t>(2_ WSto

Informal Report UC-32

Issued: May 1977

RSX-11M Versus RSX-11D: Compatibility and Conflict

Jeffrey M. Gallup*
Edward G. Lieberman*
Sally Shlaw

fLawrence Berkeley Laboratory, University of California, Berkeley, CA 94720

ientific laboratory
of the University of California
LOS ALAMOS, NEW MEXICO 87545

/ \

An Affirmative Action/Equal Opportunity Employer

UNITED STATES
ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
CONTRACT W-7405-ENG. 36

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

This work supported by the US Energy Research and Development
Administration, Division of Physical Research.

Printed in the United States of America. Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
Price: Printed Copy $3.50 Microfiche $2.25

This report wus prepared as an account of work sponsored
by the I'nilod States Government. Neither the United Stales
nor the United Slates Knerfcv Research and Development Ad-
ministration. nor an\ of their employees, nor any of their con-
tractors. subcontractors, or their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracs. completeness, or usefulness of
any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights.

II.

III.

IV.

s closed, or repres
I infringe privately owned rights.

CONTENTS

HISTORY AND MOTIVATION FOR THIS STUDY 1

SOFTWARE ENGINEERING CONSIDERATIONS 2
A. Single System Rule 2
B. File Compatibility 3

1. Macro Source Files 3

2. FORTRAN Source Files 4

3. Object Libraries 4
C. Automation 4
D. System Modifications 5
E. Program Development and Maintenance 5
SYSTEM DIRECTIVE DIFFERENCES 6
A. Directives Available in Only $S Form 6
B. CSRQ: Cancel Scheduled Requests 6
C. RQST, RUN, SCHD, SYNC, and EXEC 6
D. GPRT. Get Partition Parameters 7
E. GTSK: Get Task Parameters 8
F. CMKT: Cancel Mark Time 8
G. DECL: Declare Significant Event 8
H. WTLO: Wait for Logical OR of Event Flags 8
I. DSAR/MHAR: Disable/Inhibit AST Recognition 9
J. ALUN: Assign Logical Unit Number 9
K. GLUN: Get Logical Unit Information 9
L. QIO and QIOW: Queue I/O and Queue I/O and Wait 9
M. RCVD and RCVX: Receive Data and Receive or Exit 10
N. RCVS and SDRQ 10
0. Variable Length Send and Receive 10
P. Further Directives Missing in 1IM 11
TASK-BUILDER AND SYSLIB DISCREPANCIES 11
FEATURE DIFFERENCES 12
A. Message Output Handler MO 12
B. Line Printer Spooling 12
C. MCR Batch vs Indirect MCR 12
D. Multi-user Tasks 13
E. System Global Areas 13
F. Logical Device Assignments 13
G. Terminal Handler Inconsistencies 14
H. Mag Tape 14
I. SYSGEN Memory Allocation 14

n_ aiA-uum O W

P, owas e e g

sponsorex d by the United States Government. Neil

Oie United States nor the Uni es Ene

Research an evelopmen i nor an;

their employees, nor an act!

subcontractors, or eir employee: s
exPre mplied, o any o

or the ac mpleter
usefulness of any information, apparatus, produc
process disclosed, or represents that its use wou

111

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

TV

VI. MANAGEMENT OF JOINT SYSTEMS

A. Management Problems

B. UIC Conventions

C. Skeleton File Concepts

D. Skeleton File Syntax and Processing
VII. CONCLUSIONS
ACKNOWLEDGMENTS

REFERENCES

15

15
15

17
18
20
20

RSX-IIM VERSUS RSX-TID

Compatibility and Conflict

by
Jeffrey M. Gallup, Edward G. Lieberman,
and Sally Shlaer

ABSTRACT

It is our observation that, as RSX-IIM and RSX-11D
continue to diverge, more and more users are finding it
necessary to run both systems for similar ranges of
applications. This situation can impose an unacceptable
cost in software development and maintenance. Compati-
bility in utilities, system files, system features, and
code at source and object level offers a realistic first
step to reduce this burden.

This report presents a discussion of the incompati-
bilities uncovereg in converting a large volume of soft-
ware from one operating system to the other, as well as
the techniques developed to circumvent these problems.
Code conversion and long-term software maintenance are
discussed with respect to specific system incompatibili-
ties. Finally, management and software engineering tools
are discussed as they apply to the conversion and main-
tenance effort.

I. HISTORY AND MOTIVATION FOR THIS STUDY

Both the Lawrence Berkeley Laboratory (LBL) and the Los Alamos Scientific
Laboratory (LASL) support a number of experimental research stations utilizing
PDP-11 computers to perform data acquisition with CAMAC instrumentation. These
installations span a broad range of complexity, from small single-purpose,
single-processor systems to large and sophisticated multi-purpose, multi-proces-
sor systems. During the last several years, there has been a persistent trend
towards the latter type of configuration. It is our observation that this trend
has been accompanied by an increasing duplication of effort in the preparation
of application codes to run on these large systems. Moreover, the fiscal burden
imposed by the need for individuall tai%ored, high-performance software is
severe and becomes increasingly dié’lcult to justify when the application systems
are or can be made quite similar.

Due to these considerations, substantial interest developed at LBL in a
general-purpose data-acquisition system and in "intelligent" front-end hardware
capable of handling increasing data rates. Accordingly, LBL proceeded with in-
house conceptual design and specification while concurrently surveying other
national laboratories. Most of LBL's requirements were met by a system known as
'Q'l which was in operation at LASL. This system was chosen as a starting point,
and with the aim of achieving an even more sophisticated system for use at both
laboratories, an inter-laboratory collaboration was subsequently begun.

The Q system comprises approximately two million bytes of source, command,
and documentation files. When the collaboration began, (represented an invest-
ment of seven man-years in software and four man-years in hardware. Further-
more, LASL had substantial field experience with the Q system. The need for the
collaborative effort arose to a large extent from the fact that the two labora-
tories are oriented towards different operating systems: Digital Equipment
Corporation's RSX-11D,) the system for which Q was designed and implemented, pre-
dominates at LASL; Digital's RSX-IIM} predominates at LBL.

The collaboration began with a systematic evaluation of the conversion
effort required to obtain a Q system running under 1IM while retaining a func-
tionally equivalent Q system running under 11D. (In designing Q, LASL had, in
fact, given consideration to having it run eventually on small 1IM systems; how-
ever, despite substantial expertise in 11D, the familiarity of LASL personnel
with 1IM was primarily at the conceptual level.) No substantial difficulty was
anticipated in converting the 47 nonprivileged tasks and three support libraries,
which were generally uncomplicated and contained many modules codeé) in FORTRAN.
Of primary concern were the eight privileged tasks which were categorized as
follows: Two privileged only to map over the I/O page, two others privileged
but not device handlers (one straightforward, one complex), four device handlers.
The device handlers were assessed as follows: One trivial, one reasonably
simple, two (which share a substantial amount of common code) extremely complex.
Because each laboratory had considerable expertise in at least one of the two
systems (11D or 1IM) in the areas of system data structures and internal opera-
tions, we were able to make a reasonable estimate of the difficulty of convert-
ing the privileged tasks. Since LASL had a strong interest in providing (under
11M, the decision was then made by the two laboratories to commit their joint
resources to the conversion effort. One should note that this was to be a
"wrong way" conversion in that DEC had originally advertised 1IM as upward-
compatible to 11D at the object level for nonprivileged tasks.

II. SOFTWARE ENGINEERING CONSIDERATIONS

We define "software engineering" as consisting of the concepts, procedures,
and utilities that provide for orderly, reliable, and reproducible development,
distribution, and maintenance of software systems. These concepts extend from
specification documents through coding standards all the way down to decisions
on such small points as generation of trace-back code, schemes for filing list-
ings, and %eneration of long or short load maps. The conversion project raised
a number of procedural and organizational issues which have been resolved
through engineering "ground rules." This framework allowed the elimination of
numerous small, tedious ad hoc decisions. Our primary goal was to complete the
conversion rapidly and to achieve a pair of higllw)ly su{)portable systems over a
long project lifetime--say five years. The ground rules are aimed toward that
end and are motivated by both technical and organizational considerations.

The alternative of converting all present and potential Q users to a single
one of the RSX-11 systems was not open to us: The various machines that pre-
sently run Q at LASL also employ a great deal of other application code concur-
rent with Q. This application code is specific to each machine, is not central-
ly maintained, and uses features unique to RSX-11D. The same situation prevails
%t LBL, except that there the locally generated code uses RSX-IIM specific
catures.

A. Single System Rule

RULE 1: There will be a single Q system. Variants for RSX-IIM and D are
allowed only when no feasible alternative can be found. Internal (system-
dependent) variations must be transparent to users of the system.

It was our decision that reprogramming, as a one-time investment, was
acceptable to meet Rule 1. Some reprogramming has, in fact, been necessary to
achieve compatibility in nonprivileged tasks. Privileged tasks have required
extensive and, in some cases, extremely difficult redesign and reprogramming.
Although we consider conditional assembly to be a reasonable technique for hand-
ling and minimizing variations, it is applicable in only a few situations.

The engineering basis for the "single system" rule is simply that by limit-
ing the number of system-dependent modules and, hence, the total inventory of
code, a much higher quality of code will be achieved and maintained. A single
system can be expected to exhibit a more coherent character than two which are
maintained in parallel incarnations. Moreover, only a single set of documenta-
tion must be maintained. Finally, the chance of divergence due to human over-
sight is minimized.

The "single system" rule leads to the observation that a phased conversion
is both possible and highly desirable. The basic steps in the phased conversion
are:

1. Convert all nonprivileged code so that it can run under either operating
system. This code can now be validated by use under the original system.

2. Convert system-dependent modules and test under the target system.

Since Q must run under both systems, our effort stopped at Step 2. For applica-
tions in which an irreversible conversion is possible. Step 3 is available:

3. Relax restrictions on nonprivileged code to allow use of the full power
of the target operating system.

B. File Compatibility
A logical outgrowth of Rule | is

RULE 2: Files must be compatible at all possible levels in order to mini-
mize maintenance and storage requirements. Listing files are not exempt
from this requirement.

There are various classes of compatibility which deserve separate discus-
sion. In general, file compatibility at some level is defined operationally: A
compatible file will function in exactly the same way under each operating sys-
tem. For any given file, compatibility can only be established by incorporation
in both systems.

1. MACRO Source Files
Example 1: This file is entirely incompatible:

MCALL FIX$C
FIXSC TSKNAM

The FIX directive is not supporteo by 1IM and the FIXSC MACRO is not de-
fined in RSXMACSML for 1IM. The listing and object files produced by
MACRO4 under the two systems differ. This file 1s incompatible at source,
object, and listing level. Furthermore, it will produce run-time incompa-
tible tasks.

Example 2: Compatibility dependent on host system:

MCALL QI0$C
QIOSC 10.ATT,!

RSXMACSML for 1IM causes a 12-word DPB to be generated, whereas 11D gener-
ates a 6-word DPB. The file is source-compatible, but, if assembled under
11D, not run-time compatible. If assembled under 1IM, it is object, list-
ing, and run-time compatible.

Example 3:

START: MOV~ RO,RI
.END START

This file is compatible at source, object, list, and run levels.

Files such as that shown in Example 3 are clearly the most desirable and,
in fact, can often be achieved by severely restricting the system capabilities
they exploit. Since the MACRO assembler on both systems employs the last-
encountered definition of a macro, we developed a file which, when assembled as
a prefix file to any MACROcoded module, guarantees the compatibility at source,

3

object, listing, and run level of any error-free assembly. Moreover, the prefix
file MDMAC flags areas of contention.

It should be noted that a MACRO file which is compatible at source, object,
and list level may, in spite of all these precautions, cause faulty task-building
under certain circumstances. Even a successful task-build does not guarantee
identical behavior in execution. This will be discussed in more detail in
Sections III, IV, and V.

2. FORTRAN Source Files. FORTRAN is defined to be a system-independent
language. In the spirit of Rule 1, the goal is to have I1IM and 11D systems pro-
duce identical .OBJ and .LST files; in this manner, incompatibilities are elimi-
nated at the FORTRAN object level. The expeditious method to obtain this goal
is to use the same compiler on both systems which is, in fact, done. Run-time
incompatibilities exist when FORTRAN routines invoke system-dependent support
and interface routines from the system library. This incompatibility is re-
solved only by careful manual screening of FORTRAN source code or resultant load
maps. SYSLIB differences are discussed in Section IV.

3. Object Libraries. Determination and enforcement of compatibility for
DEC-supplied system libraries is dependent on the availability of machine-
readable source code. Access to this material is costly and release-dependent.
Further complications are discussed in Section D.

Non-DEC object libraries present a different situation:

RULE 3: Libaries for use by nonprivileged tasks must be made object and
run-time compatible.

This was achieved by careful review of all library material and is enforced
by the prefix file for MACRO-coded modules. We note again that only careful and
knowledgeable coding and review will produce run-time compatible code from
FORTRAN. This is an especially sensitive point for user libraries since thor-
ough testing of a library module on both systems is often prohibited by time
constraints.

C. Automation

RULE 4: The production of the system must be entirely automated through
batch and command files at all levels.

Command files guarantee reproducible results and minimize operator error.
The assembly or compilation of each module requires a precise command string
specification, as does each task-build. Accordingly, about 300 command and
batch files are used to build Q. The uniform and reproducible facility for pro-
duction of Q is a necessary software engineering tool for maintaining project
integrity. Rule 4, while seemingly innocuous, raises a number of compatibility
issues:

1. Task-images are never compatible since the header is system-dependent,
as are SYSLIB and probably SYSRES. We chose to distinguish between the pairs of
task images (with their associated load maps) on the basis of a UIC convention
to be described in Section VI. This implies that there must be a pair of indi-
rect command files for each task to be built which, for nonprivileged tasks,
differ primarily in UIC assignments of output files.

4

2. Command files to task-build SGA's differ between the two systems in
partition-assignment of the SGA.

3. Batch and indirect MCR command files, while essentially similar, are
not interchangeable. Again, these files occur in pairs: a Batch file for 11D
and an indirect MCR file for I[IM.

4. Where conditional assembly is used, the command file for producing the
assembly must select some appropriate system-dependent prefix file other than
MDMAC to produce code for the selected target system.

To aid in maintenance of the command files, a scheme was developed which
allows the production of the command files to be automated. A utility program
named OST was written for just this purpose; its functional character will be
described in Section VI.

D. System Modifications
RULE 5: DEC-supplied components must be used without modification.
There were three reasons for declaring this rule:

1. The Q system is distributed to other users with whom we may have no
close contact. The only assumption that can be made is that the underlying
system is at least as rich as that distributed by DEC. This rule forbids our
alteration of RSXMAC.SML and SYSLIB and so prevents most naming conflicts that
could arise if the user had elected to modify either of these files.

2. Q should be relatively insensitive to release changes; that is, conver-
sion from release to release must involve only our own code. This is especially
important for RSX test sites and, in fact, both laboratories involved had at
least one system acting as test sites for RSX-IIM V3 and RSX-11D V6.2 during
the conversion project.

3. Finally, we wanted to be able to isolate bugs quickP/ to DEC-supplied
components or to our own work and thereby avoid any awkward finger-pointing
sessions.

However, even as we made Rule 5, we realized that it would have to be
broken: Modifications to the 1IM executive would be required in order to cope
with the directive weaknesses to be described below.

E. Program Development and Maintenance

RULE 6: Errors and incompatibilities must be detected as early as possible
in the development cycle.

Our weapons for attack here are: (1) the prefix file for enforcing compa-
tibility of MACRO-coded files, (2) parallel command files: An error detected in
one command file generally implies an error in the partner file, and (3) thorough
understanding of at least one of the operating systems and most of the applica-
tion system on the part of every member of the team. This knowledge, a full set

of telephone numbers and sufficient travel support from both laboratories have
allowed us to communicate every error and incompatibility on an early-warning
basis.

III. SYSTEM DIRECTIVE DIFFERENCES

Of the 52 system directives supported by RSX-11D V6A, we find 41 of these
incompatible with RSX-1IM V2. The following is a summarir of these discrepancies
together with our evaluation of their impact on the total system. The strategy
employed for dealing with these differences revolves around the previously
mentioned prefix file MD.MAC, which is assembled with every MACRO-coded compo-
nent of Q. This prefix file guarantees object compatibility at the price of
decreased capability or increased module length. We found it necessary to modi-
fy the 1IM executive in order to strengthen a few critical directives. These
modifications are noted in this section. We note that the prefix file makes it
possible to support the modified 1M capabilities.

The RSX-IIM directives are an austere subset of those available in RSX-11D.
Repeatedly, a deficiency in an RSX-IIM directive forces one to consider alter-
native directive sequences and design strategies; these are often ruled out by
other directive deficiencies and system architectural differences.

A. Directives Available in Only $S Form

The directives ASTX, DSAR, DSCP, ENAR, ENCP, EXIT, GSSW, SPND, and WSIG are
available only in the $S form in 1IM. As the manuals indicate, for these direc-
tives the $S form is always shorter and executes at least as fast as the $C
form. We consider the lack of a §C form to be a nuisance at worst and have
arranged the prefix file so that $C forms are acceptable (although §S directives
are actually generated). We note that although some $C forms will work in 11M,
there is no reason to suppose that will be the case in future releases; hence,
they are excluded. The prefix file flags the § form of the directive as illegal.
The lack of the § form in I1IM prohibits the writing of table-driven code involv-
ing these particular directives.

B. CSRQ: Cancel Scheduled Requests

In 11M, the task issuing the "cancel scheduled requests" directive cannot
specify the requestor task name; all scheduled requests for the target task are
cancelled. The prefix file accepts the 1IM form only, flagging the 11D exten-
sion as illegal. This is an acceptable solution for our system since the code
is not sensitive to the strong form of the directive at this time. However, we
have seen situations where the directive would be essential; for instance, a
task which runs periodically to perform a centralized function for a series of
other tasks (take data A once a second for task A, take data B once a minute
for task B,...) could be controlled effectively only through this missing func-
tion. This deficiency is judged to be serious in a real-time system.

C. RQST, RUN, SCHD, SYNC, and EXEC

If the partition and/or priority for the target task are specified in a
RUN or RQST MACRO, they are processed by 11D but ignored by 1IM. This denies
the 1IM system the possibility of configuring a memory load to fit a particular
partitioning scheme on the target system; under 11D, one can attempt to run a

6

task in partition A if it exists, falling back to partition B if the first re-
quest is not successful. This scheme allows one to write nonprivileged code
which adjusts itself to the configuration of the target system. The inability
to assign priority at run time makes it virtually impossible to centralize con-
trol of multiple functions in a single real-time task which executes operations
according to their relative importance in the overall application scheme. The
prefix file forces the 1IM form of the RQST and RUN directives, flagging the
11D extensions as illegal. The missing options are considered to be serious
deficiencies in a real-time environment; the design impact is far-reaching in
the application code. System-imposed impairment of one's ability to centralize
control and distribute functionality is unfortunate.

SCHD and SYNC differ from RUN only in the presentation of scheduling data.
Though some feature and utilization differences exist, they are considered rela-
tively minor.

EXEC (Execute task contingent on memory availability) is not supported in
I1IM. In 11D, EXEC is used in preference to RUN when tight control of partition
utilization is required. This technique is often used to avoid "deadly embrace"
situations. The absence of this capability in 1IM necessitated redesign of some
intertask relationships. Without the EXEC directive, system stalls must be dis-
covered by other means; and unfortunately, many appealing schemes (SGA communi-
cation, Send and Request, etc.) are ruled out by other system incompatibilities.
A console message is appropriate when an application-critical task cannot be
executed provided that the presence of an operator can be guaranteed and that an
appropriate recovery sequence can be initiated from the terminal. Time-critical
operations generally cannot be handled in this manner.

D. GPRT: Get Partition Parameters

The partition flags word returned to the issuing task differs in form
between the two systems:

1IM bit 0-0 System-controlled partition
bit 0= User-controlled partition

11D bit 0=1 User-controlled partition
bit 1=l Occupied-user-controlled partition
bit 2=1 System-controlled partition
bit 3=1 Active-system-controlled partition

The meaning of bits 2 and 3 in the flags word in 11D is in question; that
given above is quoted from the directive description in the manual? It is far
more likely that these bits are copied from the TPD (and that also is implied
by the directive description), in which case bit 2, if set, indicates that the
partition is time-shared and bit 3 indicates whether or not the time-shared
partition is active.

When the partition name is omitted, 11D returns the size of the partition
of the calling task, while 1IM reports the size of the sub- or task partition.
Furthermore, the partition base address is returned by 11D while 1IM returns the
task partition base address. Thus, the size and base address returned for a sys-
tem-controlled partition differ for [IM and 11D. The implementation incompati-
bility within this directive reduces its utility to zero. Perhaps differing
directive names and identification codes should have been used.

E. GTSK: Get Task Parameters

The buffer contents returned by the directive differ as follows:

word 11M 11D
4,5 Undefined Name of task to which ATL is accounted (requestor)
11 Undefined CPU type
12 Undefined STD flags
15 Size of task Size of read-write
address space address space

There appears to be no method for a nonprivileged task to determine the
CPU type under 1IM. Lack of this capability forces increased administrative
work for a compiler within the Q system, as the compiler generates code appro-
priate to the CPU model.

The lack of the requestor information in 1IM sharply curtails design op-
tions in multi-task subsystems. This deficiency forces one to use the SDAT
directive in order to allow the requestor to identify himself; this quickly
leads to the difficulties describeccl1 in the receive directives where actual data
transmission is also involved.

F. CMKT: Cancel Mark Time

Under 11M, all mark-time requests are cancelled; under 11D, one has the
option of cancelling selectively according to a match on event flag number or
AST address. This capability is essential to control execution of a task which
is executing two asynchronous processes. We extended 1IM to support selective
cancel mark time on event flag or AST address match, and this is reflected in
the prefix file.

G. DECL: Declare Significant Event

DECL is essentially a compound directive: Test event flag, set flag, de-
clare significant event, and report flag polarity prior to issuance of the
directive. 1IM uses the $S form with no event flag. 11D takes all of the
three standard directive forms with an optional event flag. The prefix file
generates the $S form for either $S or $C if no event flag is specified and
simulates the 11D capability with 1IM - compatible directives if an event flag
is specified. The § form is declared illegal.

H ~ WILO: Wait for Logical OR of Event Flags

Under 11D, this directive can be used to wait for any combination of local
and global event flags in any or all groups, while in 1IM the directive allows
one to wait for a combination of flags in only a single group. The prefix file
simulates the 11D capability by an awkward combination of [IM compatible forms.
The overhead in 1IM for simulating the 11D capability is so high (WSIG is re-
quired) that simulation can be used only in selected cases. Redesign of the
application code is an expensive but preferred method for realistically dealing
with the deficiency in this directive.

I. DSAR/MHAR: Disable/Inhibit AST Recognition

These two directives are actually the same in both systems but bear differ-
ent names. The 11D version of RSXMACSML cross-defines the macros. In I[1M,
only the name DSAR is used and only the $S form is supported. Since 1IM does
not cross-define the MACROS, both definitions are supplied by the prefix file.

J. ALUN: Assign Logical Unit Number

Two problems exist with this system directive. In 11D, ALUN can deassign
a LUN, whereas no similar facility exists in 11IM. The prefix file detects this
case in the use of the directive and flags it as illegal. The second problem
is one of system architecture. In 1IM, one may use operator-induced logical
device assignments. The logical device assignments made at a terminal apply to
all tasks whose TI assignment points to that terminal. Since ALUN searches the
local device assignment tables before the system device tables, its effect under
IIM can be somewhat unpredictable, especially for devices such as SY. There is
a similar but lesser effect under 11D, since only the less-used system-wide
REDIRECT controls device assignments. The proper use of ALUN, particularly for
disks, must therefore be determined on a case-by-case basis.

K. GLUN: Get Logical Unit Information

The first device characteristics word returned by the system in response
to this directive has minor differences:

11M bits 6-12 Reserved
11D bits 6-8 Not defined
bit 9 Software write-locked
bit 10 Input spooled
bit 11 Output spooled
bit 12 Pseudo-device

The flags byte has similar differences:

1IM 200

11D sum of: 200 Handler resident
100 Load and record
40 Device off-line

L. QIO and QIOW: Queue 1/0 and Queue 1/0 and Wait

IIM does not presently support QIOW, and this facility is expected in
Version 3. In the meantime, the prefix file simulates QIOW by a combination of
1IM compatible forms.

An ordinary QIO in 1IM ignores the 1/0 priority parameter if specified and
always generates a six-word parameter list. The prefix file flags an error if
priority is specified in the MACRO-coded directive and always generates a full
six-word parameter list. This could cause difficulties in the conversion of
code since an 11D driver has access to DPB length and, by deduction, to the
length of the parameter list. This information can be used to determine the
precise nature of the requested function. DEC-supplied device drivers in 11D
make use of the fact that a request issued by the system is flagged with a DPB
size of zero.

Under 11D,

if no /O priority is specified, the task priority is used as

the 1/0O priority which dictates the position the I/O request will take in the

handler queue.

Under 11M, an I/O request is always queued according to task

priority. Again, the 1ncompat1b111ty arises from system architectural differ-

€nces.

110 applications which depend on the I/O priority effect can, therefore,

be difficult to convert to 1IM, even if comprehensive redesign is done.

M.

N.

RCVD and RCVX: Receive Data and Receive or Exit

Under 110, these directives can be used to do a selective receive of data
sent by a specified task; under 11M, the directive will cause the next data-
packet queued to the receiver to be received. We found it necessary to modify
the 11M executive to support selective receive in order to allow a dialogue
between two tasks to complete before another is initiated. The prefix file is
used to support the stronger form of the directive MACRO.

A few other incompatibilities in the receive directives should be noted:
In 11D, the V-bit is set on directive completion if the sender is privileged,
whereas, under 1IM, a receiver cannot determine the sender's privilege state.
We note that the V-bit feature is seldom used in 11D. Furthermore, if an 110
receiving task is multi-user, its TI assignment must match that of the sender
for the directive to return data. This capability is lacking in 1IM; conse-
quently, the use of send/receive as a communication technique for multi-user
task clusters is effectively precluded. Support for these facilities must be
provided at the executive level if the capabilities are required.

RCVS and SDRQ

Receive or suspend, RCVS, is not supported by IIM and cannot be simulated
if the receiving task is of lower priority than the sender. The combination
RCVD /SPND is effective if the sender has LOWER grlorlty

The partner directive in a dialogue, SDRQ,
similar problem:

nd and Request or Resume, has a

The directive is not supported by I1IM and accurate emulation

depends on the sender being of HIGHER priority. Catch-22. Both directives are
declared illegal in all of their various forms by the prefix file.

For these directive pairs, event flag coordination may be used to the
extent that application redesign is possible. In the absence of an "inhibit
task switching" directive, there is no alternative but to consider each use of
these directives on a case-by-case basis.

Alter priority (ALTP) would be considered if it were available in 1IM.
This lack of options drastically restricts a program structure in which two
tasks engage in a send-resume/receive-suspend dialogue.

0.

10

Variable Length Send and Receive

The following directives exist only in 11D:

VSDA
VSDR
VRCD
VRCS
VRCX

Variable
Variable
Variable
Variable
Variable

length
length
length
length
length

send data

send and request or resume
receive data

receive or suspend
receive or exit

Long strings of data must therefore be sent in a series of 13-word packets
with the nonstandard selective receive used by the target task as described in
section M above. A user-supplied protocol must be followed in order to detect
end-of-data reliably.

The prefix file declares all variable-length send and receive directives
to be illegal; simulation is possible only in highly controlled code taking into
account the relative priorities of the tasks and the structure of the data. We
consider the absence of this capability in 1IM to be extremely serious, parti-
cularly since both operating systems offer poor support for inter-task communica-
tion.

P. Further Directives Missing in [IM

The directives ALTP (alter priority), FIX (fix task in memory), UFIX
(unfix), DSBL (disable execution of task), ENBL (enable execution of task), and
GCOM (get SGA parameters) do not exist in 1IM in Version 2. Where these direc-
tives are employed in 11D applications, they must be designed out of the appli-
cation architecture. Alternately, some of the operations these directives imply
may be invoked at the console level. Increasing operator burden requires sub-
stantial justification (tasks must ask the operator for a FIX) and is, of course,
inappropriate for an unattended application.

IV. TASK-BUILDER AND SYSLIB DISCREPANCIES

We compared full entry-point listings produced by the librarian for SYSLIB
for RSX-11D V6A and RSX-IIM V2 at base level 12. There are approximately 160
modules in each of these libraries, not including the FORTRAN run-time system.
Of these 160 modules, we found discrepancies (other than length or IDENT) in 57
modules. The inconsistencies, in addition to task header differences, make it
mandatory to use the proper task builder with its matching SYSLIB to get useable
output. Many of these appear to be minor, but a proper evaluation cannot be made
without study of the source listings. Those we can comment upon are as follows:

1. As one would expect, in the RSX-IM SYSLIB there are no entry points to
interface to capabilities that do not exist in the system. For example, CANOBY
is the RSX-11D entry point to interface to selective cancel scheduled requests;
this entry point does not exist in 1IM. One would also expect that library
modules gxat interface FORTRAN code to the weaker 1IM directives would ignore
arguments which are not meaningful in 1IM, particularly when these arguments are
optional in the 11D counterpart. We have not been able to confirm this notion,
but find support for it in length differences we see in such library modules.
This is the real source of the difficulty in establishing compatibility for
FORTRAN-coded tasks: Proper operation can be confirmed only at run-time.

2. The modules which define the FCS offset symbols are different. There
appear to be two different names for some offsets; not all are cross-referenced.
This may arise, in part, from the fact that the release dates on the compared
libraries differ by more than a year. Some differences are clearly traceable
to spooling as 1IM and 11D FDB's differ at this point. The significance of
other differences is unknown.

3. 1IM has a module in SYSLIB that defines the directive DPB offsets
(A.LULU, Q.IOPL, etc.); 11D does not. This is a problem when transporting code

11

from M to D but not from D to M; these symbols can always be defined at assembly
time by invoking the appropriate directive MACRO with the symbol $$SGLB defined.
We were fascinated to learn that object modules are, therefore, not upward-
compatible even at 1IM V2.

4. The SYSLIB module QIOSYM defines I/O function and status codes. Differ-
ent symbols are defined in the two libraries. Many, but not all, of these sym-
bols are associated with networking; it is hoped that differences we note are a
reflection of the different development level of the two libraries and that this
module will be compatible at V6.2 and V3.

5. The nonprinting terminal control characters CR, LF, HT, VT, etc. are
defined in SYSLIB for 11D but not for 1IM.

6. SDSW is defined in SYSLIB for 11D, internally by the task builder for
11M.

V. FEATURE DIFFERENCES
A. Message Output Handler MO

M0 does not exist as a device handler in 1IM, although there is a subrou-
tine package available to do message formatting (SYSLIB modules EDTMG and
EDDAT). A set of subroutines with the same names is available in 11D but has
not been documented for D users to our knowledge; we assume it is the same
Eackage. The lack of M0 in 1IM is a problem only for existing 11D code. We

ave used the prefix file to declare all MO MACROS illegal.

B. Line Printer Spooling

RSX-1IM spooling is much like that used in RSX-11D V4A. File output
("PUTS$") to the printer is not automatically intercepted; utilities neither
uniformly attach the printer nor does the spooler when it is employed. Mixed
listings are a common occurrence. For "single job" systems, this 1s rated as
a nuisance problem; for true multi-user systems, especially those in networks
or with remote terminals, this type of spooling is totally unacceptable.

The 11D spooler is a vast improvement, but there are significant holes in
that printing system also. PUT's to the line printer are automatically inter-
cepteg and spooled, QIC's are output directly. The 11D spooler does not attach
the line printer. The consequences of this are most clearly revealed under
Batch operations and so will be discussed in Section C.

PRINTS, the MACRO used to send a list file to the spooler, genecrates sig-
nificantly different code in the two systems. The 11D spooler supports forms,
copy, and deletion control; the 1IM spooler has none of these features. For
these reasons, we have declared PRINTS illegal and are still looking for a
simple and sensible way to handle these incompatibilities.

C. MCR Batch vs Indirect MCR
The full indirect MCR with question-and-answer facilities supplied with

IIM has far more capability than MCR Batch provided for 11D. Unfortunately,
indirect MCR does not collect listings as does Batch. Again, on a multi-user

12

system, collated listings are extremely useful;, if remote terminals are in use,
t e collated listings with banner pages as produced by Batch are a requirement.

Just as_indirect M(R can go through multiple levels of indirect files, so
can Batch. This is accomplished by inserting a "SMCR BAT filespec" line in the
batch input stream. We refer to this as "layered Batch" and make extensive use
of the facility in management of the development disks. One should be aware
that a layer of Batch cannot simply be substituted for a level of indirect MCR,
for every Batch job will go to completion before the next is initiated. A line
containing "SMCR BAT filespec" is complete when ...BAT has read the specified
file and entered the job file in BPR..'s queue. In contrast, indirect M(R
executes every command completely as soon as it is encountered doing further
look-up in indirect files if required. Hence, the order of execution will differ
in the two systems, and this must be carefully taken into account.

The utility programs available under 11D output certain of their error
messages via QIC's to TI, the calling terminal. When the utility is run under
the normal unlayered Batch, this "TI" is the pseudo-device "BP," and BP is re-
directed by BPR... to the TI from which ..BAT was called. Now if ..BAT is
called from BPR..., which is what must occur in a layered Batch, the TI of

.BAT 1is BP, so that BP is now redirected to itself. The error messages in-
tended for the "terminal" are simply rejected by the system ("handler not resi-
dent") and are forever lost. One can, however, redirect BP to a useful physical
device in the batch stream itself at all layers below the first in order to pre-
serve the error messages. The line printer would be a natural choice, but be-
cause the messages are output through QIC's rather than PUT's, they then appear
at bizarre spots in the line printer output. An SPR has been filed on the most
elementary aspect of this problem (that error messages should be explicitly
routed to the batch log in accordance with the spooling protocol of the system),
and we are pleased to report that the problem has been fixed in IAS (!).

D. Multi-user Tasks

Under 11D, a multi-user task consists of a single copy of the read-only
code plus a separate copy of the read-write memory for each active user; in 11M,
a ful{) y of the multi-user task is required for each active user. This pro-
bably has httle design impact but could tend to make some I[IM systems overly
core-hungry.

E. System Global Areas

Under 11M, an SGA is always resident; under 11D, an SGA is present in core
only when required by a loaded task. This allows SGA's to be used as easily
maintained and accessed scratch files under 11D. Furthermore, since symbols
can be defined globally in SGA's, they are far superior for many uses. This
incompatibility has extremely heavy esign impact.

An 11D SGA which has been declared to be a COMMON area (/CM) is rewritten
to disk whenever it is no longer bound in core by a task, thereby automatically
providing a disk copy of otentrally critical data. The same data preservation
facility is available under 1IM only by means of a manual SAVE of the entire
system.

F. Logical Device Assignments

RSX-11D does not have 1IM's logical device assignment capability. The clo-
sest simulation we have been able to achieve is to generate in the system the

13

pseudo-devices IN (input), OU (output), and IS (listing) and, by convention, to
refer to only these devices in command files. The simulation is complete when,
under 11D, the pseudo-devices are redirected to physical devices. Since redirect
affects the entire device assignment structure of the system, disastrous results
can occur if more than one user is referencing the pseudo-devices in an uncoor-
dinated fashion. Furthermore, there is no mechanism within 11D which allows one
to determine if a redirected device is in use; hence, only strict adherence to
operating conventions (remote terminals may not redirect the pseudo-devices,
redirection must be coordinated with all logged-on users, etc.) makes this style
of operation practicable. We have found it to be both hazardous and difficult
to schedule and control, but the utility of pseudo-devices for large program
development jobs is judged to be so high that the risks are acceptable. We con-
sider the lack of logical device assignments to be a most serious deficiency in
RSX-11D since it detracts from the multi-user nature of the system.

G. Terminal Handler Inconsistencies

The differences in the two multi-terminal handlers are most conspicuous at
the operator level, but the handling of unsolicited input (type-ahead in 11D vs
"hot MCR" in 1IM) has an effect on user code: We have a set of terminals where
the user code must issue a write to turn on a cursor; in its own good time, the
terminal will generate interrupts and characters giving the cursor position. To
receive the position characters, the user task must do a read from the terminal.
If the characters are returned before the read is issued, 11M's MCR will receive
them with disconcerting results both to MCR and to the user code. Under 11D,
the position characters go into the type-ahead buffer and are then picked up by
the correct user task. The proper procedure is for the user task to attach the
terminal before initiating tIE)e sequence, then issue an immediate read on the
terminal. This solution admits a race condition in 1IM since one has no guaran-
tee that the read is truly immediate. We give this as an example of the class
of problems that have plagued us since the beginning of the project. It demon-
strates the impact that the lack of coordination between two systems has on non-
privileged code.

H. Mag Tape

RSX-IIM has no file-structured mag tape but does support it at the QIO
level. In 11D terms, 1IM supports mag tapes only as foreign volumes. [IM does
not, however, recognize a MOUNT command for mag tape, even as a non-file-
structured volume--an operation that is required by 11D. Hence, 11D tasks that
do internal tape mount/dismount have required minor changes. We have yet to
develop a mechanism to regain the small amount of protection afforded by 1ID.

The mount/dismount problem is not unique to mag tape: No foreign volume
(i.e., disk) is mountable under 11IM. Again we have a case where uncoordinated
system design has produced two conceptually different operations masquerading
under the same name.

I. SYSGEN Memory Allocation

SYSGEN for 1IM always places the executive and system dynamic memory at the
bottom of physical memory. Under 11D, the executive and node pool can be placed
anywhere in memory by appropriate choice of SYSGEN parameters. When the hard-
ware configuration of a system includes extra processors or peripherals (some of

14

which are manufactured by DEC) that address a subset of physical memory, careful
placement of the executive code is vital both to make the best use of system re-
sources and, in some cases, to ensure the integrity of the monitor itself. This
lack of flexibility in 1IM is sorely missed.

VI. MANAGEMENT OF JOINT SYSTEMS
A, Management Problems

In the early stages of the Q conversion project, management of the joint M
and D systems was not considered to be a severe problem. For instance, it was
thought that parallel sets of Batch and indirect MCR command files would be
maintained, as well as parallel task-build command files. However, as the con-
version effort progressed, it became increasingly apparent that unless counter-
measures were taken, system management problems would overwhelm the technical
development aspects of the project. Of particular concern are the following:

1. The joint Q system is maintained on six RK05 disk packs and requires
about 150 command files for M and a like number of command and Batch files for
D. A complete MD Q system contains about 1600 files. This is an enormous
amount to keep organized.

2. Because of the simultaneous development of the Q system under D at one
laboratory and M at the other, maintenance of parallel sets of command and Batch
files soon becomes tedious and problematical.

3. Procedures for each laboratory to incorporate system modifications
originating at the other lab must be straightforward and efficient. Reducing
the number of files that must be kept in phase is a reasonable first step here.
Hence, we conceived of a class of "primitive files"--the set of files from which
all files in the system can be obtained. The primitive file set contains only
source and "skeleton" files, as will be described below.

4. In accordance with our "Automation Rule," it must be possible to gener-
ate (i.e., compile, task-build, etc.) by mechanical procedures a complete system
using only the primitive files.

B. UIC Conventions

To make the joint system manageable, we first laid down a set of UIC conven-
tions. Files usable only with D go into UIC's of the form [abc,2de] (lower-case
letters are octal digits); correS{)onding files usable only with M go into UIC's

of the form [abc,lde]; files applicable to either D or M go into UIC's of the
form [abc,de].

A simple example of a UIC set in which we have maximum file compatibility is
shown below. The files with extensions SKC and SKT are skeleton files. The prim-
itive files are A.SKT, ALFTN, A2FTN, F4P122026.SKC and TKB122026.SKC.

[122,6]

A. SKT

ALLFIN A2.LST

ALLST A2.0BJ

AL.OBJ F4P122006. SKC
A2FIN TKBI122006. SKC

15

[122,106]

ABLD F4P122006.CMD
AMAP TKB122006.CMD
ATSK

[122,206]

ABLD F4P122006.BIS
AMAP TKB122006.BIS
ATSK

C. Skeleton File Concepts* 1 2

A skeleton file is analogous to a command or Batch file, but each line con-
tains information for both an M command line and a D Batch or command line.
These may differ in both syntax and UIC usage, e.g.

M: TKB @IN:[122,106]ABC.BLD
D: SMCR TKB @IN:[122,206]ABC.BLD

Skeleton files are used to generate all Batch and command files in the
system. In the example of the last section, [122,6]A.SKT is used to generate
[122,106]A.BLD and [122,206]JA.BLD. Similarly, the (MD and BIS files are gener-
ated from [122,6]F4P122006.SKC and [122,6]TKB122006.SKC.

To implement parallel command file generation, we devised a straightforward
syntax for skeleton files (discussed below), so that TECO MACROS could be used
at once to translate skeleton files into M or D files. To automate the creation
of command and Batch files, more than simple translation is required, however.
It is necessary to have a utility which also performs indirect operations. Con-
sider then running this utility on a skeleton Batch/indirect MCR command file
to generate (for use by M) an indirect MCR command file, which references other
indirect MCR command files, which, in turn, reference utility (particularly TKB)
command files, which may further reference .DDL files, and having all these
referenced files automatically created from skeleton files (the old versions
having been automatically deleted). The situation is analogous for D, with the
identical skeleton files being used to generate corresponding Batch, command,
and DDL files. In either case, a single keyboard command causes all of the
file generation mechanics to occur; and subsequently, a single MCR command line
causes all of the generated files to be utilized by Batch/indirect MCR, TKB,
etc. The procedure for "building a disk" (by which we mean generating all de-
sired M or D .OBJ files, .TSK files, etc., starting from only skeleton and source
files) has, in fact, been automated into a two-step procedure:

1. Initiate processing of a master skeleton file, which, in turn, causes
all other referenced skeleton files to be processed.

2. Initiate Batch or indirect MCR on the master Batch or indirect MCR
command file generated by step 1.

The structural relationship of the referenced skeleton files is that of a
tree: The master skeleton file branches out to (i.e., references) other skele-
ton files, which, in turn, branch out to others, etc. The processing of the
master skeleton file results in the creation of an isomorphic image tree of
Batch/indirect MCR command files and utility command files. The processing can,

16

in fact, be initiated at any node in the skeleton file tree, yielding a corre-
spondln%1 subtree of the image tree. Analogously, utilization of the image tree
by Bat indirect MCR, or a utility may be initiated at any node.

D. Skeleton File Syntax and Processing

The program which does the processing of skeleton files is called 0ST--for
"OSTeopathic Translation Program." We now discuss briefly the syntax it recog-
nizes and give some examples of the operations it performs. In a skeleton file,
portions of a line Eertalmng to M are delimited by and portions pertaining
to D are delimited Thus, the skeleton file line

%SMCR %PIP IN:[122,%2%#1#06]ABC.BLD;*/DE
is translated into

M: PIP IN:[122,106]ABC.BLD;*/DE
D: SMCR PIP IN:[122,206]JABC.BLD;*/DE

For convenience, OST was made to recognize ,%xxx#yyy# as an abbreviation for
1%xxx%#yyy#.' Furthermore, end-of-line terminates any construction. We now have
a simple example of the usage of OST:
File 1IN:[1,1]J0STDISK.CMD",
IN:[1,%2#1#01]DISKBUILD.SKC
File |IN:[1,1]DISKBUILD.SKCI:
%S$JOB/NAME=0STDEMO/MCR
%S 1##COMMENT
%SMCR %PIP OU:[122,%2#1#02]ABC.TSK;*/DE
(*) %SMCR %TKB @IN:[122,%2#1#06]ABC.SKT
File "IN:[122,6]ABC.SKT'
0U:[122,%2#1#02]ABC/-FP=IN:[122,%2#1#06]ABC
/
IZI/BR=%OTSCOR#SYSRES#:RO %;FORTRAN 0TS
The MCR Command 'OST @IN:[1,1JOSTDISK results in the creation of the follow-
ing files, after old versions ave been deleted (note the translation of file
types, e.g., .SKC to CMD (M) or .BIS (D)):
(M) File 'IN:[1,101]DISKBUILD.CMD"
;COMMENT
PIP OU:[122,102]ABC.TSK;*/DE
TKB @IN:[122,106]ABC.BLD
(M) File [IN:[122,106]JABC.BLDI:
0U: [122,102]ABC/-FP=IN:[122,106]ABC

/
17

LIBR=SYSRES:R0O
//

(D) File 'IN:[1,201]DISKBUILD.BIS";

$JOB/NAME=OSTDEMO/MCR

$1COMMENT

SMCR PIP OU:[122,202]ABC.TSK;*/DE
SMCR TKB @IN:[122,206]ABC.BLD

(D) File "IN:[122,206JABC.BLDI:
OU:[122,202]ABC/-FP=IN:[122,206]ABC

/
LIBR=0TSCOR:RO ;FORTRAN OTS
//

In an M system, the MCR command 1@IN:[1,101]DISKBUILD! causes task-building
to occur as delineated by the two M files shown above. In a D system, the MCR
command 'BAT IN:[1 201]DISKBUILD' yields analogous results using the two D files
shown above.

In processing the line marked (*), OST recognizes the presence of 'O' in
conjunction with the skeleton file type .SKT ("skeleton task-build"). The
following actions pertaining to M are then taken (those pertaining to D are
analogous):

1. Line (*) is translated into 'TKB @IN:[122,106]JABC.BLD' and output to
file IN:[1,101];DISKBUILD.CMD.

2. The file specifier "IN:[122,106]JABC.SKT 1is extracted from line (*) and
the owner number hundred's digit is dropped to yield filename IN:[122,06]ABC.SKT.

This skeleton file is then opened for input; all existing versions of
IN:[122,106]JABC.BLD are deleted, and a new file with this name is created.3

3. After construction of IN:[122,106JABC.BLD is completed, processing of
skeleton file IN:[1,1]DISKBUILD.SKC is resumed.

VII. CONCLUSIONS

We wish to emphasize that this report represents only a preliminary study of
1IM/11D compatibility problems. New difficulties come to light almost daily,
and we find our perspectives continually evolving as we deve%op new techniques
to deal with them. Much more work remains to be done: A systematic comparison
of the two SYSLIB's would undoubtedly be revealing. I/O status codes returned
by comparable drivers, cross-referenced by function code, is an untouched area.
The terminal handlers merit special study. A systematic survey of differences
perceived by an operator at a terminal would make it clearer to us why we per-
sonally experience a certain level of confusion as we move back and forth from
one operating system to the other. The two FOR compilers have not been fully
explored, but we have mercifully restrained ourselves from detailing for you the
extra dimension of compatibility problems we find in the M vs D/FOR vs F4P
matrix. Many areas that we have probed are still producing surprises. Nonethe-
less, we feel that our experience should be made available both to users

18

contemplating a similar conversion and to those who are now selecting one of
these two operating systems for the first time.

In summary, then, we find the intersection of RSX-IIM and RSX-11D to be
small indeed. Since RSX-11D is now considered to be a mature and stabilized
system (in the sense that no significant development work is anticipated),
one might hope that development resources could now be assigned to 1IM. This
effort, if properly and sensibly directed, could then be used to provide a
feasible migration path for those 11D users who are attracted to new 1IM
capabilities such as PLAS. We therefore hope that 1IM will be extended to-
ward achieving the fundamental system strength and real-time capabilities
that 11D has today rather than toward new "add-onl features intended to make
the system marketable in even more diverse areas.

Our specific recommendations are as follows in priority order:

1. Implement the remaining RSX-11D executive directives in RSX-IIM.
Essential directives are:

a. Cancel mark time by AST address or by event flag.

b. Receive from specified sender.

c. "Send and Request or Resume" and "Receive or Suspend" compound
directives. (We note that an enable/disable context switching
would allow emulation of the RSX-11D forms.)

d. Variable length send and receive directives.

e. Wait for Logical Or on group 4 (Event flags 1-64).

2. Implement the RSX-11D handling of System Global Areas in 1IM.
3. Form a SYSLIB that is execution-level compatible. Supply a pair of
secondary concatenated object module files to reflect RSX-IIM and

RSX-11D features and differences.

4. Implement indirect MCR (1IM format and functionality) in RSX-11D.
This includes logical device assignments.

5. Implement substantial line printer spooling capability with deletion
control under RSX-IIM.

6. Allow user-specified placement of the RSX-IIM executive in physical
memory.

Item | is in our opinion of extreme urgency and importance. We note that Item 4
enables RSX-11D users to make a more orderly transition to RSX-IIM.

19

ACKNOWLEDGMENTS

The authors wish to thank Martin Kellogg for his technical assistance in
unravelling the true source of some of the incompatibilities described in this
report. Martin's clear understanding of system processes proved an invaluable
reference throughout the conversion project.

REFERENCES

1. "Data Acquisition Program Q," Los Alamos Scientific Laboratory Group MP-I
internal report, July 1976.

2. "RSX-11D Executive Reference Manual," Digital Equipment Corporation,
DEC-11-OXERA-B-D, May 1975.

3. "Introduction to RSX-IIM," Digital Equipment Corporation, DEC-11-OMIEA-A-D,
May 1974.

4. "[AS/RSX-11 MACRO-11 Reference Manual," Digital Equipment Corporation,
DEC-11-OIMRA-A-D, December 1975.

> U.S. GOVERNMENT PRINTING OFFICE 1977-777-018/69

20

