

LA-UR 77-1122

Q 441-770314/-15

TITLE: THE LASL APPROACH TO URANIUM GEOCHEMICAL RECONNAISSANCE

AUTHOR(S): Robert R. Sharp, Jr.

SUBMITTED TO: Bendix Engineering Corp., Grand Junction, CO

NOTICE

PORTIONS OF THIS REPORT ARE ILLEGIBLE. It has been reproduced from the best available copy to permit the greatest possible availability.

By acceptance of this article for publication, the publisher recognizes the Government's (license) rights in any copyright and the Government and its authorized representatives have unrestricted right to reproduce in whole or in part said article under any copyright secured by the publisher.

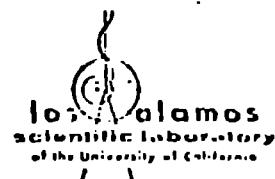
The Los Alamos Scientific Laboratory requests that the publisher identify this article as work performed under the auspices of the USERDA.

NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration nor any of their employees, nor any of their contractors or subcontractors, nor any of their employees makes any warranty, express or implied, or assumes any responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, process, disclosed, or represents that its use would in any way protect private, owned rights.

NTIS 88-111

FIGURE 1. THEORETICAL AND COMPUTATIONAL METHODS

Form No. 36
St. No. 2679
1-5


UNITED STATES
ENERGY RESEARCH AND
DEVELOPMENT ADMINISTRATION
CONTRACT W-7405-ENG-36

THE LASL APPROACH TO URANIUM GEOCHEMICAL RECONNAISSANCE

Robert R. Sharp, Jr.
Group Leader and Project Manager
Geochemical Applications Group - LASL Uranium HSSR Project
Los Alamos Scientific Laboratory

March 1977

ABSTRACT

The US ERDA, as part of the NURE program, has initiated a nationwide Hydrogeochemical and Stream Sediment Reconnaissance (HSSR). The aims of the NURE program are to provide data on which to base more accurate estimates of US uranium reserves for long-range planning and to aid in meeting the nation's projected uranium demands into the next century. The HSSR objective is to complete, by 1980, a reconnaissance of the nation's surface waters, ground waters, and stream and lake sediments, to aid in assessment of uranium reserves and identification of areas of interest for exploration. Responsibility for carrying out the HSSR across the nation is divided among four ERDA laboratories: Lawrence Livermore on the west, the Savannah River Laboratory on the east, the Oak Ridge Gaseous Diffusion Plant in the central states, and the LASL in the Rocky Mountain states of New Mexico, Colorado, Wyoming, and Montana and the state of Alaska. To be most effective in meeting its objective, data from the HSSR must be acquired and reported in a timely fashion, evaluated in conjunction with all pertinent geological, geochemical, and geophysical information available, and put to use with all methods of uranium resource assessment and exploration.

Based on extensive review of world literature on the subject, and results of pilot work, the LASL has concluded that, in keeping with the existing time and funding constraints, the most effective geochemical reconnaissance for uranium over the region for which it is responsible should follow strict, standardized sampling procedures and concentrate essentially on determination of the uranium levels in both natural waters and waterborne sediments wherever possible. Also, it is considered necessary that at least one well-chosen water sample and/or sediment sample be obtained from each nominal 10 km², except in localities (such as lake areas of Alaska) where abundant water in contact with organic sediment should make one sample location per 20 km² or so suffice. This indicates that sampling ~ 240 000 locations will be required over the ~ 2.7 million km² land area assigned the LASL.

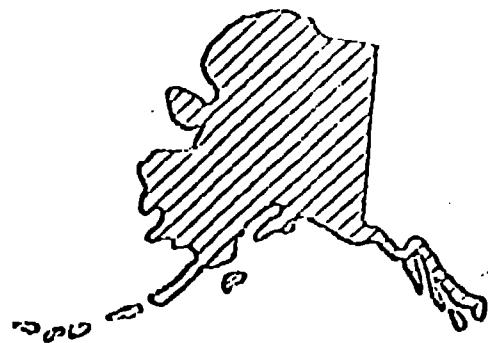
Patterned after extensive uranium reconnaissance done in many other countries, the LASL project is comprised of the following five components: (1) Organization and planning, which includes management, design, and execution; (2) Field sampling, which includes orientation studies, generation of specifications, and contracting and inspection of field work; (3) Sample receiving and analysis, which includes development of methods and hardware, quality assurance, and archival storage; (4) Data handling and presentation, including verification, storage, output, and plotting; and (5) Data evaluation and publication, which incorporates geochemical, geological, statistical, and empirical evaluation and report writing. The LASL approach to each component and the current status in each state are described.

BLANK PAGE

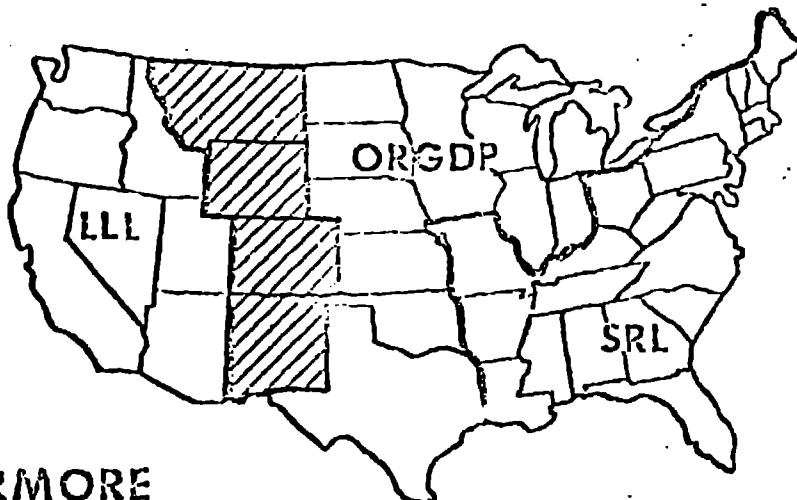
II. INTRODUCTION

The US Energy Research and Development Administration (ERDA), as part of the National Uranium Resource Evaluation (NURE) program, has initiated a nationwide Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) for uranium.¹ Over the past 20 years, such work has been sponsored by the governments of many countries around the world, both in the East and the West.²⁻²⁰ The ultimate aims of the NURE programs are to provide the Federal Government with data on which to base more accurate estimates of US uranium reserves and to aid private industry in meeting the nation's projected uranium demands into the next century. The objective of the uranium HSSR is to complete, by late 1980, a reconnaissance of the nation's surface waters, ground waters, and stream and lake sediments, to aid in the assessment of uranium reserves and the identification of areas of interest for uranium exploration. Except for Hawaii, all states of the US are to be covered.¹

Responsibility for carrying out the HSSR for uranium across the nation has been divided among four ERDA Laboratories (Fig. 1). The Los Alamos Scientific Laboratory (LASL) of the University of California, located at Los Alamos, NM, is responsible for the coverage throughout the Rocky Mountain states of New Mexico, Colorado, Wyoming, and Montana, which form a tier stretching northward from Mexico to Canada, and for the state of Alaska, which is larger by itself than the other four combined.²¹ The LASL approach to the HSSR for uranium is the subject of this paper.


The HSSR throughout the remainder of the continental US is the responsibility of:

- (1) The Lawrence Livermore Laboratory (LLL), also of the University of California, located at Livermore, CA. The LLL has the seven conterminous states west of those to be covered by the LASL.¹
- (2) The Oak Ridge Gaseous Diffusion Plant (ORGDP), operated by the Union Carbide Corporation, and located at Oak Ridge, TN. The ORGDP has the responsibility for twelve central and northeast-central states located next eastward of the four-state tier to be covered by the LASL.¹
- (3) The Savannah River Laboratory (SRL), operated by E. I. du Pont de Nemours & Company, and located at Aiken, SC. The SRL is responsible for a twenty-five state region stretching along the eastern seaboard and Gulf Coast from Maine to Louisiana.¹


To be most effective in meeting its objective, data from the HSSR for uranium must be acquired and reported in a timely fashion, evaluated in conjunction with all pertinent geological, geochemical, and geophysical information available or becoming available from related projects (such as the aerial radiometric reconnaissance, other NURE projects, and the USGS uranium-thorium research),²²⁻²⁶ and put to use with all of the various techniques of uranium resource assessment and methods of exploration.^{27,28}

II. AREA OF RESPONSIBILITY AND APPROACH TAKEN

The LASL first obtained funding for the uranium HSSR in April 1975, at which time the project design work began.²¹ As shown in Table I, the total area of the five states assigned to the LASL is approximately 2.7 million km², or

■ LASL AREA OF RESPONSIBILITY
2.7 MILLION SQ. KILOMETERS
SAMPLING NOW COMPLETE IN
540,000 SQ. KILOMETERS

LAWRENCE LIVERMORE
LABORATORY (LLL)

OAK RIDGE GASEOUS
DIFFUSION PLANT (ORGDP)

SAVANNAH RIVER LABORATORY (SRL)

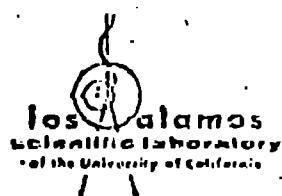


Fig. 1

Areas of responsibility for carrying out the HSSR across the nation.

TABLE I

AREAS OF THE STATES FOR WHICH THE LASL IS RESPONSIBLE
IN THE URANIUM HYDROGEOCHEMICAL AND STREAM SEDIMENT RECONNAISSANCE

Name	Land Area km ² (mi ²)	Inland Water Area km ² (mi ²)	Total Area km ² (mi ²)
New Mexico	314,456 (121,412)	658 (254)	315,114 (121,666)
Colorado	268,753 (103,766)	1,246 (481)	269,999 (104,247)
Wyoming	251,755 (97,203)	1,841 (711)	253,596 (97,914)
Montana	377,069 (145,587)	4,017 (1,551)	381,086 (147,138)
Alaska	1,467,052 (566,432)	51,748 (19,980)	1,518,800 (586,412)
Totals	2,679,085 (1,034,400)	59,510 (22,977)	2,738,595 (1,057,377)
U.S. Area*	7,676,719* (2,963,998)	150,898 (58,262)	7,827,617* (3,022,260)

Approximately 35% of the area of the continental U.S.

U.S. Area*	7,676,719* (2,963,998)	150,898 (58,262)	7,827,617* (3,022,260)
------------	---------------------------	---------------------	---------------------------

*U.S. Area excludes Hawaii

about 35% of the continental US. The total time between April 1975 and October 1980 amounts to 5.5 yrs. The total funding anticipated for the entire nationwide project was about \$40 million. Consequently, based on an extensive and detailed review of world literature on the subject,^{2-20,22-60} and finally, on results of pilot work,^{61,62} the LASL has concluded that--in keeping with the existing time and funding constraints--the most effective geochemical reconnaissance for uranium over the region for which it is responsible should follow strict, standardized sampling procedures and concentrate essentially on the determination of the uranium levels in both natural waters and waterborne sediments wherever possible.^{3,9,13,14,32,40,57}

Again, on the basis of experience reported in various geologic regimes and climatic zones from around the world, it is considered necessary that at least one well-chosen water sample and/or sediment sample be obtained from each nominal 10 km², except in localities (such as lake areas of Alaska) where abundant water in contact with organic sediment should make one sample location per 20 km² or so suffice. While it has been shown in some areas that such a sampling density is not particularly promising,^{5,7,19,29} in a considerable number of others it has proven quite adequate for uranium reconnaissance work aimed simply at delineating areas favorable for exploration.^{12,13,30-40}

Also, since the dispersion trains of uranium in water are sometimes much greater than in sediment,^{9,12,41} as is generally the case in carbonate terranes,^{9,39} or vice-versa as has also been reported,^{6,26,36,41} particularly in areas of bituminous rocks, the sampling of both waters and sediments whenever possible should enhance the adequacy of coverage as well as give better insight into the uranium geochemistry of any specific area.^{8,19,39,56,57}

Furthermore, while the detailed sampling of water alone has been credited with playing a major part in the discovery of actual uranium deposits,^{3,14,28,42} the sampling of sediment often holds greater promise,^{11,26,57} particularly in areas where there is a large component of organic material^{12,37,39,45,51} or where only dry stream beds are generally available.^{8,19,41} Under advantageous conditions, which are not uncommon, the benefit of the depth of penetration to be accrued from water sampling (whether wells are actually sampled or not)^{14,26,31} can also come from sampling sediment--particularly where organic material serves to integrate over the long term the uranium levels in the water with which it is in contact.^{10,39}

At any rate, the sample densities decided upon indicate that the sampling of about 240 000 locations will be required over the total land area of approximately 2.7 million km² assigned the LASL. In order to meet this requirement, and effectively put the samples to use, it was recognized from the outset that a complex array of activities, involving numerous people, would have to be prepared for, scheduled, expedited, and carried out. A major portion of these activities are identified in Fig. 2 and described below.

Organization And Planning

This is the most critical portion of the survey because certain portions of any original plan can prove irreversible once instigated. Close teamwork is required between all the principals. To insure prompt action, a Survey Design and Evaluation Working Group was formed from within the LASL to give their full attention to organization and detailed planning of the project. Working closely with the contract administrators and utilizing consultants as deemed prudent, the Working Group included the Project Manager and an adequate number of Staff Members to bring to bear the laboratory-wide proficiency in geologic science, nuclear and conventional analytical chemistry and physics, electronics, and statistics. A cross-referenced map and document library was developed, containing all USGS quadrangle, topographic, and geologic maps; satellite, air photo, and infrared coverage; and hydrologic, magnetic, gravimetric, radiometric, mineral, ore occurrence, and land management maps available throughout the entire LASL region.

The LASL administrative chain supporting the HSSR comes through the Director's Office and the Associate Director for Research, on through the Geosciences Division Office and the G-Division Leader, and to Group G-5, the LASL Geochemical Applications Group. This Group, with the help of the aforementioned Working Group, has the responsibility for designing and carrying out the LASL HSSR project. Upon being formed, Group G-5 took over the map and document library and began organizing and planning the various aspects of the reconnaissance work. In addition to the writing of specifications for all contract work, the ordering and testing of all necessary field equipment and supplies and the development of field data collection, handling, verification, evaluation, and reporting formats were addressed. The aim throughout has been to standardize and automate

LASL
HYDROGEOCHEMICAL AND STREAM SEDIMENT RECONNAISSANCE
FOR URANIUM

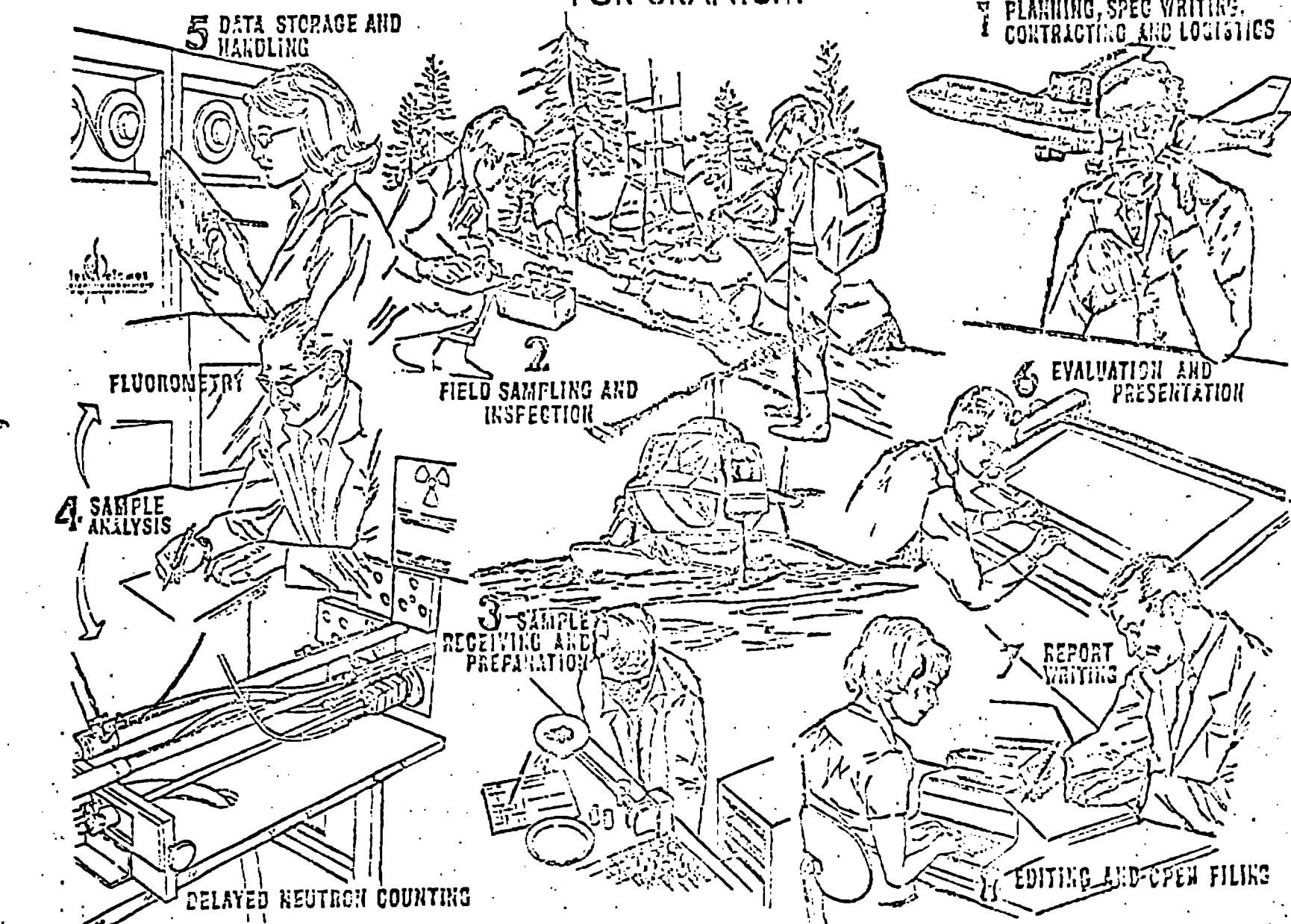


Fig. 2

Activities involved in the TSSR

wherever possible. One of the first major items of business was development of the field data form shown in Fig. 3. Ultimately procured as a collated five-, water-, and tear-proof front sheet, with three differently colored, carbonless-copy sheets and a sheet of twelve preprinted sample labels behind, the field data form is designed to allow versatility and take account of those parameters most commonly measured and put to use in uranium reconnaissance work around the world. Important interpretive factors to which these measured parameters relate are described below.

pH

Uranium is soluble over a wide range of pH,⁸ and it is only when extreme high or low values are encountered that it becomes important to interpretation.^{6,1} As pH decreases, uranium content increases.^{30,31}

Specific Conductance

An increase in total dissolved solids (approximated by an increase in specific conductance) will usually be accompanied by an increase in uranium in natural waters.^{37,39,43,48}

Equivalent Uranium

This is a measurement of surface radioactivity (uranium and thorium daughter products) at each location and is provided for use alone or with BURE airborne radiometric results when they become available. An abnormally high value is indicative of local radioactive mineralization.¹⁹

Temperature

The temperature of the water may influence the measured concentration of uranium to some extent since it controls the rate of certain chemical reactions and biological activity.^{31,41}

Geology

Uranium content is generally higher in waters draining certain lithologies (such as acid igneous types).^{28,50} Oxidizing ground waters often circulate in highly fractured, fissured, and faulted terranes, and often act to introduce dissolved uranium into the surface waters in favorable areas.^{10,14,19,31,35,39}

Organics

These can be approximated from water description, density and type of local vegetation, and temperature. High organic content tends to rapidly adsorb uranium from water and correspondingly increase uranium in sediment.

Relief

Surface waters draining mountainous regions tend to have relatively short dispersion trains of uranium.^{5,7}

LASL HYDROGEOCHEMICAL AND STREAM/LAKE SEDIMENT FIELD DATA

<input type="checkbox"/> ATTACH IDENTICAL SAMPLE NUMBER HERE						REPLICATE	SAMPLE TYPE(S)	TREATMENT	LOCATION												DATE						AIR TEMP °C	WATER TEMP °C	CONTAMINANTS	SPEC. MEAS.																													
									LATITUDE			LONGITUDE			DEG	MIN	SEC	DEG	MIN	SEC	DAY	MO	YR	HR																																			
1	2	3	4	5	6	(7)	(8)	(9)	(10)	12	13	W/E	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	(39)	(40)																					
S/N 101482																																																											
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	(58)	(59)	(60)	(61)	(62)	(63)	(64)	(65)	(66)	(67)	(68)	(69)	(70)	(71)	(72)	(73)	(74)	(75)	(76)	(77)	(78)	(79)	(80)	(81)	(82)	(83)	(84)	(85)	(86)	(87)	(88)	(89)	(90)	(91)	(92)	(93)	(94)	(95)	(96)	(97)	(98)	(99)	(100)
pH	SPECIFIC CONDUCTANCE	LETTER I.D.	CPS		CPS		SHIELD IN	SHIELD OUT	TYPE	COLOR	TYPE	COLOR	FLOW	LEVEL	COLOR	STREAM CHANNEL	TYPE	DENSITY	VEG.	RELIEF	WEATHER	WATER	CONTAMINANT	TYPE	IN.	FT	WELL DIA/M	WELL DEPTH (SURFACE)	WATER DEPT. (SURFACE)																														
			ROCK	SED.	ROCK	SED.																								WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
SCINTILLOVETER																				GENERAL SITE DATA												WELL DATA																											

IN THE CASE OF EACH CIRCLED ENTRY SPACE, ENTER MOST APPROPRIATE DESIGNATORS LISTED BELOW:

(7) USE WITH REPLICATE SAMPLES ONLY (CHRONOLOGICALLY A,B,C,etc.)	(8) 1 NONE 2 WET STREAM 3 WET SEEP 4 WET SPRING 5 WET POND 6 DRY STREAM 7 DRY NATURAL POND 8 DRY ARTIFICIAL POND 9 OTHER	(9) 1 SIEVED -40 MESH 2 SIEVED -40 MESH 3 SIEVED -50 MESH 4 SIEVED -100 MESH 5 SIEVED -170 MESH 6 SIEVED -230 MESH 7 OTHER	(10) 1 ENTER 'C' WHEN COMMENTS ARE MADE	(11) 1 ENTER 'S' WHEN SPECIAL MEASUREMENTS ARE MADE	(12) 1 SEDIMENTARY 2 METAMORPHIC 3 IGNEOUS 4 UNKNOWN	(13) 1 STAGNANT 2 SLOW 3 MODERATE 4 FAST 5 TORRENT	(14) 1 CONCRETE 2 BRICK 3 CLAY 4 STONE 5 MUD 6 MUD 7 OTHER	(15) 1 FEDERAL 2 STATE 3 PRIVATE 4 STATE 5 OTHER
(16) 1 NONE 2 STREAM <1.5 m wide 3 STREAM >1.5 m wide 4 SEEP 5 SPRING 6 WELL 7 NATURAL POND 8 ARTIFICIAL POND 9 OTHER	(17) 1 DRY 2 DRY 3 CHALK 4 MARL 5 CREEK 6 STREAM 7 CREEK 8 BLACK 9 OTHER	(18) 1 DRY 2 MURKY 3 CLAY 4 MUD 5 ALUM 6 OTHER	(19) 1 DIRT 2 DIRT 3 GLEY 4 HIGH 5 FOOD 6 GLEY 7 OTHER	(20) 1 DIRT 2 MURKY 3 CLAY 4 MUD 5 ALUM 6 OTHER	(21) 1 FEDERAL 2 STATE 3 PRIVATE 4 STATE 5 OTHER			
(22) 1 FILTERED AND ACIDIFIED 2 FILTERED ONLY 3 ACIDIFIED ONLY 4 OTHER	(23) 1 ENTER 'C' WHEN COMMENTS ARE MADE	(24) 1 DOLMERS 2 CIRCLES 3 GRAVEL 4 SAND 5 MUD 6 MUCK 7 OTHER	(25) 1 DEPOSITING 2 DRIFTING 3 UNKNDAY	(26) 1 DEPOSITING 2 DRIFTING 3 UNKNDAY	(27) 1 CONCRETE 2 BRICK 3 CLAY 4 STONE 5 MUD 6 MUD 7 OTHER	(28) 1 CONCRETE 2 BRICK 3 CLAY 4 STONE 5 MUD 6 MUD 7 OTHER		

MAP NAME(s)

MAP NUMBER(s)

MAP SCALE

COMMENTS: EXPLAIN ALL "OTHER" DESIGNATORS USED ABOVE, PLUS DESCRIBE ALL UNUSUAL OR SIGNIFICANT CONDITIONS SUCH AS SPECIAL RESTRICTIONS, TYPE/IN AND FREQUENCY OF CONTAMINANTS, QUANTITY OF ORGANIC DEBRIS, WELL CASING DESCRIPTION (AGE, RUST, AMOUNT OF DEBRIS), ACQUIFER DESCRIPTION (NAME, DEPTH, DIA, STREAM CHANNEL DESCRIPTION, AND GENERAL ROCK NAME WHEN KNOWN. NOTE EVIDENCE OF RECENT PRECIPITATION

SPECIAL COMMENTS
AS FOR DATA ON SP-100

I CERTIFY THAT THE ABOVE SAMPLE HAS BEEN TAKEN AND TREATED AS SPEC. TO BY LASL AND NO SAMPLE ABOVE

LASL HSSR MAR 76

FIG. 3

LASL HSSR Field data form.

Weather

Seasonal and weather conditions tend to change the uranium concentrations in surface waters and, to some extent, in sediments.^{31,32} During periods of rapid snowmelt and high runoff the normal uranium concentration may be diminished by a factor of 1 to 3 times, due to dilution. Following periods of drought, the uranium content in rainwater runoff has been found to sharply increase for a brief period.^{30,31} In standing waters (lakes and ponds), where evaporation is prevalent, the uranium content tends to increase.^{3,31} Hydrogeochemical surveys should be completed over a short period of time to minimize the influence of seasonal change.^{3,30}

Contamination

The identification of potential sources of contamination such as metallic mines, dump residues, and acid mine waters can be important to making a proper interpretation of the uranium data.^{5,22,30} The use of phosphate fertilizers might increase the uranium concentration in certain agricultural areas.³⁰

Field Sampling

Except for orientation studies and check samples, all field sampling is done by commercial contractors according to the LASL specifications. All contracts are let by competitive bidding. Each contractor is supplied field maps with the desired sample types and locations symbolically premarked at the LASL. The maps are normally USGS quadrangles (either 7.5' or 15') but, where not available, Forest Service, State highway, or other reasonably detailed maps are provided. As each location is sampled, a unique sample location number, preprinted on the transparent adhesive labels provided with the identically numbered field data forms, is pasted over the precisely marked site on the field map. The latitude and longitude of each location is computed by the sampling contractor. Every location is later checked (and corrected if necessary) at the LASL by overlaying computer-produced location plots on the field maps used. The latitudes and/or longitudes are corrected if the overlay locations are displaced by more than ~ 50 m from the locations marked on the field maps. When a desired location cannot be sampled as specified, an alternate sample type or location as near as possible to the original one is picked, and the new sample type and/or location is/are marked on the field map and properly labeled as above. Areas are normally sampled in approximately 20 000 km² blocks to match USGS 2° map sheet boundaries.

Water Sampling

Water samples are taken directly from the source wherever possible, filtered through a 0.45-micron membrane filter into one each, prewashed and sealed, 41-ml reactor "rabbit" and 25-ml vial (both polyethylene). Both are then acidified to a pH ≤ 1 with 8N, reagent-grade HNO₃. All sample containers are doubly labeled with the preprinted, adhesive labels carrying the same sample location number preprinted on the field data form. Springs are sampled as near to their point of emergence as possible; stream waters are taken from fast-flowing current away from the bank; ponds (including small lakes and reservoirs) are sampled from just

below the surface, away from the bank; and well waters are taken near the wellhead if the well is pumping or from a holding tank if not. Because of the high costs involved in Alaska, the time consuming operation of filtration is deleted.

Sediment Sampling (Wet or Dry)

Enough fine-grained, organic-rich, water-transported sediment to yield a composite sample of ~ 25 g after processing (as indicated below) is taken from beneath the water level (where water exists) at three closely adjacent spots at each location. This is done with a polyethylene scoop, after the water sample (if any) is taken. The sediment is put into a new, clean, and originally sealed, rip-top polyethylene bag and properly double-labeled for delivery (with the field data form) to the contractor's drying facility. After drying at $\leq 100^{\circ}$ C, each sample is sieved through stainless steel sieves to -100 mesh. The -100 mesh fraction is put into a prewashed, 25-ml polyethylene vial, appropriately double-labeled (using labels from the data form), and sealed for shipment to the LASL. In lake sampling campaigns in Alaska, the sediment sample is taken with a specially designed, suction-operated bottom sampler dropped from a helicopter.

Field Measurements

The air temperature, taken in the shade at the time of sampling, is recorded to the nearest whole degree centigrade. The water temperature is measured in the source water and recorded to the nearest one-half degree centigrade. All temperature measurements are made with quality, precalibrated thermometers. The pH of the source water is measured with a calibrated, portable pH meter or multi-range pH paper, and recorded to the nearest one-tenth of a pH unit. The specific conductance ($\mu\text{mho}/\text{cm}$) of the source water is measured with a calibrated, temperature compensated (25° C) portable meter after the attached sample cup or probe has first been rinsed three times in the source water. The scintillometer readings, taken on a flat, dry spot within a few meters of the sample location, are measured with a portable scintillometer. Two readings are recorded, the first with a radiation shield in place (blocking out ground radiation), and the second with the shield removed. The readings (in counts/s) are converted by computer to give the equivalent uranium (eU) value set forth in the data listings. No scintillometer readings are taken when lake sampling in Alaska.

Field Observations

These represent the best subjective judgment of the field sampler on location and include very general descriptions of the local bedrock, sediment, water, vegetation, terrain, weather, possible contaminants, and water well configuration, if applicable.

Sample Receiving and Analysis

Samples are received from the field along with the location maps and all but the last carbonless copy of each completed field data form. They are shipped or delivered in special LASL-furnished, insulated shipping containers which will hold the samples obtained from nominally 200 sample locations. After

inventorying all samples against the data forms, the water samples in the 25-ml vials are sent to Group CMB-1, the LASL Analytical Chemistry Group, where determination of the uranium content is done by fluorometry.⁶⁴ The water samples in the 41-ml reactor rabbits, as well as the dried and sieved sediment samples, are sent to Group P-2, the LASL Reactor Research Group, where all delayed neutron counting (DNC) for uranium and any multielement work by neutron activation analysis (NAA) is done. The use of DNC for determining total uranium in sediment^{11,16,17,25,55,63} and uranium in water,^{17,25,41} as well as the use of NAA for multielement analyses in general geochemical surveying, offers great advantages.^{20,25,41,55,63}

Water Samples Analyzed for Uranium by Fluorometry

In a controlled laboratory environment, a NaF (98%)-LiF (2%) flux pellet is prepared and placed on a platinum dish. The 25-ml water vial is vigorously shaken and a 0.25-ml aliquot of water is withdrawn, dropped onto a flux pellet, and then evaporated under a heat lamp. The sample flux is then heated until fused. After it cools, it is excited with ultra-violet radiation in the fluorometer, and the measured fluorescence is read, recorded, and put through a computer routine using standards and blanks run at the same time to obtain the uranium concentration.⁶⁴ Water samples which have uranium concentrations in excess of 10 ppb (the upper limit of detection of the fluorometry system without recalibration) are reanalyzed using the delayed neutron counting technique described below. Those with < 10 ppb have their uranium concentration automatically entered in the data base.

Water Samples Analyzed for Uranium by Delayed Neutron Counting

Only waters with > 10 ppb uranium are assayed using DNC. Samples taken in the 41-ml rabbits are thoroughly cleaned (exterior) before analysis. Samples received in 25-ml vials (used exclusively in some of the early work) are transferred to clean, labeled, 41-ml rabbits before being analyzed. Each water sample is weighed, and its weight (less that of the rabbit) and location number are recorded. The rabbits are then loaded into a 25-sample transfer clip. The reactor pneumatic transfer system and background radiation levels are checked, and the system is calibrated using four standards. The transfer clip is installed on the pneumatic feed line, and the count control is set (typically, a 60-s irradiation, a 30-s delay, and a 60-s count is used, but this can be changed to accommodate abnormally high or low uranium concentrations). The samples are automatically cycled through the system and the uranium concentration is automatically computed in ppb and entered into the data base.

Uranium Analysis of Sediment Samples

All sediment samples are analyzed for total uranium by DNC. A split of each sample (dried and sieved as described) is transferred to a clean 4-ml rabbit, weighed (less the tape), and recorded along with the appropriate location number. The readied rabbits are loaded into a 50-sample transfer clip. The reactor pneumatic transfer system and background radiation levels are checked, and the system is calibrated as above. The transfer clip is installed and the count control is set (typically,

a 20-s irradiation, a 10-s delay, and a 20-s count is used). The samples are cycled through the system and the uranium concentration is automatically measured, computed in ppm, and entered into the data base.

Data Verification, Handling, and Presentation

Once the incoming samples have been inventoried, the field data forms are manually checked for incomplete or inconsistent information. Once this is done, the original front sheet is torn off and sent to Group Q-12, the LASL Energy Division's Statistical Analysis and Assessment Group, for entry into a computer data base. A separate data base is established for each individual area of approximately 20 000 km². As the data is entered, it again goes through a verification routine, this time programmed into the computer. Once all the field data for an area are entered, overlays are plotted of all sample locations at the same scale as the maps used in the field and carrying the location numbers. The overlays are checked against these maps and all necessary corrections are made. By the time this is done, the uranium determinations on both the waters and the sediments are usually completed and fed into the data base. After a cycle of data-base recheck and cleanup (to insure that there is a uranium value for each and every water and sediment sample), the first set of a standardized sequence of normal and log-normal frequency histograms of the uranium concentration for each individual sample source (i.e., springs, streams, wells, etc.) and uranium concentration overlay plots (distinguishing between water and sediment sample sources) is automatically produced. By examination of this output and the data listings through no less than two (but no more than three) iterations, the final versions of the histograms and uranium concentration overlay plots for the HSSR report on an individual area are derived. These, coupled with the computer data output listings and the results of geological, geochemical, and any statistical evaluations that have been carried out, will go to form the standard LASL HSSR reports as briefly described below.

Data Evaluation and Presentation

Neither time nor funding will allow in-depth evaluation of all the field and analytical data. The principal aim will be to see that all data is standardized, consistent, and valid as far as the described sampling techniques and analytical results are concerned. The LASL does, however, plan to include a geologic base map at 1:250 000 scale whenever possible, unless one is publicly available with the same boundaries as the area covered in a specific report. In addition, a limited amount of geological, geochemical, and hydrological interpretation and/or statistical analysis will also be included as part of the standard LASL reporting format as outlined below.

LASL Reconnaissance Report Format

A. Abstract

B. Text (~ 10 pages), to include sections on:

- 1. Geography, climate, weather (at the time of the survey),**
- 2. Geology, hydrology, water quality, and geochemical considerations,**
- 3. Uranium occurrences in the area,**
- 4. Empirical and statistical evaluations,**
- 5. Conclusions.**

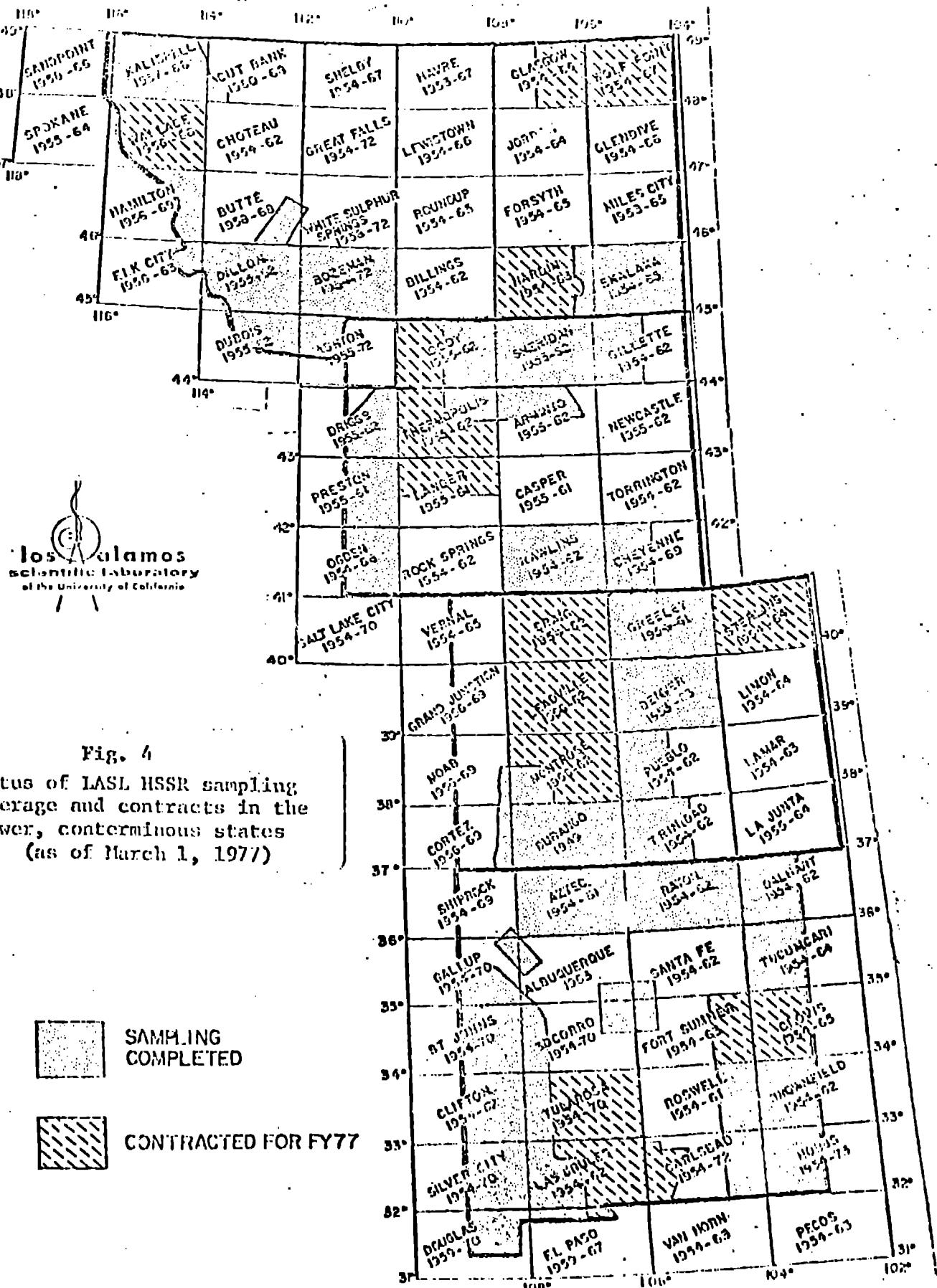


Fig. 4

Status of LASL HSSR sampling coverage and contracts in the lower, conterminous states (as of March 1, 1977)

- C. Standard procedures used in taking, treating, and analyzing the samples.
- D. Data listings (including sample information, field data, and uranium concentrations) for:
 - 1. Water samples.
 - 2. Sediment samples.
- E. Key to codes used in data listings.
- F. Maps and overlays (at 1:250 000 scale).
 - 1. Geology map.
 - 2. Sample location overlay.
 - 3. Graphic plot of uranium concentrations--water.
 - 4. Graphic plot of uranium concentrations--sediment.
- G. References cited. It is planned that at least the most current and best 10 or 12 references on the geology, water quality (chemistry), and uranium geochemistry of the area will be referenced, such that the reader will have the complete bibliographic data for such reports at his fingertips.

III. PRESENT STATUS OF THE LASL HSSR PROJECT

The status of the LASL HSSR sampling coverage and sampling contracts in the states of New Mexico, Colorado, Wyoming, and Montana as of March 1, 1977, is shown in Fig. 4. The status and schedule of sampling in Alaska is shown in Fig. 5. At the present time, one of the five sampling seasons has passed and the LASL has sampled about 19% of the total area for which it is responsible. If this rate can only be continued, the assigned HSSR for uranium throughout the LASL's region can be accomplished. Every effort is being put into insuring that the data accruing is valid and can be effectively put to use by the public sector as well as the ERDA.

FY 80

FY 76A
COMPLETE

FY 79

PILOT
FY 77

FY 80

FY 78

FY 77

ORIENTATION
STUDY COMPLETE
FY 76A

LEGEND

- FIELD WORK COMPLETE
- AREAS TO BE SAMPLED DURING FY 77
- AREAS TO BE SURVEYED AFTER FY 77

ALASKA

FY 78

Fig. 5

Status of LASL HSSR sampling work in Alaska.

REFERENCES CITED

1. US Energy Research and Development Administration, 1975, ERDA announces plans for nationwide Hydrogeochemical and Stream Sediment program, News Release No. 29 (Aug. 8), Grand Junction Office, CO, 3 pg. [USA]
2. Amiet, S. and Winsberg, I., 1956, Measurements on natural water sources as an aid in prospecting for underground deposits of uranium: Proc. U. N. Int. Conf. on Atomic Energy, 1955, v. 6, Geneva, p. 792-793. [Israel]
3. Saukoff, A. A., 1956, Radiohydrogeological method in prospecting for uranium deposits: Proc. U. N. Int. Conf. on Peaceful Uses of Atomic Energy, 1955, v. 6, p/626, Geneva, p. 756-759. [USSR]
4. Gangloff, A. M., Collin, C. R., Grimbert, A., and Sanselme, H., 1958, Application of geophysical and geochemical methods to the search for uranium: Proc. 2nd U. N. Int. Conf. on Atomic Energy, v. 2, Geneva, p. 140-147. [France]
5. Murakami, Y., Fujiwara, S., Sato, M., and Ohashi, S., 1958, Chemical prospecting of uranium deposits in Japan: Proc. 2nd U. N. Int. Conf. on Atomic Energy, v. 2, Geneva, p. 131-139. [Japan]
6. Grimbert, A., 1963, The application of geochemical prospecting for uranium in forested zones in the tropics, Paper No. 7: Proc. Seminar on Geochem. Prospect. Methods and Techs., Bangkok, Thailand, U. N. Min. Resources Dev. Series No. 21, New York, p. 81-94. [Gabon]
7. Chamberlain, J. A., 1964, Hydrogeochemistry of uranium in the Bancroft-Haliburton Region, Ontario, Geol. Surv. Canada Bull. 118, Queen's Printer, Ottawa, 19 pp. [Canada]
8. Grimbert, A. and Loriod, R., 1968, Geochemical prospecting for uranium, AEC-tr-7579, Trans. from French, US AEC Off. of Info. Services, Tech. Info. Center, Springfield, VA, 38 pp. [France]
9. Boyle, S. H. U., Ball, T. K., and Ostle, P., 1971, Geochemical methods in the detection of hidden uranium deposits: Geochemical Exploration, Spec. v. 11, Can. Inst. Min. Met., p. 103-111. [United Kingdom]
10. Boyle, R. W., Hornbrook, E. H. W., Allen, R. J., Dyck, W., and Smith, A. Y., 1971, Hydrogeochemical methods - application in the Canadian Shield, State of the art - Water, Can. Min. Met. Bull., v. 64, no. 715 (Nov.), p. 60-71. [Canada]
11. Plant, J. and Rhind, D., 1974, Mapping minerals, Geographical Magazine, v. 47, no. 2 (Nov.), p. 123-126. [United Kingdom]
12. Brundin, N. H. and Nairn, B., 1972, Alternative sample types in regional geochemical prospecting, J. Geochem. Expl., v. 1, p. 7-46. [Sweden]
13. Dall'Agnio, M., 1973, Geochemical exploration for uranium (with discussion): Uranium Exploration Methods, IAEA, 1972, Vienna, p. 189-208. [Italy]

14. Fauth, H., 1973, Hydrogeochemical reconnaissance prospecting (with discussion): *Uranium Exploration Methods*, IAEA-PL-490/2, 1972, Vienna, p. 209-218. [Federal Republic of Germany]
15. Smith, A. Y., Olsen, H., Armour-Brown, A., and Basset, M., 1973, Exploration for uranium in central and eastern Macedonia and Thrace, Greece - a manual of methods used in the uranium exploration project, Proj. CRE/70/529, Tech. Rept. No. 1, IAEA, 1972, Vienna, 101 pp. [Greece]
16. Bjorkland, A., Tenhola, M., and Rosenberg, R., 1976, Regional geochemical uranium prospecting in Finland (with discussion): *Exploration for Uranium Ore Deposits*, IAEA-SM-208/26, 1976, Vienna, p. 283-296. [Finland]
17. Herzberg, W. and Beeson, R., 1976, On the spoor of uranium, *Nuclear Active*, no. 15 (July), Atomic Energy Board of South Africa, p. 9-11. [South Africa]
18. Jonasson, I. R. and Goodfellow, W. D., 1976, Uranium reconnaissance programs: Orientation Studies in Uranium Exploration in the Yukon, Geol. Surv. Canada Open File 388, Geol. Surv. Canada, Ottawa, 97 pp. [Canada]
19. King, J., Tauchid, M., Frey, D., and Basset, M., 1976, Exploration for uranium in southwestern Anatolia - a case history (with discussion): *Exploration for Uranium Ore Deposits*, IAEA-SM-208/6, 1976, Vienna, p. 501-530. [Turkey]
20. Lovborg, L., Kunzendorf, H., and Christiansen, E. M., 1976, Practical experiences of various nuclear techniques supporting mineral prospecting in Greenland: *Nuclear Techniques in Geochemistry and Geophysics*, IAEA, Vienna, p. 139-152. [Greenland]
21. Sharp, R. R., Jr., 1976, Hydrogeochemical and stream sediment survey of the National Uranium Resource Evaluation program, The Rocky Mountain states of New Mexico, Colorado, Wyoming, and Montana, and the state of Alaska, April-June 1975 Progress Report, GJBX-19(76), US ERDA, Grand Junction, 48 p. [USA]
22. Lovering, T. S., Lakin, H. W., Ward, F. M., and Canney, F. C., 1956, The use of geochemical techniques and methods in prospecting for uranium: US Geol. Surv. Prof. Paper 300, 1955, Wash., DC, p. 659-665. [USA]
23. Tilak, V. V. S. S. and Aswathanarayana, U., 1963, Geochemical studies in the uranium prospect at Umar, Rajasthan: Indian Acad. of Sci., Proc. A, v. 57, Bangalore Press, p. 34-43. [India]
24. Ohashi, S., Nozawa, K., and Aoyama, Y., 1963, Geochemical prospecting for uranium deposits in sedimentary rocks in Japan, Paper No. 17: Proc. Seminar on Geochem. Prospect. Methods and Techs., Bangkok, Thailand, U. N. Min. Resources Dev. Series No. 21, New York, p. 94-104. [Japan]
25. Bowie, S. H. U., 1972, The status of uranium prospecting (with discussion): *Uranium Prospecting Handbook*, Inst. Min. Met., 1971, London, p. 1-16. [United Kingdom]

26. International Atomic Energy Agency, 1973, Survey of present methods of geochemical (stream and lake sediment) and hydrogeochemical surveys for uranium [a], with an assessment of effectiveness [b] and costs [c], Panel Reports 2 (in part), 3, and 4: Uranium Exploration Methods, IAEA, 1972, Vienna, p. 259 and 277 [a], p. 293-296 [b], and p. 297-299 [c].

27. Fu, R. S. and Page, L. R., 1956, Techniques for prospecting for uranium and thorium—a summary: US Geol. Surv. Prof. Paper 300, 1955, Wash., DC, p. 621-625. [USA]

28. US Atomic Energy Commission and US Geological Survey, 1956, Techniques for prospecting for uranium and thorium: Proc. U. N. Int. Conf. on Peaceful Uses of Atomic Energy, 1955, v. 6, Geneva, p. 752-755. [USA]

29. Plant, J., 1971, Orientation studies on stream-sediment sampling for a regional geochemical survey in northern Scotland, Trans./Sec. B, Inst. Min. Met., v. 80, London, 23 pp. [United Kingdom]

30. Ostle, D., 1954, Geochemical prospecting for uranium, Mining Magazine, v. 91, no. 4 (Oct.), p. 201-208. [United Kingdom]

31. Fix, P. F., 1956, Hydrogeochemical exploration for uranium: US Geol. Surv. Prof. Paper 300, 1955, Wash., DC, p. 667-671. [USA]

32. Illsley, C. T., Bills, C. W., and Pollock, J. W., 1958, Some geochemical methods of uranium exploration: Proc. 2nd U. N. Conf. on Atomic Energy, v. 2, Geneva, p. 126-130. [USA]

33. Hawkes, H. E., 1972, Geochemical surveys: Exploration for Mineral Deposits, SME Mining Engineering Handbook, v. 1, Sec. 5.2.4, AIME, New York, p. 5-34 through 5-38. [USA]

34. Dall'Aglio, M., 1972, Planning and interpretation criteria in hydrogeochemical prospecting for uranium (with discussion): Uranium Prospecting Handbook, Inst. Min. Met., 1971, London, p. 121-134. [Italy]

35. Cameron, E. M. and Allan, R. J., 1973, Distribution of uranium in the crust of the northwestern Canadian Shield as shown by lake-sediment analysis, J. Geochem. Expl., v. 2, p. 237-250. [Canada]

36. Allan, R. J., Cameron, E. M., and Durham, C. C., 1973, Reconnaissance geochemistry using lake sediments of a 36,000-square mile area of the northwest in Canadian Shield (Bear-Slave Operation, 1972): Geol. Surv. Canada Paper 72-50, Info. Can., Ottawa, 70 pp. [Canada]

37. Geological Survey of Canada, 1973, Uranium content of lake sediments, Bear-Slave Operation, District of Mackenzie, Sheets 1, 2, and 3 of Map 9-1972 (Prelim. Series), with marginal notes by R. J. Allan and E. M. Cameron, Scale 1:250 000, Geol. Surv. Canada, Ottawa. [Canada]

38. Allan, R. J. and Richardson, K. A., 1974, Uranium and potassium distribution by lake-sediment geochemistry and airborne gamma-ray spectrometry: a comparison of reconnaissance techniques, Can. Min. Met. Bull. (June), 12 pp. [Canada]

39. Dyck, W., 1975, Geochemistry applied to uranium exploration: Uranium Exploration '75, Geol. Surv. Canada Paper 75-26, Info. Can., Ottawa, p. 33-47. [Canada]
40. Cameron, E. M. and Hornbrook, E. H. W., 1976, Current approaches to geochemical reconnaissance for uranium in the Canadian Shield (with discussion): Exploration for Uranium Ore Deposits, IAEA-SM-208/31, 1976, Vienna, p. 241-266. [Canada]
41. Ostle, D. and Ball, T. K., 1973, Some aspects of geochemical surveys for uranium (with discussion): Uranium Exploration Methods, IAEA, 1972, Vienna, p. 171-187. [United Kingdom]
42. Benson, N. M., Zeller, H. D., and Stephens, J. C., 1956, Water sampling as a guide in the search for uranium deposits and its use in evaluating widespread volcanic units as potential source beds for uranium: US Geol. Surv. Prof. Paper 300, 1955, Wash., DC, p. 673-680. [USA]
43. Scott, R. C. and Barker, F. B., 1958, Radium and uranium in ground water of the US: Proc. 2nd U. N. Int. Conf. on Atomic Energy, v. 2, Geneva, p. 153-157. [USA]
44. Wodzicki, A., 1959, Geochemical prospecting for uranium in the Lower Buller Gorge, New Zealand, New Zealand Journal of Geology and Geophysics, v. 2, p. 602-632. [New Zealand]
45. Armands, G., 1961, Geochemical prospecting of a uraniferous bog deposit at Masugnsbyn, Northern Sweden, Report AE-36, Aktiebolaget Atomenergi, Stockholm, 48 pp. [Sweden]
46. MacDonald, J. A. 1968, Lake water - a guide to uranium, Canadian Mining Journal, v. 89, p. 89-90, 99-100. [Canada]
47. Krainov, S. R. and Petrova, N. G., 1969, Possibilities and conditions of applying the hydrogeochemical method of prospecting in high mountains (Sci.-Tech. Info. Bull., No. 4 (38), USSR Ministry Geol. and Consen. Min. Resources, Moscow), Unedited Draft Trans. No. 5514, from Russia, by Can. Trans. Bu., Dept. Sec. State, Ottawa, 10 pp. [USSR]
48. MacDonald, J. A., 1969, An orientation study of the uranium distribution in lake waters, Beaverlodge District, Saskatchewan, Colorado School of Mines Quarterly, v. 64, no. 1, p. 357-376. [Canada]
49. Meyer, W. T., 1969, Uranium in lake water from the Kainuokok Region, Labrador, Colorado School of Mines Quarterly, v. 64, no. 1, p. 377-394. [Canada]
50. Boyle, R. W., 1969, Uranium, subsection in: Elemental associations in mineral deposits and indicator elements of interest in geochemical prospecting, Geol. Surv. Canada Paper 68-58, Queen's Printer, Ottawa, p. 21-23. [Canada]

51. Dyck, W., Dass, A. S., Durham, C. C., Hobbs, J. D., Pelchat, J. C., and Galbraith, J. H., 1971, Comparison of regional geochemical uranium exploration methods in the Beaverlodge area, Saskatchewan: Geochemical Exploration, Spec. v. II, Can. Inst. Min. Met., p. 132-150. [Canada]

52. Little, H. W. and Durham, C. C., 1971, Uranium in stream sediments in carboniferous rocks of Nova Scotia, Geol. Surv. Canada Paper 70-54, Info. Can., Ottawa, 17 pp. [Canada]

53. Allan, R. J., 1971, Lake sediments: a medium for regional geochemical exploration of the Canadian Shield, Can. Inst. Min. Met. Bull. (Nov.), p. 43-59. [Canada]

54. Boberg, W. W. and Runnels, D. D., 1971, Reconnaissance study of uranium in the South Platte River, Colorado, Econ. Geol., v. 66, p. 435-450. [USA]

55. Ostle, D., Coleman, R. F., and Ball, T. K., 1972, Neutron activation analysis as an aid to geochemical prospecting for uranium (with discussion): Uranium Prospecting Handbook, Inst. Min. Met., 1971, London, p. 95-109. [United Kingdom]

56. Shvartsev, S. L., 1972, Geochemical prospecting methods in regions of permanently frozen ground, Proc. 24th Session, Int. Geol. Congress (Montreal), Sec. 10, p. 380-384. [USSR]

57. Grimbert, A., 1972, Use of geochemical techniques in uranium prospecting (with discussion): Uranium Prospecting Handbook, Inst. of Min. Met., 1971, London, p. 110-120. [France]

58. Michie, U. Mel., Gallagher, M. H., and Simpson, A., 1973, Detection of concealed mineralization in northern Scotland: Geochemical Exploration 1972, Inst. Min. Met., London, p. 117-130. [Scotland]

59. Dyck, W., 1974, A comparison of geochemical exploration methods in the Beaverlodge area, Saskatchewan--lake versus stream sampling, Geol. Surv. Canada Paper 74-32, Part B, Info. Can., Ottawa, p. 19-30. [Canada]

60. Smith, A. Y., Armour Brown, A., Olsen, H., Lundberg, B., and Niesen, P. L., 1976, The role of geochemical prospecting in phased uranium exploration--a case history (with discussion): Exploration for Uranium Ore Deposits, IAEA-SM-208/51, 1976, Vienna, p. 575-600. [Greece]

61. Sharp, R. R., Jr. and Azmodt, P. L., 1976, Uranium concentrations in natural waters, South Park, Colorado, GJBX-35(76), US ERDA, Grand Junction, CO, 49 pp. [USA]

62. Olsen, C. E., 1977, Uranium hydrogeochemical and stream sediment pilot survey of the Estancia Valley, Bernalillo, Santa Fe, San Miguel, and Torrance Counties, New Mexico, GJBX-21-(77), US ERDA, Grand Junction, CO, 31 pp. + Apps. (Part 1) and 9 plates (Part 2). [USA]

63. Garrett, R. G. and Lynch, J. J., 1976, A comparison of neutron activation delayed neutron counting versus fluorometric analysis in large-scale geochemical exploration for uranium (with discussion): *Exploration for Uranium Ore Deposits*, IAEA-SM-208/30, 1976, Vienna, p. 321-336. [Canada]

64. Hues, A. D., Henricksen, A. L., Ashley, W. H., and Romero, D., 1977, The fluorometric determination of uranium in natural waters, US ERDA, CJBX-24(77), Grand Junction, CO, 11 pp. [USA]