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Dynamics of Cavitons in Strong Langmuir Turbulence*

D. F. DuBois, Harvey A. Rose and David Russell
Theoretical Division and Center for Nonlinear Studies**
Los Alamos National Laboratory, Los Alamos, NM, 87545

Recent studies of Langmuir turbulence as described by Zakharov's model will
be reviewed. For parameters of interest in laser-plasma experiments and for i1ono-
spheric HF heating experiments a significant fraction of the turbulent energy is
in nonlinear “caviton” excitations which are localized in space and time. A local
caviton model will be presented which accounts for the nucleation-collapse-burnout
cycles of individual cavitons as well as their space-time correlations. This model 1s
in detailed agreement with many features of the electron density fluctuation spec-
tra in the ionosphere modified by powerful HF waves as measured by incoherent
scatter radar. Recently such observations have verified a prediction of the theory
that “free” Langmiur waves are emitted in the caviton collapse process. Observa-
tions and theoretical considerations also imply that when the pump frequency is
slightly lower than the ambient electron plasmna frequency cavitons may cvolve to
states in which they are ordered in space and time. The sensitivity of the high
frequency Lengmuir field dynamics to the low frequency ion density Huctuations

aud the related caviton nucleation process will be discussed.

**Research supported by USDOE.



I. INTRODUCTION

There are many linear instabilities in plasrnas which resuli in the excitation
of intense Langmuir waves. An important subgroup of sucii instabilities are the
radiation-induced parametric instabilities which have been studied extensively since
1963.12 In the last decade important progress has been made in understanding
the nonlinear, and usually turbulent siate io which these in abilities evolve, [t
has become increasingly clear that the older approaches invo.' .ng weak turbulence
theory, as one extreme, and ih.e wave-breaking of traveling Langmuir waves, as
another limit, are not adequate, especially on the longer time scales associated
with ion motion. Instrad. a new paradigm is enierging involving the concepts of
what is commonly called strong Langmuir turbuleace (SLT) theory. This theory
has its roots in the seminal work of V. . Zakharovd wha developed a compact
mathematical model of SLT and concluded that localized collapsing Langmuir states

could play a central role in the turbulent state.

In recent years it has been possible to curry out long time computer solutions!—3

of Zakharov's model equations, suitably modiiied to treat the effect of various types
of drivirg sources. This research has led to a “global™ view of how the turbulent
state is sustained by thie balance of driving sources and tie dissipation resulting
from the transfer of energy from the collapsing elecirostatic fields to aceelerated

olectrons.

The new paradigim has received support from various experiments inciuding
besaun dricen laboratory experimeats,? laser-plasina experiments!! and recently
from detailed ionospheric modification experiments.!? The power spectra of turbu-
lent fluctuations measured by Thomson scatter radars from the madified ionosphere
provides detailed information concerning the dynatnies of the elementary exeita-
tions, the “eavitons” and the “free mcdes” which ace important in SL'F. An iapor-
tant pari of the SLT scenario is the controlling effect of low frequency density tlue
tuantions on the jocalization of the Langmuir fields. Luser-plasma experiments 1011
which demounstrated virdous nspects ot the nonlinenr coupling of stimulated Ramnn
seattering (SRS) and stimmulated Brillouin seattering ($BS), provided useful tests of
the predictions! that the jon sound waves fiom SBS wonld have n controlling effect
on tie Langnuir waves from SRS, The temporal signatures of the Thonson seatter

signals from these two types of fluctuntions where consistent with the evolution tc
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collapse of the Langmuir waves in regimes where the levels of ion sound waves were

low enough to permit the growth of intense Langmuir waves.

The research program at Los Alamos has concentrated on SLT driven by vari-
ous radiation sources. These include the ponderomotive scurces appropriate to SRS
and SBS. Our most comprehensive studies have involved long wavelength electric
field drivers with frequencies near the electron plasma frequency.H This method
of driving is appropriate for the turbulence induced in the ionosphere, near the
reflection density, by HF pump (or heater) waves of ordinary polarization. In a qui-
escent plasma such drivers can excite the well-known parametric decuy instability!
(PDI) or the modulatioral instability!®16 (MI) (sometimes called the oscillating

two stream instability.)

The results of this research on SLT driven near critical density can be suinma-

Jzed as follows:

1.) States of SLT can be excited for heater (pump) intensities only marginally
above the threshold for parametric instabilities. Thus, for example, we expect the
ionospheric heating experiments, which are estimated to be well above the threshold

for these parametric instabilities will be in the SLT regime.

2,) In these states of SLT a significant part of the energy in high frequency

density fluctuations is contuined in localized states in the case of strong ion sound

wave damping which is appropriate to the ionosphere. 1914 These localized staices,
which we will call cavitons, consist of a high frequency Langmmir ficld trapped
in o self-consistent density cavity (i.e., density depletion). The dynamics of these
cavitons will be a major concern of this paper. It is important to emphasize that
thiese localized states are not wavepackets of plane linear Langmuir waves, but new
noulinear Langmuir states and consequently cannot be described by perturbation
argiunents such as ‘veak turbulence theory based on Langmuir wave states satisfying

the Lnear dispersion relation:,

3.) This state of SLT is sustained by n local nucleation process, (see 6. bhelow),
and not by linear parametric instabilities. "8 The developed turbulent state is
stable to the exeitation of these global parametrie processes beeause of the level
and localized natare of the turbulent Huctutions. Parametrie instabilities may play
a role in the traasient excitation of the SLT state from quiescent initial conditions:
for ionospheric parameters this would be the dirst ms following the turn-on of the

heater,



4.) The localized states are trapped in self-consistently evolving density wells
which collapse to small dimensions because of the dominance of the nonlinear pon-
deromotive force over the linear pressure force. The evolution from nucleation to
collapse is discussed by Rose and Weinstein!? and the collapse process follows the

self-similar scaling discussed by several Soviet authors.3:18

3.) As the caviton's spatial dimension decreases to the order of 5-10 electron
Debye lengths, Ap,, the electrostatic energy trapped in the caviton is rapidly given
up in the acceleration of electrons resulting in the sudden dissipation or “burnout”
of electrostatic energy. The interaction of cavitons by the exchange of hot electrons
appears to be a weak effect. Even in regimes where there is significant energy in
free modes (see (7.)) the burnout of cavitons is the dominant source of energy

issipation.

G.) The electrostatic burnout process leaves an empty density cavity, no longer
supported by a ponderomotive force, which then evolves as a free, possibly nonlin-
car, ion sound pulse. These residual ion density wells provide nucleation centers for
the excitation of new collapsing cavitons. "8 For strong ion sound damping, the
burntout density wells relax in place. The radiation of ion sound waves following

collapse is an important interaction mechanism for cavitons.

7.) The collapsing cavitons emit and absorb propagating Langmuir waves.!!

This provides another interaction mechanism for cavitons. Under some conditions
the free mode-caviton interaction may be an important source driving caviton nu-
cleation. The free modes generated by collapse have been ovbserved in ionospheric
heating.'? These frece modes can interact with one another by familiar wave-wave

processes. They also can influence the nucleation of localized states.

8.} When the driving frequency exceeds the background plasma frequency, i.c.
for overdense driving, the caviton cycles of nucleation-collapse-burnout can become
stable limit cycles.!* Under some conditious the cavitons can also settle juto stable
periodie spatial patterns. These ordered states of high spatio-temporal correlation

liawe distinet signatures in the power spectra of the turbulent fuctuations.

Highlights of this research have been reported in several short articles, 1978

A longer article, ref. 14, is devoted mainly to the regime of ionospheric heating
which greatly reduces the “volume” of the potentially very large parameter space

of SL'T which is considered, although what remaing is still very rich in phenomena.
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Other applications such as laser-plasma interactions (e.g., see Rose, DuBois and
Bezzeridesls'lg) involve many of the same or related phenomena and will be men-
tioned here briefly. The same conditions of excitation near the critical density in
weak density gradients as considered for ionospheri- heating might be approximated
in long scale length laser produced plasmas with weak collisionality or in labora-
tory microwave-plasma experiments with sufficiently long-lived plasmas uneffected

by boundaries. We will not treat such applications in detail here.

Here we will try to sketch out the major features of this strong turbulence sce-
nario. The physical setting of HF heating of the ionosphere is ideal for observing
SLT phenomena. We believe the SLT theory represents the most credible descrip-
tion of the experimental facts of ionospheric heating. This SLT approach represents
a significant departure from the accepted or conventional ideas associated with
parametric instabilities and weak turbulence cascades. Qur most complete current
understanding of SLT is based on simulations of a homogeneous, isothermal model
described by Zakharov's equations.? This situation is best realized in ionospheric
modification for early times (several ms) after heater turn on before large scale

(several m) density and temperature fluctuations have had time to develop.

A more detailed comparison of the SLT theory to ionospheric modification

experiments is given in reference 14.

2. ZAKHAROV'S MODEL OF NONLINEAR LANGMUIR WAVE-ION SOUND
WAVE INTERACTIONS

The calculations to be reported here are based on solutions of Zakharov's
model? of Langinuir wave-ion sound wave interactions. These are forinulated in
terms of the slowly time varying envelope field E (x,t) of the total electrostatic field

Eror (x.t), where

_E:(i,t.)e.tp[— iu,,t-] + c.c (2.1)

N -

Eror(z,t) =

whete w,,z = dme?ugy/me where ng is the mean plasma electron density. It is assumed
that

|QE| << |wpE | . (2.2)

[wh



The total ion density is written as

nror =ng+n (2.3)

where fi is the fluctuaticn about the mean density; the spatial average of n is then

Zero.

The equations of Zakharov's model are:

s 8 s 1A la 7 .
A 95, 3 _ 252 5 — Qi 12 0
[at2+~”l.a! Y ]n 167m; VIIE + Ep| (2.4b)

where ¥ x E = 0. Here Ap is the electron Debye length and cg = (n T, Jm;)1/? is
the ion acoustic speed which is often expressed in terms of specific heat parameters.
Ey is the possibly time-dependent purp which is assumed to be spatisily uniformn.
This is the “heater” field in ionspheric modification experiments. Tildes are used
to denote conventional dimensional quantities to distinguish them where necessary

from dimensionless quantitics introduced below.

The damping operators 7, ® and ;e which are nonlocal in coordinate space are
local in Fourier space. In Fourier space it is also simple to include a weak back-

ground geomagnetic field Bobased on the modified Bohm-Gross dispersion relation

for Langmuir waves. 1420
u(k)2 = ug + 3k2vc2 +w3.sin2 6 (2.5)
where v = T./m., we = e By/mc and 8 is the angle between B, and k.
In this paper we acdopt the convention for spatial Fourier transforms:
E(k) =(L)™? [dPr exp[—ik - 2]E(z) (2.6)

where L s the linear dimension of the system and D is the dimensionality of space.
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The ionospheric heater or “pump” field Eo(t) is included, ignoring pump de-
pletion, by assuming that the spatially uniform, k = 0, Fourier component is a
given function. We will generally take Eg(t)=Ej exp [—iwgt] where wo=wy —wp
is the difference between the heater (or pump) frequency and the average plasma

frequency.

The Langmuir wave dumping term is taken to be collisional damping plus

Landau damping,.

De(k)/wp = Ve fwp + /7 /8¢ kp k) exp — (k] /2k?)

—
N
-1

~—

for k < 0.3kp; this function is continued smoothly to increase as k? for large k. The
latier step is necessary in order to arrest collapse at small scales as discussed by
Zakharov and Shur?! and Russell et al.;48 it is essential for numerical resolution.
This damping is an ad hoc addition to the model which is justified by comparing

with particle in cell simulations?2—25

which show nearly complete dissipation of the
trapped electrostatic field at the burnout stage of collapse. For the work reported
here, where we treat heater intensities well above the collisional threshclds for
parametric instabilities, we will take i = 0. This is valid provided all physically

important rates are much larger than ;.14

For ionospheric conditions we expect the ratio of electron to ion temperatures,
Te/T;, to be of order unity for early times after the onset of heating. Fluid descrip-
tionn of the ion density response is then expected to be quantitatively inaccurate
hecause of the important role of Landau damping on ions.26 Since kinetic simula-
tions of the ion response are prohibitively expensive for the problems we treat here
we have adopted the following strategy: We use the fluid description of (2.4b) but
the sound velocity cg and the ion Landau damping used in this equation are chosen
to coincide with the least damped poles of the linear kinetic response. Using this
procedure we find for k <<kp, that bi(k)/@i(k) = v; where @;(k) = k(7 Te/m,')l/z.
The values of v; and 7 are found from the least damped roots of the full kinetic

dispersion relation.!d

We have found the qualitative features of the nucleation process to be unaf-
fected by the values of v; in the regime 0.9> v; >0.4 for systems driven well above

the nuelection threshold discussed in See. 3.
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It is well-known? that the linearized form of these equations ccntains the
parametric decay instability (PDI)! and modulational instability 916 (MI or OTSI)

27,28 ;5 applied to

of the pump wave. Furthermore, when weak turbulence analysis
these equations it yields the usual wave kinetic type of equations which le. to the
weak turbulence cascade. However, the validity conditions for the weak turbulence

approximations are very limiting.28

We have studied examples of the solution of these equations for parameters
relevant to ionosphere heating in which the system is initially excited by a linear
parametric instability and evolves to a state of SLT.! In this paper, however, we

will consider only the developed turbulent state.

In carrying out numerical solutions of these equations it is convenient to use
dimensionless untilded quantities which are related to dimensional tilded quantities

in the following way:27

The scaled equations then have the familiar simple form

V- [i(8 +veo) + V2 —n|E = Eqg- Un + Sg (2.9a)

(07 +2v; 0 & — V*|n = V*|E + Ey* + S (2.9b)

In the scaled units there is a residual mass ratio dependence which occurs only in

the scaled damping rate which is obtained from (2.7) as follows:
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ve(k) = (3/2)Mie(2/3M ™ 2kkp ;! (2.10)

in terms of the scaled wavenumber k and M = m;/nm,. This residual mass ratio
dependence reflects the ratio of the parametric instability space and time scales
which increase with M and the mass ratio independent dissipation scale. A similar

formula applies to v;(k).

Here we have added source terms Sg and Spg in (2.9a) and (2.9b) which arise
when the turbulence is driven by the SRS interaction and the SBS interaction,

respectively. We will not give the specific formulae here but refer the reader to ref.
13.

Note that in dimensional units Landau damping becomes significant for k >
0.2kp(kp = Ap~!). Thus in dimensionless units this discip: tion becomes signifi-
cant for k greater than the dissipation scale kg :

N\ 1/2
k> kg~ (02)- g (%)

Since the dynamics of the decay instability involves k’s on the scale of k.

= (.‘2/3)(7]m¢/m,-)1/2 kp we need Fourier components at least as small as this, if

the parametric processes are important, and this sets the linear dimension of the
simulation cell to be I-..,,- = ]:y > 27 /ks. In dimensionless units ke = 1 and Ly =
Ly > 2x. The number of Fourier modes must be sufficient to probe deep within
the dissipation range of kmaz >> kg in order to resolve collapse. This sets a limit
on the value of M which can be accommodated in a reasonably sized simulation of
say 128 x 128 Fou:ier modes in two dimensions. In view of these limitations we
have chosen M = 1836 for our simulations. In ref. 14, Section 3, we discussed the
scaling of physical quantities with the mass ratio. This scaling allows us, at least

roughly, to translate the simulation results to the larger mass ratios.

The validity conditions for Zakharov’s model have been discussed elsewhere? 7

and include the condition.

|EJ2
47m0Te

9
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= << (2.11b)
ng

A discussion of the degree to which these conditions a1+ satisfied in our numerical

simulations is given in reference 14.

Our simulations are carried out on a 128 x 128 square grid of sides Ly = L,
= 2m, with periodic boundary conditions in x and y. In physical units this implies
L; =Ly = 404 Ap, and a grid-point spacing Ax = Ay = 3.15 Ap,. The Debye
wavenumber in these units is 64.3 and the maximum wavenumber is 91. Spot
checks with a dealiased code with a nominal 256 x 256 grid were used to confirm
the validity of our simulations. Typically the spectrum (]n(k)|2) decreases by 4
orders of magnitude between the k values for which the spectrum peaks and the
largest k values. The test of temporal and spatial resolution is energy conservation

as expressed by the balance between the average dissipation and injection rates. !4

3. THE LOCAL CAVITON MODEL

The accumulated evidence from many computer simulations of equations (2.4)
shows that, at least for moderate to strong ion acoustic wave damping, v; 2 0.1,
the strongly turbulent system is dominated by caviton “events” which are localized
in space and time. Snapshots such as Figure 1 show ine localized nature of [E(x,t)|?
and n{x,t) as functions of x for given t. The power spectra |E(kw)|?, which we will
discuss in detail below, also have signatures of localized states. The envelope field

E(x,t) in this case can be modeled by a sum over events i:

2

(¢
E-(Iat) = ﬁi(ﬂ_ﬂivt_ti)+_E.nonlocal(£vt) (3.1)

il
=

Here a caviton event i is localized at the space time point x;, t;. The single event
function £;(x,t) has its maximum at x=0, t=0 with a spatial width §;(t) and a
temporal width or lifetime 7;; from the simulations we find this lifetime to be of the
order of 0.05 to 0.1 ms for ionospheric parameters. At a given time t, the number of
events N(t) which contribu:e to the sum in (3.1) are those for which 0< [t—t;| < 7
which is clearly proportionai to the volume of the system if the cavitons are roughly

uniformly distributed. For example, if the portion of the heated volume observed by

10



the rader is ionospheric heating experiments is (200 m)?, the mean caviton spacing
1s 0.25 m which is about 50 Ap, as observed in our simulations, and accounting for
the time scales of the caviton cycles as observed in simulations, we find N(t}) ~ 107
which is crude but representative. In (3.1) the term E; niocai(X,t) represents the
nonlocalized or free mode part of the envelope field which is relatively negligible
for systems driven with heater (or pump) frequencies near or slightly below the

ambient electron plasma frequency.

This iocal caviton model can be put into a more formal setting by introducing
the instantaneous vector eigenfunctions e, (x,t) of the operator on the left hand side
of (2.9a). These satisfy (for By = 0)

Z- (M) + V% - () ez, t) = 0 (3.2)

where A, (t) is the corresponding instantaneous eigenvalue and V x e, = 0. These
are nothing more than the Langmuir modes in a nonuniform density background.

In ordinary units this can be written as

v. [uu —wpl(z,t) + 3 Nbupo v2] e(z,)=0 (3.3)

where

1 n(zt
onta)=om (143 720

is the spatially fluctuating plasma frequency. Thus we can relate A, in scaled units

to wy in ordinary vnits:

M) = Dl 3("‘" )l/2 (3.4)
wpo 3 \nme,

The complete description of these states for an arbitrary n(x,t), especially for D > 2

is beyoud our capability. In D = 1 it is relatively casy to compute these states from

an arbitrary realization of n(x,t) obtuined from the complete numerical simulation

of (2.9a,b).7

The form of the density uctuation field n(x,t) can have a profound effect on

the cigenstates of the Langmuir field. Most importantly, some of these states are
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localized in a density minimum (i.e. depressions). Roughly the condition for a

localized state to occur in a density depression i (fi<o) and spatial extent § is

-\ 2
)

which can be satisfied for example for |fi/no| ~ 1073, (6/Ap) ~ 30. This condition

n

Mo

is similar to the conditions on the depth and width of a potential well which can
sustain a bound state of the Schroedinger equation of quantum mechanics. The
density wells which trap these localized states might arise from initial background
density fluctuations, from density wells remaining from earlier collapse events or

from density fluctuations driven by some instability such as SBS.

In the case of SBS-generated ion sound waves, we can sometimes regard these
density fluctuations as being periodic in space with a wavelength corresponding
to the fastest growing SBS mode. The eigenstates e, (x,t) in this case can be re-
garded as one dimensional Bloch waves with lattice wave vector k aud with eigen-
values A, (t) which lie in bands, labelled by the index v, just as in sclid state
physics.2913 As the periodic density fluctuation grows exponentially in time due to
the SBS instability the Langmuir mode eigenfuctions A,;(t) change in time. If a
stimulated Raman instability is simultaneously excited, the SRS frequency match-
ing condition, Aw = ui‘”" = App(t) - wzca_‘;‘"ed“gm = 0, can only be satisfied
instantaneously for a gi\_r:en Langmuir Bloch mode with lattice wave vector k. In
fact if ld—jl—‘i = lgf’\""’l > 7?‘,_, where qp is the instantaneous SRS growth rate, then
it can be shown!329 that the SRS instability is detuned by the growing SBS ion
sound wave and SRS is suppressed. Experiments carried out at the NRC Labora-

tory in Canadal0:}!

appear to be consistent with this scenario. The experiment by
Villeneuve et al.!! verified the theoretical prediction!3 that 1 “seeded” SBS insta-
bility could suppress SRS. In other parameter regimes where SRS is not suppressed
the (weaker) SBS ion sound wave may still impose its spatial periodicity on the SRS
Langmuir t'ig(-nfumtti()ns.m These envelope eigenfunctions have a periodie array of
maxira of [Ef? (or |g,‘,,|2) which have a finite ponderomotive force (PMF). This
periodie PMF causes a periodic arrny of density wells to develop in which the Lang-
nmir waves are trapped and ean be driven to collapse. [Note the ponderomotive
driven periodie density wells do not coineide in generad with the density minima of

the SBS sound waves but they have the same periodicity.] In Fig. 2, taken from ref.

12
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13, we show typical spatial configurations of |E|2 and n, before and after collapse

and burnout.

The impulsive time signature of the Thomson-scattering signal from Langmuir
fAluctuations in the experiment of Walsh et al.,10 is consistent with the collapse of
SIS driven Langmuuir fluctuatinrns. The large ion density fluctuations remainirg
from the burntout cavitons then act as seeds for the subsequent strong SBS pulse.
In Fig. 2 the time signatures of the Langmuir and ion sound fluctuations, obtained
from numerical solutions of the SRS-SBS driven Zakharov equations, are shown.
Further evidence consistent with the controlling effect of SBS generated ion sound

waves on the SRS process is found in the experiments of Baldis et al.30

The electric field envelope of the Zakharov equations (2.9a,b) can be resolved

in the complete set of states e, (x,t):

E(z,t) =Y hu(t)ey(z,t)ezp(—iwot) (3.5)

(Iu an infinite system the sum may imply an integral over continuum states.) The

equation of motion for the amplitudes h,(t) is readily found from (2.9a) to be

iho(t) + (wp — Av(t)hu(t) +1 Z [(evdveewr) + (e, 42u1)] hun = Ey - (e |n) (3.7)

vt

Here we have taken the ey to be a complete orthonormal set with

(cvben) = [drey(z,t) - cm(x,t) = by (3.8)

and have used the notation

(Cydewm) = [de s.',(ﬁ,t)-%sm(d_-.t) (3.9a)
(cvdrecm) = [ de [ deley(a,t) ve(z = ew(d 1) (3.90)

Ey-{coln) = Ey-[de ce,nle,t) = Sy (3.9¢)
13



To understand the various terms in (3.7) first consider the case where n(x) is
iudependent of time and therefore (d/dt) e, (x) = 0. Then the amplitude h, is driven
directly by the source term Eg- ( ey|n ). If e, were a plane wave state proportional
to exp i k-x; then this source term is proportional to Eg-k n(k) the so called direct
conversion ource term.143! However, the important states are the localized states.
The coefficierit ( ey, ¢ ve €41} couples states because of the nonlocal nature of the
Landau damping. This termn becomes important in the time dependent case only
in the burnout phase. Note that by introducing the spatial Fourier transform of

the eigenstates e ,(k,t) we can write

(evdveem) = ) e(k,t)- em(k,t)ve(k) (3.10)
k

For v=1/ this certainly tecomes important in the burnout phase. For v # ' this
is less unporiant if one of the states is not localized - e.g., noncollapsing - or is

locaiized at a difterent space-time point.

In the time-dependent case of interest the coefficient (e, ¢ é,/) can provide a
coupling between rapidly collapsing states, suy v/ and a nonlocalized state v. This
is one of the mechanisms responsible for the excitation of the “frce mode” states

observed in the spectra. We will return to this detail below.

We hote that a subset {i} of the states {v'} are localized at x=x; in density
dlepressions of n(x,t) and somme of these, which have the proper symmetry to couple
to the pump Eg, evolve to collapse. This subset of states can be viewed as local

ground states of the “potential” n(x,t).

We cun now muake a tentative connection between the localized event functions
(X =Xt —t;) of (3.1) and the subset {i} of localized eigenstates. It is reasounble
o identify

£ile - Lt — ) =gi(x — it — ty)erp(—iwyt) (3.11a)

where

gl - rit—=t) = hi(t)ei(r.t) (3.11h)



The contributions from the remaining nonlocalized states in the set {v} make up

the term Eponioeat (X,t) in (3.1).

The eigeastates e;(x,t) are in a sense the natural basis or coordinates for de-
scribing the turbulent system. Unfortuaately, they can only be obtained by first
solving (2.9) for n(x.t). In spite of this tlLey are conceptually useful and some ob-
served properties of the turbulence can be related to general properties of these
states. In effect the use of the states e;(x,") represents a huge reduction in the
effective dimensionality of the problem. While we use (128)2 Fourier modes for the
simulation there may be of the order of 10 collapse sites in the cell and therefore

roughly 10 localized states.

We have gained useful insight into the nature of these eigenstates and their
connection to the observed turbulence by considering the scalar Zakharov model.

In this model E(r,t) and Eg are scalar fields and in place of (2.9) we have

i(8 + vew) + V2 = n(z,t)| E(z,t) = Eyn(z,t) (3.12a)

(012 + 2vje G — V2)n(£,t) = V2|E0 + E(z,1)]| (3.12h)

Iu this model only spherically symmetric collapsing cavitons are allowed and the
three dunensional problem for an isolated collapse reduces to one in which E and
u depend only on the radial coordinate r. This scalar model has several propertices
in common with the physical three-dimensional vector model (2.9): threshold an-l
waximum growth rate for the modulational instability, collapse scaling exponents
which are discussed below, no threshold energy for collapse and the possible failure

of & density well to support a localized cigenstate.

Spherical symmetry is imposed by representing all fields in terms of ti:e Fourier
modes sin (kor), ky = 7€/rp, € = 1,2,——, with rp chosen large compared to a typical
caviton size. In these scalar studies we have observed for vi(k)/k = 0.9 that at the
nueleation site, E(r,t) is dominated by its projection, hy(t), on the localized ground
state eg(r.t). In nucleation eg(r,t) remains localized; at every time step eg(r,t) can
be computed from n(r,t). Here we will ndopt a simplified model in which hy(t)
is evolved nepleeting the excited state contributions ! # 0 in (3.7). The density

evolves according to (3.12h) with the pondetomotive force replaced by V2|,
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ho(t)eg(r,t)|%. The solution to this model is insensitive to boundary conditions

(i.e., the choice of rp).

Let us restrict our attention to the case where v; is large enough so that
after burnout, the relaxing density fluctvation is essentially nonpropagating. In-
mediately after burnout, energy absorplion is minimal because the eigenvalue is
large and negative, implying a far from resonant coupling to Sy (sce (3.9¢)). The
ponderomotive force is negligible, and the density fluctuation evolves according to
the acoustic Green’s function. A simple model for this phase of the dynamics is
obtained by replacing the rhs of (3.12b) by I(t) V263(5), where the “impulsc”
I=[dtf dxle(x,t)|? = f]ho(l'.)|2 dt = (|hg|?)7. In three dimensions, the response

of nis

n(z,t) = I G(|z|/t)/t} (3.13a)
where
v d? p 1
G = — - [ . 3.131
) = 14, 47 (1+pz)2—4p2(1—V.-‘)J (5130

Even though n is evolving self similarly, eg is not. The figure of merit, g,
for the ground state is simply expressed in terms of the width w, »(t) ~ t, of n,
and its depth, d, d ~ I/t4, as p ~ dw? ~ I/t2. If 4 is too small, there is no
localized state. Since 3D solitons are unstable, as t increases, cither cnough cnergy
will be accumulated so that another collapse follows, or the bound state will he
lost. In the latter case, the bound state will be localized in the immnediate vicinity
of the expanding density fluctuation, until just before the bound state 1s lost. So
that during the time when energy is being injected, one may be able to ignore the
coupling between states localized at different collapse sites. At a particular collapse
site there is o lowest lying localized state which has o nouzero souzrce. Excited states
at the same site typically have a sinaller source term because chey are oscillatory
while Ey n(x,t) is essentially uniform in dizection. Also at a particular site there
may only be asmall number of localized states. This motivates the study of
made] for the evolution of a caviton in a previously existire density Hucetuntion
A process we ciul caviton maeleation - in which ouly one locanlized state is present,

For a given jon Huctuation the lowest lying state, ¢y, with nonvanishing source, Sy,
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(we shall call it the ground state) is calculated from (3.9¢), hg is evolved according

to (3.7) without the coupling to other amplitudes.

In Figure 3 we show some typical results from the scalar model driven by
a spatially unifoim field Ey at the plasma frequency (wg = 0). For a range of
Ep, a stable nucleation cycle is observed, with a complete cycle over the interval
O<t<tc. We expect that in a turbulent environment of other such nucleation sites,
the strict periodicity of this cycle may be iost, but at « given site there may be

strong correlations over a few cycle times for strong ion acoustic damping.

In fact, for overdense drive where the drive frequency wp is less than the
background plasma frequency wp, i.e. forw, < o, we have found! that over a range
of driving amplitudes and ion wave damping strengths, v;, these cycles become

stable limit cycles.

This is easily understood from the nucieation picture: For wy < 0 the relaxing
density well remaining from a previous burnout comes earlier into resnnance with
the pump and therefore at a relatively deeper depletion compared to the wy =0
case. Thus at the time of closest resonance A\, ~ wp the eigenfunction ¢ ,(¥,t) is
more confined. The caviton cycle presumably will be more stable and less effected
hy neighboring cavitons in this more confined caviton cycle. We expect more rapid
caviton cycles, i.e , smaller r;, with less energy carried into collapse and this is
verified by simulations. The overdense drive @y < 0 is much more cfficient in the

nucleation of cavitons.

An important observation of the scalar, local caviton model discussed in Section
3. is that the single event functions £;(x — x;,t — t;) are phase locked to the punp.
Thus it was more convenient to 1eplace these functions in (3.1) by exp — iwgt
si(x — Xi, t = t;); that is to explicitly separate out the pump phase. [Sce also (3.11),)
Another way to look at the problem is to rewrite (2.9) in terins of E(x,t = exp
~ iwnt) E{x,t), i.e., to envelope around the pump frequency. As an equation for E
the equations are autonomous, i.c., the drive term has no explicit time dependenee
but an additional term, wy E(k,t), nppears on the left hand side of (2.9a). The
vesult of this is that the single eaviton speetrn for wy £ 0, |€(kw)]?, have their
spectral energy mainly for w < wy. The eigenvalue trajectories versus tiime have
the property that they reverse near the resonance A\(t)< wy where the PMFE reverses

the relaxation of the density well.

g
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In Figure 4 we show snapshots of the lowest two eigenstates ep(r,t) and e (r,t)
and the density n(r,t) as they evolve during one of these cycles for a case where
wp <0. In Figure 3a we show the time evolution of |E(r = 0,t) |¢ and n(r=0,t),
in Figure 3b the ground state eigenvalue Ag(t), the velocity &q cf the phase of the
amplitude hg(t) = |hg(t)| exp i®g(t), and in Figure 3c the electrostatic energy in the
caviton [ho(t)[2. At the beginning of the cycle, t=0, the deep density well is relaxing
from the previous burnout. From Fig. 3a we see that the peak |E|? occurs at about
t=0.22 followed by its rapid burnout due to dissipation. The density well reaches
its maximum depth shortly after at t ~ 0.235. The maximum spatial extent of the
cigenfuinction 6(t) occurs earlier at t ~ 0.15 which is also the time at which the well
depth, n(r=0,t), is shallowest. The well then deepens under the action of the PMF
increasing the confinement of the eigenfunction. The eigenvalue Ao(t) approaches
the pump frequency wg = 0, this causes a rapid increase in Ih()(t‘.)!2 as the mode
frequency approaches resonance with the pump frequency. This rapidly increases
the PAF and as the density well deepens again Ag(t) again decreases rapidly during
collapse. This illustrates what we believe to be the typical behavior: As the relaxing
density well becomes shallower and broader its eigenvalue approaches resonance
with the pump causing a rapidly increasing PMF which initiates the next collapse.
[t is, of course, important that the state remain localized so that it maintains a
significant PMF. Under some conditions for D>2 a localized bound statc can e
lost, 1.e., Ay crosses zero before sufficient PMF is built up to initiate collapse. For
the D=3 scalar model discussed here we find a finite nucleation threshold [Rose ot
al.1%). For Ep below this value the cycle cannot be maintained even for an isolated

caviton,

These scalar model calcuiations have been used to deduce scaling laws!9 M for
the dependence of quantitites such as the electrostatic energy taken into collapse,
the caviton cycle time and the maximum caviton radius as a function of driver

strength Ey. We refer the reader to references 19 and 14 for details. As an example,
o]

peak ™
F.; % the peak ficld in the caviton decrenses with incrensed driver strength. The

we find that the penk electric field in the caviton collapse process seales s |E|

caviton eyele period seales ns 7 ~ F7 ! nnd the maximum caviton radius, A ~ EJL

From these we estimate the spaee-time density of cavitons to seale ns (rA3)=1 -
11,

This isolated collapse model is oversimplified in several ways, one is its negleet.

18



of the turbulent environment of the collapse site. The density fluciuation n(r,t)
was constrained so that there was locally no net change in particle number - i.e.,
f(lx'r211(r,t)=0 - i.e., the local averaged plasma frequency is the same as the global
average plasma frequency which is the zero of frequency in our envelope approxi-
mation. This constrains all bound or localized states to have A,(t)<0. However,
locally on a scale larger than a single caviton but macroscopically small there can
be Huctuations in the background plasma frequency away from the global average.
If the local plasma frequency is different from zero this is equivalent to replacing
n(r.t) in (5.12a) by éng -+ n(r,t) and bound states can occur if A, < dng. Since
there are local domains or “patches” of positive and negative éng we conclude that
in a large multicaviton system localized states can occur for A, (t)<(dng)mar where
(éng)inar >0 and depends on the parameters Ep, wp, etc. which determine the
turbulent state. Simulations with wg >0 are consistent with this picture. The
“localized” states for éng >0 are not strictly localized from the mathematical point
of view; their eigenfunctions may have extended tails which are exponentially small
but do not decay at large distances. Such states are better described as resonance

states as discussed at the end of this section.

The self similar scaling of the parameters of the eigenctates during the collapse
phase are well-known [e.g., Galeev et al.w]. A self-similar ansatz for ¢;(x,t) can be

written

1 . _
ei(z,t) = méub"'(t) (3.184)

where ¢(¢) is the normnalized shape function of the collapsing state.

JdQe(¢)? =1 (3.18h)

The collapses observed in our D = 2 simulations are not eylindrically synunetne as
cant be seen in Figure (4.2), but have a puncake shape with the nartow diveetion
mainly aligned along the pump polarization (the x direction in Figure 1). The
aspeet ratio of the ¥ dimension to the x ditnensions appears to be in the range of 2
to 3. The ansatz of (3.18) implies that although the aspect rntio is not necessarily

nuity all dimensions seale with 8(t). Simlations of collapse in 1) = 3 for isolated
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cavitons®? and for multicaviton states® display these pancake cavitons whose orien-

tation arises either as a result of initial conditions or by coupling to a drive source
suach as we have used.

The scaling of the parameters of the self-similar supersc ic collapse depend on
the spatial dimension D as follows:

8(t) = (te — t)/P (3.19)

Mt) ~ 672(t) ~ (te — t)™4/D (3-20)
where tc is the time of collapse. The self-consistent density behaves as

n(@t) = —3,1@-) G(zs~ (1) (3.21)

where G(z6™!(t)) is a shape function related self-consistently to &x6~!(t)). The
scalar model collupse behavior is consistent with these scalings for D = 3.

We can sometimes use the self-similar formula (3.18) for e;(x,t) in other regimes
—— ¢.g., nucleation but where §(t) does not satisfy the scaling of (3.19). Examples
of the evolution of §(t) in the scalar model are shown in Figure 3.

In the scalar model results, presented above, the contributions from nonlocal-
ized states or from localized excited states are neglected. Such localized excited
cigenfunctions have one or more nodes in the region of the confining density well
and would be expected to couple less efficiently to the pymp in the overlap integral
of (5.9¢). Localized excited states which evolve to collapse are not observed in the

sinulations.

For nn isolated density well the localized state cigenfrequencies lie below those
of the nonlocal (or continuum) states. In the “patchy” model with fluctunting
dommins of differing mean plasma frequency, it appears that the cigenvalue ranges

of loenlized and nonlocalizad statos may overlap.

The definition of o localized state as one of the localized cigenfunctions ej(x.t)
ix netually too restrictive. A wavepncket of nonlocalized states whose Ay lie just

above the loealization limit can be a resonnnce state analogous to those known
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in quantum mechanical scattering theory if it is a superposition of states with a
sharp peak in the density of states. Such a resonance state will appear spatially
coherent and localized for a time At~(A))~! where A is the frequency width of
the resonance. The resonance state will then have a ponderomotive force over a
time which may be sufficiently long to depress the density so that a strictly localized
eigenstate can again appear. The effective source terms Ege(e,n) are nearly the
saine for all the states comprising the resonance. A narrow resonance state thercfore
cannot be distinguished from a strictly localized eigenstate and so the definition of
the states e;(x,t) which are identified in (3.11) should be extended to include such
narrow resonance states. It can be shown that for a sufficiently narrow resonance
the equation of motion for its amplitude h;(t) is indistinguishable from the equation
of motion discussed above for a localized state. The existence of such rescnances is
another reason why localized states appear to exist for A; >0. As discussed above,
the random density environment of a caviton can also raise the eigenvalue limit
for localization to positive values. Such localized states are also best described as

resonance states.

+. POWER SPECTRA OF TURBULENT FLUCTUATIONS IN THE LOCAL
CAVITON MODEL

[t is well-known that the power spectrum of electron density fluctuation, fi.(x,t).
contains information concerning the elementary excitations of a plasina and can he
measured by incoherent Thomson scatter techniques. For frequencies w near the-
electron plasma frequency wp (or its negative) the ions cannot respond significantly

and so one can relate the electron density fluctuation directly to the total electric
firld

—~
.

dredg(£,t) =V Ergr(it) = 59 E(3t)e™™! + cc. (1.1)

From this it s easy to see that the power spectrum of n, is directly related to that

of the envelope field, For & ~ wy we have

(Ame)|ie(kyw)|® = (1/4)k- E(k,@ —wp)|?
= (1/4)/\,)2|& CE(k,o - w,,)|2(4rrn(,T,-_)_l (1.2)
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To obtain the low-frequency spectrum associated with the ion line we note that
for @ << wp that quasineutrality is obtained so ne(:lg w) ~ n,-(E,LD) = n(E,u'J) and
the low frequency electron density spectrum is obtained directly from the density

fluctuation which appears in the Zakharov model:

lfie (E,01% = (K, @)/ (4.3)

The power spectra can be found by taking the temporal Fourier transform of
(3.1).

N(T)
.E_(E,W)T = Z CIPi[k'Ei—‘”ti]Q(&-w)t+.E_(ka“-’)nonlocal (4.4a)
where
t+T/2
ei(kw) = / di(t! — t)ei(k,t — 1) ezpliw(t — ;)] (4.48)
-T/2

is the single event Fourier coefficient. If we make the assumption, that all events

are uncorrelated we obtain the power spectrumn as a sum over single event spectra:

N(T)
HEkwh?) = Y lakw)? = NT)(|elk,w)?) (4.5)
i=1

The important effect of correlations will be discussed below.

Simulation parameters can be choseu so that the collapse events are so well
separated in time that we were able to compute the single event spectra |¢ (k,w)|2
for this case. Thes: spectra, shown in Figure 5, have a surprisingly rich structure
including the following features: 1.) Essentially all the spectra energy occurs for
«w < wyp; in this case wy = 0; 2.) There are well defined peaks in the spectrung
3.) For incrensing k, i.c.. increasing kAj), the peaks for more negative w become
relatively more important; 4.) The position of the maximum shifts in a step-wise
fashion (sce inset to Figure 6) where —wmgr ~k, i.¢., wp — Qmar ~ k cy; 9.) There
is 0 weak “free mode” penk at w ~ k2, i.e., roughly at the Bohm-Gross frequency.

These single event spectral properties are similar to those shown in Figure 6 for
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the power spectra from multicaviton states in a magnetic field.1* Caviton-caviton
correlations also can have a strong effect on the spectral shape and will be discussed

below.

We have obtained some insight into the sources of this structure from the scalar
model discussed in Sec. 3. A realization of thz single event spectrum |e (k,m)l2 for
the scalar model is constructed by taking the temporal transform of the function
f(t) = ho(t)ep(k,t) for 0<t< 7. and f(t) = 0 for 7. <t<T where T is chosen to
give the desired frequency resolution and ep(k,t) is the spatial Fourier transform of
the numeri.ally obtained eg(r,t). The results are shown in Figure 7. These model
spectra contain the features listed above for the D =2 Zakharov model (Fig. 6)
except for 4.) and 5.).

The predominance of negative frequencies arises because the phase velocity b
in Figure 4 is predominantly negative; this in turn is related to the negativity of
the eigenvalue A(t). In this model calculation Eq. 3.7 reduces to ihg — Aghg = Sp
= Ep(ep|n) since we are neglecting coupling to excited states. Then if we write hg

= |hp| exp i®g we see that <i>0 is related to Ag by

—&g = Mo(t) + So(t)]ho| ™ cos®y (4.6)

which is the equation used to compute &g in Figure 3.

The peaks arise from a modulation of the spectrum with an angular frequency
Aw = 27 /1 where 7 is the caviton lifetime as measured by the width in time of
the total electrostatic energy pulse, |hg(t)|?, shown in Fig. (3). This is the same
kind of modulation that arises in the spectrum of a single square wave pulse. Let
us assume that the early-time spectrum from low-duty-cycle experiments can be
identified with the incoherent average (|e(kw)|?) of single-event spectra. In this
averaged spectrum the individual spectral peaks may be smeared out but it is
reasonable to assume that the half-power frequency width is approximately that of
the first and strongest maximum of the single-event spectra. Application of this
argument, to the data of Djuth, Gonzales, and lerkic3? in this regime — e.g., their
Fignre 4 — leads also to a value 7¢ ~ 0.1£0.05 ms. The k dependence in this model
artses from the k dependence of the eigenfunction, eg(k,t); for a localized state with
kdg(t) we expect that eg(k,t)~ 60’)/2(t) exp (—k §y(t)). For increasing k, smaller
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values of §p(t) are favored and these correspond to more tightly collapsed states

with more negative frequencies.

The free-mode peak observed in the spectra Figures 5 and 6 is, of course, not
seen in this simplified scalar model calculation since it neglects all of the excited
states. The free mode excitation in the scalar model is discussed below. The
behavior near w = 0, including the shift of the maximum peak with k, is also
different in the scalar model than in the D =2 Zakharov simulation of Figure 5.
The inclusion of excited states in the scalar model brings the results into closer
qualitative agreement. In the case of overdense drive wy <0, where free modes are
only weakly excited, this single state model agrees well with the complete Zakharov

simulations, such as those shown in Fig. 11.

The Fourier transform of E(rt) is given by E(kw) ~ [ dt exp i (wt + $g(t))
|ho(t)| eg(k.t) where ®g is the phase of hyg(t). For large negative w we can make
asymptotic estimates hased on a stationary phase evaluation of the time integral;
the stationary phase points t = tg occur approximately where w = —&g(tg). Srom
Fig. 2 we see that the ground state has large negative phase velocities where
dg(t) — ~Ao(t) as t — t. and can satisfy the staticuary phase condition. In
this temporal regime one comes closest to the self-similar scaling for the collapsing
srate: eqg(rt) = 60(t)‘D/2 Uo(r/6g(t)) with the spatial Fourier transform eg(k.t)
= &y(t)P/2 . [d€ (exp — 1kdp€)¥p(E). The self similar behavior is ég(t) ~ (te—
t)¢/D ~ Ay(t)~1/2 where t. is the collapse time. Using these behaviors in the
stationary phase evaluation of the Fourier integral we find the asymptotic behavior
|E(kw)? ~ |w|'(1+3D/4) as w — —oo. This asymptotic prediction is observed in
the D = 2 vector Zakharov simulations and in the scalar simulations to an accuracy
of 10%.

The spectrum obtained from incoherent scatter of radars (ISR) from the modi-
fied ionosphere is the result of about 108 events and the question of caviton-cuviton
correlations becomes important. In general if the events are correlated, (4.5) is

replaced by

N
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N N
+)° Y ezpilk(zj — zi) —w(tj — )]
i#]

- €i(k,w)- g5(k,w) (4.7)

The second or “coherent” term in this equation has N2 potential contributions and

so could have a potent effect on the spectrum if events are correlated.

A possible model of the effect of correlations is to assume that the dispersion in
the single event transform g;(k,w) is small from event to event. This is true in the
scalar model calculations and has been seen in the full vector simulation; especially
in the case of overdense drive. Formally. this assumption is equivalent to writing
gi(kw) = €(kw) + b¢;(kw) where £ is the average over many events and é¢;=0. If

we assume |6g;|% << |&|2 we can write

(E(k,w) i = (lo(k,w)[?)|E(k, w)? (4.8a)
where
N(T)
plkw) = Z ezp tlwt; — k- z;] (4.8h)

This quantity is just the space-time Fourier transform of the caviton event density

N(T)
plz,t) = Y 8P(z—z)8(t - 1) (4.9)

Eq. (4.8a) shows that in this approximation the single event spectrum |§(5,w)|2 15

modulated by the correlation or structure factor: (|p (k,w)l'z).

5. COMPARISON WITH OBSERVED POWER SPECTRA

Recently Cheung et all' Lave performed modifiention experiments at Arecibo

which emphasized low duty cycle heating sequences; the heater was turned on
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periodically in pulses of duration up to 50 ms with an interpulse period (IPP) of
150 ms. The Thomson radar diagnostic pulses of duration 1.1 ms were also turned
on and off with the same period and the delay time between the onset of the heater
pulse and that of the radar pulse was varied. The comparisons between these

observations and the SLT theory can be summarized as follows:

1.) For short radar delay times the many-pulse averaged observed spectra agree
in detail with the smoothed simulation spectra. The main energy containing

portion of these spectra occur for w <0 ard there is a free mode peak for w >0.

Examples of experimental spectra from  heung et al.12 are shown in Figure 8.
Examples of smoothed simulation spectra including geomagnetic field effects

are shown in Figure 6 taken from DuBois et al.!4

2.) The local caviton model accounts for the w <0 spectral features as arising

from the nucleation-collapse-burnout caviton cycle as discussed in Section 4.

3.) Associated with each caviton cycle a nearly free Langmuir wave packet is
radiated away from each caviton site. This is discussed in Section 6. The frce
mode peak occurs at a frequency @y = wp[l + (3/2)(kAp)? + (1/2) (&ec/wp)?
sin?6] associated with a free Langmuir wave for which Wy >y yet is a distinct

signature of the collapse process.

4.) Recently Djuth33 et al, have presented evidence that these short delay-time
spectra are produced in a thin turbulent layer within 100 m of the reflection
altitude of the heater. This is consistent with the parameters of our simulations
for which we assumed the altitude of the first standing wave maximum of the
heater in a smooth ionosphere density profile with a scale length of about 50

km. [This determines the value of &y = wpy — wp.]

It is important to realize that these short delay time observations, following
the onset of the heating pulse, are completely at odds with the predictions of weak
turbulenee theory (WTT). WTT fails to predict the spectral shape, the alticude
dependence of the turbulence or its angular dependence (on the direction of k
observed by the radar relative to the geomagnetic field.) SLT on the other hand

acconnts for all of these observations qualitatively and at least semi-quantitatively.

The observations of Djuth? et al. indicate that the turbulent lnyer begins to

spread downward from the reHection altitude at about 50 ms, following the onset

26



of heating ultimately extending to an altitude 1 to 2 km below reflection after 100
ms or so. Changes in the spectrum occur on similar time scales.

In several sets of observations34:31:32.12,33

sharp spectral peaks are observed to
develop as the time delay of the radar pulse is increased following the onset of the
heater pulse. In Figure 9, a 50-pulse average spectrum is shown in which the radar
pulses occur 29 ms following the onset of a 30 ms heating pulse with a 150 ms IPP.
This spectrum shows features observed in many previous long-time experiments®?
consisting of a main “decay line” peak lying about 3.0 £ 0.5 kHz below the heater
frequency and two “cascade” peaks lying further below the heater frequency by 10.0
+ 0.5 kHz and 16.0 + 0.5 kHz, respectively. This approximate “1:3:5" pattern of

frequency displacements is sometimes associated with a weak turbulence cascade,

6. CAVITON CORRELATIONS

The question to concern us next is whether such a spectral pattern can be
explained in terms of caviton correlations? We have found that for overdense driving
where &y < wp (or wy <0) stable cycles can be found with cavito : in ordered
spatial arrays. In the case of wverdense driving the turbulent state depends on
14

initial conditions'® or at least the memory of initial conditions decays more slowly

in time than in cases where wg >0.

We wish to present here an example of a correlated caviton state which has
interesting properties and has led us to consider a class of perfectly correlated,
alternating lattice models. This example is one of a class of simulations in which
covitons initially arranged in a regular array of sites persist at these sites, their cy-
cles become very stable and become phase locked to one another in various temporal

patterns.

In Figure 10 we show the initial locations of two density eavities which resulted
from previous collapses and in which the iaitial electric field fuctuntion is set to
zero, This is the initial state for a siinulation with Egp = 1.2 and wy = =25 in scaled
units. This value of wy corresponds to a domain in physical units which is about 1%
overdense. We note that for these paruneters the system is stable to modulntional
instability but yet a energetic nonlinear state is sustained for long times beennse
of these juitinl conditions. In Figure 11 we show the time series of the maxinnum

value of [E(x,t)[2 versus time ns the system evolves into o periodic pattern, As time
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increases each evolves into a strict limit cycle with period 7 = 0.59 with the cycles

at the two sites becoming 7/2 out of phase with one another.

In Figure 10 we also show the extended spatial periodicity implied by our
periodic boundary conditions. This shows that the simulation is equivalent to two
interpenetrating square lattices in which the o positions are all in phase but are
7/2 out of phase with the + positions which themselves are all in phase. Examples
of the computed spectra are shown in Figure 11 for § = 0 and § = 45°.

In Figure 11 the single event spectra, the |e-f(k,¢...'|2 in (4.8a), are also shown for
the same values of (k,§). These are easy to isolate from a single cycle at a given
site. According to (4.8a) the single event spectrum modulates the spectrum of the
structure factor. Comparison of the complete spectra and the single caviton spectra

in Figure 11 verifies this.

In Figure 12 we show the ion line spectra obtained from the same simulations.
Note, in the cases in which the plasma line spectra in Figure 12 has peaks at odd
multiples of 27 /7 (i.e. cases a and d) structure, the ion line consists of a symmetrical
peak around w = 0 (corresponding to w = wy) and two displaced pcaks at w =
12 /7. These two displaced peaks are shifted by exactly the sune frequency as the
“decay line” peak in the plasma line spectra in Figure 11 a and d. This correlation
of frequency shifts in the plasma line and ion line spectra has often been offered
as evidence of the parametric decay instability; here we sce that the same spectral

correlation can arise from completely different physics!

These considerations lead us to postulate models in which the cavitons tend to
order themselves in a regular three-dimensional lattice in overdense regions of the
ionosphere. In the ionosphere application, because the heater field varies within the
radar observed region, due to the antenna pattern and the altitude dependent Airy
pattern, the spacing, a, of cavitons in the lattice varies on a scale large compared
to a. In regions of most intense Eg, a will be smallest. The orientation of the
lattice may also vary within the observed region. Our scalur model simulations
show that for Eg >~ 0.5 V/m the maximum isolated caviton size is about 40 \;)
so we might expect an intereaviton spacing a > 80-100 Aj) or about 40-50 cm. At
Arecino the rndar wavenumber is about 27 (35 em) ™! which means that low order
Brigp seattering from such n lattice is possible with sinll ndjustments of the latiee
spacing which could nrise through variations in Ey. We imagine that the observed

reeion of the heated ionosphere containg domains wdered cavitons whose lattice
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spacing and orientation varies from domain to domain so that in some domain the
Bragg resonance condition for the radar is satisfied. It is difficult to estimate how
likely it is to have such a resonant domain present. These spatially and temporally

ordered domains take some time to organize themselves after the onset of heating,

In the simplest interesting model the cavitons are arranged on two identical,
interpenetrating lattices. In each lattice the cavitons undergo strict limit cycles
with period 7 but the cycles in the two li ‘tices are displaced in time by 7/2 as
in the simulation of Fig. 10-12. The two lattices are symmetrically oriented with
respect to each other in such a way that nearest-neighbor cavitons are members

different lattices.

The structure factor |p(k,w|2 for this model was analyzed in detail in Ref. 14.
The structure factor as a function of k=2 kradar, the wavevector observed by the
backscatter radar, has resonances when k is equal to certain discrete vector values,
IX,. known as reciprocal lattice vectors. These satisfy the condition exp(ils, x,)=1
for all caviton locations, xp, in the lattice. The magnitude of these vectors is deter-
wmined by the lattice spacing and structure and can be written as |K|, = (27/a)|a,|
where a is the smallest lattice spacing and the numbers |A, | are determined by the
lattice symunetry. The resonance conditions, k=K,, are called Bragg resonance
conditions. The lowest order Bragg condition corresponds to the case where the
lattice spacing a is equal to half the radar wavelength; a=(1/2)Aradar. In this case
it was shown' that the frequency spectrum has peaks at w=m(2r/7) where m is
an odd, positive or negative, integer. The strength of these peaks is proportional
(o N2 where Ne is the number of caviton events observed in the time interval of
the radar pulse. Higher order Bragg resonances arise when a is a lurger multiple
of (1/2)Aradar. These more loosely packed lattices may have peaks at w=m(2x/r)
where mois either odd (as for the priinary resonance) or even. Regions ot higher
Iy will produce more tightly packed lattices. (Recall that the local caviton model
vesults, sumnmarized in Section 3, predicted that the maxinnun caviton radius sealed
like l-'.”".) We expect stronger radar signals from the regions of stronger Fyy with
the primary Bragg vesonance. In this case we have the 1:3:5  type spectrn with
resonanees at w=m(2r/7), mo= -1, -3, -5, and nlso with m=1, 3, 5 cte. Eq.
(1.3) shows that the spectrum is the product of the structure factor, |p(kw)]? and

the single partiele speetrun |<(kw)|?.



The latter has most of its strength for w < o (@ < wy) with only a small
overlap of the rgion w > o, as in the examples in Fig. 11. Thus the complete
spectrum, |E(k,w)|2, has prominent peaks for m= -1, -3, -5—plus a weaker peak at

m=+1. The latier can be identified with the often observed “anti-Stokes” line.

In Ref. 14 it was noted that because of the scalings 7 ~ Eo—l and A ~ E(')'l that
if we identify the caviton lattice spacing, a, with the maximum caviton radius, A,
we have 7 ~ a. If the lattice domain is such as to satisfy the lowest Bragg resonance
condition, a = (1/2)Aradar = (7 /k), we conclude that the downward frequency shift
of the first decay line, Aw = 27/7 ~ k. This has the same k dependence as the
ion acoustic frequency and is found, numerically, to be close to the ion acoustic
frequency, within a factor of 2. This scaling of the frequency interval of the 1:3:5
spectrum is qualitatively the same as predicted by weak turbulence theory! It is
remarkable that the correlated caviton model seems to be able to account for all

the observed features of the radar power spectra.

However, there are two problems with this explanation. First, it is observed3?36
that when the heater is switched off the spectral peaks of the 1:3:5 pattern remain
for several ms after switch-off, albeit with decaying amplitudes and altered relative
amplitudes. We can not see how the correlations necessary to preserve this spec-
tral structure can be maintained in the correlated caviton model after switch-off
of the heater. A sccond proolem with the correlated caviton explanation are the
recent observations of Djuth et nl? that the 1:3:5 structured spectra arise from
turbulence excited 50-100 ms following heater turn on, at altitudes up to 1 to 2 km
below the reflection altitudes. At such underdense altitudes, witl respect to the
undisturbed ionosphere, it iy harder to imagine that ionospheric ircegularities can

produce the overdense domains necessary for correlations,

Our theoretical understanding, based mainly on simulation results and on a

new microscopic theory of caviton correlations? for the ease of overdense driving,

can be swimarized as follows:

1.) Temporal correlations at n given site devleop, on the time of neyele pericd,

into stable limit eyeles.

ii.) Temporal corvelations between sites evolve more quickly than spatial cor

relations between sites,
itl,) Some spatinl patterns appear to bhe stable equilibrivm nerangements with
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definite temporal correlations between sites. Only temporal correlations where

nearest-neighbor caviton cycles are in-phase or 7/2 out of phase appear to be stable.

iv.) Those patterns which are not stable equilibria evolve to stable patterns on

an experimentally relevant time scale - say tens of ms.

We have discussed (i) at some length above. An example of (ii) is the simulation
discussed in relation to Figure 11 in which cavitons at neighboring sites became anti-
correlated in time. Points (iii) and (iv) (as well as other examples of (i) and (ii)
are based on simulations and theory which we will not present here. This work is

part of our contiuuing research and will be published elsewhere.37

Nenr reflection altitude (critical density) it may not be difficult for ionospheric
irregulnrities to produce the overdense domains necessary for correlations. If this
is the case then why would the 1:3:5 spectral signature associated with caviton
correlations not be observed? This could be due to a low probability of overdense
domains which satisfy the spatial Bragg resonance condition for the particular rndar

wavelength,

Dormnins of coherent cavitons whose lattice spacing is not Bragg resonant for
the given radar k are more likely to be present (near reflection altitude). Such
domains will have weaker resonances at w = 2mn rd"l for all m where the life time
of the caviton cycle 74 varies from domain to domain. The resonance at w=0 is
common to all aomains and is not smeared out by domain to domain varintions
of ry a8 are the resonances for mm # 0. The w = 0 resonance can be identified
with what is conventionally ealled the “OTSI line” in ionospheric heating parlance,
This line can be extremely narrow if the caviton cycles are long lived; we find
Awar(Mry)~! where M is the number of cycles in the observation interval,!! The
caviton picture provides the only nonlinear description, which we know of, which
15 capable of understanding the very narrow width of the “OTSI line” observed in

the experiments of Sulzer and Fejer 3849

We believe, then, that it still remains o challenge to explain the 1:3:5 structured
svectrn which oceur in some Arecibo observations 30-100 ms following the onset
of henting, The results of Djuth et al¥ show that the turbulence responsible for
these spectral fentures oceurs ot significnntly underdense altitudes with respeet to

040 sueh underdense

the undisturbed ionosphere. We hinve earried out simulations
regiles where wy w372 (k.\,,)2u,.. Agnin in such regimes eaviton collapse
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effects are strong: the dominant sink of Langmuir dissipation is through caviton
collapse and the dominant sources of ion density fluctuations are the burncut den-
sity cavities remaining after collapse. We cannot expect WTT to describe such a
turbulent state. On the other hand the fraction of Langmuir energy in free rnodes
is significantly higher at these underdense altitudes than at reflection density or
in overdense domains. We are investigating the possibility that the beating of the

pump with the collapse-enhanced ion density fluctuations can produce a source for

free Langmuir modes which would e:xcite the decay (or Stokes) line and the weaker
anti-Stokes line. (Similar processes may be possible for other steps in the “cas-
cacde.”) The theory must take into account the direct excitation of free modes by
collapse - (the M), term in (7.4) which follows) - and the scattering of free Lang-
muir modes from collapse-enhanced ion density fluctuations. The latter process
produces an effective damping on free Langmuir modes which tends to counteract
the parametric gain which in WTT is supposed to lead to the usual WTT decay

cascade. The results of this study will be published elsewhere.10

7. RADIATION OF FREE LANGMUIR WAVES BY COLLAPSING CAVITONS

Our studies have shown that the collapse process invariably excites free (or
propagating) Langmuir waves. These manifest themselves in the “free mode™ peak
which occurs in all the power spectra, |E(kw)[?, which we have computed. As
discussed in Sec. 5 there is strong evidence that the free mode peak has been

observed in the short time scale experiments of Cheung et al. 12

These free mode states are extended states whose energy is not localized at a
particular point in space. A single collapsing caviton will radiate a wave packet of
free modes which spread out and whose amplitudes decay geometrically (as r=!)

away from the excitation center of the caviton.

Outside of the spatial region of an isolated collapsing caviton these radinted
Langmuir waves are asymptotically free Langmir waves obeying the dispersion
relation of (2.5). In a many-caviton envitonment, the lage density fluctuations
generated by collapse distort their propagation. The free mode frequencies appear
to approach the dispersion rvelation (2.5) as k inerenses. For lower k valnes the
frequencies are shifted to somewhat higher values due to the perturbation of the

density Huetuntions.
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The generation of free modes can be understood in terms of the coupled mode
amplitude equations (4.7). For simplicity we ignore the dissipative coupling (4.9b)
which is not important for the k values measured by most radars. The coupling

between ctates is given in (4.7) involving the matrix (4.9a)

My = ile, $,1) (7.1)

By taking the time derivative of (3.2) and using the orthonormality condition (3.8)

we can rcexpress this as

(ev|ndenr)

A = 3 .2
My 4 N\, — '\ul (7 )
where
. . dn -~
(ey|nley) = [ drey(zt) e ey (zt) r (z,1) (7.3)

The free modes have a continuum of eigenvalues A, (t) in an infinite space and so
ve can parameterize them directly in terms of their eigenvalue Aii.e., ey (x,t). The
free modes receive from or give energy to localized states and are driven directly by
the heater Eg. In the following we will consider in deteil the coupling to a unique
collapsing state denoted by the subscript zeto. The equation of motion for the

amplitude hy of a given free mode then follows from (4.7) as

i hy 4 (wo = Nhy+ [ p(N Ay = =Myy, ho + Ey o (epln) (7.4)

tlere
. {ealnley,) o
A[A-\() =1 -,\_—T(t)‘ (7.D)

ad p(N') is the density of continuum states. The third term on the left hand side
of (7.4) iuvolving Myy, involves the seattering of one free mode from another. By

considering the equation for

(dfdt) D hy(t))*

A
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it is easy to see that the scattering terms do not change the total free mode energy
while the terms on the right hand side of (7.4) do.

In Ref. 14 we have presented detailed numerical results for free mode radiation
in the spherical scalar model discussed in Section 3. We found that, in the case
of overdense driving, that the coupling to the time dependent collapsing Langmuir
ground state, the My, ho term in (7.4), dominates the dynamic conversion term,
Ep <ey|n>, in that equation. During the early nucleation stage of the caviton cy-
cle, there is relatively little energy, [ho|2, in the local ground state and the dynamic
conversion term is the dominant source of free mode energy. At intermediate times
during collapse the coupling to the time dependert ground state is dominant and
produces the largest free mode energies of the entire cycle. Deep into collapse the
coupling to the ground state is again unimportant because the coupling coefficient,
My \,, is going to zero as the coupling becomes more and more nonresonant. We also
showed!? that the hot electrons emitted during the burnout phase of collapse can-
not produce a significant rate of production of free Langmuir waves by Cherenkov

radiation.

As mentioned in Section 7, the energy in free modes is a higher fraction of the
total Langmuir energy in the case of underdense driving (wy > wp). In the regime,
Wi —wp > (3/2)(k/\,,)2w,,, the free modes occur at frequencies below the heater
frequency, wyy. The frequencies of localized states, which must be resonance statos,
apparently are in the range w < wy and overlap the free mode rangs. In these
underdense regimes the emission and absorption of free modes by localized caviton

states may be an important contribution to the nucleation process. 10

In the experiments of Cheung et al.,!2 the ratio of the strength of the “collapse

continnum” portion of the spectrum for w < wy to the strength of the free mode

observed that the strength of the free mode line does not change by as wueh as
au order of magnitude while the strength of the collapse continunm inereases by
several orders of magnitude. This is consistent with the inerense of the w < wy
spectrum due to the onset of temporal correlations, ie., a signal proportional to
N2 rather than N, The free mode line is not strengthened by correlations exeept in
the nnlikely ense that the free mode peak at w = wy in the single caviton speetrm
coineides with one of the correlation peaks at w = 2 rm/r., which were disenssed in

Seetion 8. In addition, we know that free mode emission is weaker from overdense
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regions where wg <0 which are likely to be correlated. Note, for example, that
the free mode peaks in the single caviton spectra from the correlated simulations
of Figure 11 where wg = —25 are not very strong and do not produce prominent

peaks in the correlated spectra.

8. CONCLUSIONS

We have discussed some of the accumulating evidence that strong Langmuir
turbulence theory explains phenomena observed in laser-plasma interaction experi-
ments and in ionospheric modification experiments. The laser-plasma experiments!0:!1
particularly iliuminate the sensitive coupling between low frequency density fluc-
tuations and high frequency Langmuir fluctuations. The theory in refs. 13 and 29
appears to describe the major feature of the experiments of refs. 10 and 11 which
are traysient in nature. In these experiments a short pulse of SRS activity, as in
Fig. 2, representing only one generation of collapse, is observed before the level of
SBS ion sound fluctuations has grown sufficiently to detune the SRS process. In
other experiments, say with longer laser pulses, under some conditions the SBS ion
sound wave level may saturate at a level which permits a more or less continuous
SRS excitation. A theoretical description of such a long time scale, SRS-excited,
state of Langmuir turbulence is very difficult. Such studies are complicated by the
need to apply realistic boundary conditions on the Langmuir waves and scattered
light waves gencrated by SRS in an inhomogeneous density profiles. Numerical

studies of such regimes have been carried out by Bonnaud et al.4!

We have also explored in detail the implications of strong Langmuir turbu-
lence theory for ionospheric heating experiments. The short time scale data from
these experiments provide the best test of the theory available today. A major
conclusion of our work is that weak turbulence theory (WTT) cannot be valid for
the conditions of ionospheric heating. Our conclusion is based, first of all, on cx-
tensive numerical solutions of Zakharov's model encompassing many generations of
collapsing cavitons. WTT follows under very speciid couditions from the Zakharov
cquations. The fact that the numerical solutions are dominated by coherent, col-
lapsing cavitons proves that the nonlinear stace is far from the regime of WTT.
Recently Payue, Nicholson and Shen®® have explored in detail the limit of WTT in
mumnerical solutions of Zukharov's equations in one dimension nnd have established
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rough criteria for the validity of WTT. These stringent criteria are not satisfied fcr

the conditions of ionospheric heating.

The strong Langmuir turbulence theory has developsd on two levels. The first
level is based on solutions of Zakharov's model equations. From the properties of
th~+ _olutions we have proposed the local caviton model which is a more “phe-
romenuicgical” level. The !ocal caviton model is built on single caviton properties.
Cavitons go through cycles of nucleation, collapse and burnout. Associated single
caviton properties include their lifetimes \or cycle times) ¢, the single caviton field
fluctuation g(x,t) and ‘ts power spectrum |g(kw)|2. These single caviton proper-
ties are not necessatily those of isolated cavitons, although the isolated caviton
approximation is at least qualitatively useful in many cases. As the driving be-
comes increasingly overdense (wg <0) we have evidence that caviton interactions
decrease but the residual interactions can lead to coherent caviton states. It is a
challenge to understand the mechanism(s) for self-organization of this weakly inter-
acting caviton gas. For these highly correlated states, the name turbulence hardly

seens appropriate.

We believe that the gualitative properties of the local caviton model will be
those deduced from the Zakharov model. More complete and accurate descriptions
of single caviton properties are needed to treat the end stages of collapse and
the burnout processes, whereas the nucleation and early collapse stages should be
accurately described by the model. We anticipate that these improvements will
make quantitative but not qualitative changes in the picture developed in this

paper.

We Dbelieve that the SLT model has at least three apparent successes in cx-
plaining the ionospheric heating observations for early times (<50 ms) following

the onset of the heating pulse:

1.) The altitude dependence of the early time plasma line signal is casily ex-
plained because the localized caviton states are not tied to the linear dispersion
relation, (2.5). Based on the sensitive dependence of the turbulence level on

Ey we concluded 4

that the strongest plasma line signal should occur near the
altitude of strongest Eg, which is the first Airy maximum ir an undisturbed
profile. This is in agreement with the early time observations of Djuth et al 33
2.) At these carly times following the onset of heating the broad featureless

spectrum for w < wyr, observed in many experiments, 1231323 i axplnined by

36



the dynamics of local caviton states. This part of the spectrum arises from the

caviton cycle of nucleation-collapse-burnout. It is not consistent with WTT.

3.) A new prediction of SLT theory, the free mode peak, has been unambigu-
ously observed by Cheung et al.12 This arises because of the radiation of free

Langmuir waves by collapsing cavitons. Again this feature is not consistent

with WTT.

There is no experimental evidence concerning the dependence of this early
time turbulence on the angle 8 between the radar k and the geomagnetic field. The
theory predicts that the same qualitative features would be seen at Tromss where
6 ~ 0° as observed at Arecibo where 8 ~ 45°, but the plasma line signal should be
several orders of magnitude stronger at § ~ 0°. Short time scale experiments have

not been carried out at Tromsg.

The SLT theory appears to be able to predict, at least qualitatively, many
properties of the sharp spectral features observed at longer delay times following
the onset of heating. These predictions depend on the existence of overdense do-
mains of temporally and spatially correlated cavitons. Structures similar to the
“decay lire,” the 3:5:7--“cascadc lines” and the anti-Stokes line appear in the SLT
spectrum of correlated cavitons provided Bragg resonance conditions, depending
on the radar wavelength, are satisfied by some correlated domains. In addition
we have new theoretical insight into the caviton-caviton interaction mechanisms
which establish these correlations.3” However, inspite of the attractiveness of this
scenario, we believe this is probably not the mechanism which produces the above
mentioned sharp spectral features. The reasons for this conclusion were given in
Section 6.

The probability of finding Bragg resonant domains in the observed region may
e small. However, there may be overdense domains of correlated cavitons, near re-
Hection altitude, whose long-lived temporal correlations produce the narrow “OTSI”
lines observed by Sulzer and Fejer.38:39 We know of no other satisfactory explana-
tion of such lines which takes into account the nonlinear evolution of the OTSI in-
stability. Single pulse radar taken by Cheung et al.!? and more recently by Sulzer et
al."¥ may be consistent with temporal correlations at relatively early times following

the onset of heating.

An alternative SLT scenario which might account for the sharp spectral features

at later delay times was mentioned in Section 6. This theory must be consistent with
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the new information from Djuth et al.33 concerning the altitude of the turbulence
producing these features. The theory must also be consistent with our observations
that simulations of Zakharov’s equation:=.40 fcr these underdense altidues show that
a significant source of Langmuir dissipation and of ion density fluctuations is caviton

collapse. Clearly WTT does not satisfy these requirements.

These questions are s challenge for future work. We believe that the new
strong Langmuir turbulence model presented here is considerably more successful
in describing the early-time behavior of the heated ionosphere than the conventional
theory. We hope this paper will stimulate new experimental and theoretical tests

of these ideas.
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Figure captions.

Fig. 1.

Fig. 2.

Fre, 3.

Fie, F

Two-dimensional plots of |E|2 (upper surface) and n (lower surface) at two
different times. Parameters in scaled units Eg = 1.2, v; = 0.9, we/wp = 0, v,
= Landau damping continued smoothly as k2 at large k, m;/nm, = 1836, L.
= Ly = 27 and a 128 x 128 spatial grid. The collapses are anistropic with the

narrow dimension along the x axis, the drive direction.

(a),(b) Spatial profiles of |E|?, n and |Ag|? for two times for n,/ne = 0.045, L
=15 Ao and Vyse|c = 0.035. Here E, n and Ap are, respectively, the Langmuir
ficld envelope, the ion density {iuctuation and the envelope of hackscattered
light wave; n, is the electron density in the simulation slab of length L ard n,
is the critical (reflection) density of the light which is incident on the slab from
the left and has an intensity expressed in terms of the oscillating velocity V.
- (¢/mwo)Eighe. The units are 47noT, /439 for |E|2, n,/2754 for n, arbitiary
units for |A g|?, 91 Ap, is the spatial unit, and 140 psec is the temporal unit. We
show only the leftmost portion of the slab, 0 <x<3\,. (¢) Temporal history
of the total Langmuir energy, total ion wave energy, and SBS backscatter
reflection coefficient (in arbitiary units) for the case above. The unit of time
is 150 ps. (d) Same but for Vyge/c = 0.07, no/ne = 0.055. Here the unit of
time is 132 ps. The mean square thermal fluctuations of the initial undisturbed
plasma were (|E[?)¢hermal = 0.1 and (n2)¢h¢,.,,m, ~ 900. In (¢) and (d) note the
initinl pulse of Langmuir cnergy associated with a single generation of collapse

and burnout followed by the growth of SBS backscattered light.

The temporal evolution of (a) |E(r = 0,';)|2 and n(r = 0,t), (b) Ag(t) and
the p.aase velocity -d®/dt and (c) the caviton width 8(t) und the electrostatic
energy in the caviton [h(t)[?
1Y, 1 = 0.9 and wy = 0.

in the scalar model; Ey = 1.8, m;/yme = 2 x

Sealar model for Eg = 1.8, m;/ym, = 2x 104, v; = 0.9, wg = —80. Showing
shape of n(r,t) nnd |E(r,t)]? ns functions of r for two times in the caviton eyele
evolution and the profiles of the two lowest cignefunctions eg(r,t) and eg(rt)

vs 1 at the sane times. The qualitative behavior is the smne for the ease @y
0.

+. H. Spectra, |‘l§l(k,u..')2 = k'"4|E(k,w|2, for D = 2 isolnted collupse events, Fy o 0.8,

vi - 0.9, mi/yme = 1836, wy = 0. kr =8, ky = 0. Inset Solid line, nega
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Fig. 6.

Fig.

Fig. 8.

Fie. 9.

Fig. 10.

Fie. 11,

IFip. 12
L,

it |

tive frequency at maximum of spectrum vs k = kz; dashed line, ion accustic
frequency shift, |w| = k.

Power spectra |[E(kw)[? Eg = 1.2, wp = 5, we/wp = 0.2, Ly = Ly = 27, M
= 1836. Spectra are smoothed over an angular frequency interval Aw ~ .
Spectra intensity scales are arbitrary. The spectra are for various values of
(k,0). Becaus: of a numerical coincidence, when these results are scaled to the
more realistic value M = 9 x 1836, the frequency scales can also be read as

kHz of frequency (not angular frequency).

Power spectra |[E(kw|[? for the scalar model parameters of Fig. 2. Spectrum
for k = 40.0.

Experimental spectra. (a) Heater pulse width 10 ms, Interpulse period (IPP)
150 ms, fy = 7.3 MHz spectra taken in 1.1 ms internals delayed 4 ms from
onset of heating pulee. Note the free mode peak at ~ 72 kHZ above the heater
frequency which is 256 on the scale, (b) Heater pulse width 10 ms, IPP 150 ms,
f;; = 7.3 MHz spectral delayed by 1.5 ms from onset of heating. Frce mode
peak at 52 kHz. From Cheung et al. [1989).

Plasma line spectra for 30 ms, heater pulses with 150 IPP at 7.3 Mhz and
riclar pulse delayed by 29 ms after onset of heater pulse, averages over 10 and
30 radar pulses, respectively.

Two dimension simulation of alternating lattice model. Caviton locations

-

marked e are 7/2 out " phase with locations marked +. The caviton cy-
cle period is 7. The ceuurnl square is the sinulation cell. The other cells are
itnplied by the periodic boundary conditions. The o's and +'s denote the ini-
tinl eaviton locations which do not change for wg = =25 or wy = —15. Other

parameters: Ey = 1.0, v = 0.9, m;/ym, = 1846.

Total correlated power specten |E(kw)|? (sharp line spectra) and single cavi-
ton spectra [e(kw)|? (smooth spectra) for the coherent nlternnting lnttice for
various values of (k,8). Showing spectra for even and odd vidues of v == (1/2r)
k © where d is the displacement vector between the - and F Inttices (see ref.
1) . Here [i(kw)|? = k""ll?:(k,l.u)|2 or k"'lrr(k.u.')|2 for the two elnssesy o,

speetri, respectively.

lon line speeten ju(kw)]? for the coherent alternating Inattiee simulation. Both

the totad spectrmm and the single eaviton spectrum nre again shown,
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