4, are the ordinary non-vanishing Langevin 
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diagrams that contain only (Zwanziger gauge-fixed) Yang-Mills vertices, no 

regulator vertices, and therefore only simple contractions. This class includes 

all the diagrams that contribute to the wavefunction and a-renormalizations 

(pJln.AJ behavior), but, by themselves, these diagrams would yield a non-

vanishing gluon mass (proportional to A2), since they are regularized by what 

amounts to a naive gauge non-invariant cutoff, the free regulator RQ. Our 

scheme, of course, automatically provides other diagrams, with regulator 

vertices, to maintain the gauge-invariance. 

Class 3. (eleven extra regulator contributions). The diagrams in this class 

(Fig. V-5) contain at least one fi or A regulator vertex, and provide the 

additional gluon mass contributions needed to cancel the contribution of the 

ordinary graphs of class 1. Since a regulator vertex carries an explicit factor 

of A"1, the leading logarithmic behavior of any diagram with a regulator 

vertex is at most (In A2)/A7. It follows that diagrams with regulator vertices 

do not contribute to wave function or ot-renormalizations. 

Class 3 (twelve diagrams which are finite as A —» oo). These diagrams, 

shown in Fig. V-6, also contain regulator vertices, but contribute only to 

the finite part of the vacuum polarization. The absence of contributions 

to mass renormalization follows on dimensional grounds, looking only at 

external legs: These diagrams never have two C s contracting into a D (as 

in eq. (1-18)) on an external line. This means that they lack a factor of 

p"1 relative to the diagrams of class 2. After truncation, therefore, these 



55 

diagrams contribute nothing to JTMy(0). Finiteness as A -* 00 then follows, 

since the diagrams contain regulator vertices, and so cannot contribute to 

the wave function or a-renormalizations. 

Class 4 (twenty-one diagrams which vanish identically). This anal class 

of diagrams is shown in Fig. V-7. The tadpole loops vanish as usual by 

/"*" antisymmetry. The remaining diagrams vanish due to the (fifth-time) 

retarded property of the Langevin Green functions, which contribute a factor 

of &[tx - h) 0{ti - ty) = 0 to each diagram. 

As an explicit example, we evaluate the ordinary diagram V-4b, shown 

with all relevant indices in Fig. V-8. Using the Langevin tree rules of Fig. V-

2, we obtain for this diagram 

8 f dtx J £,/(<tt)G£(«o,«i;p) D? B (to.*i;p)Oo,-fc,fc). 
(2.1) 

x Itfft-fc,*,0) DZ{tu«.;k) Giiitut* k) 

where Df^fa. *i; p), corresponding to each simple contraction of the diagram, 

is defined in eq. (1.18). We have also neglected the dependence of the vertex 

factors on the external momentum p, since we are only interested here in the 

contribution t<- the gluon mass. After performing the fifth-time integrations, 
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and some tensor algebra, we obtain the value for this diagram near p = 0 as 

h ^ + ̂ p))] 

[ 2 *W'^r) /W*7^ (2.2) 

P 2 P 2 

'k*{k* + A*) 

Truncation near p = 0 is accomplished by removal of the two factors in 

brackets, resulting in this diagram's contribution to the mass renormalization 

= n ( 5 + 3 * > i o £ ^ ' 
(2.3) 

for SU(N). In units of Ng1SlluSakAi/{Air)i

t this result is recorded with Fig. V-

4b. 

The contributing diagrams with regulator vertices are generally easier to 

evaluate. In the case, for example, of diagram V-5e, shown with all indices 

in Fig. V-9, we obtain for p -* 0 

2 £ dtx G^(*o.«i; P)RO(P) f{dk)GZ{tuU; k) 

ASK* -*. *)AjS(-*,0, k) 6'%t D* («0| t i ; p) 

- [ * - ( S ^ + ^ ) ] (2.4, 

x [ -5^ r t - 4 VWfi rT i sp 
w/r w (p) ^ o £ ^ ( P ) [i-( ^ ) ] . 
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in which we have used 

GS('i.*i.*) = ^ " ^ . (2-5) 

Then, truncating as above, this diagram's contribution to the gluon mass is 

/ r ( , C ( 0 ) - - i ^ « - W (2-6) 

as recorded under diagram V-Se. 

The value of each of the remaining contributions in this computation is 

recorded, in units of ATj I$M (,6B*4 a/( 4 , r) ,» under its diagram in Figs. V-4 and 

V-5. The reader may easily verify that the sum of all contributions is zero, 

so the gluon remains massless to this order. 

The computation of the wavefunction and gauge parameter (a) renor-

malizations, which are controlled entirely by logarithmic contributions from 

the usual diagrams V-4b and V-4c, has been given in Ref. [30]. We remark 

here only that the results are the same as that obtained by dimensional reg-

ularization of the Zwanziger gauge-fixed theory. This comes as no surprise, 

since these diagrams contain no regulator vertices. 

We finally comment on the inadequacy of the regulator RW in four di­

mensions. In fact, the "ordinary" diagrams of class 1 are regularized by 
! i 

any member of the regulator family including R^l\ but n > 2 is required 

for finiteness of certain class 2 diagrams, which contain regulator vertices. 

This is easily seen by looking bacic, for example, at diagram V-5e, and the 
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corresponding eq. (2.4). With iZ ( 2\ the loop integration of this diagram had 

the form /d4JfefcJiZo(ik) < oo, whereas, with J2 ( 1 ), the double regulator line 

in the loop would be replaced by a single regulator line. This results in 

J d*kkiI^(k), which is logarithmically divergent. 

For n > 2 more powers of the regulator propagators will appear in these 

one-lcop diagrams, rendering the momentum integrals even more conver­

gent, and the same vanishing gluon mass will be obtained. Finiteness of the 

regularized theory to all orders, when n > 2, has been discussed in Ref. [30]. 
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Chapter VI: Conclusions 

We discussed continuum regularization schemes for quantum field theory 

which were based upon the Langevin equation of Parisi and Wu. 

The Breit, Gupta and Zaks stochastic regularization scheme [17] was 

analyzed for the case of scalar electrodynamics with the standard covariant 

gauge-fixing. Their scheme was shown to work, at least at the one-loop level, 

contrary to the claim in their original paper. (Other authors [24,25] have 

traced their results to difficulties associated with their use of a fermionic 

Langevin equation which was not manifestly gauge invariant.) 

Although stochastic regularization may be viable perturbatively, diffi­

culties arise which rule out its usefulness as a nonperturbative continuum 

regularization scheme. One problem is that the superficial quadratic diver­

gences force a bottomless noise action. Another difficulty is that stochastic 

regularization by fifth-time smearing is incompatible with Zwanziger's gauge 

fixing. 

Finally, a successful covariant derivative scheme is discussed, which avoids 

the difficulties encountered with the earlier stochastic regularization by fifth-

time smearing. The regularized formulation is manifestly Lorentz invariant, 

gauge invariant, ghost free and finite to all orders. The gluon mass was 

shown to vanish at one loop All the technical advantages of a Markov pro­

cess are retained, including closed form equilibrium equations, which are the 
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Schwinger-Dyson equations, and Zwanziger's gauge ^xing if desired. Further 

details can be found in Refs. [29,30,31,32,34,35]. We are hopeful that the 

scheme will lend itself to nonperturbative analysis. 
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Figure Captions 

Fig. II-l: Perturbative Langevin expansion of <£ in ^ j - theory. 

Fig. II«2: Expansion of two point function in - j - theory. 

Fig. HI-1: One Loop correction to the photon propagator in SED using ordinary Feynman 

diagrams. 

Fig. m - 2 : One Loop correction to the photon propagator in SED using Langevin diagrams. 

Fig. m - S : Complete three point function in scalar electrodynamics. 

Fig. IH.-4: Complete scalar propagator in scalar electrodynamics. 

Fig. IV-1: Diagrams that contribute to the gluon mass. 

Fig. V- l : Langevin tree diagrams through 0(g3). 

Fig. V-2: Langevin tree rules using JZ'3'. 

Fig. V-3: A simple contraction. 

Fig. V-4: "Ordinary* non-vanishing Langevin diagrams. 

Fig. V-&: Diagrams with regulator vertices that also contribute to gluon mass. 

Fig. V-eV. Diagrams with regulator vertices, which are finite as i —• oo. 

Fig. V-T: Diagrams that vanish identically. 

Fig. V-8: Diagram 3.1b with relevant indices. 

Fig. V-0: Diagram 3.2s with relevant indices. 
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