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Dynamics of Ciivitoris in Strong Langmuir Turbulence*

D. F. DllBois, Harvey A. Rose and David Russell
Theoretical Division and Center for Nonlinear Studies**
Los Alamos National Laboratory, Los Alarnos, NM, 87545

R(*cent studies oI_Langmuir turbulence aJ described by Zakharov’s model will

IN reviewed. For parameters of interest in laser-plasma experiments and for iono-

sld]eric HF heatinb experiments a significant fraction of the turbulent entv-gy is

ill lmnlinear “caviton” excitations which are localized in space and time. A Iocnl

r;tviton model will be presented which accounts for the nucleation-collapse- lmrnollt

cycl(w of individual cavitons as well as their space-time correlations. This model is

in (lctailed agreement with many features of the electron density fluctuation sprc-

t ~i~in t ho ionosphere modified by powerful HF waves as measured by incohcr(~ll t

sc:ltt(!r rndar, R(!cently such observations have verified a prediction of tlw t.lm)ry

tIlilt “fr(w”- Limgmiur waves arc emitted in the caviton collapse process. ol)S(~~Vii-

t ions il[l(l theoretical considerations also imply thnt when the punll) fr(xllwll(y is

slightly lower thnn the nmhicnt cloctron plasma frt=que[lcy cnvitons xluiy (vs(Jv1*to

st ;it (v+ ill wili(’h tllcy are ordered in sp~ce IUM.Itime. l’hc sensitivity of tlw Iligll

fI(I(lIwII.(.y Lr.ngrnuir field dynmnics to the low frc(lu(mcy ion (I(msity fl(l~t{littiolls

:111(1!.IIv rclntcd ctlviton nuclecdion process will 1)(:(liscussrd.

**l{fwwr(”ll sll]~l)(wt(vl I)y USDf)E.



I. INTRODUCTION

There are many linear instabilities in pla’,r,~ag which result ill the cxcitatiml

of intense Langmuir waves. An important subgroup of ~uch instabilities me tl;e

ri~(liatic)n-ir~dllced parametric insiabili~ies which have been st udimi es trnsive]y sill(”{l

19G5.1‘2 In the last decade important progress has been made in underst a.mlillg

the nonlinear, and usually turbulent skate to which these iri ,abilities twolv(I, [t

lli~s become increasingly clear that the older approaches invo;’ ,ng weak t urbuhv]cr

theory, w one extreme, and t}~e wave-breaking of traveling Langrnui r waves, ns

another limit, are not adequate, especially on the longer time scnles asset-iat~:(l

with ion motion. InstPad. a new paradiizm is emerging im olving the concepts of

what is commonly called strong Langmuir turbulence ( SLT) theory. This t hvory

Ili]s its rocts in the semimd wark of V. E, ZAharov3 who r]eveloprd a ~OIIll)il~t

mathematical model of SLT and concluded that localized collapsing Liulgllluir St. i\t(ls

(.()[11(1I]lay a centmi role in the turbulmlt, state,

[n recent years it has been possible to cnrry out long time computer solutio!lil-S

of Znkhmov’s model cqtuations, suitably modiki to treat tlm dfcct d vari(][ls tyl)(’s

of (lrivi r!,g sourcw, This research has led to a “globalm’ view of how tlw lurl~llll~llt

state is sustainccf by the balance of driving smlrc(!s and tilt! (~iWil)iLtiO1l resllltillg

fll)lll t)ll(’ trim::fvr of (’!lt!rgy fl’OtTltht?collapsing rlL’~tl’(XtittiC fl(’l(lS L(J [l(’(m(’lt!rilt(’(l

I(’I’(”tl’oils.
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collapse of the Langmuir waves in regimes where the levels of ion sound waves \verc

low elmugh to permit the growth of intense Langrnuir waves.

The research program at Los Mamos has concentrated on SLT driven by vari -

mls rafliation sources. These include the ponderomotive sources appropriate to SRS

nntl SB S. Our most comprehensive studies have involved long wavelength electric

firltl drivers with frequencies near the electron plasma frequency. 14 This met hocl

t)f driving is appropriate for the turbulence induced in the ionosphere, near tlw

r~’flection density, by HF pump (or heater) waves of ordinary polarization. In a qui-

(Iscrnt plasma such drivers can excite the well-known parametric (kcily instability

(PDI) or the modulatioral instability 15116(?tII) (sometimes called the oscillating

ttvo stream instability. )

The resldts of this research on SLT driven near critical density can be summa-

:izul ;Lsfollows:

1,) States of SLT can be cxrited for heater (pump) intensities only luargilmlly

iil)()~~ t IIC threshold for parametric instabilities. Thus, for example, we expt!ct thv

i(ums])hmic hrnting experiments, which are estimated to be well above the thrrsl]ol(l

f(w t.hmc parametric instabilities will be in the SLT regime.

2,) III these states of SLT a significant part of the energy in high freq[mrwy

(k!llsity fluctuations is contuined in ~alizecl states in the case of strong ion sminfl

4,5,14 T]lesc lo~alizcd stti~(!s,wiivr (I;ull])ing which is appropriate to the ionosphere.

fvllicll we will call uvitons, consist of a high frequency Lmlgmllir fie]fl tra~qw(l

ill ii s(’lf-c(msistcnt (!ensity cavity (i. e., dcnsit y depletion). The dyna!nics of t lwsr

(’i~~i;olls will lW n Imjor conccm of this paper. It is important to ~xllpllilsi~(~ t.li:lt

t Ii(’s[’hwnlizrd states arc not wavcpackets of plane linear Langmuir waves, Inlt lW:V

11()I]lillmr Li~ngllli~iJ’ states and consequently cwlnot be dcscribcd Ly pm-t Iwl)ilt ion

:Irgllllwnts sIdl n++ .wak tu.rbulcncc theory hn..cd on Limgmuir wtlve Stilt (’s sntisfyil]g

f11411~’l(vw(Ilsl]vrsiful rrhiti(m,
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4.) The localized states are trapped in self-consistently evolving densi ty wells

which collapse to small dimensions because of the dominance of the nonlinear pon-

deromotive force over the linear pressure force. The evolution from nucleation to

(:olli]p is discussed by Rose and Weinsteinm 17 and the collapse process follows the

srlf-si milar scaling discussed by several Soviet authors. 3,18

5.) As the caviton’s spatial dimension decreases to the order of 5-10 electron

Debye lengths, ~&, the electrostatic energy trapped in the caviton is rapidly given

[lp in the acceleration of electrons resulting in the sudden dissipation or ‘hl]urno~lt”

of electrostatic energy. The interaction of cavitons by the exchange of hot electrons

appears to be a weak tiect. Even in regimes where there is significant energy in

free modes (see (7. )) the burnout of cavitons is the dominant source of energy

(lissipationm

6.) The e!ectrost atic burnout process leaves an empty density cavity, no longer

supported by a ponderomotive force, which then evolves as a free, possibly nonlin -

(wI-, ion sound pulse. These residual ion density wells provide nucleation centers for

the excitation of new collapsing cavitons, 4J718For strong ion sound damping, the

Imrntout density wells relax in place, The radiation of ion sound waves following

lxdlnpse is an important interaction mechanism for cavitons.

7.) The collapsing cavitons emit and absorb propagating Langmuir waves, 1,1

This I)rovides another interaction mechanism for ca~-itons, Under some conditions

tlw free rnodc-caviton interaction may be an important source driving caviton lm-

(.1(’iit.ion. The free modes generated by collapse have been o’bserved in ioIms])lwric

11(’iltillg, 12 These free modes can interact with one mother by familiar wa~{l-wil~(~

l)ro(’mscs. They nlso can influence the nucleation of localized stntes,

~.) Wlwn the driving frequency excee(ls the i)arkgrcmncl plasma fr(xllmwy, i.(’,

f()r ()v(Ir(lrINw driving, the caviton cycles of lluclcatioI1-colla~]~-bllrl~()[lt ~illl l)(Ic(~Ill(*

14 [rndvr wmlc conditiolw the cavitons Cml idso svttlc into st;tl)l[~sl:tljh~ Iil:lit cycles.

I)(trio(!ir spntial patterns, T!msc ordcrr(l stnt(!s of nigh sl)ntio-t(’[lll) orill” (:orr(’li~tiol)”

llilV(’ (Iist, ilwt, signatlmx+ in the power spcctm of t!w tlwbul(mt flllctlmtiolu+,

Iligldigllts :}f tlllis rf:wnrch IlnVr 1)(’(!11 r(q)ortr(l ill S(!V(’ridsnort ilrtirl(’~,’1’5’7’N

:\ h~llgf~r ;wticlr, rrf. 14, i~ flmxAwi mninly to the rrgiluc of iolltw])lwric llt’:tt.illg

fvlli(tll gr{’flt,ly rwlllr(’s tllr “VOIIIII1(!’” of tll(’ I)ot(’lltinlly V(’ry hll’g(’ l)ilr;llIl(’t(’r S])il(x’

f
,.,

t) S[,rr \vlli(’11 is (mollsl(l:-r(~(l, Illtllollgll Wllflt r(’lll;lllls Is St Ill V(’1’y ri(’11Ill 1)11(’110111(’11;1.



Other applications such as laser-plasma interactions (e.g., see Rose, DuBois and

Bezzerides13’~g ) involve many of the same or related phenomena and will be men-

tioned here briefly. The same conditions of excitation near the critical density in

\vcak density grdients as considered for ionospheric heating might be approximated

in long scale length laser produced plasmas with weak collisionality or in labora-

tory microwave-plasma experiments with sufficiently long-lived plasmas uneffecte[l

by boundaries. IVe will not treat such applications in detail here.

Here we will try to sketch out the major features of this strong turbulence sce-

nario. The physical setting of HF heating of the ionosphere is ideal for observing

SLT phenomena. lVe believe the SLT thwry represents the most credible clescrip-

tion of the experimenml facts of ionospheric heating. This SLT approach represents

i~ significant departure from the accepted or cmventional ideas associated with

lmrw-netric instabilities and weak turbulence cascades. Our most complete current

luderst amling of SLT is based on simulations of a homogeneous, isothermal moclcl

3 This situation is best realized in ionosphericdescribed by Zakharov’s equations,

Inodification for early times (several ms) after heater turn on before large scale

(several m) density and temperature fluctuations have had time to develop.

.+ more detailed comparison of the SLT theory to ionospheric modification

t’x~](’rillmnts is given in reference 14.

2. Z.4KH.4ROV’S MODEL OF NONLINEAR LANGMUIR WAVE-ION SOUXD
WAVE INTERACTIONS

TIN crdc[daticms to be reported here are based on solutions of Zakharov’s

llNNlel:] of Ltmgmuir wave-ion sound wave interactions, These arc for[nuhltcd ill

tvr;lls of tile slowly time varying envelope field ~ (x,t) of the total electrostatic fivl(l
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The total ion density is written as

TLTOT =no+ ii (2.3)

where ii is the fluctuation about the mean density; the spatial average of xi is thcm

zero.

The equations of Zakharov’s model are:

(2.4b)

.
where ~ x ~ = O. Here JD is the electron Debye length and cs = (q Te/mi)112 is

the ion acoustic speed which is often expressed in terms of specific heat parameters.

co is the possibly time-dependent pump which is assumed to be spatiaily uniform.

Tl]is is the “heater” field in ionospheric modification experiments. Tildes are used

to denote conventional dimensional quantities to distinguish them where necessary

from tlimensionless quantit im introduced below.

Tlw clamping operators fic● and tiio whch are nonlocal in coordinate space arc

Iocnl in Fourier space. In Fourier space it is also simple to include a weak back-

ground geomagnetic field ~ based on the modified Bohm- G ross dispersion relation

for Lnngmuir waves. 14~20

,,
\vll(’1-(’I’F* = Tf/mp, ~c = e

III t I]is lmpcr we mlopt

BO/mc and 0 is the wlgle between & and ~.

the convention for spatial Fourier transfor!lls:

(9J,
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Theionospheric heater or “pump” field ~o(t) is included, ignoring pump de-

pletion, by assuming that the spatially uniform, k = O, Fourier component is a

& functionm We will generally take ~(t)=& exp [-iGot] where Go=UH – WP

is the difference between the heater (or pump) frequency and the average plasma

frecluency.

The Langmuir wave dumping term is taken to be collisional damping plus

Landau damping.

foi. ~ < 0.3kD; this function is continued smoothly to increase as 12 for large ~. The

lat la step is necessary in order to arrest collapse at small scales as discussed by

Zakharov and Shur21 and Russell et al. ;4’8 it is essential for numerical resolution.

This damping is an ad hoc addition to the model which is justified by comparing

wit,h particle in cell simulations 22-25 which show nearly complete dissipation of the

trapped electrostatic field at the burnout stage of collapse. For the work reported

here, where we treat heater intensities well above the collisional thresholds for

parametric instabilities, we will take Jc = O. This is valid provided all physically

import ant rates are much larger than fic.14

For ionospheric conditions we expect the ratio of electron to ion temperatures,

Te /Ti, to be of order unity for early times after the onset of heating, Fluid descrip-

timl of the ion density response is then expected to be quantitatively inaccurate

I)ecause of the important role of Landau darnping on ions.26 Since kinetic simula-

timls of the ion response are prohibitively expensive for the problems we treat here

we have adopted the following strategy: We use the fluid description of (2.4b) l)l~t

the smmrl velocity cs and the ion Landau darnping used in this equation are chosen

to coixlcide with the least damped poles of the linear kinetic response. Using this

I)roccdure we find for ~ <<kDe that fii(~)/tii(k) = vi where tii(k) = ~(q Te/111~)’12.

The vnlues of vi and q are found from the least damped roots of the full kinetic

(Iisl)rrsion rrlat.ion. 14

WC havr fouml the qlmlitative features of

i’t;~.t(~(lI)y tll~ ValUtN of ui in the regime 0,9> vi

tlw llIIcIc.’tion t hrcsholcl discussed in Sec. 3,

7

the nucleation procms to Iw {ln:if-

>0.4 for S)fStCltlS (Irivm W(’I1 ill)OV(!



It is well-known, 3 that the linearized form of these equations ccntains the

parametric decay instability (PDI]l and modulational instability 15’16 (MI or OTSI)

of the pump wave. Furthermore, when weak turbulence analysls“ 27’28 is applied to

these equations it yields the usual wave kinetic type of eq~ations which le~l to the

weak turbulence cascade. However, the validity conditions for the weak turbulence

approximations are very iimiting. 28

We have studied examples of the solution of these equations for parmneters

relevant to ionosphere heating in which the system is initially excited by a linear

parametric instability and evolves to a state of SLT.14 In this paper, however, we

will consider only the developed turbulent state.

In carrying out numerical solutions of these equations it is convenient to use

dimensionless untilded quantities which are related to dimensional tilded quantities

in the following way:27

()3 mi 1/2 A

~ ‘i~~

The scaled equations then have the familiar simple form

[(5f+2Vi. ~- v2]n=v~l&+EJJ12+sB

(2.8)

(2.9U)

(2.!3/))

In the scaled units there is a residual mass ratio dependence which OC.CIWSonly it~

I,llc sc;dwl (Iamping rate which is obtained from (2.7) M follows:

8
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we(k) = (3/2) A4fie(2/3kf ‘1/2kkD# (2.10)

in terms of the scaled wavenumber k and M = mi/q~. This residual mass ratio

dependence reflects the ratio of the parametric instability space and time scales

which increase with M and the mass ratio independent dissipation scale. A similar

formula applies to vi(k).

Here we have added source terms SR and SB in (2.9a) and (2.9b) which arise

when the turbulence is driven by the SRS interaction and the SBS interaction,

respectively. We will not give the specific fozmndae here but refer the reader to ref.

13.

Note that in dimensional units Landau damping becomes significant for ~ >

0.2kD(kD = AD -1). Thus in dimensionless units this chip ,tion becomes signifi-

cant for k greater than the dissipation scale kd:

()
1/2

k>kdm(O.2). ; ~

Since the dynamics of the decay instability involves ~’s on the scale of ~x

=
(~/3) (qme/m;)l/2 k.D we need Fourier components at ~ as small as this, if

the parametric

simulation cell

LY > %r. The

the dissipation

processes are import ant, and this sets the linear dimension of the

to be ~z = LV > 2r/kt. In dimensionless units k~ = 1 and Lx =

number of Fourier modes must be sufficient to probe deep within

range of kmaz >> kd in order to resolve collapse. This sets a limit

oll the value of M which can be accommodated in a reasonably sized simulation of

say 128 x 128 Fouiier modes in two dimensions. In view of these limitations we

l~i~~~ chosen M = 1836 for our simulations. In ref. 14, Section 3, we discussed the

scaling of physical quantities with the mass ratio. This scaling allows us, al least

roughly, to translate the simulation results to the larger mass ratios.

The wdidit y conditions for Zakharov’s model have been discussw.1 elsewhcrc:~’~i

:llNl include the condition.

IE12
—<<1
47moTe

(2,11(1)

9



‘f 1’

A discussion of the degree to which

simulations is given in reference 14.

:<<1 (lllb)

these conditions aI ~ satisfied in our numerical

our simulations are carried out on a 128 x 128 square grid of sides L= = LU

= %, with periodic boundary conditions in x and y. In physical units this implies

L= = Ly = 404 AD, and a grid-point spacing Ax = Ay = 3.15 ~D6. The Debye

wavenumber in these units is 64.3 and the maximum wavenumber is 91. spot

checks with a dealiased code with a nominal 256 x 256 grid were used to confirm

the validity of our simulations. Typically the spectrum (ln(k)12) decreases by 4

orders of magnitude between the k values for which the spectrum peaks and the

largest Ii values. The test of temporal and spatial resolution is energy conservation

as expressed by the balance between the average dissipation and injection rates. 14

3. THE LOCAL CAVITON MODEL

The accumulated evidence from many computer simulations of equations (2.4)

shows that, at least for moderate to strong ion acoustic wave darnping, vi 2 0.1,

the strongly turbulent system is dominated by caviton “events” which are localized

in space and time. Snapshots such as Figure 1 show the localized nature of l~(x,t )12

and n(~,t ) as functions of ~ for given t. The power spectra 1~(~~) 12, which we will

discuss in detail below, also have signatures of localized states. The envelope field

E(x,t) in this case can be modeled by a sum over events i:

N(t)

~(x,t) = ~ ii(z-zi!t- ~i) + &~n/~~/(&,~) (3.1)
i=O

Here a czwiton event i is localized at the space time point ~, tl. The single event

function &(~,t) has its maximum at x=O, t=O with a spatial width ii(t) MICI it

trlnporal width or Iifetimc ~i; from the simulations we find this lifetime to be of tile

(Jr[lcr of 0.05 to 0.1 ms for ionospheric parameters. At a given time t, the number of

rvmlts lN(t ) which contri5u ;e to the sum in (3.1) are those for which O< It–ti I < ~i

which is clearly proportiofihl to the volume of the system if the cavitons are r(mgllly

Illlif(mnly distrihutml, For example, if the portion of the heated volume obserwxl I)y

10
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the radar is ionospheric heating experiments is (200 m)3, the mean caviton spacing

is 0.25 m which is about 50 JDe as obsexwed in our simulations, and accounting for

the time scales of the caviton cycles as observed in simulations, we find N(tj z 107

which is crude but representative, In (3.1) the term &niOCal(~,t) represents the

nonlocalized or free mode part of the envfilope field which is relatively negligible

for systems driven with heater (or pump) frequencies near or slightly below the

ambient electron plasma frequency.

This iocal caviton model can be put into a more formal setting by introducing

the instant aneous vector eigenfunctions ~(~,t ) of the operator on the left hand side

of (2.9a). These satisfy (for B. = O)

[
y . A.(t)+ V2

1
- ?-@, t) eJg, t) = o

where &(t) is the corresponding instantaneous eigenvah.w and ~ x ~ = O. These

nre nothing more than the Langm.uir modes in a nonuniform density background.

In ordinary units this can be written as

(3.3)

wlmre

( 1 ?l(xt))
~p(x!t)=~po l+-—2 Tlo )

is the spatially fluctuating plasma frequency. Thus we can relate Au ill scalml ~ulits

t~l -’u ill ordirmry units:

( .)
1/2

M+) = ‘“ ‘Wp” “ ; #
k’po

(3.4)

‘rhr r(mlph?t(! dcscripticm of these states for an urbitmry n(~,t ), cslwci;d]y for D ~ ?

is lMIy(~II(l~)11~ Cilp[d)ility. In D = 1 it is rclntivcly cnsy to comp~ltc these stntrs frolll

:111ilr!jit. rnry rc:klizntion of n(x, t ) obtlkincci frmn the. Wrnl)lc’tc nlmwrirnl silllllliltioll

of (2,9il,l) ),7

11
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localized in a density minimum (i.e. depressions). Roughly the condition for a

localized state to occur in a density depression ii (fi<o) and spatial extent ~ is

which can be satisfied for example for Iii/nol - 10-3, (4/~~ ) z 30. This condition

is similar to the conditions on the depth and width of a potential well which can

sustain a bound state of the Schroedinger equation of quantum mechanics. The

clensi ty wells which trap these localized states might arise from initial background

density fluct uat ions, from density wells remaining from earlier collnpse events or

from density fluctuations driven by some instability such as SBS.

In the caae of SBS-generated ion sound waves, we can sometimes regard these

density fluctuations as being periodic in space with a wavelength correspondifig

to the fastest growing SBS mode. The eigenstates ~(x,t) in this case can hc rc-

grwded as one dimensional Bloch waves with lattice wave vector ~ aud wit 1.1eigcn-

values Ak “(t) which lie in bands, Iabelled by the index v, just as in sclid state

l>llysics.2~”13 As the periodic density fluctuation grows exponentially in time due to

the SBS instability the Langmuir mode eigenfuctions Avk(t ) change in time. If ii

stimulated Raman instability is simultaneously excited, the SRS frequency match-
laseri[lg coldition, & = wk

scatteredight
- ~~,v(t) - ‘~-k = O, can only Im sntisfkxl

4

illst ,antancously for a given Langmuir Bloch mode with lattice wave vector ~. Ill

f;l,.t if ~ > y~t, where ~R is the instantaneous SRS growth rate, then

it c;m lj~ slmwn’:]’29 that the SRS instability is clctunccl by the growing SBS i(u~

sollllcl wave ntld SRS is suppressed, Experiments carried out nt the IYRC Li\l~oril-

hjry in Canmla’O°’ appear to be consistent with this scmario. Tl:e cxpcrillmlt I)y

L“illr[mwc ct al, ” ‘3 that ~ “sw(M” SBS iilst,ii-vcrified the t!wmetical prcdictim

l);~i[y C(JII](I stlppress sRS, In other pnrmnctcr regimes where SRS is Imt, sllplmlss~vl

t Iw (wrakm) SBS ion sound wave nmy ~till impose its spnt inl Iwri(](lirity (M1t 11(’S1{S

Lnlqqullir (~igt’llfll:l(:tions, ‘3 These rnvt’lcq)r rigmlfuimt, imw lMVC:1 Iwrimlic ii~lil~ i )f

lllil~ill.ii {~f1131Z((N l~,vlz ) which hnvr a fillitc ])(Jll,(l(*roI~~otiv(*”for(.(~ ( Phl F). ‘rllis

[}t’rio(lic PhlF (.i~lls{~~n periodic :m-ny of drmity wr]ls to ~lrvrlol) ill wllirll tlli” Ljl])g-

Illllir ~v:lww nrr tlill)l)(’(1 nml c;m 1)(!(Irivrn to colllq)w’. [Notr tlw ,,t,,],l,,r,,,,,,,t.i,,

(Ilivvli ]Jt’riotlir (Imwity wvll~ (If) m]t r~)inci(h’ ill grlwrld with tlw [Imwity Illillilllil of”

f11(1S13S s(N1ll(l wnvrs l)llt tlwy Imvr tiw wmw Iwrii)tlirity,] Ill Fig, 2, t :Avli frt)l]l r(l.



13, we show typical spatial cordigurations of IE]2 and n, before and after collapse

and burnout.

The impulsive time signature of the Thomson-scattering signal from Larigmuir

fluctuations in the experiment of Walsh et al.,l” is consistent with the collapse of

SRS driven Langmuuir fluctuatims. The large ion density fluct uat ions rcmainir.g

from the burntout cavitons then act as seeds for the subsequent strong S13S pulse.

In Fig, 2 the time signatures of the Langmuir and ion sound fluctuations, obtained

from numerical solutions of the SRS-SBS driven Zakharov equations, are shown.

Further evidence consistent with the controlling effect of SBS generated ion sound

waves on the SRS process is found in the experiments of Baldis et al ,30

The electric field envelope of the Zakharov equations (2.9a,b) can be resolved

in the complete set of states ~(~,t):

( 111;UI infinite system the sum may imply an integrnl over continuum states, ) The

(~(llli~tion of motion for the amplitudes hv(t) is readily found from (2,9a) to be

1{(w? wc lmvc tukcn the g” to be a complete orthonormal set with

(cV+G//)= W!$(z,o ‘ cv/(&, ~) = L, (3.s)

;Ill(l Ilil\’(’11S(’(1tilt! lmtntion

(3.W1)

EJ) “ (f’”lrl) = El)m/ ‘(4.cc(L~)NL~) ‘= 5’[) (3,!)(”)

I:)



‘To understand the various terms in (3.7) first

imlependent of time and therefore (d/dt ) ~(~) = O.

consider the case where X1(IC)is

Then the amplitude hv is driven

directly by the source term &j” ( >In ). ~ ~ were a plane wave state proportiomd

to exp i ~-.~ then this source term is proportional to ~.k n(~) the so called direct

conversion source term.14131 However, the important states are the localized states.

\ couples states because of the nonlocal nature uf theThe coefficient ( q ~ + Ve g”1,

Landau damping. l%is term becomes important in the time dependent cam only

in the burnout phase. Note that by introducing the spatial Fouricr transform of

Lhc eigcrwtatcs ~ “(k$t ) we can write

(g”4v,L?~,) = ~ eJ(~,t) .g”,(~,t)ve(~) (3.10)

k

For v=ti this certainly tecomes important in the burnout phase. For u # u’ this

is Ims mpori am if one of the stat= is not localized - e.g., noncrhpsing - or is

loi~il;izccl at a difh-cnt space-time point.

In the time-dependent case of interest the coefficient (e” + dvl) cn.u provide a

cmqding hetw~,en rapidly collapsing states, 9By # and a nonlocalized state v. This

is one of the mechanisms responsible for the excitation of the “free mode” ~tntrs

(d]svrvrd in the sptictra. We will return to this detnil below.

lVC hotr tlmt n SIIhSCt {i} of the states {V} me localized at x=xi in (Irnsit.y

[kqm wiom of U(~,t) und scmc of these, which have the proper symmct ry to collldr

t (J t.lw lNUX1l)&, evolve to co]lnpse. This subset of states can be viewed as Itwnl

gr(nlll(l ~t.i~t~!lof the “potential’ rl(~,t).

(0.llfl)

wll(’rq’
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The contributions

the term &nlOcal

from the remaining nonlocalized states in the set {v} make up

(x,t) in (3.1).

The eigenstates q(~,t) are in a sense the natural basis or coordinates for cle-

scribing the turbulent system. Unfortu,lately, they can only be obtained by first

solving (2.9) for n(~. t,). In spite of this tLey are conceptually useful and some ob-

served properties of the turbulence can be related to general properties of these

states. In effect the use of the states q(~,~,) represents a huge reduction in the

effecti~-e climensionality of the problem, While we use ( 128)2 Fourier modes for the

simulation there may be of the order of 10 collapse sites in the cell and therefore

rmlghly 10 localized states.

We have gained useful insight into the nature of these eigenstates and their

connection to the observed turbulence by considering the scalar Zakharov model.

In this model E(r,t) and E. are scalar fields and in place of (2.9) we have

(3.12U)

(O:+ 2ViOdf – V2)n(~, t) = V21E0 + E(&lt)l (3.121))

111t.llis IINXIC1only sphericrdly symmetric collapsing cavitons are allowed and tlw

tllr(Ic t1Illl(msion,al problem r’or rm isolated collapse reduces to onc in which E autl

11(l(Ilwnd oldy on the radial coordinate r. This sca!ar model h= several properties

ill ctmmmn with the physical three-dimensional vector model (2.9): threshold }111’I

llliL~illl[llll growth mte for the moclulational instability, collapse scnling exponents

wllirll arc (lisr~lwed below, no threshold energy for collapse and the possihlc failllrr

of it (Ir!wit,y well to support a Incnlized cigcnstate.

Sl]lwriral syrnmctry is imposed by rcpresentinv idl fields in tenus of ti:~: F{nwirr

IINI(IVSsin (ktr), kt = mf/ro, t’ = 1,2,––, with r. cll(xml lnrge comptuwl to il tyllir:d

c;lvit~)ll sizr. In thmc scnlar stldics we lmvc oh.scrvrxl for ~i(k)/k = 0.9 tlmt ut tlw

Illil’l(wtiol) sitv, E( r,t ) is (l(mlinntcd l~y its projection, ho(t), (m tlw I(wnlizr(l grollllfl

S1:\t,(I~.[)(r,t ). III Illlt”hwti(nl (~f)(r,t) rcltlnills l(wnlizml; nt rvm-y ti[lw st,rl) r[)( r,t ) [“:111

IN*{.ollll)lltxvl frmn u(r,t ), IIcrr wr will Iuhq)t n siml)lifhxl lllf)(lrl ill wllirll II(I(t )

i,<iIvolv{I~l lw~;l(v’tillg tlw cxritml stnt.r (“(jiltril)llt,i[~ils 11’‘~ () ill (~.’i’). ‘1’11(’(I(ll]sity

III”[)IVIISill’(”1)1’(lill~to (s.1~1)) Wit,ll t,ll(’ l) OIl(\(’lo lllot, iV(’ f(JIT(’ 11’l)lil(”(’(11)~ ~y[h;() t

lfi
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2 The solution to this model is insensitive to boundary conditionsIIO(t)eO(r, t)l .

(i.e., the choice of ro).

Let us restrict our attention to the case where vi is large enough so that

after hurnollt, the relaxing density fluctuation is essentially nonpropagating. Im-

lll(dii~tel~ ,a.fter burnout, energy absorption is minimal because the eigenvalue is

Ii\rge iind negative, implying a far from resonant coupling to So (see (3.9c )). Tile

lxmderomotive force is negligible, and the density fluctuation evolves according to

the acoustic Green’s function. A simple model for this phase of the clynamics is

ol]taiued by replacing the rhs of (3.12b) by M(t) V2d3(~), where the “impulse”

I - J (lt ~ d~l~(~,t)12 = J lhO(t)12 dt x (lh012)r. In three dimensions, the response

of 11is

n(r, t) = 1, G(lz1/t)/t4 (3.13(1)

where

vi d2

[

1

“J

(3,131;)
‘(~) = 7P @ (l+p*)* -p4~71 -v:) -

Evrn t bough n is evolving self similarly, ~ is not, The figure of mcrii, IL,

for the grmmd stutc is simply expressed in terms of the width w, “:(t) a t, of 11,

:111(1its (lq)t.h, d, (1 * I/t4, as p x dw2 * I/t2. lf p is too small, there is 110

lo(.i]li~(!(l sti~t~. Since 3D solitons are unstable, u t increr.wes, either enough rtwrgy

will i){’ ii(~~llll~~ll~t~{lso that another collapse follows, or tile boull(l state will I)(!

lost, Iu the liitt{~r CZW, the bound state will bc locnlized in the imn-wdintc ~;iciuity

of III(I (’XI):lll(li Ilg (I(msity fluctuation, until just I)t’fore tllc Ix)lln(l stllt(’ is lost, S()

IlliLt illlrillg tlw time when energy is being injected, oue mny Iw al)lr to igllor(- IIN*

t“()1ll)lillg I)i”twrml st atrs localized at (Iiffcrcllt collnpse sitrs, At [1l)iLltiCllliLr (“ollil])S(”

siti’ tlIf Irr is n hnvrst lying I(]rnlizt!(l stnh! which lms n IMNM*H)S(NIHV’,Excit(’(1 st,;itf’s

ill I11(’s:llll[’ sitr tyl)i(:ldly lA[\V(! 11wnullrr w)lmx? trll)l l)(TilllS(* [.11(’)’111(’OS1’illiLt[)l’~

Ivllill’ 11[)11(~,tt) is (Iss[’lltilllly luliff)rm ill (Ii;rctiml. Also nt a 1)111’tiCl\lilr ~itc t,llt’r(’

Ill:ly t)lll~ 1)(’ :1 S111:111llllllilx*r of Ioculizr(l $ltilt(’s, This Illf)tivntrs tlw :itll(ly of il

111(1111’1fill’ tll(’ (Iwdtlti(]ll of IL(“ii\’itoIl ill il l)rvvi:)lAy rxistil’~; (Ivlisity flli[.t.llntif)ll

jl IJNW(’SSWI’riill c;tvit,(nl Illwlwtioli - ill wIli(”ll (Nlly (Ml” l(h.nlizwl Stilt(* is 1)1’{’st’llt,

I’fII ;l giv(’11it)ll [Illt.t,lul! ii)ll tll{’ l[nv(’stl Iyillg st Iitr*, q), \vitll Ilt)llv;ulisllillg st)llr~’[’, SII,
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(we shall call it the ground state) is calculated from (3.9c), ho is evolved according

to (3,7) without the coupling to other amplitudes.

In Figure 3 we show some ty~ica.1 results from the scalar model driven by

a spatially uI_Iifol”mfield E. at the plasma frequency (UO = 0), For a range of

Eo, a stable nucleation cycle is observed, with a complete cycle over the interv~

O< t < tc. We expect that in a turbulent environment of other such nucleation sites,

the strict periodicity of this cycle may be iost, but at a given site there Ixmy l~e

strong correlations over a few cycle times for strong ion acaust, ic damping.

In fact, for ovcrdense drive where the drive frequency ~E is less than tlw

14 that over a ra;lgcIm-ligrouncl plasma frequency UP, i.e. for UO <0, we have found

of driving amplitudes and ion wave damping strengths, ui, these cycles become

stable limit cycles.

This is easily understood from the nucleation picture: For wo <0 the relaxing

(Icmsity well remaining from a previous burnout comes earlier into rescmmcc with

the p~unp and therefore at a relatively deeper depletion comparecl to the ~1()= O

case. Thus at the time of closest resonance Jv ~ uo the eigenfunction ~ “(~,t ) is

~ntm cmtined. The caviton cycle presumably will be more stable nnd lCSScffectml

I)y neighboring cavitons in this more confined caviton cycle. We expect more rapi(l

ra\Jiton cycles, i.e , smaller rc, with less energy carried into collapse and this is

I’(’rified by simulations, Tile overdense drive L’. < 0 is much more cfficicnt in thr

1111(’l(!iltiO1lOf cavitons.

AI1 im]mrtmnt Aservaiion of the scalar, local cnviton m(x.lcl (Iiscllsstvl in S(:cti(ul

3. is tllilt tll(’ single event functions ~(~ – ~ljt - ti ) me pllilS~ 10 CIW(lto tllC 1)111111).

‘~111IS it was Inorc convenient to leplacc these fullct ions in (3,1) I)y ml} – iw’[1t

K;(!J – ~i, t - ti); tllllt is t(l cxpliritly scpnrntc O(lt tll~ plllllp ]Jllil!i(?. [S(’(!idS() (3011 ),]

:illotllcr \Vity to look” nt the problem is to rewrite (2.9) ill tm-lns of ~(~,t = [1x1)(

iU’(]t) E(~, t), i.e., to rnvclopc mound tl~r I)tllllp frr(llwllcy. As :111r(ltlittio[l for ~;

Illf’ (’(llliltioll~ nrv nlltOIl(mK)lls, i.rm, tlw (Irivr trrlu INWno rxldirit timr (lrlwlKh’llrtI

I)llt ;ul Il(l(litio[ml trrnl, k’[) ~(k,t ), Iq)prnrs oil tllr h’ft Ilitll(l si(lc of (l?,!liL), ‘L’11(’

rf’sllltof tlhi~ is t.llilt. thr si@(! cnvit(m s]w(”trn for L’() + 0, l~(~,~! )12, Imvr I11(’ir

<])f’(’triLl [’11(’~gy Illilillly for U < L’(). ‘rhtl [“iJg(’!lVidll(’trnjt~rtori(’s vcrsIIs tiilw Iliiw.

IIll’ ])lol)t’rtj~ Cll;lt t.11(’yr(”i’(mrS(’11(’llrtll(’ l’(’Sf)IlilllC(’,\( t )< W’()Wll(’r(’t.11(’PNIF l’(’l’t’rSl’S

I]1(’l’[’lilX;lti{)llof tll!’ (Iriisity WX’11.
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In Figure 4 we show snapshots of the lowest two eigenstates eo(r,t ) and el (r,t )

and the density n(r,t) as they evolve during one of these cycles for a case where

S0 <O. In Figure 3a we show the time evolution of lE(r = O,t) 12 and n(r=O,t),

in Figure 3b the ground state eigenvalue Jo(t), the velocity *O cf the phase of the

nmplitude ho(t) = IhG(t)l exp iao(t ), and in Figure 3C the electrostatic energy in the

cw:iton IhO(t )I*. At the beginning of the cycle, t =0, the deep density well is relaxing

from the previous burnout. From Fig. 3a we see that the peak IE12 occurs at abollt

t =0.22 followed by its rapid burnout due to dissipation. The density well reaches

its maximum depth short ly after at t ~ 0.235. The maximum spatial extent of the

eigunfl met ion J(t) occurs earlier at t N 0.15 which is also the time at which the \vell

flvpt h, n( r=O,t ), is shallowest, The well then deepens under the action of the PNIF

incrca~ing the confinement of the eigenfunction. The eigenvalue AO(ti) approaches

t lle pump frequency wo = O, this causes a rapid increase in 1~( t )12 ,as the mode

freql:ency approaches resonance with the pump frequency. ‘l’his rapidly increases

t hc PI IF am! as the density well deepens again Jo(t) again decreases rapidly during

rcdlnpsc, This illustrates what we believe to be the typical behavior: As the relaxing

(lcusity well be~omes shallower and broader its eigenvnlue approaches resonance

with the pump causing a rapidly increasing PMF which initiates the next collnpse.

It is, of course, importnnt that the state remain localized so that it mtlintnins n
,,

slgmficnnt PMF. Under some conditions for J)~2 a localized botmrl ~tiitc C~Il IW

1(M, i.r., ,\() crowes zero before sufficient PMF is built Up to initintc (.ollitl]s~. For

t lNSD =3 scnlnr u~odcl discussed here we find a finite nucleation t hrrshold [Rose ct

ill. l!)]. For E. below thiq value the cycle cannot be maintaina.1 even fur [m isolntm!

lmilVitollm

18



of the turbulent environment of the collapse site. The density fluctuation n(r,t)

wns constrained so that there was locally no net change in particle number - i.e.,

Jdr~Jn(r,t)=O - i.e., the local averaged plasma frequency is the same as the global

nverage plasma frequency which is the zero of frequency in our envelope approxi -

lnation, This constrains all bound or localized states to have Av( t.)<(.). However,

locally on a scal~ larger than a single caviton but microscopically small there can

Ije fluctuations !n the background plasma frequent y away from the global average.

If the local plasma frequency is di.tferent from zero this is equivalent to replacing

ll(r,t ) in (5.12a) by Arq .F n(r,t) and bound states can occur if Au < tlno. Since

t llt:re are local domains OY“patches” of positive and negative JnO we conclude timt

in n large multicaviton system localized states can occur for Av(t )<(Ano )m{lz whew

(Jno ),,)(lZ >0 and depends on the parameters E., W., etc. which deteruline t hc

tlulmlent state. Simulations with wo >0 are consistent with this picture. The

“localized” states for 6no >0 are not strictly localized from the mathematical point

of view; their cigenfunctions may have extended tails which are exponentially small

I)ilt [10 not tlecay at large distances. Such states are better describml as res~liiilicc

+tiitt’~ M (Iiscussed at the end of this section.

Tlie self similar scaling of the parameters of the eigenctates cluring tile collnlw

I)lliist!are well-known [ti.g., Galeev et al,18]. A self-sixnilar ansatz for ~i(~,t) can IMY

\vrit t.vll

1
g(~,t) = — @--’(t) (3!1s(1)

NW(t)

lv]]t”rr i’( ( ) is tllc llorlnldi~cd slAapc function of tile collapsing st,lltr,
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cavitons22 and for rnulticaviton statefl display these pancake cavitom whose orien-

tation arks either aa a result of ‘kitial conditions or by coupling to a drive source

s~ch as we haw used.

The Bcaling of the parameter d the Af-similar auper~ !Ccollapse depend on

the spatial dimension D as follows:

A(t) * e(t) - (t= - q-’t~

whmc tc is the time of wllape. The A,f-consistent density behaves as

(3.19)

(3.Q())

(3.21)

where G(L6-’ (t)) is a shapa function related df-consistently to 6(xJ- 1 (t )). The

scalar model collupse behavior is consistent with these scalings for D = 3.

We can sometimes use the d-similar formulu (3. 18) for ~(~,t) in other regimes

-- rig., nucleation but where 6(t) does not satidy the scaling of (3.19). Examples

of the evolution of d(t) in the scalar model are oh-n in Figure 3.

In the scalar model malts, pmented above, the contributicms from nonlocnl-

izml ~tatw or from localized excited states are neglected. Such locnlized excited

riglmfunctions have one or mm nmlea in the region of the conhing density WY*11

:lml w~tdd bc expected to couple less eMciently to the pump in the overlnp intcgrtd

IJf(5.W ). Localized excited datea which evolve to CUIIBP are not ol~rwxl in th~’

simulntionw
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in quantum mechanical scattering theory if it is a superposition of states with a

sharp peak in the density of states. Such a resonance state will appear spatially

coherent and localized for a time At~(AA)– 1 where AA is the frequency width of

the resonance. The resonance state will then have a ponderomotive force over a

time which may be .m.fTiciently long to depress the density so that a strictly localized

eigenst ate can again appear. The effective source terms E. ● (evn) are nearly the

salne for all the states comprising the resonance. A narrow resonance state therefore

cannot be distinguished from a strictly localized eigenstate and so the definition of

the states q(x, t) which are identified in (3.11) should be extended to include slwh

narrow resonance states. It can be shown that for a sufficiently narrow resonance

tile cqlmtion of motion for its amplitude hi(t) is indistinguishable from the eqllation

(Jf motion discussed above for a localized state. The existence of such resonances is

imothcr reason why localized states appear to exist for Ai >0. As discussed above,

t!le random density environment of a caviton can also raise the eigenvalue limit

for k)c~liziLtk)I’1 to positive values. Such localized states are also best described as

rrs[mance states.

-1. POWER SPECTR.4 OF TURBULENT FLUCTUATIONS IN THE LOCAL
CAVITON MODEL

It is well-known that the power spectrum of electron density Fluctllation, fl,(x t ).- -!

~.olltai:ls illformati~]x] concerning the elementary excitations of a plasma and ccan l~e

lllt’;wllrcd by incoherent Thomson scatter tecl-niques, For freq{wx]cics w near t hc-

vkx’tr(~xl pkwma frequency WP (or its negative) the ions cannot responfl sigrlificautly

;ul~l so (N1Ccan relate the electron density fluctuation directly to the tot:d Actric

fi~’1(1
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To obtain the low-frequency spectrum associated with the ion line we note that

for G << UP that quasineutrality is obtained so n,(~ G) cx ni(~,ti ) = n(~,ti) and

the low frequency electron density spectrum is obtained directly from the density

fluctuation which appears in the Zakharov model:

The power spectra can be found by taking the temporal Fourier transform of

(3.1).

N(T)

~(k, w)~ = ~ ‘zPil.k-Zi - Wt’j]~(~t ~)t + E( ‘j ‘)nordocal (4.4a)

i

where

!
t+ T/2

gi(k, ‘)t = dt(t’ - tj)~(~lt’ – t:) ezp[iw(t’ – tj)] (4.4b)
t -T/2

is the single event Fourier coefficient. If we make the assumption, that all events

are uncorrelated we obtain the power spectrum

N(T)

~i.,E(k, W)t12) =,— - ~ ki(o)l’

as a sum over single event spectra:

= N(T)(lg(k, w)12) (4.5)

i=l

The importmt effect of correlations will be discussed below.

Simulation parameters can be chosen so that the collapse events are so well

scpnratml in time that we were able to compute the single event spectra Ig (~,w )Iy

ff]r this case, Thes.? spectra, shown in Figllre 5, hnve a surprisingly rich struct~wc

illcl[~tling the following features: 1.) Esscnti,ally all the spectra cmwgy occ{lrs for

W’ < U(); ill this cn.se wo = O; 2.) There twe well drfinrd pinks ill the slwrtrlllll;

:3.) For iiwrct~~illg k, i.e., increasing kAlj, the ptmks for more m:gut ivc w IWCOIIW

r(’l;it,iv(’ly m(m! importmrlt; 4. ) The position of tllc tnnxillllmn shifts ill u step.wisr

filsl)ioli (S(Wiluwt to Figure 6) wht=re -W,l,at zk, i.r., w,, – LJ,llar * k C,J,;5.) T1wrn

is Ii \~(”ilk “fr(’t! 1110(1(!’”pcuk ~t w * kz, i.e., roughly nt tllc 1301ml-cl’()!w fl-(!qll(’ncy.

“1’ll(w sillglc mvvlt spcctml l)r(qwrtir~ m-e sin~ilnr t.[j those SIN)WI1ill Fig!ln! G fIM

~~
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the power spectra from multicaviton states in a magnetic field. 14 Caviton-caviton

correlations also can have a strong effect on the spectral shape and will bc discussed

below.

We have obtained some insight into :he sources of this structure from the scaiar

model discussed in Sec. 3. A realization of ths single event spectrum 1~(@)12 for

the scalar model is const rutted by taking the temporal transform of the function

f(t) = ho(t)eo(k,t) for O<t< r. and f(t) = O for rc <t<Y’ where T is chosen to

give the desired frequency resolution and eo(k,t ) is the spatial Fourier transform of

the numeri~ally obtained eo(r,t). The results are shown in Figure 7. These model

spectra contain the features listed above for the D = 2 Zakharov model (Fig. 6)

except for 4.) and 5.).

The predominance of negative frequencies arises because the phase velocity ‘h

ill Figure 4 is predominantly negative; this in turn is related to the negativity

the eigenwdue A(t). In this model calculation Eq. 3.7 reduces to iilo – Aoho =

s E. (c. In) since we are neglecting coupling to excited states. Then if we write

= Iho I exp i~o we see that *O is related to AOby

of

so

ho

–bo = A()(t) + So(t)plopcosao (4.6)

which is the equation used to compute @Oiu Figure 3.

The peaks arise from a modulation of the spectrum with an angular frequency

Au = 2r/~C where rc is the caviton lifetime as measured by the width in time of

tile tmtrd electrostatic energy pulse, llq(t)12, shown in Fig, (3). This is the same

liiml of modulation that arises in the spectrum of a single square wave pulse. Let

[W assume that the early-time spectrum from low-duty -~ycle experiments can be

i(hllltificd with the incoherent average ([e(k,w)[2) of single-event spectra. In this

il~(~~it~~~(lspectrum the individual spectral peaks may be smeared out hut it is

r(’iisollilble to awume that the half-power frequency width is approximately that of

t,llc first ;u1[l strongest. lllaximum of the single-event spectra, Application of this

;Irglllnrnt ti~ the dots of Djilth, Gonzales, and IerkicU2 in this regime — e.g., their

Figllrc 4 – Iwuls nlso to n value ~c ~ 0.1,+0.05 ms. The k depenclenrc in this mo(lvl

:Irlsrs froltl the k (Icpenclcncc of the eigcnfuncticm, ro(k,t ); for a locidiz(~d stittc with

k(~()(t ) W(I(lx1)(:ct tlliit (~()(k,t)- fiO~J12(t) CXp ( -k fio(t )). For incrc;wing k, s]lli~ll(’~
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values of Jo(t) are favored and

wit h more negative frequencies.

these correspond to more tightly collapsed states

The free-mode peak observed in the spectra Figures 5 and 6 is, of course, not

seen in this simplified scalar model calculation since it neglects all of the excited

states. The free mode excitation in the scalar model is discussed below. The

behavior near w = O, including the shift of the maximum peak with k, is also

different in the scalar model than in the D = 2 Zakharov simulation of Figure 5.

The inclusion of excited states in the scalar model brings the results into closer

qualitative agreement. In the case of overdense drive U. <O, where free modes are

only weakly excited, this single state model agrees well with the complete Zakharov

simulations, such as those shown in Fig. 11.

The Fourier transform of E(r,t) is given by E(k,u) N J dt exp i (wt + @o(t))

[hO(t )1 eo(k,t) where @Ois the phase of ho(t). For large negative u we can make

asymptotic estimates based on a stationary phase evaluation of the time integral;

the stationary phase points t = ts occur approximately where w = –~o(ts ). From

Fig. 2 we see that the ground state has large negative phase velocities where

*o(t) - -Jo(t) as t ~ tc and can satisfy the statkilary phase condition. In

this temporal regime one comes closest to the self-similar scaling for the collapsing

state: eo(rt) = &o(t)-Di2 Vo(r/60(t)) with the spatial Fourier transform eO(k,t)

= io(t)Di2 . /d~ (exp - ikJOf)Wo({). The self similar behavior is 60(t) N (tC -

t )Yf’) N Ao(t )- 112 where tc is the collapse time. Using these behaviors in t llc

stationary phase evaluation of the Fourier integral we find the asymptotic behavior

lE(k.~)12 z l@l+3~/~) ~ ~ ~ -00. This asymptotic prediction is observed in

the D = 2 vector Zakharov simulations and in the scalar simulations to an iicclwacy

of 107C,

The spectrum obtained from incoherent scatter

fi(v[ ionosphere is the result of ab~~it 108 events and

(.{)rr(:liltiol]s bccomcs important. In general if the

l(’l)lil(-(’(l 1)~

N

of radars (ISR) from tlw mo(li-

the qllesti~n of ~~vitoll-[”;l~itoll”

events arc corrrlatcd, ( 4,5) is
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+ ~ ~ ‘ZP ‘[~” (iZj – Zi) ‘~(~j – ii)]

i#j

(4.7)“@,@”E; (~,@

The second or “coherent” term in this equation has N2 potential contributions and

so could have a potent effect on the upectmm if events are correlated.

A possible model of the effect of cm-relations is to assume that the dispersion in

the single event transform gi(lc,w) is small from event to event. This is true in the

scalar model calculations and has been seen in the full vector simulation; especially

in the case of overdense drive. Formally., this assumption is equivalent to writing

SJ(k ‘J) = g(k,u)

we assume I6&i12

+ JG(lc~) where c is the average over many events and b= =0. If

<< 1~12we can write

\vhere

This quantity is just the space-time Fourier transform of the caviton event density

N(T)

p(~, t) = ~ ‘D(Z-Zi)6(t ‘ti) (4.9)

i

E(1, (4,S;1) shows that in this approximation the single event spcctr~lln l~(k,w)12 is

Illtlfllll:ltr[l l~y the correlation or structllrc fnctor: (Ip (~,w)12),

5. COMPAR.ISON WITH OBSERVED POWER SPECTRA

‘~Imw pctformcd nlo(lificotioll cxlwl’ill](’llts [it A rccilx)Ih’(”(’lltly Chrllng (’t [11, .

\\”llirll clll])lm~izrfl low [Illty ryclc lwntillg w:(lurm-rs; tll(? 11(’llt(’r wils tlll_ll(’(1 011
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periodically in pulses of duration up to 50 ms with an interpulse period (IPP ) of

150 ms, The Thomson radar diagnostic pulses of duration 1.1 ms were also turned

on and off with the same period and the delay time between the onset of the heater

pulse and that, of the radar pulse was varied. The comparisons between these

observations and the SLT tlwmry can be summarized as follows:

1.) For short radar delay times the many-pulse averaged observed spectra agree

in detail with the smoothed simulation spectra. The main energy containing

portion of these spectra occur for w <O ar.cl there is a free mode peak for u >0.

Examples of experimental spectra from Cheung et al. 12 are shown in Figure S.

Examples of smoothed simulation spectra including geomagnetic ficlcl effects

are shown in Figure 6 taken from DuBois et al. 14

?.) The local caviton model accounts for the u <O spectral features as arising

from the nuclcat ion-collapse-burnout caviton cycle as discussed in Sect ion 4.

3.) Associated with each caviton cycle a nearly free Langmuir wave packet is

radiated away from each caviton site. This is discussed in Section 6. The free

mode peak occurs at a frequency G! = WP[l + (3/2) (~Ap)2 + (1/2) (Gc/qJ2

sin20] associated with a free Langmuir wave for which L2f > tiff yet is a distinct

signature of the collapse process,

-1.) Rcwmtly Djllth33 et al, have presented evidence that these short delny-t. imc

spectra are produced in a thin turbulent layer within 100 m of the reflection

idtitude of the heater. This is consistent with the parameters of our simulations

for which we assumed the altitude of the first standing wave maximum of the

Iwatmr in a smooth ionosphere density profile with R scale length of obmlt 50

kin. [This determines the value of Go = Wll – UP.]

It is ilnportant to realize that these short (May time ohservati(ms, ftllltwlillg

t 1111olwt’t of the lwnting ptdse, iwe completely ut od(ls with the pre(licti(ms of VU*:A

t IIrl JIIl(’IIW thfwry (WTT), WTT fails to Imxlict tllc S1)(!~tr:ll ~lml)c, tllc idti~ll(lt~

(llq)IulflrIIrc of tlw tlwhulrncc or itH mlguhir drpcll[lrucc (on tlw (Iirccti[)ll (d’ ~

tJIMIrv(~(l I)y t!w r:ular rclntivc to tile gcomnguctic firhl. ) SLT (N] tlw otlwr Ililll(l

il(’I’olllltS for nll of tll(?so otxwrvntions (Iluditntivcly nll(l ht. h’nst s(’llli -(llliklltitlltiv(’ly,

The (jlxwrvnti(mH of Djtltll:l:] ct nlm imlicntr tlmt tll(’ tlwlmlrnt lnyrr

sIJr(Ii~fl IlowIlwnr(l fro[ll tllr rrflw”t,ioll nit. ittl(lr nt ILl)(]llt,50 111s,follo\villg”

:!(;

I)(’gills to

t.11(” olls(’t
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of heating ultimately extending to an altitude 1 to 2 km below reflection after 100

ms or so. Changes in the spectrum occur on similar time scales.

In several sets of observations 34,31,32,12,33 hs arp spectral peaks are observed to

tlevelop as the time delay of the radar pulse is increased following the onset of the

Ileriter pulse. In Figure 9, a 50-pulse average spectrum is shown in which the radm-

pulses occur 29 ms following the onset of a 30 ms heating pulse with a 150 ms IPP.

This spectrum shows features observed in many previous long-t imc expmiments:o

consisting of a main “decay line” peak lying about 3.0 + 0.5 kHz below the hcwtcr

frcq~lency and two “cascade” peaks lying further below the heater frequency by 10.0

+ 0.5 kHz and 16.0 + 0,5 kHz, respectively. This approximate “1:3:5” pattern of

frcfllvmcy displacements is sometimes associated with a weak turbulence cascadei:]:~

6. CAVITON CORREL.4TIONS

The question to concern us next is whether such a spectral pattern can be

cwldained in terms of caviton correlations? We have found that for ovcrdcnse driving

where Jff < Wp (or W. <O) stable cycles can be found with cavito ~ in ordcwefl

Si)iltial arrays, Jn the case of iwerdense driving the turbulent state depends on

initial conditions 14 or at,least the memory of initial conditions decays more slowly

ill tinlc than in cases where uo >0.

WC wish to present here nn exnmple of n correlated ctiviton st;ltc which lli~s

illtermting properties and has led us to consider a clnss of pw-fcctly correh~tml,

idt(~rll[ltillg lattice models. This example is one of a class of silnulntiws in wllirll

(.;~~~itollsillitinlly f~r~llgcd in a r~gul~ army of sites persist ot th(w: sitvs, tlwir (my-

(.I(Is!)(WOIINwry stnl)le an(l })cconm phase locked to one mother in viwiolls t(’l]ll)()~ill

[)iltt(!~ll!i,

In Figure 10 wc show the inititd locations of two density cnvitim wllirll rcsldtr(l

[10111l)rrviolls collnpww nnd in which the illitinl clrctric firhl flllct~ultioll is s(’tl t.(1

Z(’ro, ‘Hlis is the initinl Ante for n simulation with E() = 1.2 mI(l q = –Xi h s~-idl’~~

Illlits. This wdw ofw~ corrrspoml~ to n d(mmirl in ldly~icul unit~ wllirll is ILINNItl(X)
(Ivl’r(hvls(’,W(’ m)tr thnt for thww lmrwlmtm~ I,lw systrln is stddr to Illo(lllllit,iollill”

illst[ll)il;t;r I)llt yrt ILrurrgrtic m)lllimmr stntc is sllstnillr(i for Iollg tillws 1)( ’CIIIIW’

t)f III(W il]itinl roli(litiolls,” In Figllrr 11 wc SIK)Wt,lw t,ilnr srrim of III{*Ilmxillllllli

\’; l]ll~’ of 1~( X,t, )12 V(’lSIIS t,illl(’ ILW th(’ HySt(’111 fWol L’(’!4 illt, () It ])(!~io(li(” ])df.i’~lii AS t,iIlii’
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increases each evolves into a strict limit cycle with period r = 0.59 with the cycles

at the two sites becoming ~/2 out of phase with one another.

In Figure 10 we also show the extended spatial perioclici ty implied by our

periodic boundary conditions, This shows that the simulation is ecluivalcnt to two

interpenetrating square lattices in which the ● positions are ,all in phase but are

~/2 out of phase with the + positions which themselves are all in phase. Examples

of the computed spectra are shown in Figure 11for 6 = O and O = 45°,

In Figure 11 the single event spectra, the l~(~,w 12in (4.Sa), are also shown for

tile same values of (k,@), These are easy to isolate from a single cycle nt a given

sitr. .According to (4.8a) the single event spectrum modulates the spectrum of tile

stnwture factor. Comparison of the complete spectra and the single caviton spectra

ill Figure 11 verifies this,

In Figure 12 we show the ion line spectra obtained from the same simulations,

Note, in the cases in which the plasma line spectra in Figure 12 has peaks ilt odd

Illldtiplcs of 2T/r (i.e. cases a and d) structure, the ion line consists of a symmetrical

Imlk uround u = O (corresponding to LJ = WH ) and two displaced pcuks at w =

+2r/~. These two dispkacecl peaks are shifted by exnctly the srune frequency M tlw

‘-(l(’(~ii~line” pmk in tile plasma line spectra in Figure 11a nnd d, This correlntioll

of frwlumlcy shifts in tile plasma line and ion line spectra hiw often bvml (dfcrr(l

ilS (Ivi(lrncv of the parnnletric decay instability; here we scc thnt tllc Stilxlc S])(!(!tl’ill

{’()~~t”]ilt it)l~ cnn iwiw from cornplctcly different physics!

TINISCc(msidcrntiotls led us to post~llute m(xk?ls in which the CiLVitO1lHt(}ll(l to

()r(ltIr t ]M?nH’l\’(HIin n rcgldur t}lrcc-(liJxlcnsioIl[il lut t ice iIl ovcr(hmsc rcgh)Ils of tll(’

iljll(wl)lwrr. 111the ionosphere Rpplicntion, hccnusc tllc hentrr firl(l Vilri(wi witllill t,llt’

rwlnr (Jl)svrvcd region, due to the n]ltmlm pwt trrn nnd the ult itll(lc ihywn(lc;~t Airy

]);lt tt’rll, tllr spncing, n, of cnvitt)lis ill tllr Inttim vnrivs 011 n scnlr l:~rgc (“ollll)ilr(”(l

to il. IIL rvgions of ]nost intcmw E(), n will 1)(! sl;mllrst. Tl)(~ [)~i(-lltiitioll of t]lt’

liltti~v’ Illily idS() VIU’~ witllill tll(! ol)s(’r~c(l rrgi(mi our S~idllI’ lll~)(lf’1sillllll:ltif)lls

~llI)W t Ililt for EO & ().fi V/in tht? lllit)(ill)[lll)is(dnt(’(1 (“iLVitoll sizr h iil)o lit ~(1 ,\l)

so \VII I]lig]lt {’xl)fv”t ill] illtorcnvitot~ sl)m’illg IL > S()- 100” ~il f)I’ Il])ollt LI()-fi() ImIII. :\l

:\ll’(”11)() tll(’ 111(1;11\VilVf’1lllllll )( ’l’ is Ill)ollt 2~ (3!j (“III)– ‘ wlli(.11 111(’ILIISt Ililt, l(l\V 01’(1(”1”

lll”;I~~ s(’;ltlt(’~illg fl’olll sllcll n lilt.t.i(”(’is I)ossil)l(” wit.11SIIIILIIlMljIRt 111(’lit,sof t.11(”]:lt t i(’(’

<]j:l(”illg wlli(.11(v)III(I liris(’ t.llrollgll vnriilti(]lis ill El], \l:l’ illliigillt’ tll;it III(- (Il)st’rvI’11

lf’ll,i~)ll of tll(’ 111’ilt.l’11 ioliosl)lltm’” (x)llt.niils (Iolllnilw Ir(l(’1”(’(1(-;lvit.(uls \\lIos(I Ii,l t i,,’
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spacing and orientation varies from domain to domain so

Bragg resonance condition for the radar is satisfied. It is

lilwly it is to have such a resonant domain present. These

that in some domain the

difficult to estimate how

spatially and temporally

ordered domains take some time to organize themselves after the onset of heating.

In the simplest interesting model the cavitons are arranged on two identic:d,

interpenetrating lattices. In each lattice the cavitons undergo strict limit cycles

with period ~ but the cycles in the two h ~,tices are displaced in time by ~/2 ,as

in the simulation of Fig. 10-12, The two lattices are symmetrically oriented with

rcslx:c t to each other in such a way that nearest-neighbor cavit ons arc melnlmrs

flificrcnt lattices.

The structure factor lp(~,u 12for this model was analyzed in detail in Ref. 14.

Tlw structure factor as a function of ~=2 ~adar, the wavevector observed Ly the

l)ii(.ks~~ttcr rnchw, has resonances when ~ is equal to certain discrete vector wdIIcs.

~U, klmwn ~asreciprocal lattice vectors. These satisfy the condition cxp( iI& .x,, )=1

for nll caviton locations, E,,, in the lattice. The magnitude of these vectors is tlcter-

Illincd by the Mticc spacing and structure and can be written as lIilv = (2~/il)[.~vl

IvlIrrc n is the sllmllest I&ttice spacing and the numbers IAVI are dctcrminecl I)y tllt~

I:ltficu symmetry, The resonance conditions, ~=~, are called Bragg resonnnc(:

tx)ll(lit,it)lls, The lowest order Bragg condition corresponds to the cww wlNIre t II(J

liIt t.iw spii~i[lg m is rqual to half the radar wavelength; [L=( l/2) Arit(liir. 111tl~is (.:M?

it i~iis SIKWII”l tl]at the frequency spectrum hns pcnks at w=m(2m/r ) \vllrrc III is

illl ()(1(1, positive or negutive, integer, The strength of these I)(*i&s is [)ro])()~ti()lli~l

(() .Y: wlwrr Nc is the Ilumbcr of caviton events observed in tlw time illtcrvnl of

t 11(’I’il(lilr ]) III!W. Highm order Bragg rcsonnnccs mist WIICI1n is ii lIu-g[Ir Il]llltil)l(’

(If ( l/2).\ ~il(lilr, TIN?M*IIwrc k)mw]~ l)ackc(l hitticcs IIl[iy lIiLV(! ])(:iiks ilt, ~1=111( z7/T )

IVII(IIX*111is citllrr (Nhl (ns for thr ])rilnnry rmollmlcc) or rvrll. Itvgif)lls (d IIigllt’r

I’jj ‘.vill lm)[llwr Iuorc tightly pnrkrd lot,ticrs, ( 17ccidl t.lmt tlw k)r:il c:lvitl)ll IINJ(I{.I

l’~’slllls, Slllll Illil~i Z(’(1 ill %rti(m 3, l)rr(lirtr(l tllnt, tllc Ilmxinllllll (’iL\’ilo Il ~il(lillS S1’illt’(1

Iikfl l;,; 1. ) Urr rxlwrt strollgcr rmlnr ~ignds frolll tlw rrgif)lls of strollgm F,,] \\’it II

t 1111I)rilll;iry Drngg rwMmIIrr, Ill t,llis c:wr wr Imvr tlw 1:3:5 fylw sl)f’rt,rlllll \vit,ll

l’I’Wlll:lllCm(’SIlt w’=ll I(z T/T), Ill = -1, .3, -~, all(l nlso with 111=1, 3, 5 (’tjr, I’:(I,

( Is) sll(nvs fllnt III($sl)(v’trlllll i~ tlw i)ro(llwt of tlw strllctllrr f;wttw, ll~(~,+’)ly ;IIIII

I! III .iliql(’ l);lrti(tll~ s])t’rtrlilll l:-(k,~’) [2,



The latter has most of its strength for w < 0 (U < @/f) with only a small

overlap of the rgion w > 0, as in the examples in Fig. 11. Thus the complete

spectrum, lE(~,u )12, has prominent peaks for m“= -1, -3, -5—plus a weaker peak at

m=+ 1. The latter can be identified with the often observed “anti-Stokes” line.

In Ref. 14 it was noted that because of the scalings r * E~l and A z E~ 1 that

if we identify the caviton lattice spacing, a, with tile maximum caviton radius, A,

we have r N a. If the lattice domain is such as to satisfy the lowest Bragg rcsonfince

comlit ion, a = (1/2),lradar = (r/k), we conclude that the downward frequency shift

(If the first decay !ine, Au = 2T/T * k. “rhis has the same k dependence as tlw

ion wmstic freq~iency and is found, numerically, to be close to the ion acmw.tic

frcqlwnc,y, within a factor of 2, This scaling of the frequency interval of the 1:3:5

sl)cctrum is qualitatively the same as predicted by weak turbulence theory! It is

rcmnrkable that the correlated caviton model seems to be able to account for idl

the ol )scrved feat ures of the radar power spectra,

However, there are two problems with this explanation, First, it is 01)served;1513ti

t.llilt when the heater is switched off the spectral peaks of the 1:3:5pattern remain

fcm scw-md ms after switch-off, albeit with decaying amplitudes rmd nltered rehdivr

illlll)lit[l(ks. WC can not see how the correlrdions necessary to preserve this slwc-

t,rnlstructllre cm I)c xnaintmined in the correlated caviton model ,after switch-(iy

of tll(: Iwnter. A SCC(MNJ pro’blem with the correlated cavitou explmmtion il~(~ t.11(~

‘)3 that tile 1:3:5 structluxxl sl)twtrtl nrisc frolllr{v’vllt olx(~rvi~timl~ of Djuth t:t [d,

fllrl~lllcllcc rxcitwl 50-100 Ins followiug hcntm tllrn on, ut fdtitu(lcs Ill) tt) 1 ti) 2 kill

l)t~l[nv tll(: r(fhwtioll Idtitll(les, At such lll~(lcr(lellse nltitu(lrs, \vit,ll r(~sl)tx.t to t,llt~

Illl(listllrlw(l ioll(wl)lwrc, it is llllr(lcr to illlngillc tlmt ioIms]Jlmrir irrcgllllwit i(’s (“illl

lIro(lII(’(1 t,lw ov(ml(’l]s(! (IOIIIIUIIS necessory for corrclutiolls,

iii, ) SINIII’Nlmlin] lmtt,(wls IIl)l)w~ to I)(I :+till)l(’ fvlllililwilllll ILII;III g(IIII(IIIl S wil II



definite temporal correlations between sites. Only temporal correlations where

nenrest-neighbor caviton cycles are in-phase or rl~ out of phsse appear to be stable,

iv. ) Those pbt terns which are not stable equilibria evolve to stable patterns on

nn experimentally relevant time scale - say tens of ms.

We have discussed (i) at some length above. An example of ( ii) is the simulation

discussed in relation to Figure 11 in which cavitons at neighboring sites became anti-

cmrelated in time. Points (iii) and (iv) (as well as other examples of (i) and (ii)

nrc INWX1on simulations and theory which we will not present here. This work is

pnrt of our contilming research and will be published elsewhere,37

~cnr reflection altitude (critical density) it may not be difficult for ionospheric

irrvgldnritics to produce the overdense domains necessary for correlations. If this

is tlw cme then why would the 1:3:5 spectral signature aswciatcd with caviton

cmrclations @ bc observed? This could be due to a low probability of overdcnsc

fkmmins which sntisfy the spatial Bragg resonance condition for the pnrt icular rndnr

\wlWlt’llgtll,

Dmrmius of rohmcnt crwitons whose lattice spacing is not 13rngg resonant for

t IN*given rrdnr ~ are more likely to be present (near reflection nlt i t udr ). S urn

th ulmi IIHwill hnvc wmkcr resonances at w = ~mn rd- 1 for ~ m where the life tim(’

~)f t lu~ (’iL\’itoIl c yrlc r(f vmic~ from domain to domain, The rcsonnncc nt u =() is

c(mllllfm to 11]1 (Ioiluuns IUK1i~ not Hmenrcd out by dmnniu to domain v:wintiolw

t)f T,l iw ilr(~ tllc rwsommces fo: 111# O, T’hc w = O resmmncc mu IN idrutithvl

wit 11wlint is r(mvrntiondly mdled the “OTSI Iinc” in ionmphrric ]lt’lltillg l)itrhtllrr.

This Iilw (“ikn 1)(’ rxtrrmciy Immow if the cnviton cyClf’S MC hllg lived; W(! fili(l

-l~v~ r( ilr,~ )- 1 whrrc M i:i the numlmr of cyclrw in the olxwrvntiml ilitrrvnl, *’1TINI

{Iilvit.(nl I)ictlm lwovides the only nonlimmr (lmrription, which wc kiicJ\v ~~f,wllirll

is r;l]mldr of lilicl(pr~tllli(litlg the w’ry Imrrow width of the “(ITSI Iiur” [Jwmwml ill

t INS~’xl~t’rimmits i~f Sldzrr nml Frjcri :In,:lu

:)1



effects are strong: the dominant sink of Langmuir dissipation is through caviton

collapse and the dominant sources of ion density fluctuations are the burrwut den-

sity cavities remaining after collapse. We cannot expect WTT to describe such a

turbulent state. On the other hand the fraction of Langmuir energy in free modes

is significantly higher at these underdense altitudes than at reflection clensity or

in overdense domains. We are investigating the possibility that the beating of the

pump with the collame-enhanced ion density fluctuations can produce a source for

free Langmuir mocles which would excite the decay (or Stokes) line and the weaker

anti-Stokes line. (Similar processes may be possible for other steps in the “cas-

~i~(lc.”) The theory must take into account the direct excitation of free modes hy

cidlapsc - (the NIJJO term in (7,4) which follows) - and the scattering of free Lal~g-

Illllir lumles from collapse-enhanced ion density fluctuations. The latter process

Imxluces an effective damping on free Langmuir modes which tends to colmteract

the parametric gain which in WTT is supposed to lead to the usual

riIsc;ide. The results of this study will be published elsewhere. 40

7. 11.4DIAT10N OF FREE LANGMUIR WAVES BY COLLAPSING

WTT dectly

CAVITONS

(Illr stlldies have shown that the collapse process invariably excites free (or

l)lol)i~gi~ti[~g) hmgmlir waves, These manifest themselves in the “frm mmlc” lw;d{

Ivllirll (lccllrs in nll the power spectra,, lE(~P)12, which we have rtmplltrtl. ~\s

(Iisrllss(’(1 in Seem 5 there is strong cvidcncc that the free Inode peak I)iis I)(x!II

(Il)srrv(xl ill the short time scale cxpcrimcnts of Chcung et al. 12

TIIww frrr IIKMIC stiit(!~ wc extended ~t~t(:~ whost: energy is Ilot lo~idi~(~(l iit, il

l)ilrt.i(”lllfkr ])oint. ill S1)UCC. A single collnl)sing cuviton will riltli[~te ii wnv(~ I);l(’k(lt ()f

fl’(v’ Illo(h!s which slmmd out an(l wlmm umlditlldrs (Irctty gronwtrir;tily ( ilS r-1 )

-“ fr[)lll t}lr (Wcitilthll c(:Ilt(!r of tll(! (“iLVitoIl,;l\v; l\

( )Iltsi(lr (If t,llr Hlmtinl rc’giotl of Iul isolut( (1 c(~llulwillg c;lvit.(~11tll(’s(’ Iil(li;lt.1’(1

I.:lllglllllir wn~w nr(* ;Lyyltll~t(]ti(’:llly frrr LiiIlgll~llir wiiv(~s olwyillg tllv (Iisl)rrsi[)ll

I[tl;lt.ioll of (2.5). Ill il llilllly-(’ll\’itoll (ulvirollnwllt, tll(’ lilr~(! (Imlsity llll(”tlliltioll S

l!J’11(’Uilt(’(1 I)y (’ollil])S(” (listort tlwir ]M’ol)llgiltioll,” rrh(} frvv II1O(ICfr(xllwnci(’s ill)l)l’ill’

II I ;II)])IX);WI1tlIfI (lis])t*rsioll r(*llLtioil (2, S) IN k iiwr(vws.

I’riulll(vll’ic’sIIr(I sllift,(vl t,() soIlwwlIId, Iligll(’r vnlIMIs (lIIr to

11(’llsily 1111(’t.lllltiolls.

:Jz

For low(’1” Ii V;llll(w I 11(’
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The generation of free modes can be understood in terms of the coupled mode

nmplitude equations (4.7), For simplicity we ignore the dissipative coupling (~. !lb)

which is not important for the k values measured by most radars. The coupling

between states is given in (4.7) involving the matrix (4.9a)

M.”,= ~(Ev+!L/) (7.1)

By taking the time derivative of (3.2) and using the orthonormality condition (3.S)

we can reexpress this as

where

(7.2)

(7.3)

Tlw free modes have a continuum of eigcnvalues Av(t) in an infinite space md so

‘,VC(.iul parm-neterize them directly in terms of their eigenvalue A:i,c., ~~ (x, t). Tllc

frrv Inodes rcccive from or give energy to localized states and are driven clirectly I)y

the heater Eo, In the foll~wing we will consider in detail the coupling to a uniqlw

c[dlnpsing state denoted by

i~lllplitllde h~ of a given free

the subscript zero, The equution of motion for tlw

mode then folh]ws froln (4.?) as

/)(A’)A:@J, = -AfJJ(, ho + E’()● (r,\ln) (7.4)
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it is easy to see that the scattering terms do not change the total free mode energy

lvl~ile the terms on the right hand side of (7.4) do.

In Ref. 14 w-e have presented detailed numerical res~dts for free mode mdiat ion

ixl the spherical scalar model discussed in Section 3. We found that, in the ca-~e

of m’erdense driving, that the coupling to the time dependent collapsing Langmr. ir

grCNUMIstate, the MJJOhO term in (7.4), dominates the dynamic conversion term,

EO <CA[n>, in that equation. During the early nucleation stage of the caviton cy-

cle, there is relatively little energy, lho12, in the local ground state and the dynamic

conversion term is the dominant source of free mode energy. At intermediate tinlcs

(llwil~g collapse the coupling to the time dependent. ground state is dominant am!

IImduces the largest free mode energies of the entire cycle. Deep into collapse the

cmlpling to the ground state is again unimportant because the coupling coefficient,

~I,\,\O, is going to zero as the coupling becomes more and more nonresonant. wc also

slmwx114 that the hot electrons emitted during the burnout phase of collapse can-

Imt produce n significant rate of production of free Langrnuir waves by Chercld;ov

riltliiltion.

As mentioned in Section 7, the energy in free modes is a higher fraction of tlNI

totill Langmuir energy in the c- of underdense driving (W}J > WIJ ). In the r~ghlfh.

~’11 - L+ > (3/~ )( k~~) )2WIJ ~ the free modes occllr at frquenci~s 1M*1OWth~: 11(’~~tt’r

fl’(’qll(’llcy, w//. The frequencies of localized states, which must he rcs(munce st:lt,ls,

;ll)lxuwltly w-c in the range w < W}i nnd overlap the free mmle rnug~’. 111tll(!s~’

1111(1{’r(lrnsrrcgilllcs the emission and absorption of free modes by Iocalimxl (:ilvitoll

stilt (’s IImy I)e Iu~ ill~port nnt cent ribution to tlm nucleation procmw. 40
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regions where q <O which are likely to be correlated. Note, for e.~ample, that

the free mode peaks in the single caviton spectra from the correlated simulations

of Figure 11 where wtl = -25 are not very strong and do not produce prominent

peaks in the correlated spectra.

8. CONCLUSIONS

\Ve have discussed some of the accumulating evidence that strong Langrnuir

tllrlmlence theory explains phenomena observed in laser-plasma interaction experi-

ments and in ionospheric modification experiments. The laser-plasma experiments 10,11

particularly illuminate the sensitive coupling between low frequency density fluc-

tLlations and high frequency Langmuir fluctuations, The theory in refs, 13 and 29

nppcars to describe the major feature of the experiments of refs. 10 and 11 which

ilre trm;sient in nature, In these experiments a short pulse of SRS activity, as in

Fig, 2, representing on!y one generation of collapse, is observed before the level of

SBS ion sound fluctuations has grown sufficiently to detune the SRS process. In

(Jc]wr experiments, say with longer laser pulses, under some conditions the SBS ion

sound wave level may saturate at a level which permits a more or less continuous

SRS excitation. A theoretical description of such a long time scale, SR5-excitecl,

sr ;Itc of Langmtlir turbulence is very difficult, Such studies urc complicated by t]w

11{!(I(Ito :q)ply realistic bound~nry conditions on the Langmuir waves and scattmxxl

l!gl]t~~~il~’(~~genmated by SRS in an inhomcqgeneous density profiles, N(umwical

st l~(lics of such regimes have been cerricd out by Bonnaud et al,’11

ll~r’ Imvc also explored in detail the implications of strong Langmuir turhu-

l(IINWthrory for ionospheric heating experiments, The short time scale data from

t lIIISCrxpriments prCJvide the best test of the theory available today. A mnjur

l’oll[’llwiol~”t)f mlr work is that weak turbtllcnce theory (WTT) calllmt I)c Vidi(l for

111(Il.oll(litiolui” of i(mospheric heating, Our CO1l(.lilHi(l;lis I)mse (l,first of all, 011 (’!(-

t(,llsiv(l l]lllll(~ri(”;llsollltions” of Zukhnrov’s IU(J(ICI~11(.()[li~}i~~sjl~~ IIIiUIy grI1(!r;ltit)Iw ()(

lx)llill)sillg citvit(uls. WTT follows umlm very spcci;d (Ioti(litions from tlw Z;lkil;m)v

(,tlll;ltiolls. TI1(I fnrt tlmt the muncrical solutli(ms [we (Ionlinatwl hy udwrtvlt, c(d-

I:llwillg cnvitolls I)r(wrs tlmt the nonlimmr ~tnw is fnr fr(m~ tllc rrgium of WTT,

[{( W’1111)’ Pily!l(’, ‘H hnvr rxl)l(mxl ill (Irtnil tlw limit of JV’I’T illlNicilt)lsoII Iul(l S11(’11

Illlllwrir:d wdlltiolls of Znkluw(w’~ (Iqlultit)lui in tulc (Iillwllsioll [III(I II;lvu rstnldisll(’(1
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rough criteria for the validity of WTT. These stringent criteria are not satisfied fcr

the conditions of ionospheric heating.

The strong Langmuir turbulence theory has developed on two levels. The first

level is based on solutions sf Zakharov’s model equations. From the properties of

th,n, . .aiutions we have proposed the local caviton model which is a more “phe-

rolnenckgcal” level. The local caviton model is built on single caviton properties.

Cavitons go through cycles of nucleation, collapse and burnout. Associated single

caviton properties include their lifetimes \or cycle times) Tc, the single caviton fielcl

fluctuation g(~,t ) and “ts power spectrum Ig(k,w )12. These single caviton proper-

ties are not necessarily those of isolated cavitons, although the isolated caviton

approximation is at least qualitatively useful in many cases. As the driving be-

comes increasingly overdense (u. <O) we have evidence that caviton interactions

clccresse but the residual interactions can lead to coherent caviton states. It is a

t.hi~llcnge to understand the mechanism(s) for self-organization of this weakly inter-

w.t.il~g caviton gas, For these highly correlated states, the nsxne turbulence hardly

scelns appropriate.

We believe that the Qualitative properties of the local caviton model will be

those clecluced from the Zakharov model. More complete and accurate descriptions

(If single caviton properties are needed to treat the end stages of collapse and

the burnout processes, whereas the nucleation and early collapse stages should IN

ii~~llrately described by the model, We anticipate that these improvements will

lilill{~ quantitative but not qualitative changes in the

~);ipc’r.

We believe that the SLT ,nodel has at least three

I]l:ti[ling the ionospheric heating observations for early

t11(I(msct of the heating pulse:

picture developed in this

apparent successes ill cx-

times (<50 rns) following

1.) Tlw altitude dependence of the early time plasma line signal is (!asily (~x-

l)l[lil~(!(ibecause the localized caviton states are tied to the litlc;tr (Iisl)crsio[l

L1’lilt.ion, (2,5), Based on the sensitive dependence of the t urb[~lcncc level (M)

E() \V(! (’mcl[l(i(!d 14 thnt the strongest plasma line signal shoul~l occur near th~*

idtittl(le of strongest Eo, which is the first Airy maximum in tm umlist~u-lw(l

profilr. This is in ngrcement with the early time ohscrvntiom of Djuth et :d,:]:~

~.) At t.llcsc Cnrly t imcs following the or!.set of hcnt ing the lM’()[L(~ f(!:Lt(w(’]css

sl)r(”tr[llu for G < till, olmcrved ill mnny cxpcrimmts, 12,31,:12,:1:1‘IS cxplnillc(l I)y
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the dynamics of local caviton states. This part of the spectrum arises from the

caviton cycle of nucleation-collapse- bunout. It is not consistent wit h WTT.

3.) A new prediction of SLT theory, the free mode peak, has been unambigu-

ously observed by Cheung et al. 12 This arises because of the radiation of free

Langmuir waves by collapsing cavitons. Again this feature is not consistent

with WTT,

There is no experimental evidence concerning the dependence of this early

time turbulence on the angle O between the radar ~ and the geomagnetic field. The

theory predicts that the same qualitative features would be seen at Tromsti where

19* 0° as observed at Arecibo where

several orders of magnitude stronger

not been carried out at Troms~.

The SLT theory appears to be

O * 45°, but the plasma line signal should be

at O ~ OO. Short time scale experiments have

able to predict, at least qualitatively, many

properties of the sharp spectral features obsexwed at longer delay times following

the onset of heating. These predictions depend on the existence of overdense do-

mains of temporally and spatially correlated cavitons. Structures similar to the

-.dccay li~e,” the 3:5:7-- ‘Lcascadc lines” and the anti-Stokes line appear in the SLT

spectrum of correlated cavitons provided Bragg resonance conditions, depending

tm the radar wavelength, are satisfied by some correlated domains. In addition

~vc have new theoretical insight into the caviton-caviton interaction mechanisms

37 However, inspite of the attractiveness of thiswhich establish these correlations.

scenario, we believe this is probably not the mechanism which produces the above

Ilwutioned sharp spectral features. The reasons for this conclusion were given in

!%ction 6.

The probability of finding Bragg resonant domains in the observed region may

IN;small. However, there may be overdense domains of correlatcci cu.vitons, near rc-

tlrction altitude, whose long-lived temporal correlations produce the mu-row “OTSI’”

Iinm observed by Sulzer and Fejer. 06J3g We know of no other mtisfactory rxphma-

t,ioll of such lines which takes into account the nonlimmr evolutim~ of the OTSI ill-

st,;ll)ility. Single pulse radar taken by Cheung et al. *2 and more rcccntly hy Sulmr ct

ill,’l”[nay he Cmlsistcmt with temporal corrclntions at relatively car]y times folhnvillg

I lNIollsct of heating.

Atl idt~rll[ltiv(~ SLT scenario which might il(~(:ourlt for tllc sharp spvctr[d f(~i~t[ll(~s

;II. l;lt(’r fl(’]ay tinws wlw Ilw[lti(mctl in Scctioll (j, ‘1’llis tlwory Illlwt Im rollsistrllt wit 11
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the new information from Djuth et al.33 concerning the altitude of the turbulence

producing these features. The theory must also be consistent with our observations

that simulations of Zakharov’s equations 40 fcr these underdense altidues show that

,a significant source of Langmuir dissipation and of ion density fluctuations is caviton

collapse. Clearly WTT does not satisfy these requirements.

These questions are a challenge for future work. We believe that the ne~v

strong Langmuir turbulence model presented here is considerably more successful

in dcscri bing the errly-t ime behavior of the heated ionosphere than the conventional

theory. We hope this paper will stimulate new experimental and theoretical tests

of these ideas,
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Figure captions.

Fiq, 1. Two-dimensional plots of IE12 (upper surface) and n (lower surface) at two

different times. Parameters in scaled units E. = 1.2, vi = 0.9, Uc/UP = O, Ue

= Landau damping continued smoothly as k2 at large k, mi/qme = 1836, L=

= LU = % and a 128 x 128 spatial grid. The collapses are anistropic with the

narrow dimension along the x axis, the drive direction.

Fig. 2. (a),(b) Spatial profiles of IE12, n and lA~12 for two times for nO/nC = 0.045, L

= 15 & a] 1d VO~clc = 0.035. Here E, n and AR are, respectively, the Langrnuir

field envelope, the ion density Luctuation and the envelope of I]ackscattered

light wave; nO is the electron density in the simulation slab of length L accl nc

is the critical (reflection) density of the light which is incident on the slab from

the left and has an intensity expressed in terms of the oscillating velocity VO~C

- (~/~O)E~ig~f . The units are 4rnOTe /439 for IE12, nO/2754 for n, arbititary

[mits for IAR12, 91 JDe is the spatial unit, and 140 psec is the temporal unit. We

show only the Icftmost portion of the slab, O ~x~3~o. (c) Temporal history

of the total Langmuir energy, total ion wave energy, and SDS bi~~ks~~~tt~’r

reflection coefficient (in arbitiary units) for the case above. The Ilnit of tilllt:

is 150 ps. (d) Same but for VO~C/c = 0.07, ~/nC = 0,055. Here the unit of

tilnc is 132 ps. The mean square thermal fluctuations of the initinl Imdisturlxxl

plasnm were (lE12)t~CrmaI s 0.1 Ud (n2)t~errnoi ~ 900. In (c) wlcl ((1) note tlw

initiul pulse of Langmuir energy associated with a single gcnerntion of collnlw

illl(l hllrn(mt followed by the growth of SBS bt.wkscatterc(i light.

I’iq, 3, Tllc tcmlxmd evolution of (a) lE(r = (-l,t)lz nml n(r = (),t), (l)) A()(t) illl(l

tl)c ]).li~s~ velocity -d~/dt nnd (c) the cavifou width A(t) [uI(I tll(~ (’1(’(’trost,;lt,i(”

~~ll(~rgyill tile ~ilvitoll lho(t )12 in tllc scnlnr nl(xIci; E(l = 1.8, llli/l)lll~ = 2 x

1(1’1,Ijl = ().9 [111(1Ld~ = 0,

I’”iq. !. S[millilr lIIO(lf!] for EO = 1,8, IIIi/lllllF = ~x104, l!i = 009, U’(I = .–S(), Sll(nvillg

SIIU]Wof n(r, t) und lE(r, t)li M flmcti(ms of r for two tillw~ ill tlw cnvitx)ll ryrl(’
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tive frequency at maximum of spectmm vs k = k=; dashed line, ion accllstic

frequency shift, Iwl = k,

Fig. 6. Power spectra lE(lcw)12 ~ = 1.2, uo = 5, wc/wP = 0.2, L= = Lv = 27r, M

= 1836. Spectra are smoothed over an angular frequency interval & = r,

Spectra intensity scales are arbitrary. The spectra are for various values of

(k,t9). Becaus~ of a numerical coincidence, when these results are scaled to the

more realistic value M = 9 x 1836, the frequency scales can also be read m

kHz of frequency (not angular frequency).

Fig. 7, Power spectra lE(lcw12 for the scalar model parameters of Fig. 2. Spcctrunl

for k = 40.0.

Fig. 8. Experimental spectra, (a) Heater pulse width 10 ms, Interpulse period (IPP)

150 ms, f}~ = 7.3 MHz spectra taken in 1,1 ms internals delayed 4 ms from

onset of heating pul~e, Note the free mode peak at * 72 kHZ above the heater

frequency which is 256 on the scale, (b) Heater pulse width 10 ms, IPP 150 ms,

f// = 7.3 MHz spectral delayed by 1.5 ms from onset of heating. Free mode

lwnk nt 52 kHz, I?kom Cheung et d. [1989].

Fig, 9. Plnsma line spectra for 30 ms, heater pulses with 150 IPP at 7.3 Mhz UI](l

rntlnr pulse delnyed by 2!J ms nfter onset of heater pulse, averages over 10 nnd

WI rnhr pulses, rc~pectivcly,

Fig. 10, Two [Iimcnsion simulation of ulternnting lattice mmlcl, Cnviton locutions

Iililrk[’(1 ● two r/2 otlt ~ ‘ Ih.se with kxmtinns mnrked +. TIN: raviton ry -

rlv lwrio~l is r, The r(wl.rnl Mquarc is the ~imulntion Al. The otlwr LWIIN~lrr

ilul)liwl I)y tlw prrimlic Ixmndnry conditions. Thr ●k nnd +SM[Icm]tc tlw ini -

tid ruvitoll hwntion~ whic!l do not rlumgc for wo = -25 m w() = – lG. ( )tlwr

l):lriuiwt~hm: E() = 1.’, LJi = 0.9, illi/?~illC = 184G.
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