{D ” ' UCRL-52464

,DYNAMIC RESPONSE OF A CYLINDRICAL SHELL

IMMERSED IN A POTENTIAL FLUID

Garth E. Cummings
(Ph.D. Thesis)

April 28, 1978

Work performed under the auspices of the U.S. Department of
Energy by the UCLLL under contract number W-7405-ENG-48.

LAWRENCE
LIVERMORE




NOTICE

“This roport was prepared as an account of work
spongsored by the United States Government.
Neicher the United States nor the United States
Department of Encrgy, nor any of thelr em-
ployees, nor any of their contractors, subcon-
tractors, or their employees, makes sny warranty,
express or Implied, or sssumes sny legal Lability
or reaf onslbility for the accuracy, completensss

or

of any i 2

product or process disclosed, or represents that
its use would not infringe privately-owned rights.”

NOTICE

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the
U.S, Department of Energy to the exclusion of
athers that may be snitable,

Page Range

001-025
026--050
051-075
076--100
106125
126150
154175
176200
201-225
236-250
251-275
276-300
301-325

Printed in the United States of America
Avallable from

National Technical Information Service

U.S. Department of Commerce

5285 Port Royal Road

Springficld, VA 22161

Price: Printed Copy $  : Microfiche $3.00

Domestic Domastic
Price Page Range Prica
S 4.00 326-350 $12.00
4.50 351-375 12,50
525 376—400 13.00
6.00 401--425 13.25
6.50 426-450 14.00
7.25 451475 14.50
8.00 476--500 15.00
900 . 505525 1528
9.25 526550 15.50
9.50 551575 16,25
10.75 576600 16.50
t.00 60t-up '

1175

% A84 32.50 for each additional 100 oxre inarmment from 601 pages up.



1S

LAWRENCE LIVERMCRE LABORATORY

University of Caifornia  Livermore, California 94550

UCRL-52464

DYNAMIC RESPONSE OF A CYLINDRICAL SHELL
IMMERSED IN A POTENTIAL FLUID

Garth E. Cummings
(Ph.D. Thesis)

April 28, 1978

spansored by the Unted Ststes Loversment. Neuthes the
Unised Sttt por the Undiied States Depapmens of
Energy, 701 any of thell emplayces, Aor any of their
contractors, Sulcontractons, or their empluyees, makes i

Tha reputt wys prepaed i wn aceount of wulk,

any wattanty, express of implicd, o1 auumey sy legal
lubthy of teponsbility st the accuracy, completeness
or uselulness of any informalion, apparatus. product of
process dusclosed, of TEPrEEnts thal 115 VX would not
infiige privately pwnes nghty.

BISTRIRUTION OF Tids Do

ST LS UNLDE1RD

{)



CONTENTS

Page
Abstract---- 1
Introduction — 2
Analysis 5
Shell Equations-- JE—— 7
Fluid EQUations=--m=mmmmmemmmmmce e e e e 9
Calculational Method--~-- 1
Shell Equations-- 12
Fluid Equations e m e e memem———————————————————————— 13
Calculational Technique--------ce-ccmmmmm e meen 14
Experimental Verification-------c-ceecnmmcmmaacaan ——- - 16
Application of Numerical Technique--—---r-cmcemmcecccmmncmcccacacecnnan 24
Conclusion--- 28
NOMENE T AEU B~ == == o m m e e e e e e 30
Refavences------- : 35
Appendix A - Derivation of the Governing Equations---~-s-c-vemccomen—ne 37
Shell EQUAations==mm==mmmmmm e e e e 37
Fluid EQUations=-==-mmmeom me e oo eeee 54
Analytical Solution------=mmcmmrecmccccmcecaen 58
References for Appendix A 63
Appendix B - Development of Equations used for Computation-------ecee-- 64
Basic Strategy-- ——- - 64
Shell Equations-- - 65
Fluid Equations: 77
References for Appendix B--= ———- 83

—ije



CONTENTS (cont'd)

Page
Appendix C - Description of Erperiment----- 84
Description of Apparatus--«----- e mm e m— e —— 84
Instrumentation and Data Reduction=---e-ec-mmcmmmcumcronnmcnanann 88
Measuremerit TeChNiQUES--=-~mmcrecacmmcconeme e cc e acemm e 92
Experimental Results-- - 96
References for Appendix C-~ --109
Appendix D - The Computer Code SHELVIBmmeemmmcecommo oo oo 110
Listing of Computer Code SHELVIB--=c=c-eemcmeumananax am
Sample Input---==-- cme 138
Sample Qutput---=-- 139
References for Appendix Dueemmee oo mm ool 142

-iii-



DYNAMIC RESPONSE OF A CYLINDRICAL SHELL
IMMERSED IN A POTENTIAL FLUID

ABSTRACT

A numerical solution technique is presented for determining the
dynamic response of a thin, elastic, circular, cylindrical shell of constant
wall thickness and density, immersed in a potential fluid. The shell may
be excited by an arbitrary radial forcing function with a specified time
history and spatial distribution. In addition, a pressure history may be
specified over a segment of the fluid outer boundary. Any of the natural
shell end conditions may be prescribed.

A numerical instability prevented direct solutions where the ratio
of the hydrodynamic forces to shell inertial forces is greater than two.
This instability is believed to be the result of the weak coupling
between the equations describing the fluid to those describing the shell.
To circumvent this instability, an effective mass was calculated and added
to the shell.

» Comparison of numerical to experimental results are made using a 1/12
scale model of a nuclear reactor core support barrel. Natural frequencies
and modes are determined for this model in air, watern and o0il. The
computed frequencies compare to experimental results to within 15%.

We illustrate the use of this numerical technique by comparing it to
an analytical solution for shell beam modes and resolve an uncertainty in

the analytical technique concerning the proper effective mass to use.
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INTRODUCTION

Whenever solids move in contact with fluids, the resisting pressure
of the fluid should be taken inte account. Traditionally, this pressure
is assumed proportional to the acceleration of the moving +0lid relative
to the fluid and is accounted for by assigning an increased density to
the solid. Thus, an increased or “effective mass" is incorporated into
the equation of motion of the solid structure to account “or this fluid
influence. For shells this effective mass is a function of mode number,
shell radius, thickness, length, and proximity of neighboring structures.
As will be shown, the effect of the fiuid on the motion of a cubmerged
shell cin be dramatic with reductions by a factcr'of throe of the natural
frequencies.

Early workers in this field {1] used thic effective mass technique
with modal analysis to analyze sheils subnerged in a fluid. Closed form
solutions vere obtained for simply-supported cylinders in infinite fluids.
More recently, similar techniques hase been appiizd to coaxial cylindrical
shells [2-6]. The approach used is to couplz the fluid to the shell by
forcing the radial velocity of the sheil to equal that of ihe fluid at
the shell wall and the dynamic pressure in the fluid to equal the ioading
on the shell. The acoustic wave equation is used to represent the
fluid (assuming stationary fluid and small motions) in conjuncticn
with the equations of motion of thin shells.

In addition to the fluid's effect on the vibration f{requencies of a
submerged shell, the fluid can also act as a vehicle for the transmission
of forces to cause vibrations. Such is the case of the core support
barrel of a nuclear reactor where the fluid flowing down the annulus between
the core support barrel and pressure vessel wall imparts both a random force

due to turbulence and a deterministic force due to pump pulsations. The
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dynamic response of the fluid-filled tanks 1. rockets used in the space
program is another area where fluid-shell interaction is important.

Recent methods used todetermine a shell's response to these types of
fluid forces will now be outlined.

Bowers and Horvay [4] calculated the response of a s%mp?y-suuported
shell to pulsating pressure in an encompassing water-filled annulus.

The pump induced pressure pulsations are imposed over a portion of the
outer periphery of the water annulus resulting in a time-dependent mixed
boundary value problem since the remainder of the outer periphery is
modeled asan inflexible wall. An approximate solution method which gives
the pressure distribution in the water annulus is made pcssible by replac-
ing the pressure pulsations with equivalent body forces in the annulus and
thus converting the mixed boundary value ipvootem into a forced vibration
problem with homigeneous boundary conditicns. The salutiun of this forced
vibration problem gives the pressure in the annulus and on the shell wall.
The shell equations are next solved by the normal mode method to obtain
natural frequencies and displacements of the shell. This analysis is only
applicable to simply-supported shells and does not account for water inside
the shell.

Au-Yang [5,7] used a statistical method to predict the r.m.s. response
of a shell surrounded by a water annulus and subjected to random excita-
tion uniformly distributed about the shell. This method is based on finite
element techniques and requires prior knowledge of the shell mode shapes
and the cross-spectral density of the forcing function.

Berger and Palmer [8] have devised a numerical solution techmigue to
determine the transient motion of an infinitely long, viscoelastic,

cylindrical shell of arbitrary cross-section, surrounded by an infinite
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acoustic medium. They used finite diffeience techniques to model the con-
formally mapped shell and acoustic equations. Laplace transformation was
used to handle the time derivative.

Other, more comprehensive numerical techniques are described by
Belytschko [9]. T'n general, these were developed tu describe structural
motion resulting from high energy impulse loading as might result from &
nuclear reactor accident. They, thus, are tailored to find short term and
nonlinear responses and require such small time steps as to make calcula-
tinn to steady-state impractical.

In our attempts *o treat the fluid-shell problem analytically, a
number of assumptions are made. The shell is assumed either infinitely
long or simply-supported where in an actual installation neither is the
case. Also, shell mode shapes in a fluid are assumed similar to those
in vacuo. The latter has little effect on calculation of the natural
frequencies, but presents difficulties when support clearances affect
motion or where shell loads are being rositioned at shell noies to mini-
mize respcnses. The published numerical methods treat the shell and fluid
as a discretized continuum and therefore circumvent these considerations
but are tailored for short term transient calculations, making computation
to steady state prohibitively expensive.

We have developed a unique numerical solution technique which can
accurately calculate a cylindrical shell's natural frequencies and mode
shapes in potential fluids. This technique can be applied to thin,
elastic, circular shells with constant wall thickness and density. The
shell can be either in vacuo, filled with fluid, surrounded by fluid,
or immersed in a fluid in a stiff, coaxial container. The length to

radius ratio of the shell should be greater than one to predict natural
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frequencies to within 5% of those calculated by three dimensional theory.
An arbitrary forcing functian can be applied directly to the shell surface.
In addition, a pressure history can be spezified over a seoment of the
fluid's outer boundary, up to 1/4 the shell’s lencth. The fluid is
modeled as a potential fiuid and therefore, for an accurate calculation,
the time period of the load or pressure change should be greater than the
acoustic wave travel time over the fluid domain. Also the wave velocity
of the s*211 should be less than the acoustic velocity of the 17quid. Any
of the natural boundary conditions can be prescribed on the ends of the
shell and they may change with time.

This numerical solution technique is unique in several respects.
Finite difference techniques were used to model the fluid and shell
with the potential fluid characterized by an elliptic Helmholtz type
equation. The mixed boundary value problem was handled by a numerical
technique that has been used in fiuid mechanics, but has not been euployed
in fluid-shell problems. A transient response approach was used to
determina the short tayrm response as well as the natural frequencies and
modes for the fluid-shell problem. Other transient response codes are
tailored to cumputed only the short time response to sudden phenomena such
as occur with reactor accidents.

This numerical solution technique can be used fordesign sensitivity

s...1es, to check analytical solutions, or for numerical experimentation.

ANALYSIS
This section describes the equations used to model the shell and
the fluid regions inside and/or outside the shell. The geometry is
described in Fig. 1.
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Fig. 1 Shell element, force and moment resultant diagrams.

-6-



She1l Equations

The shell equations, as first postulated by Love, are a reduced
form of the three dimensional theory of elasticity equations. In
terms of finite difference techniques, noding of the shell in the radial
direction is not required and this decreases computation time as compared
to a three dimensional mesh. The basic assumptions used in formulation
of the shell equations are:

1. The shell is thin (h/a < 1/10)*

2. The deflections of the shell are small (1linear theory holds)
3. The transverse normal stress is negligible.

4. The normals to the undeformed midsurface of the shell remain
straight and normal to the deformed midsurface and they suffer
no extension.

Sanders' solution method [10,11,12] will be used. He emoloys the
principle of virtual work to obtain the equilibrium equations for the
shell element in Fig. 1. Leissa [13] demonstrates the close agreemant
between Sander's solution and that using the three dimensional theory of
elasticity. By adding external loads and a D'Alembert term to these

equilibrium equations we obtain the following equations of motion (see

Appendix A).

i'k,,a_gg__l__.zg_f_haz_u-x"g'a_u:g
23 a6 2a 28 aaTZ pg 3T
o D, 3 T 1 M mah Fa_,
a8 3k 22‘5 agz a 9 @ 2 P aT
LR M., 2%y 2
1 £ £0 o [ . En 3% E ow =
'"e+a[ 2+zagae+ae?] a 32 " *Vp artac=0

—
*Nomenclature 1isted at end.
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We have introduced the dimensionless time variable 1 = [E/ps] t/a, a
dimensionless axial space variable, £ = x/a, a viscous damping coeffi-
cient A, and radial load q. The viccous damping coefficient is to
include both structural and fluid damping which are small in most cases
(see Table C-5 in Appendix C}.

We simplify the analysis |11,12] by describing (1) as a set
of four dimensionless, coupled, partial differential equations in terms of
U, ¥y W, ME’ £, and 1. We do this by expanding the force and moment
resultants, displacements, loads, and strains into Fourier series in
the circumferential variable 8. We then use a reference stress level,
0y to make the coefficients of the Fourier series dimensionless. For
each Tourier term, n, we obtain the following four coupled equations in

which primes denote derivatives with respect to £ and dots with respect to

T.
aqu” + g, * aavn‘ o' =i Cﬁn (2a)
1 n - ~ne
gl *oaghy” *agvy +oagh " Fagh +oq Mo =G+ Bv (2}
aqplin' ¥ aqVy" ¥ oqg¥y ot b aqewy + oMy + aggMey (2¢)
= W, + Cwn - a,
" -
gy * agghn" F agghy *ogMe, = 0 (2d)
where
auo‘f aUD ‘f
u=—7) ucosnb,v=—= Y v sinnod (3a,b)
£ n=o " E gy P ’
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o ¢ o
W= = wcosng, M. = —— § M cos ng (3¢,d)
E HZD n g a 5, é&n
oh =
— (3g)
q I q_cos no {
a Lrn

The coefficients a),....,a;, are listed in Table A-1 of appendix A. C

is a dimensionless damping coefficient defined in the nomenclature.

The following quantities must be prescribed at the bounuaries,

£=0, s/a.
A NE or'3 u
N£9 [NEG + 5 "ge] or v
N M oM. = tat¢g=0, s/a (4)
=[5 i 1:}
0 [36 *2 2 Jorw
ME or w

Fluid Equations

The fluid both inside the shell and in the annular region outside
the shell will be treaved as inviscid [5,14,15], incompressible, and having no
gross motion [3,16,17]. In other words, the fluid adds inertia to the
shell, couples the shell to neighboring structures, and acts as a vehicle
for transmitting forces to the shell. As a result, the fluid can be
represented by a single equation in terms of one dependent variable,
the dynamic pressure p.

Expanding the pressure into a Fourier series about the circumference
results in a differential equation with independent variables £, 2, and t

where & is a dimensionless radial coodinate, 2 = r/a. To couple the fluid
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to the shell, the radial velocities of the shell and fluid are made equal.
Also, the assumption is made that the pressure belonging to a given circum-
ferential mode does not excite other than its matching structural mode; an
assumption usuaily made in modal analysis [1,3,5,173.

Starting with the equation of motion for inviscid, compressible
fluids (Euler's equation), the continuity equation, and assuming small

oscillations we obtain the acoustic wave equation [18].

2
1% .2
=, -Vp:O
2 3l {5)

For an incompressible filuid (c+) we may express ¥2p in cylindrical

coordinates as
2

2
3P op. 2 3°p
n,1°% % n n .
trml s e Pyt =0, ()
3,12 r oo n.2 n aE

where we expand p in a Fourier series as

p=.U£'l

a

deg

pcos nb.
n n

The assumption of incompressibility is valid if the sonic velocity
in the fluid is much higher than the velocity of motion of the shell surface
and/or the shell is closely confined in a rigid-walled tank. Both Mnev and
and Pertsev [2], and Chen and Rosenberg [3] have shown that compressi-
bility effects are unimportant in calculating the response of a shell
closely confined in a 1iquid. Mnev and Pertsev provide an analytical
solution for a shell with simply-supported end conditions submerged in
an acoustic fluid. They show that if the shell is confined, coaxially,
inside a rigid-walled outer cylinder, the criteria to determine whether

the incompressibility assumption is valid is
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ab 42 1
[ m@—)E«L (7)

for all other cases and when n = 0

[2&]2 << ) (8)

is the criteria to be used. The experimental results reported later
substantiate these criteria.

Boundary conditions must be specified on the top and bottom of the
fluid regions and 4t the inner and outer surfaces. Either a pressure
release (pn = D) or rigid wall (BPn/BE = 0) can be specified on the top
or bottom of the fluid regions although the former more closely matches
the analytical solution and experimental results reported here. Similar
boundary conditions can be applied to the outer surface of the outer
fluid. At the shell surfaces the shell radial velocity must be made
equal to the fluid radial velocity. Therefore, using Euler's equation

we can express the pressure gradient at the wall as

DaRES | e o
att ¢ (9)

To eliminate the singularity at x = 0 a rigid inner boundary at

x = To/a, (r0 <<a) was used.

CALCULATIONAL METHOD
The basic strategy of the calculational method is to solve the
finite difference equations of the shell and fluid separately, but to
account for the interaction between the two by imposing the boundary
condition (9) at the shel1-fluid interface. Theshell displacements as a
function of time for each Fourier mode are determined separately and must

be summed to get the total displacement. The forcing function, whether it
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is applied on the outer boundary of the fluid or on the shell must be
expanded into a Fourier series with the appropriate Fourier term applied to
each mode. The natural frequencies for each mode can be calculated by
applying a load that is a step function in time and following the time
history of the response. This is the method used in this work. Another
means of determining the natural frequencies is to vary the load harmonically

and generate a frequency plot.

Shell Equations
The algorithm used to solve the shell equations is similar to that
used by Johnson and Greif [12]. The shell equations of motion (2) for a
particular Fourier mode are cast in a matrix form in terms of z, a four
selement column vector composed of unknowns u,v,w,ME,
Kz" + Fz' + Gz = y + D% + 2. (c)
K,F,G6,D0,L are 4 x 4 coefficient matrices, and 4 is a column loading
vector. A1l are defined in Appendix B. Another matrix equation is
developed to describe the shell end conditions,
iz’ + (1-Q+07) z=2, (1)
with § a diagonal matrix and £ a column vector defined by the end
conditions. H and J are 4 x 4 matrices (see Appendix B) defined by the
equations relating Sanders' boundary conditions (4) to z. For example,
if u is known at an end, the first diagonal element of § is zero, and
the first element of £ is the prescribed value of u.
Using difterence schemes, equations (10) and (11) are recast into
three matrix equaiions (Appendix 8, equations (B-10a,b,c,)) in terms of the

unknown vectors

%1 Fal,g and are solved by a Gaussian elimi-

Zit1,5°
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nation technique at each time step j. Central differencing is used to
describe the space derivatives and backward differencing to describe the
time derivatives. The backward differencing for the time derivatives
(Houbo1t method) [19] results in an implicit, unconditionally stable
algorithm. To solve the three matrix equations # recurrence relation-
ship is used relating LI and 2,4 The coefficients and constants for
this relationship are calculated starting at i = 0 up to i = N. Then using
the boundary condition at i = N the vectors 2,5 1,5 etc. down to
29,3 are calculated. This procedure i5 repeated for successive time steps.
Fluid Equations

The equation representing the fluid (6) is a form of the Helmholtz
equation. The nth Fourier mode of this equation is recast into finite
difference form giving an equation for each node (Appendix B, equations
(B-12a,b,c)). Theresulting set of linear, algebraic equations is solved
by a fast, direct solution method [20] which takes advantage of the tri-
diagonal nature of this set and employes an odd-even ctyclic reduction
technique. The axial dimension must be subdivided into N>2 inccements
that do not include multiples of 7,11,13,17, etc.

We were interested in simulatinyg pump pressuce pulses coming into a
pressure vessel and therefore modified the direct solution method so as
to handle the specification of mixed boundary values on the outer fluid
boundary. Thus, a pressure profile, p(t), can be specified over the
inlat region and a rigid wall, ap/a1 = 0, over the remainder of che outer
boundary. A capacitance matrix “echnique [21,22] was used to modify the
direct solver so that mixed boundary values could be handled. This involved

a modification of the rows of the matrix form of the set of finite differ-
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ence equations such that the cyclic reduction process could still be

used on the modified system.

Calculation Technique

In the original paper by Johnson and Greif [12] constraints were
placed on the time and space increments. As the time increment gets
large, the calculated shell response apprnaches the correct static solu-
tion but any dynamic response is damped out. The time increment must
be kept to less than 1/50 of the period of a particular mode of vibra-
tion so that the displacements are not significantly damped. This
damping results from the time integration scheme used (Houbolt method)
and is strictly a numerical effect. The tendency of the fluid is to
ircrease this numerical damping. The damping increases as the fluid
reaction becomes more significant either due to -loser shell spacing,
higher fluid density or for the lower shell modes. To maintain damping
less than 1% for calculations involving a fluid, time steps between 1/50
and 1/500 of the period of vibration were used.

The spacc increment must be kept small enough to cescribe adequately
the axial bending moment, ME’ which is proportional teo the second time
derivative of the radial displacement. In general, 120 axial nodes were
found to give adequately resolved displacements and bending moments.

As previously stated, the original shell code is unconditionally
stable. It was found, however, that the addition of the fluid resulted
in an unstable solution when the hydraulic loading exceeded twice the
inertial force generated in the shell. This numerical instability is
believed to be caused by the weak coupling employed to connect the shell
and fluid equations. Belytschko [9] has reported on numerical in-tabilities
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in fluid-structure codes from this cause. Weak coupling resulis when

two separate programs are used to form a complete solution. In our case,
this weak coupling was through the boundary condition (9) at the shell-
fluid interface. We made several attempts to circumvent this instability,
i.e., incrementing down the shell density, incrementing up the fluid
density, iterating on the pressure at each time step, all without success.
To overcome this instability, the shell and fluid equations would have to
be more strongly coupled, i.e., made more interdependent. This would
require a complete reformulation of these equations or a change to an
explicit type of time integration and incorporation of several boundary
nodes in both the shell and fluid equations.

The stability criterion that was found may be stated as

hydraulic resisting pressure
shell inertial force per unit area

= pf@/psh 2 (12)

where ¢ is called the connected mass factor. In general ¢ is a function
of mode number and geometry and increases as the mode numi; or gap
hetween shell and outer fluid boundary decreases.

For those cases where the stability criterion cannot be met, an
approximate solution can be computed by using an increased shell density
and decreised fluid density so that the effective mass, Meff’ is held
constant.

Motr = Psh * pet (13)

@ = - plalpluradd (4)

n

The connected mass factor, ¢, is computed according to {14) by using in the

computation a normal shell density, Pg» and a decreased fluid density,
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Pg» SUCH that the inequality of (12) is satisfied. The validity of this
technique has been established by Mnev and Pertsev [2] who showed, that
for the range of problems for which the incompressibility assumption is
valid, (7,8) the effect of the fluid can be adequately described by
increasing the shell surface density by the amount pfé. The connected
mass factor is & function of the axial mode excited, m, as well as the
circumferential mode n. Therefore, the accuracy of ¢ « »mputed is closest
when only a single axial mode is excited. Fortunately, for most loadings,
the fundamental is predominant. Also for the higher modes (n>2) the
difference in ¢ between axial modes is 10% or less. For a particular
mode, ® can be calculated as closely as desircd by applying, et the modes

anti-node, a harmonic load close to the mode's natural frequency.

EXPERIMENTAL VERIFICATION

An experimental program was undertaken to verify the numerical
technique. A thin walled, circular shell was fabricated and instrumented
with two dynamic pressure transducers and eight miniature accelerometers.
These read the pressure on the shell's outer surface and its radial
acceleration. The experimental arrangement is shown in Fig. 2 and
approximates a nuclear pressurized water reactor core barrel at 1/12 scale.

The natural frequencies and radial accelerations of the shell were
measured in air, water, and oil. Excitation with 1iquid was provided by a
piston-cylinder arrangement connected to an e]eﬁtro-magnetic exciter.
Sinusoidal pressure waves were generated in the cylinder and conducted
to two inlet ports, finally impinging on the shell. A frequency sweep
identified the shell resonant frequencies and modes from tﬁe accelero-
meter signals. In addition, the natural frequencies were measured using
an impact technique [23].
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Fig. 2 Experimental configration.
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Measured and numerical results in air, water, and oil are shown in
Tables 1a and 1b.

For a simply-supported shell in water, connected mass factors were
calculated in accordance with Mnev and Pertsev [2] and compared to numerical
results (14). This comparison is shown in the third and fourth columns of
Table la. In the remaining columns comparison is made between mecsured and

"calculated natural frequencies for each mode. The measured resulis

.for air were obtained using the impact technique and for water using bath
the impact technique and harmonic excitation, with the results averaged.
The numerical calculations were made wiin the shell modeled assuming it
fixed at the top end and either simply-supported or free at the bottom
end. The ends of the liquid region were held at constant pressure and
the outer fluid boundary assumed rigid. Measured and calculated natural
frequencies in oil are compared in Table 1b. Natural frequencies in oil
were measured using harmonic excitation.

Figs. 3a and 3b show the natural freguencies of the experimental
shell as a function of circumferential mode number for fixeu-simply-
supported and fixed-free end conditions. The solid and dotte:z “ines trace
through the numerical results for air and water, respectively and the
symbols indicate measured data. Open symbols denote impact results in
air, solid, impact results in water, and crossed, harmonic results in
water. Air and water results for a given shell end condition are shown
on the same figure for the first three axial modes.

As noted by Kraus [24] and others, the Towest natural frequency
of thin shells is not at the lowest circumferential mode number and
in our case is at n = 2 or 3. Frequency should and does increase with
increasing axial mode number, m. The decrease in natural frequency due

to the water is quite dramatic as would be expected for the confined
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Table 1a - Comparison of Calculated and Measured Shell Natural Frequencies {n Air and Water

Shell Simply-
Supported {both ends)

Mev=H =240

Shell Fixed-Simply-Supported

usvewsw =0, \'rwrnzln =0

Shely Fixed-Free

U=yv=w =#=20,N ="FL9=QE=" =0

£ g £ £
Natural Fraquency fiatural Frequency
Connected Mass Hatura) Freguency Natural Frequency
m Factor, ¢ (m) | oAl won (k2] | I ¥eten, m| n Afr, wi2e () | 0 Yeters
Analytic Numerical Measured [ Numerical| Measured | HNumerical Measured | Numerical{ Measured | Numerical
1 0.79 o.78
1 0.28 o.28 1 530 640 200 205 1/2 200 230 75 75
3/2 740 a60 315 300
1 0.14 0.15 1 550 555 285 235 1/2 440 435 195 185
2 525,1005 475 540 3/2 620 640 300 215
5/2] 1180 1220 628 300
1 0.094 0.094 1 B6D 860 440 430 1/2 820 820 420 410
2 1050 nr 580 600 3/2 830 880 480 450
3 1440 1470 860 760 5/2 645 575
1 0.066 0.05% 1 1350 1345 770 750 172} 1325 1310 755 750
2 1460 1485 860 850 3721 1375 1350 805 755

Table 1b - Comparison of Calculated and Measured Shell Hatural Frequencies fn 011

Shell Fixed-Simply-Supported Shell Fixed-frese
m Hatural Frequency in 041, 9/27(nz) L] Hatural Frequency in Q11 Q/24 (Hz)
Measured | Numerical Measured Humerical
1 240 245 1/2 205 195
) 450 450 ns2 435 430
1 795 780 /2 780 780
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Fig. 3a Natural frequencies of model core barrel with fixed-simply supported end conditions.
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Fig. 3b Natural frequencies of mode! core barrel with fixed-free end conditions.
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geometry of the experiment. Note that in Fig. 3a (see dot-dash line)
the numerical and experimental results in air for ‘.le m=2 mode compare
better when simply-supported end conditions are specified at both ends
in the calcuiation instead of fixed at one end and simply-supported at
the other. For the other cases of Fig. 3a, numerical calculations
using fixed-simply-supported shell end conditions compare best with the
measured frequencies. Also note that two natural fregquencies were
measured for the (3,2) mode in air. Both anomalies are probably caused
by the method used to support the experimental shell.

Details of a numerical calculation of the experimental shell's
nature frequencies for the n=2 and n=5 modes are shaown in Figs. d4a and
4b. The use of the connected mass factor is illustrated by these
calculations.

The shell is assumed immersed in water in a rigid-walled container
with pressure held constant at the end of the fluid region. The ends of
the shell afe fixed-simply-supported and an imbu]se Toad is applied at tne
shell's middle. The figures show the time history of the radial dis-
placement three-quarters from the fixed end. The solid line shows the
computer response for zero fluid density with the shell density determined
using the effective mass calculated according to (14). The dotted lines
are calculations using the same effective mass but a fluid density corres-
ponding to the maximum allowed by (12). For the n=2 modes (Fig. 4a)
this maximum allowed density is 720 kg/m3 and for n=5 (Fig. 4b) it is
the norma] density of water, 1000 kg/m3.

In Fig. 4a a more accurate determinétion of the connected mass factor,
&, would have decreased the small (5%) discrepancy in fregquency. In Fig. 4b,
ine effect of numerical damping when a finite density fluid is used in the

calculation is evident. The calculated frequencies are within 5% of the
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Dimensioniess radial displacement, w

Dimensionless radial displacement, w

o

T lipsl T I 1pf '
77,500 kg/m3 0
- ——=—27,400 720
Normal 7800 1000

T

n=5, ¢=0.069m

0.005
Time - Seconds
T e T ey T A T
a 24600 kg/m3 O  2E-D5s
— — =~ 7800 1000 2E-05
L e 7800 1000 1E-05 {

Time—Seconds

151 m
131

load

Fig. 4 Calculation of natural frequency using the connected mass factor.

-23-

0.001s
time



measured frequencies in water of 200 Hz (n = 2) and 770 Hz (n = 5)
respectively.

Care was taken to make sure that the experiment would produce results
which could provide a valid comparison to numerical results. Incompres-
sible fluids (deaerated water and 0il) and an elastic (stainless steel)
shell material were used. The geometry was such that the potentia: fluid
approximation was valid according to equation (7). Two different shell end
conditions and two nozzle arrangements were used. Measurements of the
damping coefficients proved them low enough (<1%) to be modeled in the
simple manner that they were, i.e., as simple viscous structural damping
coefficients for each mode. The fact that t - natural frequencies measured
match closely those predicted by calculaticn speak for the va1idify of the
experiment.

Referring to Tables 1a and 1b it can be seen that the measured
natural frequencies match those calculated within 5% in three-quarters
of the cases. The maximum discrepancy is 17% for then =2, m= 1,
mode in air. Since this error applies to the air results it appears
the major part of all errors are due to the well know difficulty of
modeling end conditions in an experiment. Also note that the numeri-
cally calculated connected mass factor matches the analytical result

within 5% (Table 1a).

APPLICATION OF NUMERICAL TECHNIQUE
To illustrate how the numerical technique that has been described
can be used to calculate natural frequencies and connected mass factors we
calculate these for the core barrel of a pressurized water reactor. We
compare these numerical solutions to analytical solutions of Horvay and
Bowers [17] which restricts us to specifying simply-supported end conditions.

The modes of interest for this problem are the cantilever mode (n = 1,
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m = 1/2) and the fundamentals of the first few ring modes (n = 2,...,6,
1} [25].
The shell is filled with air and surrounded by a thin, fluid annulus

2
L]

of either air or water enclosed by a rigid outer wall. The dynamic
pressure, p is held constant at the top and bottom. With raference to

Fig. 1 the important parameters are:

1.2 kg/m3 (air)

a=1.92m(76 in.) Py = 3
» 18 . = 1000 kg/m” (water)
b=2.18m (86 in.) bs = 7800 kg/m3
h=0.051 m (2 in.) £ =21 x 10" N/m? (30 x 10%si)
s =12,91 m (328 in.} v =0.3

The results of these calculations and the comparison with the
analytical results are shown in Table 2. The natural frequencies in air
were calculated using normal air density. This gives the same frequency
as if calculated in a vacuum with the additional benefit of providing a
connected mass factor for later use. Comparisons between numerical and
analytical results in air were good with a maximum discrepancy of 13%. The
frequency for the n = 1, m = 1/2 mode was calculated assuming a simply-
supported shell of twice the length and also by assuming 2 shell of
nominal length but fixed at one end. Calculations by the first method gave
a natural frequency 23% tower than calculations by the second method.

No analytical results were available for comparison to the fixed-free
calculation.

The connected mass factors and natural frequencies with the shell filled
with air and surrounded by water are shown in the last four columns of

Table 2. For the n = 5,6 modes normal shell and fluid densities were used
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TatTe 2 - Pressurized Water Reactor Core

Barrel Natural Frequencies

Air Water
End-
nf m | con- Frequency (Hz) ¢ (m) Freq v {Hz)
ditions| Present Present [ Present
\Ref. 17 {Method fRef. 17 { Method  [Ref.17
11172 A 33 35.7 13.6 7.19 6-7 8.18
1| 172 B 43 9.5 8.5-1
11.5* 8-10*
14 1 c 105 106.4 9.5 5.28 21-25 26 C
11.5% 19-23*
21 1 C 45 47.7 3.5 3.66 14.5-15.5} 15.0
3] 1 C 35 38.4 1.7 1.80 16 16.4
41 1 [+ 53 55.9 1.02 1.07 28 29.2
5 1 C 82 85.0 0.60 0.7 50 50.9
6] 1 c 140 121.8 0.45 0.51 80 80.5

Shell End Conditions:

A - Shell simply-supported at both ends but twice as long

B - Shell fixed at one end and free at the other

C -~ Shell simply-supported at both ends

*Shell filled and surrounded by water.
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in the numerical calculation, making the use of their connected mass
factors unnecesc<ary. For lower modes, the shell density was increased
and the fluid density Jzcreased holding Meff constant so that a stable
solution could be obtained. For all but the beam modes {n = 1) compari-
son between numerically and analytically calculated mass factors and
frequencies was within 12%.

We assumed that holding the effective mass constant would assure a
correct calculation of the natural frequencies no matter what specific
values are used for the shell and fluid densities. To check this assumption
we increased the shell density and decreased the fluid density while holding
the effective mass constant and compared the natural frequencies so calculated.
We found, for instance, that for the n = 1, m = 1 mode the frequency
decreased from 25 Hz to 21 Hz (see Table 2) as pg Was increased form 8.3 x

4 kg/m3 and the corresponding fluid density decreased

10% kg/m® to240x10
from 690 kg/m3 to 0. For the n = 2 mode a 1 Hz difference was found when
the densities were changed and for n = 3,4 no difference. These frequency
differences reflect the accuracy of our numerical technique.

Natural frequencies were also calculated with the shell filled and
surrounded by water for the cantilever and first beam mode. As expected,
we connected mass factors *ncreased and the frequencies decreased as
compared to results for the shell filled with air and surrounded by water.

for the beam modes, only half of the fluid component of tie effective
mass was used in the analytic calculations. This was a method used by
Horvay and Bowers to make their analytical solution conform to
Stokes' formula for solid body motion. Our results indicate that the
entire effective mass should be used for all modes, Tncluding the beam
modes, and hence our numerically calculated frequencies are lower than

theirs for the beam modes.
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Running times for this problem on a CDC 7600 varied according to
whether fluid was present or not. With no fluid a 300 time step, 120
space station run took 0.36 min. With fluid only outside the shell it

took 0.93 min. With fluid both inside and outside, it took 1.70 min.

CONCLUSION

We have presented a numerical solution technique which can be used
to determine the natural frequencies and transient responses of thin
cylindrical shells immersed in an incompressible, inviscid fluid.

The shell may be filled with fluid, surrounded by fluid, both of these,
or immersed in a fluid-filled, stiff-walled coaxial container.
Arbitrary radial loads can be applied directly to the shell or aver a
segment of the outer fluid boundary. Any of the natural boundary
conditions can be applied to the ends of the shell. The ends of the
fluid regions can be either open or closed.

Direct solution of problems where the ratio of the hydrodynamic
forces to the shell inertial forces are greater than two is not possible
because of numerical instability. In this regime, an effective mass is
calculated to be included as increased shell density, circumventing the
numerical instability. This numerical instability is believed to result
from the weak coupling between the equations describing the shell and
fluid. This weak coupling is represented by the boundary condition
equation {9) and is the result of using two separate programs to represent
the fluid and shell. Future efforts to remove this instability should be
directed toward strong coupling of the equations which will require their
reformulation if one desires a fully implicit time integration scheme.

An implicit scheme is felt to be nececsary to gain steady-state solutions

in a reasonable time.
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Although solutions to the fluid-shell problem are possible using
analytical techniques, only simply-supported shell end conditions have
been specified using this approach. Our numerical technique allows
specification of any of the natural shell end conditions. Also the
analytical solution for a narrow waicr annulus [17] implies that only
one-half the calculated effective mass should be employed to calculate
the shell response in the beam mode {n=1)}. By using our numerical
technique, we were able to show that the full effective mass should be
used.

Rapid solutions using the numerical technique described here are
possible making feasible, design sensitivity studies for problems where
resonant conditions are a concern. By use of this technique, placement
of pump inlet ports, shell thickness, end conditions, and annular
spacings can be established to circumvent resonant conditions and to
minimize displacements and stresses.

The most significant contribution from this study is that it
provides a verified technique for determining the natural frequencies,
modes, effective masses, and displacements of a cylindrical shell
immersed in a potential fluid. Other theories either do not directly
couple the shell to the fluid, cannot treat the annular geometry,
calculate only an r.m.s. displacement, or can only calculate the
transient response of a shell to a sudden load such as from a reactor

accident.
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NOMENCLATURE
A,B,C = 4 x 4 matrices (B-10)

2,3,6 = block tridiagonal and capacitance matrices (B-14,15 17)

a = cylinder radius
b = outer annilar radius
C = dimensionless damping coefficient = Aa 72
[(E)(h) (o ht0s8)]
CC = critical damping coefficient = thffn
c = acoustic velocity of fluid

? = 4 x 4 matrix {10)

%

D = =7y
£ = 4 x 4 matrix (B-10)

modulus of elasticity

m
L

i€ = strains at an arbitrary point in the shell
F = 4 x 4 matrix (10)

F IF IF »
Fl FZ 3. functionals
4’4

(<]

4 x 4 matrix (10)

H# =4 x 4 matrix (11)

-30-



h = cylinder thickness
1= identity matrix

J =4 x 4 matrix (1)

K= 4 x 4 matrix (10)
K= iy
L =4 x4 matrix (10)
Lij = linear operators for shell equations of motion (A-33a,b,c)}

£ =1 x 4 column matrix {11)
M p¢ = effective mass (13)

ME'M M

Mg = moment resultants per unit length

"EB = moment resultant per unit Tength, 1/2 (MEB + Me[:)

m = axial half wave number

SN = force resultants per unit length

Ne Moot
ﬁge = force resultant per unit length, 1/2 (Né;e + Neg) + lllla(M.se - Meg)
ﬁge = gffective membrane shear resultant per unit Tength (4)

n = circumferential mode number

P =4 x 4 matrix (B~11a)

Pysbg = total and static fluid pressures
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w

y'z

fluctuating (dynamic} fluid pressure = LR

4 x 4 matrix (B-10)

transverse shear resultants per unit length

transverse shear resultant per unit length (4)
external shell load per unit area in radial direction
total shell load per unit area in radial direction = p + 9,
r/a = dimensionless radial coordinate

radial coordinate

inner radius of innrer fiuid

cylinder length

column vector (B-14,15)

time

Tongitudinal, tangential, and radial displacement of the shell.
"w" is positive outward

actual, reference, perturbed fluid velocity
1 x 4 column matrix (B-T1a)

1 x 4 column matrix (B-2)

longitudinal (axial) coordinate

1 x 4 column matrices (10)
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u],uz,...,uz.‘
%
B]:BZ!""B]D

8

YgrYor Ygr Yor

o

[V

C&’EB'EEG
4

ag,ee,er

¥e* 6" g0

I3

3

u

coefficients for shell equations of motion (2)
coefficient for time derivative equation (B-6a)
coefficients for shell boundary condition (A-21)

coefficient for time derivative equation {B-6a)

= shear strains

]

w

coefficient for time derivative equation (B-6a)
dimensionless axial space increment = s/aN
coefficient for time derivative equation (B-6a)

dimensionless time increment = (E/ps)]/z(t }a

1,341 7 Hg

= normal and shear strains in the shell midsurface

compressibility factor (A-38c)
rotations
circumferential angular coordinate

changes in curvature of the shell midsurface

coefficient for time derivative equation (B-6b)
4 component diagonal matrix (B-2)

viscous damping coefficient

coefficient for time derivative equation (B-6b)

coefficient for time derivative equation (B-6b)
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v = poisson's ratio
¥ = coefficient for time derivative equation (B-6b)

£ = x/a = dimensionless longitudinal (axial) coordinate

ps.pf,po,p‘ = shell, fluid, reference fluid, fluctuating component of fluid
mass density

°§'°e’°r'°o = longitudinal, tangential, radial, referencestress level

= (E/ps)]/zt/a = dimensionless time
Ly
T = change in twist of the shell midsurface
¢ = connected mass factor (14)

¢ = velocity potential of perturbed velocity
§=a component diagonal matrix {11)

Q = natural frequency in fluid

w = natural frequency in vacuo

Indices

i axial nodes
J time steps

radial nodes

R+l outer radial node
N 1last axial node
n Fourier index
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APPENDIX A - DERIVATION OF THE GOVERNING EQUATIONS

In this appendix we will derive the equations of motion for a circular
cylindrical shell using Sanders' approximation of thin shell theory.

We derive the governing equations for the fluid using cylindrical coordi-
nates and assuming the fluid is inviscid and incompressible. An analytical
solution of the fluid-shell problem will be described to explain the concept
of "effective mass.”

To reduce the dimensionality of the shell theory equations the depen-
dent variables are expanded in Fourier series making the resulting set of
equations applicable to an independent circumferential mode. The total
sclution is the sum of the Fourier series of the modal solutions. Likewise
any external forces must be expanded in a Fourier series and the approp-iate

Fourier coefficient of the force applied to the appropriate modal equations.

SHELL EQUATIONS

The derivation of the shell equations of motion will follow those of
Kraus, Leissa, and Johnson and Greif [A-1, A-2, A-3] based on a first
approximation theory to thin shells developed by Sanders [A-4]. We found
that Sanders' theory gave consistent results matching those found experi-
mentally and analytically. The simpler Donnell method was also tried but
we found it did not give consistant results near resonances. Therefore,
since Sanders' method required only a small increase in computer time to
run a problem compared to the Donnell method, it was used. Sanders formu-
lates the shell theory equations using the principle uf virtual work with
six "generalized displacements" and six “generalized forces.” The
generalized forces come from a force and moment balance on a shell element.
Alternatively, Donnell [A-2] formulates the equations by dropping the
transverse shear resultants QE and Qe from the two tangential force balance
equations and neglects the tangential displacements and their derivatives in
the strain-displacement equations.
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To formulate the shell equations, we start by defining a thin shell as a
three dimensional body bounded by two closely spaced curved surfaces, the
distance between the surfaces being small in comparison with the other
dimensions. The locus of points which lies midway between these surfaces
is called the midsurface and the deformation of the shell will be completely
determined by the displacements of this midsurface. We will be dealing with
closed, circular cylindrical shells with uniform wall thickness. We will
be assuming that the material of the shell is Tinearly elastic, isotropic,
and homogeneous and that the effects of rotary inertia and shear deformation
can be neglected.

We start by stating Love's postulates which are basic to all thin
shell theories and which make use of Kirchhoff's hypothesis:

1. The shell is thin {h/a < 0.1)

2. The deflections of the shell are small {linear theory holds)

3. The transverse normal stress can be neglected

4, Normals to the underformed midsurface remain straight and normal

to the deformed midsurface and they. suffer no extension.

We will then sum the forces and moments which act on a shell element of
thickness h to form six equilibrium equations in terms of ten force and
moment resultants. We make use ¢f theprinciple of virtual work, using the
equilibrium equations to formulate six generalized forces to go with the
six generalized displacements. Integrating the virtual work equation gives
the necessary strain-displacement relationship and Hooke's law gives the
necessary stress-strain relationships. By integrating the stresses across
the thickne=s of the shell, employing Love's postulates, and using our
known strain-displacement relationships we arrive at six force-displacement
equations. Now reemploying the principle of virtual work we obtain three
equations of equilibrium in terms of six force and moment resultants.

Expanding the forces, moments, displacements, and strains in Fourier series
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we arrive at four equations of motion for each set of Fourier coefficients
(1.e., each circumferential mode}in terms of the midsurface disnlacements
u, v, w, and the axial bending moment HE' The system of equations is
eighth order, but by formulating the equations using four dependent vari-
ables the highest order de-.vative is second order. By formulating the
equations for each circumferential mode, we have reduced the number of

dimensions to two, axial and time.

Equations of Equilibrium

Consider the equiiibrium of the shell element of thickness h, shown
in Fig. 1, under the influence of the internal force and moment
resultants shown. Also shown are the inertial and damping forces per
unit surface area and an external surface load acting in the radial
direction.

Our previous assumptions imply that the displacements, u and v,
and hence strain vary linearly through the shell thickness, We can therefore, with
Hooke's law, integrate the resulting stresses over the shell thickness.
The resultants of the integrals are the force and moment resultants per
unit length.

Love's second postulate implies that the deflections are sufficiently
small so that these force and moment resultants can be referred to the
undeformed midsurface. Now if we apply Newton's law by summing the forces

and moments which act upon the shell element we get the six equations of

equilibrium,
N N 2
e, Moe 3%, , Buy . )
et Caleh g = 0 (A-12)
aN £l 2
8 e v vy o .
55t et Qg - alegh 2 +250 =0 {A-1b}
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M aM

3]
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Ngﬂ NBE e 0 (A-1F)

In the above NE' NEe’ NBE’ NB are the force resultants; ME’ MEB’ MBE’
Me are the moment resultants; Q§ and Qe the transverse shear resultants;
u, v, and w the longitudinal, tangential, and radial midsurface displace-
ments, Pg the 3hell density, and A, the viscous damping coefficient. The
three independent variables are 1) a nondimensional length

£ = x/a
with x the length coordinate and a the shell radius, 2) the circumfer-

ential angle 6, and 3) the time t.

Principle of Virtual Work

We will now employ the principle of virtual work in terms of the
six "generalized displacements” u, v, w, GE’ eB, er where OE’ 09, and
6, are the rotations about the o,¢ , and r directions respectively.
The équi1ibrium equations (A - ia,....f), neglecting body forces
and surface loads and for a free shell, are used to obtain the "generalized
forces” to go with the "generalized displacements". The principle of
virtual work is thus written as,
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with & standing for "variation of", i.e. éu is the variation of u.

Integrating (A-2) by parts yields,
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av W
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where the double integral extends over the midsurface of the shell enclosed
by the curve C. The double integral represents the virtual change in strain
energy within C and the line integral represents the virtual work of the
boundary forces. The quantities within the parentheses of (A-3) can

be regarded as the strains of the midsurface corresponding to the ten
"generalized resultants” Ng""" Me thereby yielding the followine strain-

displacement relations.

-1 du _1fav -1 av _13
2 5 %" E(SE* ”) P Y TFEE T OYe Taae t O (A-8a,b,c,d)
30 20 20 W, 0
=1 =178 =1 8 =1_E ,r -
Ke" 23> %023 a3 B Xec”amm T2 (A-de,F,g,h)
J1 iy (A-81,3)
Yer T2 g 0% YorTade "3t % )

where e are the midsurface strains, y the shear strains, and x the
changes in midsurface curvature. Using Kirchhoff's hypothesis reguires

that Ygr = Ygp = 0 giving

S S A B A-5a,b)
O =-a5 % "3 a%e (
2 2
o % L aw__a_z) (A-5c,d)
Ke = ~5 —5» Kg = - .
13 PRI A ;‘2‘('62 30

We can put er in terms of v and v by taking the normai component of the

surface curl of the total displacement vector giving

=1 fav_ou
%-E(ﬁ'ﬁ) (A-5e)
From (A-4,A-5) it can be shown that
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=y - =L A-6a,b
g T Vor Kep ~ ¥or = 7@ (Yp * Yp) o ( )
and if we define
EEG z ‘YE+ Yo T = Keg + Kog {A-6c,d)
= _1 1 - g
Neo 27 (NEe + Neg) * 22 (MEe MGE) {A-6e)
¥ =1
"ge =5 (MEe + Mes)' (A-6F)
then using (A-5¢ through A-6f) we can rewrite (A-3) as
- _ =
fs f (NeSe, + Npgdegy + Node, + Mok + MeooT + Mook, Jadde
-f[(NEGU # Negdv + Qg + M.80, + M. ,68,) do (A-7)

-(Negéu + N8V + Qgbw + ”eg'seg + Meseej d] =0

From the double integral in (A-7), which represents the virtual
change in strain energy, the generalized strains EEe and T corresponding to

the resultants NEB and MEe are obtained.

21 [au, av | Pw _3 v, 15
Ege“E[ae*iE]’ T= ;Z[Zaeag ?a‘*z'a"] (A-8a,h)

We have thus reduced the original set of ten force and moment resultants to
six and have arrived at six consistant strain-displacement relationships,
equations (A-4a,b; A-5c,d, A-8a,b). The unique contr.bution of Sanders®
theory is the expression for the midsurface twist, T. His formulation

has uhe advantage that it results in zero strain for whole body rotation
which is not the case for some of the other shell theories, e.g. Donnell’s

approximation which neglects the tangential displacements and their
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derivatives in equations {A-5d and A-8b). At the same time the six
strain relationship's meet the requirements of Love's postulates and in
particular Kirchhoff's hypothesis that the strains vary linearly with the

shell thickness.

Force and Moment Resultants

Since the total strain, e, at an arbitrary point in the shell varies
linearly with r (see A-11a,b,c,) we can integrate the resulting
stresses over the shell thickness if we can define the relationship between
stress and strain. Such a relationship is provided by Hooke's law which in

three dimensional form is,

& = %'[Ug - v(ag + 001, e = %-[ae - v(ur + UE)],

< ] 2(1 + v) 201 +
e = = - + = = v
r E [Ur \)(GE Ge)],‘yge 3 qge, ‘YEY‘ T _L ugr,
20 + v A-9a)
Yor E %r. {
From Kirchhoff's hypothesis we have e, = YEF = Yop = 0 giving us
- 3 _ E
Gr; S (es + vee), Ue = W (ee + \)eE),

- E -
%o 201+ v) Yo (A-90)

If we now integrate the stresses over the faces of the shell element of
Fic. 1 and neglect the r/a term in comparison with unity we obtain

expressions for the six force and moment resultants.
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NE = ogdr, Ny = ogdr, ﬁ'ge =f cged' (A-10a,b,c)
~h/2 ~h/2 ~h/2
h/2 h/2 h/2
ME = / ragdr, Me =f rcedr, Mge =f' ru;sdr {A-10d,e,f)
-h/2 -h/2 -h/2
Now from Kirchhoff's hypothesis we have that
e = & *+ reps €9 = By * reg, Yeg = Spg * rT. (A-11a,b,c)

Making the necessary substitutions from (A-9, A-10} into (A-11) and
performing the integration gives a relationship between the six force
and moment resultants and the six terms representing changes in midsur-

face strain, curvature, and twist.

Np = Kleg + veg)s N = Kleg *+ vepds N = KO -v)eg (A-12a,b,c)
Moo= Bl +vegls Mg = Dleg+vedy Fg = 3(1-v) T  (Al2deef)
where Dz NE hE

= THT=V7) K= m—s

Equations of Motions

We are now in a positon to arrive at the equations of motion of a
circular cylindrical shell in terms of Sanders' six force and moment
resultants as opposed to the eight resultants in the origital equilibrium
equations {A-la. b,c,d.e,f). We do this by again applying the principle
of virtual work.

Beginning with the virtual change in strain energy due to the internal
force and moment resultants as given by th: area integral in (A-7),
reintroducing the transverse shear resultants QE and Qe, and integrating by

ts gives
parts g -a5-



./; e(N beg + Wpgbegy + Nodcy + Mobe, + M 6T + M sge + Qgbv,
+ Qdvgptadgdy = f [ £ Nbu + Hogov + g o
+ M 60 + M a[e + aj| } do - Ngsv + N_.Su (A-13a)

3 £0

+ Qgéw + Moo, +MEec[ 2“3]} de]

- ff(F]du + Fpdv + Fyu + Fy60, + Fy60;)dzde
where _ _
F-ﬂi+ﬂ€2-ia_€2 {A-13b)
1 % a8 Z2a 2@
N aN, am,
_ My e . 1 Mg ;
Fo =58 * 55 * @ % (A-13c)
N aq,
F3 = - Ne + 3 + o5 (A-13d)
oM oM
- & _E8 _ -
Fy st 5% a, (A-13e)
aM al,
] _E8 _ -
fs = % * & ag, (A-13f)

For the shell tobe in equilibrium, the principle of virtual work requires
that the lefthand side of (A-13a) must be equal to the line integral on the
right-hand side, in which case the area integral on the right-hand side must
vanish. Because the virtual displacements 6u,...... N 606 are independent
and arbitrary, each term of the area integral must vanish independently.

Thus, setting



in (A-13) gives the modified equations of equilibrium for the internal
forces resulting from Sanders' theory. Adding back to the equilibrium
equations the appropriate inertial, damping, and surface load terms
gives the corresponding equations of motion.

One additional step reduces the number of equations of motion from

five to three. This is done by solving (A-13e,f) for OE and Qe and

substituting these results into (A-13b,c,d) giving

aN N 3, 2

e, M 1 Mmooy, /T o,
=t 72 3 A A S 0

aN, N, oM, M 2

o, Mg o3 My My oy T av
3w "% *mE tTaw 2 ot )‘psBTO

M W M . (
1| oM : I

Nyt o3 [ag + 2 5 aez'] -3

- /hz: CLA aqg = 0,

T
Pg 9

where we have introduced the dimensionless time variable, 7.
=/ E t (A-14)

Boundary Conditions

The natural boundary conditions associated with Sanders® equations
of equilibrium are obtained by setting the virtual work of the forces
acting on the boundaries of the shell equal to zero. Thus from

(A-13a) we get at the ends of the cylinder (£ = 0, s/a),

—
*Number refers to equations in main body of report
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€

ﬁse [Nge* iga' ﬁge] e~ v =0
65=[;-:—£+2:—:{-§§-] or w = 0 ®
Me or g = 0

where ﬁge and Qecan be thought of as effective membrane and transverse
shear resultants per unit length. Any combination of four conditions

must be prescribed at each end of the cylinder.
Fourier Series Expansion

Our ultimate goal is to arrive at a set of four dimensionless,
coupled, partial differential eguations in terms of the four dependent
variables, u, v, W, Mgand the two independent variables £ and t, a
dimensionless space and time. In order to do this we first expand all the
force and moment resultants, displacements, and strains into Fourier

series in the circunferential variable & to eliminate the 6 dimension.

We then make use of a reference stress Tevel, LA to make all the Fourier

coefficients -dimensionless.

.
"

NE = ooh ngo NE" cos no Ne = oohnzo Nen cos nb {A-15a,b)

_ w

NEe = ogh “51 NEen sin no (A-15¢)
oh? @ coh’ ®

ME‘. = —= S Hgncos no My = = “ED Mg, cos mé (3d,A-15d)
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_ ah’® =
"se = TnEI Mgen sin no (A-15¢)
EUD «© an ©
u = Tnz u, cos no v = o ] v,sinne (3a,b)
a n=1
ac_, w©
W = —EQ I w,cosne & = % I @, cos no (3c,A-16a)
n=0 n=g °
Uo E UO «©
e, = = €., cos né e, = &= [ €, COSn@ (A-16b,c}
(3 E =0 En (] E =0 on ?
GD w©
o T n}_,'] Cggn Sin n8 (A-16d)
. o . . ¢
= 2 cos = —
3 aE Lo En n “a at ngo Kyn COS 1B (A-16e,f)
Uo Ll
T = 2 F nZ] T, sin ng (A-16g)
UDh o
q = Tn{o q, €os ng (3e)

If now (3,A-15) are substituted into (1) we obtain the three equations

of motion uncoupled in the Fourier index n. The equations of motion

become

TR TR | L VI Y A (A-17a)
En £6n Za £en n n

NN, - Moy 3w g Loy =0 (A7)
£6n én a an 2a“ "&én n

-N +—z'hz(ﬂ"-n2M + 2nM ) - @ - w + g

on a n on £on n n n

(A-17¢)
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where the variables are the dimensionless Fourier coefficients. The
derjvatives with respect to £ and t are denoted by primes and dots,
respectively. C is a dimensionless damping coefficient. The rotation,
strain-displacement, and stress-strain relations for each n are obtained
in a similar manner using (A-4a,b,; A-5a,c,d; A-8a,b,; A-12a,b,c,d.e,f)

and (3,A-15, A-16) as appropriate. Making the necessary substitutions

we get
€n ° Us Egn T MV + W, €ron © velv, - nu 1 {R-18a,b,c)
o T Wpso Keo = nfw, 4+ nv, Oy = - W (A-18d,e,f)
= ZW' + ; LI n u (A—]B )
Tn n Z Vn zZ ' 9
NEn ]—_]—\,r (Egn + \’Een) (A-18h)
_ 1 .1 A-181,
Ngn = T=% (ee + “egn)’ NEen = T¥% zon ¢ i,3)
1
en =TT T (kgn * Yen): (A-18k)
- 1 - -1
Mon =TT - 27 %on * Yen)s Mon = iy T (A-181,m)
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Substitution of equations (A-18 a,...,m) into equations (A-17a,b,c) will

lead to three coupled partial differential equations ...th Uy v and LA

n,
as the dependent variables, The highest order derivative will be a term

containing the fourth derivative of L However, it will be convenient to
limit the highest order space derivative to the second order. Consequently,

Uns Vo Wps and HEn will be used as dependent variables and four coupled

n’°n
partial differential equations will be derived. The definition of MEn

{equation A-18k) in terms of Ken {equation A-18d) and xen(eouation A-18e)
provides the fourth equation. The desired equations of motion for a circular

cylindrical shell for one set of Fourier components is thus

aup + au + °3vrln + a4w"] = G + Cu (2a)

L} H
agu + Qv + apv + “3"'“ + ugwn + uwHEn

n n
. (2b)
= Vn + l:vn
eyl Foappvp b ooV tagn +ooggh, +ooggy,
. (2¢)
*oogMen = Hy G- g
Gg¥n ¥ Tighn * Oty t oM, = O (2d)

The coefficients for these equations are shown in Table A-1.

The boundary conditions (4) must also be described in terms of
Fourier components. To do this we first expand the effective membrane
and transverse shear resultants into Fourier series with dimensionless

coefficients.
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TABLE A-1

Formulas for Coefficients of Shell

Equations of Motion, Eqs 2a,...,2d
1 -
N T T-w b | IR}
n? h? -
ap = - ey U tamard a2 = o
=ap 1. h? ] = q
a3 2T - 16a%(1 + v %13 9
_ v nZh? - n2h?
@) T TV T 2RIl + v %4 6aZ(1 + v)
i _ 1 n"h2
% % T % o = - lyor + 137
_ 1 3h? . W
% = FTFey Ll * T % = aT
= - n[ 1 + e Gyy = Na
Gr T-vz " Yz 17 10
. nh? - nv
g Baz(1 + v) %18 201 -~ v9)
- - n nh? - 1
%9 T<v - 1za% %19 T T -V
- wvnh? -
o - "3 B9 = NOig
Oy = = 1




~ L -~

"ge = ggh nzl zon STN 1O (A-19a)

~ «© ~

QE = Ggh ngo an c0s ng (A-19b)
Now making use of the relationships describing ﬁge and ag {4) for
arbitrary n we have

N, = N, + 3§

on ton * Zaz Meen (A-20a)

Y _

%p= 37 M n ? 2nM€en] {A-20b)

The right hand side of these equations can be put in terms of displace-

ments and it follows from (A-18) that

Ngn = Blur'] BV, BgWp (A-21a)
Negn = Bpy *+ Bgvh + Bowp (A-21b)
an Byu, + Bgvp + 59"':'1 + Blo"én {A-21c)

where the coefficients, 8, are shown in Table A-2. The boundary
conditions may now be rewritten, for the nth Fourier component, as pre-
scribing the following dimensionless quantities at the ends of the

¢ylinder, £ = o, S/a.
or u =0 (A-~22a)
£on or v, = 0 {A-22b)
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Table A-2

Formulas for the Coefficients of the End

Condition Equatiors, Equations A-21a,b,c

- 1
B] B T . = nh?
6 8az(1 +v)
B = un
2 T -7 B, = g Bg
B, = —¥ o _
3 T-V Bg = Bg
By Ty L1+ Teazd By = %"Bs
B = ] [-I + 3hz ] - hz
S 200 + V) T6a? Bip = ar
a or ") =
&n n =0 (A-22¢)
M =
e O % 7 O (A-22d)

FLUID EQUATIONS

The assumption will be made that the fluid is inviscid, incompres-
sible, and has no gross motion. With these assumptions the fluid can be

represented by one dependent variable, the dynamic pressure P. We will
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expand p into a Fourier series and in turn obtain a differential equation
for each Fourier component of p in terms of the independent variables
E, n, T, Where n is a dimensionless radial coordinate, » = rfa. Each
such Fourier component of the dynamic pressure, when evaluated at the
cylinder wall, will act as an additional shell loading to be included with
the equations of motion for the Fourier components of the shell variables.
This implies that the pressure belonging to a given circumferential mode
does not excite other than its matching structural mode, an assumption
usually made in modal analysis.

We start with the equation of motion for inviscid, compressible fluids

(Euler's equation) and the continuity equation.[A-5] .

3 - : -
pf(ﬁ- + VeV )}V o+ A 0 (A-23a)

g
) . -23
st div {og¥) 0 ) (A-23b)

Here we are taking pg as the fluid density, V as the fluid velocity, and
Py 3s the total fluid pressure. For small osillations we assume the con-
vective terms (V+V)V can be neglected. Now if we assume the density,
velocity, and pressure are made up of main plus perturbed components,

g =0y * A Vo +V 3Py = Py * p and assuming

pt>>p,p°>>p' we have

av', 1
3 tp, gradp=0 (A-24a)
B+ opaivy =0 (A-24b)
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These equations will hold if V'<<c, the acenstic velacity ci iie 7luic
Typically, for instance in a pressurized water reactor, we are interested
in V'<<1000 in/sec and in general ¢>45,000 in/sec.

Assuming adiabatic flow, the wave motion in the fluid can be repre-

sented by Ploy = cz. (A-25)

If we solve {A-25) for p and substitute into (A-24b), differentiate
the result with respect to time and substitute in the equivalent of aV' /st
from (A-24a) we obtain the wave equation in terms of the dynamic pressure, p.

92
IR ®)

Assuming the fluid incompressible requires that ¢ + « and so the time

derivative drops out. If we now represent (5) in cylindrical coordi-

nates we obtain

2p , 13 , 1 9 2
e * koo toaT wmr t P2 0 (A-26)

We will now expand p in a Fourier series and make the Fourier coefficients

dimensionless giving

oh = (A-27)

If we substitute (A-27) into (A-26) we get our desired dimensionless

equation in terms of the nth Fourier component of the dynamic pressure.

3% 3p 2 3%p
n 1 n n n _
wmr Txm T A Pt 0 (6)
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Boundary Conditions

Equation (6) is a form of the Helmholtz equation and requires boundary
conditions to be specified over the top and bottom and on the inner and
outer surfaces of the fluid region. Over the top or bottom either Dirichlet
{p=0) or Neumann (3p/8£=0) boundary conditions can be employed depending on

whether the top and bottom are open or closed.

= apl‘l
Pnlg=0 =0 or 3% |g=0 0 (A-28)
Pole= =0 or ap
nle= s7a 3 |e= 572 =0 (A-29)

We will note from Fig. 1 that we have two fluid regions to consider,
the fluid inside the cylinder and the fluid outside. For the inner
fluid we neglect the fluid inside small radius ro SO as to eliminate the
singularity at r = 0. One way to determine the location of s is by calculating
the "effective mass" [A-6] needed to account for the shell's response when
filled with fluid and calculating wh.t fluid thickness this represents. This
fluid thickness is then subtracted from the shell radius to get o

The outer radius of the inner fluid is the shell wall and the adhesion condition

requires that the shell and fluid radial velocities match over this surface.
If we define a velocity potential of the perturbed velocity as V' = grad ¢ then

we have for the adhesion condition that

M . B (A-30)
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and from (A-24a) that
P = -f %% (A-31}
Combining these and using the nondimensional variables gives
a
— t F

# {9)

as a representation of the adhesion boundary co dition.

For the inner fluid the radial boundary conditions are

ap ap
n - n P
= =0 and 1 = 2 f
#m {p=Tosa L PR n (h-32a)
For the outer fluid the radial boundary conditions are
ap ap
n - n i
_n =0 and =N = . 84 1T &
" | =b/a Lo P h b (h-220)

where b is the outside boundary of the outer Fluid.

ANALYTICAL SOLUTION

To explore the region over which the incompressibility assumption is valid
and to derive an expression for the "effective mass" we will examine an ana-

1ytical solution to the fluid-shell problem. We will, in general, follow the
solution techniques presented by Mnev and Pertsev [A-7] for an infinitely

long (or simply-supported) circular cylindrical shell surrounded by a thin
annular fluid region whose outer boundary is rigid. The previous assumptions
of Love's postulates for the shell and an inviscid, stationery fluid will be

retained. However, for present purposes, the fluid will be assumed compressible.
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We start with the three shell equations of motion described in terms of the
shell midsurface displacements u, v, and w. We will assume no external load
on the shell other than that due to the fluid's resistance to shell motion and

no damping. We obtain

Lpu + Lyv + Lygw = ph 34 (A-33a)

Lz]u oLy oL = ps"?fr (A-33b)

wn
wlo
I
NX
[}
b~

L3.|u + L32v + L33w = p.h {A-33c)
where p is the fluid dynamic pressure and is negative if the pressure is ex-
ternal. The L,J. are linear operators defined by the particular formulation of
the shell eguations used.

The fluid is described by the acoustic wave eguation which for convenience

has been cast in terms of the velocity potential, ¢. The equation and boundary

conditions are

o o 3% 13 1 2%, 3% _ 1 3%
V¢'r2+rar+r192+ﬁr cZ 3tz
(A-34)
B Lom, d) L
ar r=a at or r=b
Equation (A-33) will admit solutions of the form
u = u,cos 11—75"5 €0S ng sinkt {A-35a)
- jp WX o i
v = v, sin -~ sinng singt {A-35b)
W o= W cin —"ls"-’-‘- cos nd sinQt (R-35¢)
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wherey , vo' W, are constants, m is the number of axial nodes less one, and

is the natural frequency of vibration. We can represent ¢ by

¢ = T(t) R(r) sin T2 cos no {A-35d)

where T(t) and R(r) are yet to be determined. The adhesion condition can be

used to determine T(t) giving

Qw
T(t) = —79— cosat A-36
dR/dr|r=a ( )

If we substitute (A-35d) into (A334) and make use of (A-36) we obtain a

Bessel equation of order n.

2 2
e BR oy B [(1"'55‘1) + nz]R = 0 (A-37)

The solution is in the form of nth order Bessel functions

Tl'er‘ mgr
Bl (=) + AK % )s 8¢ CT" (A-38a)
R(r)=
'nm;r Tz r
By (=) + ByY, (- ; )y g €T (A-38b)

where Jn.Vn are Bessel functions of the first and second kind and ln’ K, are

modified Bessel functions of the first and second kind. Here we define

p=/1-(%) ad T =/ T4 (A-38¢c)

e

Using the boundary condition at the outer fluid boundary we find that

o(xri8) = W@ cosat sin T cos no sylri'i’— (A-39)
ar
r=a
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and if we differentiate with respect to time and substitute inte

(A-31) we obtain

R
- . 3 _ 2ei sp TTOX r=b [
Plp=a Pe 3t = P R7sTnRt sin == cos nb 3¢

Mlea

If we substitute this expression for the fluid dynamic pressure into the

third shell equation of motion (A-33¢) we arrive at

_ 3w
L3.|u + L32v + L33w = (psh +pf4>) 3z (A-41)

where we define

o (numa,byz,s) = - BlbL (A-22)
/iir']r=a

The term pf1> characterizes the inertial counteraction of the medium to the
vibration of the shell within the Timits of the given natural frequency for
that mode and can be termed the connected mass of the fluid. We will note
that ¢ depends on the circumferential mode number n, the axial mode number
m, shell length s, shell radius a, outer fluid radius b, and the compressi-
bility factor z. If the shell is excited primarily in one mode then its
motion could be properly calculated by replacing the normal mass, psh, by an
“"effective mass” Meff’ equal to the sum of the normal shellmass

and the connected mass of the fluid for the mode.

Mef"f = psh + pg® (3)



When using thin shell theory it has been shown [A-1] that, in vacuo three
natural frequencies are excited for each (n,m} mode, the lowest of which causes
predomirately radial motion. Mnev and Pertsev [A-7] and Bleich and Baron
[A-8] have shown that when the shell is immersed in a dense fluid only this
lowesi frequency is of consequence. With these simplifications the natural

frequency of each mode in a fluid is related to the shell natural frequencies

in vacuo by ®
Q= ———
3 (A-43)
'R

where w is the Towest natural frequency of the (n -\ mode in vacuo.

Equation (A-43} is a difficult transcendent: .juation to solve for a

compressible fluid. If, however,

(9—5-) : << 1 (8)

wem

then from (A-38) and (A-42) it can be seen that ¢ is no longer a function
of @ and tne calculation of the natural frequencies is reduced simply to
the computation of the connected mass factor . The equations of motion
of the shell [A-33a,b; A-41) can be employed with the use of ¢ to describe
the shel) motion independent of the fluid.

The inequality of {8) is met for an incompressible fluid since ¢ .
Thus, for incompressible fluids the effective mass is easier to calculate.

To determine when a fluid can be considered incompressible the inequality
of (8) can be used. A supplementary criteria can be determined using the

coefficient before R(r) in (A-37)

() - () oo e

~62-



With ¢ -+~ this reduces to

2m20.2

o+ ol (A-44b)
Comparing (A-44a) and (A-44b) it is evident that the liquid behaves as an
incompressible medium on the condition that

22
9] : zb-—z_ <<] (7

c2(n? + T2

Therefore either (7) or (8) can be used to determine whether the fluid

should be considered incompressible.
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APPENDIX B - DEVELOPMENT OF EQUATIONS USED FOR COMPUTATION

In this appendix, we convert the governing equations developed in
Appendix A into the difference equations we will use for numerical
computation in the comouter code SHELVIB.

We will start by casting the shell equations of motion, equations
(2) into matrix form. Another matrix equation is developed to describe
the shell end conditions and both are discretized. The difference form
of these equations presents a tridiagonal matrix problem which is solved
in a standard manner.

We next will discretize the equation describing the fluid (6).

An odd-even cyclic reduction technique used to solve its discretized
form will then be described. Finally, the capacitance matrix technique
used to handle the mixed boundary value problem on the outer fluid

boundary will be discussed.

BASIC STRATEGY

The basic strategy of the calculational method is to solve the
finite difference representations of the shell equations of motion and
fluid equation separately but account for the interaction between the
two by using the adhesion boundary conditons (9) at the shell-fluid
interface. The shell displacements as a function of time for each
Fourier mode are determined separately and must be summed to get the
total displacement. The forcing function, whether it is applied at the
outer boundary of the fluid or on the shell must be expanded in a
Fourier series with the appropriate Fourier term applied for each mode
calculated. Alternatively, the natural frequencies for each mode can be
calculated by inputting a step forcing function of short rise time or a
harmonic forcing function and varying its frequency.
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Figure B-1 is a flow chart of the computational process for an individual

Fourier mode. If the forcing function is specified as a pressure on the outer
boundary of the fluid then the calculation is started by solving the fluid
equations to determine the pressure distribution in the fluid and at the fluid-
shell interface. This interface pressure is then input to the shell equations as
a radial Toad from which the displacement and acceleration of the shell are
calculated. The radial acceleration of the shell is then used to specify a
boundary condition at the fluid-shell interface and new pressuredistributions
in the fluid and on the shell surface aredetermined from the fluid equations.
The average pressure between the new and old time steps is then used as a loading
input to the shell equations to determine the shell displacement and acceleration
at the next time step. This process is repeated until completion of the problem.
The use of the average pressure gave the best convergence compared to

other weighting criteria.

SHELL EQUATIONS
The technique used to selve the shell equations of motion is similiar
to that used by Johnson and Greif [B-1]. Me start by casting equations
(2) into a single matrix equation with dependent variable z, a four companent
cotumn vector. Although we are talking about the nth mode, we will drop the

subscript n for the sake of clarity.

Kz" + Fz' + Gz = y + D5 + [z (10)
where
u g 000
=l v = .|0100
27w ¥ " |q ?=loo1o
Mg 00
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Start

Initiatization

Specify loading on shell wall or
pressure on outer fluid boundary

and compute pressure distribution on
shell wall at old time j

+

Calculate shell displacements
Up,, Vp, Wy, bending moment,
M:ue; and radial acceleration,
32w /372, at old time j (non-

dimensional}

Calculate fluid boundary conditions
at the shell wall for inner and outer
fluids at old time j {pressure gradient
used as boundary condition is cal-
culated in dimensional terms}.

(Bp"/Br

< + %0ff 32 2
r=a)i = + 2L 9w _for

ap,

Calculare pressure in fluid regions
and on shell wall at new time, (pn )i“

!

Calculate connected mass factor
] p,lal
oo, O 2 wn/ are

'

Set dynamic pressure load on wall to —I
average between old and new time steps

(pn)]+«| = O-s(pn'j+1 -D,,'])

Output

No

j>LIMIT
! Yes

Fig. B-1 Flow chart of calculation for the nth Fourier Mode using the code SHELVIB.
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— - _
n 0 0 0 P o o O
0 «q 0 a. 0 i

K= s % Fafo (8-1)
0 ap 3y o a® 0 O
0 O g 4] ] 0 0 0 0
o, 0 0 0] c 0 o0 6]

¢ 0 % o Oy 0C 0 o

= L =

0 3 o5 o7 006 ¢ o
1 %8 %20 %1 00 o d

The coefficients from equations (2), o through .“21' are listed in Table
A-1. C is a dimensionless damping coefficient. As before, primes stand
for derivatives with respect to £, the axial space variable and dots,
for derivatives with respect to T, the dimensionless time variable.

We now wish to cast the end condition into a non-dimensional matrix
form in terms of vector z. First the variables describing the natural
boundary conditions must be expanded in a Fourier series. Then rela-
tionships between the Fourier coefficients of these variables and the

components of z must be established. This was done in Appendix A giving

NE =By U + By v By {A-21a)
Nge = Byt BV Bew {A-21b)
Qg = Bgu + Bgv' + BgW + By M’E (A-21¢)
C (A-18F)

Again the n subscript has been dropped for clarity. The values for 8y
through 8,, are 1isted in Table A-2.

Note that the end conditions can be written in the form:
Qx+Azs 2 (8-2)
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with &, A diagonal matrices and £ a column vector dictated by the actual

end conditions. We can also write (A-21) in a matrix form as

X = Hz' + Iz
B 1] 0 0 0 BZ 33 0
0 35 36 0 54 0 0 0
H=lo 8, 8, 8 7=1le o 0o o0
8 9 10 7
0 0 -1 0 0 0 0 0

Combining (B-2) and (B-3) we obtain the desired form of the equation
describing the end conditions

2H + (A + 2T)z = 2
or . PO
QHz' + (T - Q@+ QJ)z = &
with I the identity matrix.

As an example, for a fixed boundary conditionu=v=w=0_= 0.

; g
This defines 2, A, and £ as
0 1 0
~ 0 1 0
Q = fi] A= 1 £ = 0
1 0 0

For a simply -supported boundary condition v =w = ME = NE = 0 giving

o>
u
o
-
f
o
ol
n
oocaoc

-68-

(8-3)

(8-4)
(1



As a final example, for a free boundary, NE = Nge = QE =M =0

for which we have

D
"
-
p—
o=
L]
(=]
~
"
oocoo

Differencing Scheme

We now have (10) and (11) describing the shell equations of motion
and the end conditions in terms of the Fourier coefficients of the dependent
variables, u, v, w, ME' We will formulate the differencing schemes and
substitute these ints {10) and (11) to produce three algebraic matrix
equations which form a tridiagonal system and can be solved by Gaussian
elimination techniques.

We start by defining space and time increments as

& = iA Ty o= je

iP5 0,1,2,...0N j = -2,-1,0,7,2......
E 1/2 t -t

4 = sfaN e = ( o ) 1,41 74,3
s a

where the mesh s shown in Figure 8-2a.

At positions Ei and time TJ we use for derivatives with respect to &,

LT W R W i BV L

25 22 (B-5a)
{ ) (i=1,2,0..0,8 - 1)

G S A B Y )

24,5 ” {B-5b)
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E=sla~T—
H i+1,j
&
sfa ; T
o X; !
iji-1 ij+1 )
$ |
v t
-1 ;
w0 L |
2 -1 0 1 2 i
T—

FigiB-2a Mesh for finite differencing of shel) equations [8-10a, b, c).

£=s/a N
N-1

i+, k

13 sfa i Ii "

ik~1 L' i,k+1
4

-1,k
2
1
= [v]

£=0 1 2 k R R+1

f —

Fig.B-2b Mesh for finite differencing of fluid equation (B-12a).
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and for 1 = 0 and N,

L gt VR )
0,3 4

(B-5¢)

(3/22N,j'22N-1,j+1/zzN-2,j)

N, © . {B-5d)

The backuarﬁ differéncing scheme used to represent the derivatives at the shell
ends retains the accuracy of the central differencing used at the other space
stations without involying the fictitious space stations at -1 and N+1. If we
define

z() # ay*ag + agE’

then we have

79 5 = z(0) = a
= = 2
2 5 z(a) a; + a + ag
2 = 2(28) = a; + 2a0 + 4a3Az
if we solve for a, and 2, ve obtain

_ % .—Zz‘ 2y 5 B Zz.| k31229 .-1/222 R

a; = S i T A 3, = —k = ) | %l
ZAZ A

and since

z'(g) = *33—5 (ag +ayg +ag8%) = a, + 2agt

we get

('3/2fjhj+zz1.j-1/422,j)

zb,j = z'(0) = az =
A

Equation {B=5d) can be obtained in a similar manner.
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For the time derivatives we use,

Z. . = Qs .+ 2Z: o YiZo . 3 -

49 07 %G 7 8%, Y YiRLgee T 85ma {B-6a)
(3 = 0,,2,..... )

2. . = Razs . + K.z, . Wz s v .

.3 %5%,3 A%, Y MiRiLge2 T Vi34, 5as (B-6b)

Since we are interested in the forced vibration problem we are assuming
ii;ﬂ = ii,O = Ei,D = 0 although the method could be extended to¢ include

non zero initial conditions. The coefficients for (B-64,b) are listed

in Table B~1,

Equations (B~6a,b) are based on the Houbolt method of numerical integration
[8~2] which employes a third degree polynominal in « fitted through four discrete
points TJ, TJ‘],Tjrz , and i3 This gives an implicit, stable system of equations
with the time increment ¢ chosen to give the desired accuracy. As e the solution
approaches the correct steady state value. However, the solution is damped if € is
greater than 1/50 the natural period of the system. Also, this technique must be
used correctly during the initial stages of the calculation requiring different

values for the coefficients when j = 0, 1, 2. These values are given in Table B-1,

To get Houbolt's equations we start with

z{t) = by *+ byt *+ byr® + byt (B-7)
Then we evaluate using

247 = z(e) = by + by + bsez + b4ea

%0 = z{0) = b]

zg,.1. % 2l€) = by - bpe + bge? - bye?

- 2 3
2(-2¢) = bl -2b25 + 4b3€ - 8b4e .
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Solving for by and by in terms of 21, #,0. Z{,.1s 24,-2» 9ives

| L.
by = gz (2zyy + 340~ 625 4 *+ oz )

b = Zid 72,0 M
3 2¢?

Now we note that
z (1) = by, + 2b3-: + 3|;4-rz

i) = by + 6byt
and s0 we have

2., = 2(0)°= b, =

3,0 +3z -6

1.0 Y3250 655,00+ 75,00

ob. = F1 78,0 %01
3 e

4,0 = Ho)

If we now use the initial conditions that 24,0 =%§,0 T 25,0=0
we find that

2g =%,y and 23,5 = By (B-8a,b)

Next if we solye for by and by of (B-7) in terms of zi,j’ Z; 510 Zi,j-z,

z we get the standard form of the Houbolt equations

i,3-3
s = L - -
25 % % (”zi,j 18z 59 %924 59 ZZi,j_3) (B-9a)
. .1
i, ° o (275,552 5o ¥z 50 -2 4o3) (B-9b)

Substituting (B-Ba,b) into (B-9a,b) gives formulas for the first two
time increments (j=1,2) of the calculation in terms of ‘ii 1 ii 1
» *

2300 33,20 &,20 %L
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6z,
(B-9¢c,d}

M 1
Zi 2 = EE (221’2 - 4Zi‘1) (B-Qe,f)

1
z; o = ge (N5 5 - 1625 4)

From {B-9a,...,f) the coefficients for (B-6a,b) shown in Table B-1 are

obtained,
If we now substitute (B-5, B-6) into (10) and (11) we get three
matrix equations in terms of three unknowns, Zi+‘l,j’z1‘,j’a“d zi-'l,j .

2,5 2,5 * %0.3 71,5* Boui %01 T Foug (1=0)  (B-10a)
Azi-ﬂ,:j + sz'i,j + Cz.l_-,'j 51,3 (i=1,2,...,N-1) (B-10b)
B, 73 g s T g 2 T g (=) (B-10c)
with ~
200 H
= 2K - 20
A=t F Ao,j = A
= . XK (05, + [F
Bj it 24 [6 (Daj + LKJ)]
0, M
= - 0 - 3
By,; 2 T %yt %y
30 i
- gt .
B3 e R R
% o dy g
c=A-F CN.j--—'-‘LA—
) , s _ -
Ei,j 2Ay1’j + ZA._\DBj + LXJ) zi’j_] + (ij + Luj) 24 -2
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TARLE B-1

Formula's for the Coefficients of the Differenced

Form of the Time Derivatives, Equation {B-6a,b)

% T BTGy T 5 =0

Ej=é'§j=':2'7j=£;’§.]=-:—’
(3=3.4,......

A A

CIE IR

CIRE SRR - A

U DRI P SR
(53,5
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Solution Method
To solve equations (B-10a,b,c) at any time j, a Gaussian elimination
technique is used. First a recurrence relation is formed relating %5
1

and z, Then using the boundary condition at i = N equation (B-10c)

i-1,3°

together with this recursion formula is used to calculate zy 4 3 etc.,
»

down to 9,5

Assume as the recurrence relation

L5077 PLi g oM (B-Tha)

(1211253500000 N-1)

Then from equations (B-10a) and (B-10b) we get

-1 -1 -1
Pri = I8 € By - AT [By 5 €A - Q5]
x, . = {8 .CVE - A TV (B, .CVE . - E .l
Li S DBy O B - Ayl (B € By - By

Now from equation (B-11a) we have

Ziag T T Pinitng t g

and if this is substituted into equation (B-10b) we get

-~
"

(8 ~ cpyq,417A (i2,3,...,N-1)

o
1

[B;

J

n
i) W - %)

I we use equation (B-11a) for z and z . we get the desired equation
N-1,3 N-2,3

for 2N, 5
2
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= . . . -1
2,3 Bys = Gg Peng ¥ Qg Pez,g Pieng)
Ic QN P 9 {B-11b)
. - - P < - . - N X
Nog M-1,5 bd N-2,5 MW-1,5 N N-2,5
- Byl
We then calculate down from L to get all 24,j until we end with
= -] - -
25 4 c [E'I,j Azz-j sz'l,j] . (B-11c)

The solution ‘or the z's involves only inversions of 4 x 4 matrices. It

should be noted that if the baundary conditions at the end i = 0 and

equation (B-10a) are used to calculate 29,5 instead of equation (B-11c)
s

difficulty may arise since the matrix B0 j may be singular.

FLUID EQUATION

The equation used to represent the nth circumferential mode of the
fluid is (6). This equation is elliptic in £, 2 cylindrical coordinates
and is used to represent the fluid both inside and outside the shell. The
outer fluid region represents a special problem since we want to be able
to specify mixed boundary values on its outer boundary. In this way we
can model a rigid outer wall over most of the boundary (ap/an = 0) and
simulate a pump inlet port over a small portion (p = p(t)) if we wish.

A fast, direct solutfon method [B-3] was employed to handle the
fluid equations with suitable modification to handle the mixed boundary
values. This direct method takes advantage of the block structure of
the finite difference form of (6) and employes an odd-even cyclic
reduction technique to directly solve the equation. Equation {6}

written in a slightly different form becomes
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ap a%p 2
1 8,4, 5n n_n°
x an)"ai:’ "RZ P =0 (6)

Differencing Scheme

The dimensionTess finite difference form of (6} employes centered
difference approximations to the derivatives at a grid of points (E:i,nk)

as shown in Fig. B-2b.

E.i = 1A ,"k S_—)_ ()LR'H )
T2 0,1,2,.0. 0N kK = 1,2,....,R+1
A = s/aN
R? g1~ (rpr=y)
o crseey AL __"") Pi et = Pii) = Iy - — )

.‘

] 1 (B-12a)
Py k= P01+ 2 TPy i = 285 4 % Pysy )

2
n

- —p. =0
e i,k

For the fluid inside the shell we have 323, =~ <0 on the inner
p. >0
boundary and 2 J:q= a f on the outer boundary as per (A-32a).
a2 4,1 " h P
Since along the shell wall the solution Pi Rt is unknown and only the
»
derivative 1s defined at the outer boundary, we must substitute the

central difference approximation

R =N p.
. Re17M a Pf
Piez = Pir * 2R
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into {B-12a) to obtain

2R? 2R? 1
Ty T PLR ™ Tigy 72 Pisket * 37 [Pi1 per = 2Py g * P i

(8-12b)
2, . (ZRH1 ) g g -1 —a-p—fw
YRR (rge1 ) 2pey 1 g

as a representation of (B-12a) on the boundary npe- In this way
we do not haye to use the fictitious points (Ei’,n gez)e A similar
technique is used to arrive at an equation representing the boundary points

(55,%) without involying the fictitious points (&; x,).

2R? 2R? 1
Ty T2 Pis2 ™ Ty )% Pist ¥ 37 [Pican = 2Py ¥ Py ]

n? (ZRH)'LI-,LRH a
Pi1® =2, 0%,  h
2 i1 a1~ 1 h

(B-12c)
p.
£
pS

For the fluid outside the shell the no-~sTip boundary condition is applied
at the i{nner boundary as per (A-32b). The equation developed for the
points on the shell wall is similiar to (B-12¢). The treatment of the
outer boundary involves mixed boundary values and will be described later.
Both Dirichlet, p(0,1) = 0,p(s/a,n) = 0 or Neumann boundary conditions,
%2—(-% = %%(S/a—’"') = 0 can be specified on the ends of both fluid regions.
The boundary points for the Neumann condition are handled in a manner so
that valuesat the i = ~T, N + 7 points need not be specified. This is done

in a manner similar to what we did for the radial boundaries.
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Dirichlet boundary conditicons wzre used for 211 calculations in this
report. 1t was interesting to note that both the analytical solution,
which was for an infinitely long region, and the experimental results
approached the computer code solution with Dirichlet boundary conditions

on both ends of the fluid regions.

Solution Method

The solution method for solying (B-12) was develoned by Swar~ztrauber
and Sweet [8+3] and {s a direct, non-iterative method which can be used on the
general class of elliptic partial differential equations in two dimensional geo-
metry. The solution or the derivative of the solution can be specified at either
radial boundary and at either end. Also a periodic boundary condition, i.e.
Pon = P,n? can be applied on the ends, We have modified Swarztrauber's and
Sweet's solution method to allow for specification of the solution and the deri-
vative of the solution together on the outer radial boundary by use of a capaci-
zance matrix technique [B-4].

The direct solution method for (B-12) takes advantage of the block
structure of thic set of finite difference equations, We first put them in the

form

+ b

Pi k-1 Pk o SPien o Piak T Py

(8-13)
0

* Ptk
and this system is solved by the Buneman [B-§] variant of cyclic reduction.
This involves constructing a R x R matrix from the s bys s coefficients
and employing this matrix, which is block tri-diagonal, to reduce the number o.

variables by two, in steps, until a single equation is left. This equation is
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then solved and its solution used to obtain solutions for all the other
unknowns. For this system to work s must be subdivided into N increments
such that N = 23 33 5?‘ where ?)', a’. ¥ are non-negative integers.

Dorr [B-6] has shown that this direct method of solution is signifi-
cantly faster than the usual iterative technigues, for which, in additiorn.
an appropriate acceleration factur must be determined.

The above method of solution works when one type of boundary valve is
allowed per boundary. For the case with mixed boundary values this method
was modified using a capacitance matrix technique similar to that
described by Buzbee [B-4].

The capacitance matrix technique involves a modification of rows such
that the cyclic reduction process can still be used on the modified system.

For an elliptic difference system described by the matrix equation

Ap = & (B-14)
ve define a modified matrix & with
Bp = ¢ (B-15)

which can be solved using the cyclic reduction method. To determine 2
we need to know certain elements of (Kﬁ ']). Since these elements are
independent of ; this computation can be done in a preprocessing phase.
Using the results of preprocessing, the solution of (B-14) can be done
efficiontly.

We start by defining:

R = {(1,2,......N)

§ = q element subset of R over which p instead of 3p/ax is

specified and soive for

g = Ble 1§ (B-16)
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over subset S where B is the matrix coefficient for equation (B-13) with
Neumann boundary conditions in both radial directions and e = 1.0. Here
ey denotes the ith column of the N by N identity matrix. We now define

the unknown for which a solution is desired as

P=p+]Bg;

w

where the 81. are yet to be found. For all rows k outside of S we can
determine p for the {N-q) unmodified equation of (B-14) since

~

(), = (Bp) = &

The remaining g equations are satisfied by picking the B_i properly.

~

(o) = &y = Gl + 18y (Rag)y

and with

¢ = (Agj)'i Y o= 8- (AP)i
we obtain the B; from the matrix equation

B = Cly. (B-17)

This is called the capacitance system and 6 the capacitance matrix.
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B-6.
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APPENDIX C - DESCRIPTION OF EXPERIMENT

To check the validity of the assumptions used in formulating the
computer code SHELVIB it appeared desirable to check the code against
experimental data. For this purpose a thinwalled, circular, cylindrical,
steel shell was fabricated and instrumented with dynamic pressure trans-
ducers and miniature accelerometers. This shell was placed in a larger,
thick walled pipe, called the canister, filled with liquid. The shell was
clamped at its top end to the canister. A system was designed to introduce
a variable, but single frequency sinusoidal pressure wave onto the shell
through ports in the canister. In this way the natural frequencies, damping
coefficients, and radial displacements of the shell could be determined
and compared to those computed by SHELVIB. The sizing of the shell and
canister was such as to approximate a 1/12 scale model of the core barrel

of a pressurized water reactor.

DESCRIPTION OF APPARATUS

The layout of the experimental apparatus is shown in Fig. C-1 and (C-2.
The canister is bolted to a support base which is part of an electro-
magnetic exciter (max. rating 60 g, 2000 Hz, 22kN). The exciter drives
a piston in a 63.5 mm (2.5 in.) hydraulic cylinder als: resting on the
base. Pressure waves generated by the piston travel up the piping and into
either one or both of the inlet ports in the canister. If one port is not
in use it is blanked off with blind flanges. Pulse amplitude can be
varied up to *+ 140 kPa (20 psi) at frequencies up to 1000 Hz.
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Fig. C-1. Photograph of experimental systems.
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Fig. C-2a Canister-shell layout.
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A1 through AB; accelerometers
P1, P2; pressure transducers
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Fig. C-2b tnstrumented she:}
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The pressure pulses impinge on the instrumented cylindrical shell inside
the canister. The shell is shown in Fig. C-2b. It is held in a clamped
condition at the top with sufficient cap screws to approximate a fixed
boundary condition and can either be clamped or free at the bottom. Clamping
at the bottom is accomplished by means of eight clamps with thumb screws.
Since compressibility effects must be minimized to verify the computer code
SHELVIB the test vessel is designed to be evacuated before filling with air-
free fluid so that the acoustic velocity will be high enough to meet the
criteria expressed in equations (7) and (8). The canister wall is
thick enough so as to approximate a rigid wall, thus conforming to the
boundary conditions which can be simulated in SHELVIB and also maintaining
the effective bulk modulus of the water. The impnrtant dimensions of the

test apparatus are listed in Table C-1.

INSTRUMENTATION AND DATA REDUCTION

Instrumentation consists of eight accelerometers and four pressure
transducers. These are read out directly either on a computer-based,
transportable, date acquisition and control system (TDAC) [C-1] or a galvan-
ometer strip chart recorder. The TDAC system can convert analog signals to
digital data for storage, output, or processing. A 16-ait central processor,
programmable in FORTRAN, can manipulate the data, e.g. subtract background,
integrate acceleration data to get displacement, convert from the time domain
to the frequency domain, and manipulate data in the frequency domain. This
can a1l be done on line while data is being collected or at a later date
from magnetic tape records. Output can be in the form of plots, printout,

or records on magnetic tapes.
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Table C-1 - Dimensions of Experimental Apparatus

Shell
mean radius, a 131 mm (5.17 in.)
wall thickness, h 4 ymm (0.156 in.)
length, S 700 mm (27.5Q in.)
flange radius 170 mm (6.63 in.)
flange thickness 24 mm {(0.938 in.)
material stainless steel (Type 304)
density, o 7830 kg/m’ (0.283 1b/in°)
E 2.90 x 107 ""ym? (22.0 x 108psi)
v 0.295

Canister

inside radius, b
wall thickness
gap, b-{a + h/2)
inside length
volume

port, dia.

port, orientation

150 mm (5.94 in.)

11 mm {0.44 in.)
17.5 mm {0.69 in.)

315 mm (32.13 in.)
0.055m° (3350 in°)
63 mm (2.47 in.)

2 - 180° apart
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A piezoresistive, strain gage accelerometer is used because of its high
sensitivity (10 mV/g) and small size (28 gms). Specifications for the
accelerometer are shown in Table C-2. It has a range of * 25 g and
responds within + 5% over a band width of 0-750 Hz.  Shell accelerations
are in the range of 0.5 g to 25 g for pressure pulses up to * 140 kPa.

The accelerometers are mounted on the inside of the shell, as shown

in Fig. C-2b to sense radial acceleration exclusively. They

are secured to the shell by means of threaded studs. Flats were machined
on the inside surface of the shell to assure a secure mounting.

A quartz, low impedance, pressure transducer 1s used to sense pressure.
It operates over a pressure range of 550 kPa (80 psi) and has a bardwidth
of 20 kHz. Its active face is mounted flush to the outside diameter of
the shell through a threaded hole from inside the shell. Further specifica-
tions are Tisted in Table C-2.

It was necessary to operate the instrumentation immersed in the test
fluid. A certain amount of difficulty was experienced when water was used
because of leakage into the cable connector at the accelerometer housing.
The accelerometers and pressure transducers are hermetically sealed units
and the cable connectors were sealedon the outside withasilastic compound.
Water leakage through the cable bundle sheath traveled down inside the
bundle causing shorting between the connector pins over a period of time.
However, sufficient data was gathered before the signal became unusable.
Leakage was not a problem when insulating transformer oil was used as the

test fluid,
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Table C-2 - Instrumentation Specifications

Accelerometer

rated range
sensitivity

natural frequency
frequency response
damping ratio
transverse sensitivity

linearity and hysteresis

excitation
zero output
model
diameter
length
weight

+25 g

10 mV/g

2500 Hz

+5%, 0 to 750 Hz
0.7 nominal

3% maximum

+1% of reading, maximum,
to +25¢

10 Vdc
+25 mV maximum at 10V
Endevco Model 2262C-25
15.5 mm (0.610 in.)

25.4 mm (1.00 in.) | S
28 gms.

%
~

Pressure Transducer

rated range
resolution
sensitivity
linearity

resonant fregquency
vibration sensitivity
frequency response
model

diameter

Tength

weight

550 kPa (80 psi)
5 Pa (.0008 psi rms)
100 mV/psi
+1% full scale
130 kHz
.005 psi/g
5%, 0.05 to 20,000 Hz
Kistler Model 206
11 mm (0.436 in.)
33 rmm (1.30 in.)
22 gms
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MEASUREMENT TECHNIQUES

Natural Frequencies and Mode Shapes

The natural frequencies and mode shapes of the instrumented shell were
determined using an impact technique and also by sweeping the frequency
spectrum using a harmonic exciting source.

The impact technique required that the shell be struck a sharp blow
with an instrumented hammer at 26 different locations as shown in Fig. C-3.
The acceleration on accelerometer A 1 was recorded for each blow as was
the impulse itself from an accelerometer mounted on the hammer, On TDAC
the Fourier transform of the accelerameter signal was divided by the Fourier
transform of the impulse to give a transfer function , H(jw). The inverse
transform, F [H(jw)], gives the acceleration output to a perfect impulse.
The imaginary part of H(jw), Im(jw), is propcrtional to the relative
amplitude of the point struck. By comparing the imaginary part for each
point at a given frequency, the mode shape can be constructed.

Natural frequencies and modes were also identified by introducing a
sinusoidal pressure wave through inlet ports in the canister and sweeping
the frequency spectrum. Resonances were easily identified by ohserving
the amplitude and phase of the accelerameter responses. The pressure waves
were generated by a piston-cylinder arrangement with the piston connected
to an electro-magnetic exciter., The waves traveled about 0.75 m to the shell
through connecting piping. Peak acceleration of the exciter head ¢ from 1
to 2 g was sufficient to give the pressure amplitudes needed. The
accelerometer signals at each she!l resonance were recorded using TDAC or
strip chart recorders. Plots of these signals were studied to give the
phase and amplitude relationship between signals and from this information

modes were jdentified.
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Accelerometer A1

(inside shell)

{dimensions in mm}

Fig. C-3 Impact technique for finding natural frequencies and modes.
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The advantage of the impact technique is that it is quick and only
shell resonances are excited. A possible disadvantage is that the top of
the canister has to be left open to allow access to the shell. Thus, the
fluid remains at atmospheric pressure and with a normal compliment of
dissolved gas. Under these conditions the acoustic velocity is very
Tow, e.9. 100 m/sec [C-2], so that the inequalities onwhich the incompressi-
bility assumption are based (eguations (7) and (8)) become marginally
applicable. Since the frequencies measured using the impact technigue
compared to within 10% those measured using harmonic excitation this
disadvantage was not a concern here.

The §dvantage of the harmonic excitation technique is that the system
is E]osed and can be evacuated, filled, and then pressurized to increase
the acoustic velocity. This is exactly how these tests were conducted.
Referring to Fig. €-1, the air space over the liguid in the fill tank
was evacuated, allowing dissolved gases to evolve. The canister was
also evacuated. Liquid was then pulled into the canister until it
flowed out the top. The top and bottom valves were closed producing a
solid, deareated, fluid-shell system. The system was then pressurized
through an.accumu1ator to a pressure of several atmospheres. The acoustic
velocity in water was calculated from bulk modulus measurements as 600
m/sec using this filling technique. It was noted that there was little
difference between the measured natural freguencies with the accumulator
valved in or out even though,with the accumulator valve open,the acoustic

velocity was substantially less.
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The disadvantage of the harmonic excitation technique is that resonances
other than the shell resonances are excited. These include the fluid column
resonances and resonances in the fluid annular region. These resonances
tend to be more pronounced on the pressure transducer signals and by noting

phase relationships can be separated from the shell resonances.

Damping Ratios

Damping ratios were measured using the half-power method [C-3]. Using
this method the damping is found by measuring *ne half-power bandwidth of the
modal response from the strip chart frequency records and using the

relationship

o>
Y

(c-1)

™
|

A
i'r(:

where A = damping coefficient

C_. = critical damping coefficient EZHefo

o>
h
u

bandwidth at the half-power points

f. = center frequency of the modal response

The half-power bandwidth is the difference in frequency between the

half amplitude point before and after the resonance is reached.

Radial Displacements

Radial displacements were computed on TDAC by integrating the radial
acceleration twice. Any dc component of the signal was removed after each
integration by fitting a 1inear curve through the data and then subtracting
out the linear curve. If necessary the acceleration signal could be

mathematically filtered to a selected frequency bandwidth to eliminate
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extraneous noise. This was found unnecessary in those cases where the shell’s
response was a fairly pure sine wave. The integrated displacement
matched within 10% that which would be calculated by assuming a harmonic

excitation.

w(t) = - “E(ﬂ (c-2)
Q°singt
where

w (t) = radial displacement

# (t) = radial acceleration

Q = circular frequency

EXPERIMENTAL RESULTS
Natural frequencies were determined in air and under water using the
impact technique and under water and oil using the harmonic technique.

Properties of the oil used are given in Table C-3.

Table C-3 - Transformer 0il Properties

density - 880 kg/m® (0.032 Tb/in®)

kinematic viscosfty at 100°F - 12 nnF/sec {12 centistokes)
dielectric strength, 0.1 in. gap at 25°C - 30 KV
specification - VW - I - 530 Class 2

Results of the frequency measurements are given in Tables C-4A and C-4b
for the fixed-free and fixed-fixed end conditions. As can be seen, the
natural frequencies measured by the two different techniques closely agree.
Note that two natural frequencies are reported for the (3,2) mode in air.
This is probably due to the method of boundary constraint used as has been
reported by others [C-4].
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Table C-4a

Natural Frequencies and Modes for Fixed-Free End Conditions

n Air __Mater 0i1
Jmpact _Impact Harmopic | Harmosic |
1/2 200 Hz 75 Hz
372 740 315
1/2 440 195 195 Hz 205 Hz
372 620 300
5/2 1150 625
2 820 420 420 435
372 890 485 470
572 675 610
1/2 1325 750 755 780
372 1375 815 795
572 945 890
Table C-4b

Natural Frequencies and Modes for Fixed-Fixed End Conditions

. Water 0i1
n Air Impact Harmonic Harmonic
1 §30 Hz 200 Hz
1 550 250 240 Hz 242 Hz
2 925, 1005 475
1 860 440 435 451
2 1050 600 555
3 1440 860
1 1350 775 765 795
2 1460 880 835
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The method of determining natural frequencies and modes using the impact
technique is illustratea in Figs. C-4 and C-5. Fig. C-4 is a fFlot of the
amplitude of the imaginary part of the transfer function, }Im{jw)|, for two
different end conditions with the shell under water. These particular plots
resulted from impacts at Tocation 1 (see Fig. C-3). The peaks on the
frequency plots are possible natural frequencies. By viewing a three dimen-
sional plot of |[Im{jw)| for each point struck at each frequency peak the
true natural frequencies are verified when a ¢lear modal profile springs
into focus. Pictures of some of these modes are siown in Figs. C-5a,...h.
By counting the number of times the maximum displacement trace {solid Vine)
crosses the shell autline (dotted line) the mode number can be identified.

A harmonic frequency sweep technique was used to verify the natur§1
frequencies in water and also to measure the natural frequencies in oil.
0il, with 90% the density of water, provides another check on the validity
of the assumptions used in SHELVIB, the code developed for this research.
Transformer 011 was used because of its fnsulating properties.

Typical pressure and acceleration records with the shell immersed
in water are shown in Figs. C-6 and C-7. The exciter head peak acceleration
was held constant at 9.8 m/sz for these runs. In Fig, C-6 the responses,
as measured on a strip chart recorder while the source frequency is varied,
are shown for fixed-free and fixed-fixed end conditivns. The pressure was
introduced through one canister port or both ports simuitaneously for
each :ype end condition. Many resonances show up on these records and a
careful Took at the phase and amplitude relationships at each resonance

and the phase changes between resonances was required to make positive
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Shell with fixed-free end conditions, immersed .n water

T T 1

T T

shell with fixed-fixed end conditions, immersed in water
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Fig. C-4 Amplitude of the imaginary part of the transfer function.
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Trace through

max, amplitudes
of impact points
atasp, -‘ic time

Y= Trace through

impact points
{see Fiy, C-3}

(a) Frequency 193 Hz {e} Frequency 947 Hz
mode 3, 1/2 mode 5, 5/2
fixed-free fixed-free

i~

{b) Frequency 418 Hz - () Frequency 248 Hz
mode 4, 1/2 mode 3, 1
fixed-free fixed-fixed

{c) Frequency 750 Hz {9) Frequency 601 Hz
mode 5, 1/2 modz 4, 2

. fixed-free fixed-fixed

{d) Freguency 813 Hz {h} Frequency 861 Hz
mode 5, 3/2 mode 4, 3
fixed-free fixed-fixed

Fig. C-5 Shell modes when immersed in water determined from impact technique.
Shell was hit at 26 locations along dotted tine and response recorded by
accelerometer Al. From these measurements the relative amplitude at
each impact point for each mode was determined.
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Fig, C-Ba Shell response vs. excitation frequency; ane nozzle apen, shell with fixed-free
end condtiions, immersed in worer.
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Fig. C-6¢ Shell response vs. excitation freguency; one nozzle open, shell with fixed-fixed
end conditions, immersed in water.

1000



-t0L-

Accel. — m/s?

Press. — kPa Accel. — m/s2

Press. — kPa

] I 1 | ] 1 I | I

+100 |- Accelerometer A5 -
(opposite nozzle)
o ( -
mode (3,1) 4,2) (s, 1)
-100 }— number .1 (5.2} -
Accelerameter A7
+1004- {near shell bottom) .
o M__W -
-100 L Pressure transducer P1 -
+351 {opposite nozzle) —
or ]
_35(— —
0= Pressure transducer P3 N
; ;
4351 fon cytinder} -
oF —
_35|— —
-70p —‘
| | 1 | 1 | 1 | |
0 100 200 300 400 500 600 700 800 9200 1000

Frequency — Hz

Fig. C-6d Shell response vs. excitation frequency; two nozzles apen, shell with fixed-fixed
end corditions, immersed in water,
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Fig. C-7 Time history of the shell response: two nozzles open, shell with fixed-free end
conditions, pressure wave input frequency, 468 Hz.
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ideatification of those which correspond to shell natural ‘requencies.
Even so, some resonances could not be resolved, i.e. the (2, 3/2),

(3, 3/2) and a water column resonance all occur near 300 Hx (see Figs.
C-Ga,b), but could not be resolved. In general, if two modal frequencies
where closer than 15 Hz they could not be resolved. At frequencies

below 15G Hz the feedback from the fluid system to the exciter was such

as to distort the harmonic wave form making data unusable below that point.

Time history records of the piston pressure, shell surfa.c pressure,
and the shell response at various points on the shell at the (4, 3/2°
resonance are shown in Figs. C-7 . The response data was cantured
at an instant of time, digitized, recorded, and then displayed, as shown,
using TDAC. Comparison of the amplitude and phase of the accelerometer
signals helped to identify the mode excited. For instance, comparison
of the signal from accelerometers A3 and A7 show that they are 180 degrees
out of phase with the A7 signal half the amplitude of the A3 signral.
Since A3 is near an anti-node of the (4, 3/2) mode and A7 below the node
this verified that the 3/2 mode is the axial mode excited. In a similar
manner other modes were identified.

Modal damping ratios in the fluid are shown in Table C-5. These are
close to the values to be expected from structural damping aione. For
these particular modes, in this geometry, damping caused by the fluid
appears minimal.

Figures C-Ba,..., d illustrate how the radial displacement was
computed by numerical integration of the radial acceleration record

shown in Fig. C-8a. Even though the acceleration was distorted hv an
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odd-harmonic of the input frequency (see the Fourier transform of the
accelerometer signal in Fig. C-8b) the displacement peak computes to the
value that would be calculated assuming simpie harmonic wotion (C-2).
Fig. C-8c shows the radial velocity computed by integration of the
acceleration signal. Fig. C-8d shows the radial displacement computed by
integration of the radial velocity. Acce'le‘rometer Al is located mid-way
between the inlet ports and the excitation was at the resonant frequency

of the (3, 1/2) mode in water.

Table -5 - Damping Ratios, CL
c

cc = 2Mei’f'n

Fixed-Free Shell End Conditions Fixed-Fixed Shell End Conditions
n m water oil n m water 0il
3 1/2 0.40% 0.7% 3 1 0.38% 0.8%
4 1/2 0.24 0.4 4 1 0.23 0.7

372 0.21 2 0.29

5/2 0.30
5 1/2 0.12 0.2 5 1 0.14 0.2

3/2 0.12 2 0.16

5/2 0.15
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Fig. C-8 Computation of shell radia! displacement: one nozzle apen, shell with fixed-free end conditions,

pressure wave input frequency of 191 Hz, signal from accelerometer A1,
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APPENDIX D - THE COMPUTER CODE SHELVIB

Included in this appendix is a listing of the computer code, SHELVIB,
which was used to generate the results presented. Also included are the
input and a portionof the output for a sample problem. SHELVIB is designed
to run on a CDC 7600 computer and is coded in LRLTRAN {D-1], an extended ver-
sion of FORTRAN IV. WNote that the compiler used automatically sets all
variables and arrays to zero and can handle mixed moce arithmetic.

The computer code consists of a main program and seventeen subbrogams .
The main program fs used to call in the input, initialize variables, call the
subroutines necessary to calculate the shell displacements during each time
iteration, print out results, and plot the results. The principle subprograms
are a printing routine (STRS), a plotting routine (FPLOTT), a poisson equa-
tion solver which calculates the fluid dynamic pressuras (PWSCYL), and two
matrix inversion routines (DEC/SOL, LINVIF). The remaining sub-programs
help set up and manipulate the matrix shell equations. The nomenclature
used is described in the code T1isting. Data is input using NAMELIST state-
ments, Qutput can be requested for any or all space stations but is only
plotted at the quarter points. The code calculates in the English system
of units,

The sample problem is the calculation of the shell response to a 1 psi,
mid-point,step 1oad with a 10 ms rise time. The shell is simply-supported
at both ends and surrounded by water contained in a stiff-walled, coaxial,
outer cylinder. The shell is empty. The calculation is for the 5th circum-
ferential mode (¥27=50 hz). Oniy a partial outout is shown. The olot is
the time history of the non-dimensional radial displacement, w at the mid-

point.
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Listing of Computer Code SHELVIB

PROGRAM SHELVIB (FLIN, TAPE2=FLIN,GUTPT, TAPEQ=QUTPT)

A COMPUTER CODE TO DETERMINE THE DYNAMIC RESPONSE OF A CIRCULAR
CYLINDRICAL SHE_L IMMERSED_IN A POTENTIAL FLUID TOG_AN ARB[TRARY
RADIAL FORCING FUNCTION. THE CODE CALCULATES THE TIME HISTORY

THE THREE COMPONENTS OF THE SHELL'S DXSPLACEMENT VECTOR AND THE AXTAL
BENDING MGMENT FOR ANV CIRCUMFERENTXAL EN. SOLUTION: E
OBTAINED FOR THE SHE IN_vACcUG, FILLED wl ﬁ LIGUID SURROUNDED B
LIQUID, OR_TMMERSED IN A THIGK-WALLED COAXIAL CYLINDER. THE CODE 1S
TAILORED TO CALCULATE THE STEADY STATE RESPONSE GF A NUCLEAR REACTOR
CORE BARREL TO FLOW INDUCED EXCITATION.

NOMENCLATURE

A(4,4)--MATRIX COEFFICIENT DEFINED BY_ (B=10)

AO(4 4)-MATRIX COEEEICIENT DEFINED BY (B=10)

AA--SHELL RADIUS, (IN.)

ﬁcc--DlMENSlONL SE SHELL RADIAL ACCELERATION

ACCP(J) - ARRAY FOR STORAGE OF ACC AT SHELL MIDPOINT
PHA>-COEFFICIENT FOR R DIFFERENCED FORM OF TIME DERIVATIVE (B-8A)

BELS Fo!
TRI1X CGEFFICIENT DEFINED BY (B-10)
,4)--MATRIX COEFFICIENT DEFINED BY (B-1D
{1)--VALUES OF DERJVATIVE ALONG_INNER RADIUS OF INNER FLUuID,
/DR)(P(A)), NORMALLY SET EQUAL TG O 51/

BDAG(I)--VALUES OF k IVATIVE ALONG INNER RADIUS OF UUTER FLUID,

DR)(P(A (PS1/IN.)
BDBI(I)--VALUES [-23 DEleATIVE ALONDG OUTER RADIUS OF INNER FLUID,

/ORI (PC(B)Y), (PSI/IN.)
BDBU(I)--VALUES OF DERIVATIVE ALONG OUTER RADIUS OF GUTER FLUID,

DR (P(B)),NORMALLY SET UAL TG {PS1/IN.)
BDC(K)--VALUES UF OERLV?;éYE'ﬁT)X=°.(D/DX)(P(O)) USED WHEN
,
BDD(K)--VALUES UF DERIVATIVE AT X=L, (D/DX)(P{L)),USED WHEN
NBDC! R 3,(PSI/IN.)
BETA--CUEFFIGIENT FOR DIFFERENCED FORM OF TlHE DERIVATIVE (B-6A)
BN(d,d)-~MATRlX CDEFFXCIENT DEFINED BY (B-13
C(4,4)--MATRIX ‘E FICIENT DEFINED BY (B~ IO)
€1(4,4)--T UrJnAn TORAGE MATRIX
CC(IPP, 1PP ORQG MATRIX FOR G(1) VECTORS DEFINED BY (B
COP--D}MEN. 10 NLESS DAMPING COEFFICIENT DEFINED BY (2C) =21(DAHP!NG RAT!O)
xAAK ( 2 N T. FREO.)l(HlHHbHFlPHIAVG)/HH*SQRTF(GBS 4rExW)

CN(4, 4)--M OEF| ICXENT BEF INI =10
CX(1PP) - STURAG ARR USED IN CAPAC!TANCE MATRIX TECHNIQUE
DELTA--DIMENS!OVLESS SPACE INCREMENT, SS/AAsN
E--ELASTIC MDD LUS, (PS
EE<4,X)';M?T§ DEEI?ED BY (B-10) WHICA COVERS SPACE STATIONS
EED(4)--COLUMN MATRIX DEFINED BY BOUNDARY CONDITION: AT X=0 (B-10)
EEN(4)--COLUMN MATRIX DEF INED BY BOUNDARY OUNDITtha AT X=L (B-10)
ELO(d,JEL)"DIM:NSIGNLESS OLUMN HATRIX.L.DEFIN BY (113
ELDO{4, JEL) --DIMENS] QI LUMN MATRIX, L,DE NED BY (11)
ELDN(4,JEL)--DIMENSIGNAL CULUHN MATRIX, DEFINED BY (11)
ELMBOA=-= -ENsx2
ELN(4, JEL] ~-DIMENSIONLESS COLUMN MATRIX,L,DEFINED BY (11)

R _1NDE.
EPS--DIMENSICNLESS TIM N
ETAEL(J)--TIME AT WHIC ON!
ETAU--TIME WHEN LOADING 1S SPECIFIED ON_SHELL
ETJAUL=--TIME WHEN PRESSURE 1S S FIED ON GUTER FLUID BOUNDARY, (SEC.)
EXL(1)--SPACE NODE AT WHICH LBAD GN SHELL IS SPECIFIED AT EARLIER
TIMES, (IN. FROM BOTTOM)
EXU(I)--SPACEFggﬁEanggﬂ;cH LOADING ON SHELL IS SPECIFIED AT LATER TIMES,
EXUL(1)--SPACE NODES WHERE PRLSSURE ON OUTER FLUID BOUNDARY 1S

E ARE INPUT, (8EC.)

IFIED (1it)
F(K,1)--DYMAMIC PRESSURE IN FLUID REGIONS S1)
FL(f)--FRE?SUR%Pngch!ED ON OUTER FLUID DUUNDARV AT EARLIER
--PRESSURE SPECIFIED ON GUTER FLU!D BUUNDARV AT LATER TIMES, (PS1}
HYDRAULEC LOADING HEL | ELL
EVALUATED AT PREVIOUS HALF TlME STEP=FS!(!)’FSZ(I) {PSI)
FLUID HYDRAULIC LOAD AY HALF TIME STEP, sty
ER FLUID HYDRAULIC LOAD AT HALF TIME STEP PSI)
FLUID HYDRAULIC LOAD AT CURRENT TIME SfEP, (PSI
FLUID HYDRAULIC LOAD AT CURRENT TIME STEP, _(PSI
DRAULIC LOADING ON SHE| D E TD SHELL MSTieN EVALUATED
RENT TIME STEPﬂFSD(I)0FSI 1), _(PS1)
l%x;IEUR DIFFERENCED FORM OF 'TIME OERIVATIVE (B-6A)
CIATED WITH BUUNDARY CONDITIONS (B-3)
1CKNESS, (IN.)
HJ(4,4)--ASSOCIATED WITH BOUNDARY CUNDITIUNS (8-3
1ER--ERROR INDICATOR FOR MATRIX INV leN SUBRUUTINE DEC
1ERRGR~ ERRBR INDICATOR FO Ui RUUTINE
INTER=-SPAl INTERVAL BETWEEN PRIN'
INTL=SENT1NEL FOR SUBROUTINE PWSCYL= O

=-1M-
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Yy

BN NN
CODNONLLON:

1P--PLOT POINT INDEX
1PIV(25)--5TORAGE _ARRAY USED IN CAPACITANCE MATRIX TECHNIQUE
IPRINT--TIME PRINTING CON
IPP--ggE%TFIEE SPACE NUDES AT WHICH OUTER BOUNDARY PRESSURE 1S
1PRIND-~TIME INTERVALS BETWEEN PRINTINGS
1T--TIME STEP_ INDE
JEL--NUMBER OF TINES THE_BOUNDARY CONDITIONS ARE SPECIFED;
THE _RANGE OF J 1
P-=FIRST SPACE NODE AT WHICH DUTER BOUNDARY PRESSURE 1S SPECIFIED

M- N-1
MBDCNDI--;gaI?ATES THE TYPE ©F BOUNDARY CONDITIONS AT R=RIA AND R=RIB

R 1
2 1iF THE SULUTIUN 1S SPECIFIED AT RzR]A AND THE DERIVATIVE
£F THE S TION WITH RESPECT TO R {S_SPECIFI R18
=3 IF THE DE AV ;IXEAU;NBHE_SOLUTION WITH RESPECT Tﬂ R is
HBDCNDD~-;22!CATES THE TYPE OF BOLUKDARY CONDITIONS AT R=ROA ARD R=ROB

FLU1D
=3 IF HE DERIVATIVE OF THE SOLUTIBN WiTH RESPECT TO R 1S
PECI AT R=ROA_AND
e q lF HE DERIVA IVE OF THE SBLUTIGN Wi‘'TH RESPECT TO R
CIFIED AT R=RDA AND THE SOLUTION 1S SFECIFIED AT R ROB
MOL - -NUMBER OF A\IAL NUDES AT HH'CH T SHELL LOAD WAS F1ED
MOuU--NUMBER AL NO| AT WH T SHELL LOAD IS SPEC]FIED
MR1 --NUMBEF OF RADIAL {:TERVALS IN INNER FLUID REGION

B
N--NUMBER OF AXTAL SPACE INTE
N14,N24, N34--QUARTER LF AND THREE ~QUARTER AXIAL NODE NUMBERS
NBDbNDI‘—IgDIDATES THE TV# OF BOUNDARY CONDITIONS AT X=0 AND XxSS

NNER Ul

SELUT'ON IS PERIODIC IN X PO, KI=PIN.K)
THE S9rUTI8N I8 ETRIEo N ket nn 50eE

i X D IHE DERIVATIY
ECIFIE Xa$!
SELREED 38 XY
R 1

O N~0

t4q |

C—My»
™M
0:
[~
Z
>
1~
-“0ZCcc
—
]
L'l
>
4
m
P
122
4
)
-]
Q

L D
LOAD WITH _HALF AMPLITUDE OF GQU, (HZ2)
SURE PULSES GN OUTER FLUID
? OF FP, (HZ

E
D PRESENT
MATRIX OF [(B-11A} AT SPACE STATIONS

QUTE . _ N
NP - =NUM OF POINTS TO BE P
OHEGA-'FREGUNC OF HARMCNIC
OMEGAL - ~FREQUEN.! OF HARMONI

BOUN
OUT--SET EQUAL Tﬂ 1. OUTER
P(d4,4,11)- ARRAY REFRESENTINB THI

1=
P1(4 4)--TEMP6RARY ércRAse MATRIX
PERTRB

0
OR NODE 1 EFINED BY (14), (IN.)
PHIAVE-~PHI AVER, D DVER ALL SPACE NODES, (IN.
PHIAVBP{J) - ~ARRAY FOR ORAGE OF PHIAVG at TIMES TM, (INJ)
PHIRUNS ~ - RUNNI NG AVERAGE OF PH|A! IN,
PMAX(40) ~-PEAK SHELL LOAD FOR HARMﬁNIC LOADING, (P51)
L(]1)--SPECIFIED SHELL LOAD AT THE PGINTS £xL(), (PSI)
{d)--TEMPORARY STORABGE COLUM
U(I"-SEECIFIED fHELL kgsDuAT THE POINTS EXUCL), (PSI)

T~ TIMZ®

MNe=2D

TA--INNER FLUID INNER 1US, (IN.)
IB-- R FLUID_OUT ADIUS=AA, ¢IN.)
D--COEFFICIENT FOR ERENCED FORM GF TIME DERIVATIVE IN (B-6A)
DA--INNER RADIUS OF FLUID=AA, TIN.
ER _RADIUS OF OUTER FLUID, (iN.)

oTTOM OF SHELL. SET EQUAL to ¢

i4) MPORARY STORAGE COLUMN MATRIX
Si6ha- REFFRENCE sr§sss (PS1)

C, )
M ~TiMi ST F COMPUTER WHEN TEE>TLIMIT
M(300) ~~-TIME _COORDINATE ASSOCIATED WiTH PLOTTED PGINTS {SEC.)
5M0(4)--DIAGONAL ELENEN S oF MATR IX OMEGA FROM BOUNDARY CONDiTIONS

DEFINED
TOHN(4)~-D%A§UNALDELEMENTS oF MATRIX GMEGA FROM BOUNDARY CENDITIONS

FINED BY (11)

4,300) --TEMPORARY STORAGE MATRIX
EL( WEIBHT DENSITY, (EBSZIN xE3)
GHT DENSITY, (LBS/IN. %
WWS(NZMRO) - -STORABE ARRAY FOR suekeur:ns PUSCYL
-~ARRAY REPRESENTING THE K-PEAK OF (B-11A) FOR SPACE STATIONS
ARY “SfGRAGE COLUMN MATRIX
0 IF_ INNER FLUID PRESENT
©F DIFFEREN FGRM OF TIME DERIVATIVE {(B-8B)
OF D1FFERENCED FORM_OF £ BERIVATIVE_ (B-6B)
OIFFERENCED FORM OF TIME DERIVATIVE (B-6B)
DIFFERENCED FORM GF TIME DERIVATIVE (B-6B)
ND MINIMUM ORDINATES ON PLGTS
(B-1) AT SPACE NODES |-|,z.....N
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00
b
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000 D000

CLICHE DIMCOM
DIMENSION P(d,4,300),X{4,300),2(4,800),21(4,300),22(4,300),
1EE(4, 3007, 20(4) . A0(4,4),8004,4), EED({4) |BN(4,2),CN(4, 4} EENT4) H(a,
247, HI(d,4)ELO(4 40) ELN(4, ab), ELDO(4,20), ELDNE4, 40}, TéMO(4) , FaMNt
34).EXL(4D).EXU(4L),al (40),Hu(ad)  ETAEL(40),T(4,4},Tita, 4) P14 a),
AX1(4),8(4),R(4),ALa,4),B(4,4),C(4,4),TTI(4,4,8b60),23.4,300),
sC1(4,4),zrid4,3,800) ) TM{300), 2L (300)

CamméN P, 2, 28, 22, 23,EE, 20, AD,BO, EED, BN, CN, EEN, H, HJ ELO_ ELN, TOMO,
1ERL, EXU, b1 QUIETAEL , 7, 11,81 X1 §,R,A,B; €, 6NU ELS REN, OELTA
2S1GMA, EN E‘HH,AA.lNTEk,N,lPﬁle.SS,I#Ri b, TT1 ci,TEE, PATAGS,
3PHIRUNS, £0P, W, EPS, TOMN

COMMON/BLIL /ALABEL { 20), YMAX, YMIN, N14,N24, N34, 2F, TM, ZL, 1P, NP
CmMN?gé?O’LOT/IPLOtt1274)

OMMON/UR BDAOG{300) BDBSI300),BDC(207,BDD(20),FS(300), FHI (300),
16DA1(300) BOB] 1300), FL125), FFP{ 257, PMAK(4D), FPMAX(40), FS8(300),
FSS(300),FS1{300),F§2(300),FS1(350)

COMMBN/ R 7 CC(25, 253, IPIVI25) , CX(25), FP125),F{20,300D), ACCP(300),
1WWa(6002), ACC(300) , EXUL(25) F'H'AVG"-'(QbO)

Eﬁﬁ”cvflbrm'ﬁ (X('I),Z(l)),(ELb(l),ELDU(‘)l,(ELN(‘I).ELDN(l))

VAER
SE DiMCOM

c
g INPUT LIST AS STORED IN FILE FLIN

GALL CHANGE(7HeSHELVB)
CALLL CRTIL(4HSH\ 1)
ChLL KEE FEU(IORﬁKSHtLVBXK)

/LYSIS
NAMELTST /IN21/ EN, N, JEL IPRING, INTER TL{H!T AA,HH,SS ,W,GNU,
s._xsma-j?P:,wF XIN U7 SMEGA GMFGALéé

TGHfL, ‘:TA‘:L 1L.D0, ELON

TAU, EX

Y PAA,tlB MR1 nnucmux NBOCND

INF37 RQA, RO MRC) HEDTHTS, BDC, aoo MBDCNDE
AUL 1P, RP,F

ZZ
)
~
8¢
c

c
C PRINT GUT INPUT DATA

200 FORMAT (/1X, 114 THICKNESSSF7.4,4H IN., 12X, 7HRAOIUS=F7.2,4H [N.,3X,
JHLENGTH F7.2, dH N
TE(3,200) HH, AA
2000 PORMAT (7% - auTER #Luln OUTER RADIUS=",F7.2," IN.",18X," INNER
1 FL INNER RADIUSE™, F7. IN
201 FORMAT()X,lSH SHELL DENSITY F6.4, 124 LBS. 4SULIN.,1X, , 2HE=FS. 0,
141 PSI, ok eHSISHAES 0. 4H PSI, 9X; 3HNUZFS .

C
i=1

VONARABN~OOO N IAR RN~ OD BT RN -
o

WRITE(S, 2011 W, E,SIGUA, Ry
2010, FGRMATLY FEngb bENelTV'“ F6.4," LBS./CU.IN. XIN=",F4.2,11X,
202 FORVAT(1X, 168 TIME INCREMENT-EG. 2,SH SECS,SX, 16HNG. AXIAL NODES=
114, 1X, 12HFOURIER NO ancnﬁ E10.2)
wRiTE(s,ZUZ) TEPs,N,EN,cnb
WRITE(3,2010) WE, XIN O
2020 FORMAT("  'NO. OF RADIAL NODES IN BUIER FLUID=",12,15X,” NO.
1_GF RADIAL N&DES TN INNER FLUJPz"
2021 FORMAT("  "MBDC v i2, 21x & uBDbNDO‘" 12,9x,
17" MBDCND1=", {2, 13X
WRITE(3,2021 MBo cnbo,Nancwou Msbcnnl NBDCND1
WRITE(3,2000) ROE,RIA
WRITE(3, 2020) M R1
2022 FORMAT(" "LOADING FREQUENCY BN SHELL SURFACE-“ E7,2." H2", 9%
1, ERESSURE FREQUENCY ON FLUID SURFAGE=", hz*
WRITE(3,2022) OMEGA,d
208 FORMAT(//30X, 20H SBUNDARY CONDITIONS//)
WRITE(S, 203)
204 FORMAT(//1X,6H TIMESE10.2,8H SECS, 17X, 3HX=0, 22X, 3HXzL)
205 FORMAT(1X,2H U, 28X, E17.7, €5.1,3X,£17.2,F5.1)
206 FORMATC(1X.2H V,25X.E17.7.F5.1,8X,E12.7,F5.1)
207 FORMATCIX:2H W, 25X, E17.7,F5.1,3X,E17.7.F5.1)
208 FORMATCIX,SH M-XT,22x,E1%.7,F& 13X, E1%.7,F5. 1)
06 300 J=¥; JEL
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9y,307,307
FAUL-TEE) sFLIK)+CTEE-ETALL) xFP(K) )/ (ETAUL-ETALL)

261 C IF IT IS T IE FOR A NEW PRESSURE TO BE SPECIFIED ON THE BUTER FLUID
3¢z € BOUNDIARY Or NEW LOADING AN THE SHELL THAT NEW VALUE WILL NOW
3€” € PRINT.D CUY JF_HARMONIT EX XTATION 1S USED THE NEW PRESSURE OR LOADING
3?: g 15 NJ . LATED AND PRINTEC.
[315] 65 1 29) 52,999,552
€7 C PRIMNT X
€L 209 ¢ 77194 PPESSURES AT TIME=E10.2 SECS)
62 210 FC 8H STATION (1IN}, 18X, 15H PRESSORE {(PS11)/77)
70 52 IF 5A B 5, 233
21 agy TauslC 100470136
322 IFLTA EE) 234,135,235
373 234 T£U=T
374 235 AR 630MEGAXTAU
y4l Do
s 235 QU 1N{ARG)
7 EY
8 TF 6,55, 55
WR TAU
WR
FO X, F12.3))
EXU(J},QU{J),J=1,MQU}
.) at,437
EGAL
239 239
*OMEGAL *TAU
xSIN(ARS)
ID PRESSURE ON DUTE BOUNDARY AT",E16.7, “SECS")
5X, "PRESSUR.. ON FLUID BOUNDARY(PST}"//)
acs CEXUL(J) ,FP{J),J=1,1PP)
an: € -FICIENTS FOR THE TlME D] FFERENCE EOUAT!UNS (B GA B)
4 c N . MENTS OF THE B COEFFICIENT MATRIX ACCORD
2. E UF'u-Tl THE (‘:Pr.GE ARRAYS HCLDING PREVIAUS VALUES aF Z.
ani; 69 IF
4n7 87 1
q..% 77 I
439 74 B
a1d A
atl XK
4.2 X EP:
413 =K OIDELTA/(EPS!!Z)-GCDICI'
a14 B .OxDELTA/(EPSux3) +CDxCUP
2 g E 8. 0=DELTA/ (EPSxx2) +CDRCDP
417 ?5 IF
418 73 B
419 GA|
420 A
421 b
q22 X
423 [
a3q 85 EF
425 G:
426 RG
427
423
429 85
439
431
432
38 ¥
43% ¢ IF TH SPECIFIED ON THE GUTER FLUID BOUNDARY, (IPP>0}, THE
436 C LDAD AUSED BY THIS PRESSURE 1§ ALCULATED HER AND $TORED
437 G IN F. N BETWEEN NEW, FP, AND OLD, FL, VA
438 G 1S PERF .
439 C
440
441
442
443
444
445
446

BARBORBG
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447 507 FIMRO+T,KP+K=-11=FPP(K
443 i WS I AT RBA Aom mrg, MBOCN DO, BDAS, BDBO, ROC, $S, N, NBDCNDO,
449 *B2C,BOD, ELNBOA F, IDIMF, PERTRE, [ ERRER. Wl
450 xF(iraRtn o} TE(Ss 241)  LERROR’
451 DD 303 K=1,
252 303 OLKOE FRB k) TR RO T KPEK-1)
453 GALL SO (1FE, 25,0, cX, PV}
A f03 J +
A5
456
32
qa
459 ,Pua HRe MBDCNnu BDAS,BDBO, ROC, S, N, NBOCNDO,
460 iy éRTRé lERRa
dE1 241)  IER
dez R OPRESSURE TRANSHITTED THROUGH FLUID TG SHELL"/)
222 ; 227,227
4€6 ¢ 2o 1%0=1,N24,9
de7 225 WriTE (3 2753 (F{1,11),11=1X0, IXQ+8)
a6
465 C GALOULATE FE, THE NEW VALUE FOR THE INHOMGGENEOUS PART OF EO.(B-10).
470 C KiALLy SF ECIFIED SHELL LOADING /OR, F
a71 ¢ SALCULATED FYDRDDVRAR | C PRESSURE FOR THE LAST TIME STEP, FS
472 € ¢ e TRESVRIE
475 ¢
474 ol L=z
475
476 B0 54 k- 1.M
477 XK=k
4706 EX-XK<DELTAzAR
g3 §EocTusia
H 3 s xE(ExL<J) -EX) 36,36,37
i : o
4 a 37 CEXLCJ) EXIxGL(J-1) +(EX-EXL{J=1) ) xQL(J) )/ CEXL{J)-EXL(J=1))
485 J=Ju,Mau
480 J=J
487 IOy -EX) 39,39, 40
4 g W) -EX) ®QUEI- 1)+ (EX-EXU(F=1) ) 2QUCJI ) 7 CEXU () "EXUCS=1))
g} {43 151AAHIY Y = (C(ETAU-TEE) x00L+ (TEE-ETAL) *GGU) /(ETAU-ETAL}
493 .3’
491 [ 0X0ELTAXZ(1,K)
acis AMB ARG
495 LiLTARZ2(), Kl’\GnMFA¢xMUlCDP)
497 InZR 1K) ERGYXNU T GDP)
g ER ST et
ol ¢ G GULATE EED AND ERN, THE INHOMOGENEOUS PARTS OF EOS (B-104,C).
@) &N %3, BETWIEN THZ NEW, OU, AMD OLD, QL, END GOGNDITIGNS.
DO 42 J=2, JEL
(FT#FL(J) TEE) 42,42,44
: Y=ELOCT, J=1)+(TEE-ETAEL(J~1)}%ELOL], J))/
1 YRELNCI, J=1)+¢TEE-ETAEL(J~1))2ELN(1, J))/
58
',;; E CALCULATION OF 2 ¥ Sx¥rasryysSpxsexsXXExy
iy
1% € CALOULATE P-SUB-1 AND X-SUB-1, THE COEFF{GIENT AND CONSTANT Fi HE RECUR‘S
17 € oURTIEN AT THE F1R07 A5TAb leot" oR T RIENCE
19 GALL SCA(0.25,A0,T)
20 1=1,4
21 Bs 82 514
A 92 Citl,gi=cil, )
33 CALL'LINVIFEET, 4,4,T1,0)
24 CALL AB{BO,T1,P15
25 GALL AR:P1,A,T1)
25 carL ApptTi, ¥, 1)
27 GACL zx(EE,1,8)
28 GalL AXIF1,S R)
39 CATL Scx(-1-8,EE0,8)
30 call AD(S, R,S]
31 CALL aB(PY B T1)
32 ¢aLL ScAt-1.6,4D0,P1)
33 caLl AOD (Ti P1,%13
34 CALL LINVIF(Y1,4,4,P1,0)
35 CALL AB(P1,T,TH)
36 CALL QF(T1,1,P)
37 CALL AX(P1,S,R)
28 . GALL X2(R,1,%?
4D € CALCULATE P, X FOR THE RECURRENCE EGUATIGN (B-11A)
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199
DRDN

ONDIADNIDPNOAB QR

GO
0

fuls

DDOANNNGEMDA
Dw¢gwgammmp

7!
708

n::l.j\l\l\l\l\l\l\lal
QUONNARON=OO

a0

0o0n0n

[lels] o000

RxleTeiv]

TEE)*FL(K)+(TEE-ET/ .L)sFP(K))/(ETAUL-ETALL)
gA, ROB, MR, MBOCNDO, BDAO BDBO, ROC, SS, N, NBOCNDO,

MBDCNDO, BDAU BDBO, ROC, $$, N, NBDCNDO,

2
+4
RO+1
2,335,335
~p
JL-
27)=FPP(K
IMNTL, R
24, F, IDIHF, PERTRS, ] ERROR, W/
jNEZCS WRITE(69,241) " 1ERROR
=1,
PIK) ~F (MRO+1,KP+K~1)
(IPP,25,8C,CK, PIV]
J=1,N41
1=1,MRO+1
=0.
K1, 1IPP
KP+K - 1)=FPP(K ) +CX (K
BYLCLNTL RO ROS MRD
ELM3OA, F, IDIVF, FERTRS, | ERROR) Wi
RiNEi?s WRITE(S5,241) [ERRER’
S91J)
103240 82(F (1, 5)-F81(J))
.03 220,217,220

CALCULATE PRESSJURF FI1ELD IN INNER FLUID

217 Qo 105 J=1, N+
oc 5 l-l HRI*I

RI,
BDC o
RONECG wriTECk9) 241)
=1, N+
siiJ)
$2(3)+0. Sx(F(MR1+1,J)-FS2(J))
(R1+1, )
=1, N+1
FS(J)=FS1(J) +FS2(J)

270 FR8COEREST)INREN)

CALCULATE PHI FRDN EQ. (

THE “SHE HGT Vi

s A'_SLI .»' LA’

1V}
Ate
271 ¢
¢ HN-1.0)
g
A
1 3,213,214
214 ! Siy/a8C(1
P Hi (1)
Xt
213 ©
1 216
216 IF 228
223 Pl
PE
4

IF PRINTING 1S REQUESTED IT 1S DONE NOW AND STORED IN FILE OUTPT.

26 lF(lT*IPRINT) 120,121,121
121 CALL ST

INCREMENTING

120 !T=IT+I
EE=TEE+TEPS

CHECK TD SEE IF THE NEXT SPECIFIED PRESSURE OR LOAD NEEDS
}T DDES IT IS READ IN HERE.

BE R
843 |F(TEE-TLIMIT) 84,084,999
84 IF(TEE-ETAU) 821,821,582
82 DO B3 J=},May
EXL(J)SEXOCT)
89 GL{J)=0UCS)
MBL=HMQU
ETAL =ETAU

)
13) AND THE AVERAGE OF PH[ OVEI
G. THE RUNNINZ AVERAGE OF FHIFVG PHIRUNS,
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00000000

=1
RGN0 OONORALN—~OODRNOADON =

DL
-0

BODLA
LN=OOENHALLN

ARBARL
cwoNOUL

—OEENOIAON—0DOINALON O DOITALOR = O OENNN RN —=
o

1F(X1.EQ.N14) 230,23}
231 IF(KI.EQ. N24) 232,233
233 IF(XI.EQ.N34) 234,216
230 DO 235 1=1,4
23% ZP(I,1,1P)=2(1, N14)
Go Té bi6
232 DO 2386 1=),4
236 2P(1,2,1P)=2(1,N24)
ACCP(I#)=ACC(N2 )
GO To_216
294 DO 237 1=1,4
237 ZPi1,3,1P}2Z(1,N34)
216 ESS=AI#DELTAxAA
215 FORMAT(14,F1].2.7E13,8)
220 WRITE_(3,215) J ESS, {20! J),121,4) ,FSS{J+1)
217 FORMAT(//10X, “AVERAGE PHI FOR_TAIS' TIME STEM!
1" RUNNING AVERAGE OF PHI® »,E13.3)
RITE (3,217) PHIAVG, PHIRUNS

Wi
815 QEEURN
ClulltlllllllllllllllllIIlllllllllllll]llllllllll
B

[+] SCA--MULTI LY SCALAR SC TIMES A =
OUTINE Scalse 4,8)
FENS BN AT 4,4),8(4,4)
25 1=1.4
bo 28 J-1.4
25 B{], Sceacl, N
810 RETURN
END

RNy AN AN NN RTINS AN A NN NN
c

c AB--MATRIﬁTMULTlPLY A TIMES B =

SUBROI E AB(A B, C)
BIMEN AC4,4),B(4,4),c04,4)
Do 11
0o 1%
cil,J
oo i1

11 ocel,d L)+ AL KIEBIK, )
RETURI
END
SUBRG E ADD(A,B,
DIMENR! ©4,4),B¢ 4> ctd,4)
00 12
oo 12

12 €il,J 3r+BC1, )

809 RETUR

END

CXXEr X s s WAE T EENEXER XA NI TSR NEF RN ENSATANNSNNER
€ AX--MATRIX MULTIPLY A(4,4) TIMES X(4)= Yid)
SUBROUTINE AX(A, X

D} PENSIUN Ala, 4}, k(al Y(4)

A A

to Y{I ALl,J2eX(J)
800
AR F RN KA RN E XA IE AN XA KRR ENEAEINREAEXNTE
Z(4)

€ AD--MATRIX ADD Xt(4) +Y(4) =
SUBROUTINE AD(X,V,Z)

DIMENSION Xc(a),¥(a),2¢4)
Do 8 1=1,4
201 X015 YD
801 RETURN
Clulllllllllll“ltl¢llllllllllllllllllllllllllllll
--CHANGE P(1,J,K) T0 @
SUBRGUTINE' PACP,
DIMENSION P4, 4.568),a14, 4)
Do 27 1= 1,4
Do 27 Js 1.4
ai1, HePl,J,K)
803 REEURN
CEXEXEE AR SRR AN N RN KA RSN N KK FEE RN S KA XS RXNERUEE
¢ QP--GHANGE Q{1,J) TO P({,J,X}
SUBRGUTINE'QP(Q,K, P}
DIMENSION P(4,d,300),0(4,4)
9 28 11,4
0 28 Ja1,4
¢, RIs001, )
804 Eﬁfﬁﬂﬁ
XN TR ENE X R AR R EE VR RN AR AN E AN TR SRR XX R AR A EERERN
€ ZK--cHANGE 2(1.K) T6 X(I)
SUBROUTINE ZX(Z K X)
DIMENSION 2(4,500},%(4)
o8 30 1=1,4
30 Xc1)s 2(1,K)
806 RETURN
END
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=]

00000000000000
R — =0 s s st O

2 CRX RN EREE R ENARRENRXEKNRANSIEEASA RSN NINS
3 € SCX-~MULTIPLY SCALAR SC TIMES X(4) = Y(a
4 SUBROUITINE SCX(SC, X, Y)

5 DI ENwlﬂN K(4),¥ (4

G Do 26 1=t,4

? 26 Yo1oo=somkiny

8 802 RETURN

0 CHMEEE N RN RIS AN AR F AKX AN RN I EX RSN NEEEIRINSIRENEN
1 G KZ--CHANGE X(1) TG 2(I,K)
2 SUBROUTINE_X2(X,K,2)
3 D IMEN: SIU Z[d 5605 X(q)
4 29 1=
Z(l,K) Sl
053 BeTORN
M R R I NIk R I E N RN X R AN E AN R KA RN KX NN EX AN NE R KRN
€ LINVIF--MATRIK INVERSION OF ACN,IA) T8 AINVIN,1A)
oc REF: “THE_IMSL L1BRARY,VOL.1", INTER. MATH. AND
1 ¢ 157F okt PR ERAR RS 1he! NIMSL Li88: v02, (DEC 1972)
2 SYBROUTINE LINVIF (AN, I£,ATNY, IDST)
3 DIMENSIG Al411),AINVE4, 1), WKAREACA)
3 DATA 2ERS/70°07,ONEZ 1. &7
5 IER=0
D6 10 1=1,N
DS § JET N
Alfvit, ) = zEro
3 CANTINUE
0 AINV(], 1) = ONE
1 10 CONTINUE
2 CALL LEQTIF (A N, N,17,AINV, IDGT, WKAREA, 1ER)
3 IF (1ER .EC0. 03 80’ T’ 9008
4 9000 CONTINUE
CALL UERTST (!ER,BHLINVIF)
9005 EEEURN
SUSROUTINE LZGTIF (A,M,N, 14,8 100T, HKAREA, 1ER)
DIMENSION ATTA, 1), BCTA, 1) WKAREALL)
oc IN} TIALTZE IER
1 1ER=0
2 C DECOMPOSE A
<] CALL LUDATF (A,A N, 1A 1DGT,D1,D2,WKAREA, WKAREA, WA, IER)
] IF C1ER .GT. 128} 60 fo sobo
5 ¢ CALL ROUTINE LUELMF (FORWARD AND
g c D 10 BACKWARO SUBSTITUTIONS)
CALL LoBLmF ca.Bet, 0, WKAREA, N, 1A,B(1,J))

8

S 10 CGNTI
0 F ]ER LEQ. 0) GO TO 900%
1 9000 CONTINUE

CALL UERTST (1ER,6HLEQTIF)
% 9005 ReTURN
ND
5 SUEBROUTINE LUDATF (A, LU NyTA,100T D1, D2, IPYT, EQUIL WA, 1ER)
¢ DiRERSION O(IA, 1, 1PVE 1) BQUILCT)
B BATA ZERG, ONE, FOUR, S1XTN, SIXTH/0.0,1..4.,16., . 0625/
e C NI$TAL12ATION
0 1ER = O
i RN = N
2 WREL = ZERO
3 D) = ONE
a D2 = ZERO
3 BIGA = ZERQ
G DB 10 1=1,K
7 8I6_= ZERO
8 0o 8 Ja1,N
] P = AtL,J)
0 Lucr, 3)'sp
1 P_= ABS(P)
2 IF (P ,GT, BIG) BIG = P
3 5 GONTINUE
4 [F (BIG .GY. BIGA) BIBA 3 BIG
s IF (BIG .EQ; ZERG) GO TO 110
& EQUIL(I) = ONE/BIG
7 10 CONTINUE
8 66 195 J=1,N
9 JHT = JiY
0 1F ¢JM1 .LT. 1) 60 T@ 40
ic COMPUTE UCI,J), 1=1,...,J-1
2 DO 35 1=1,JM}
3 stm = LUCT, 9
4 Ml [-1
5 IF (10GT ,EG. 0) GO TO 25
6 C WITH ACCURACY TEST
7 Al = ABS(SUM)
5 Wi = 2E
9 [F (IM] .LT. 1) GO TO 20
o DO 18 K=i, IM

-122~



O
O

NONBON= OO OIOUDON—O

DA ORI AR

QOENORAON-OOONNIDON SO C@

gﬂbhhhhhhhhh

18
20

23

20
35
40

43
50

$5

&0
65

70

73
80
(1]
90

T LU(lﬁK)'LU(KAJ)

SuM = SUM-
Wi e W) +ABSIT)
CONTINUE
LUCI,J) = SuM
Wi =’ WI+ABS(SUM)
IF_(Al .EQ, ZERD) Al = BIBA
TEST = Wi/A
IF (TEST .GT. WREL) WREL = TEST
60 1o 35
WITHOUT ACCURACY
IF (1M1 LT, 1) 6O To 35
DO 30 K=i
SUM = SUM-LUCT,K)xLUCK, J)
CONTINUE
LUCT, J) = SUM
CONTINUE
P = ZERGO
COMPUTE U(J,J) AND LCE,J1, Teg+l,.
DO 70 1=J,N
SUM = LUcI,J)
1F ¢Ip6T Q. 0) 6o TO 8%
WITH ACCURACY TEST
Al = ABS(SUM)
Wl = ZERD
IF TJM] .LT. 1) 06 To 30
DO 45 K=i,J
T = LULT, Ky=LUCK, J)
SuM T SUM-T
Wl = WI+ABS(T)
CONTINUE
LUCI, J) = suM
WI ='WisaBSSUM)
IF_(Al .EQ. ZERO) Al = BIGA
TEST = wWi/Al
1F (TEST .@T. WREL) WREL = TEST
GO To 65
WITHOUT ACCURACY TEST
[F (JM1 LT, 1) GO TO 65
DO 60 K=i
SUM = SUM-LUC],K)xLUCK, J)
CONTINUE
LUCI, J) = sum
G = £QUIL(T)=ABS(SUM)
IF (P .GE. @) 6O TO 70
PcQ
IMAX = |
CONTINUE
TEST FOR ALGORITHMIC SINGULARITY
IF (RN+P .EQ. RN} GO _To 110
IF (J .EQ. [MAX) 6O TO 80
o1 . INTERCHANGE ROWS J AND IMAX
0O 75 Kz1,N
Pa LUTIMAX, K)
LUCIMAR,KY & LULJ,K)
LUCJ,K) = P
CONTINUE
EQUIL(IMAX) = EQUIL(J)
IPVT(J) = 1MAX
D1 = Diebu(d,d)
[F (ABS(D1) 'LE. ONE) 68 Te g0
D1 = DiegiXTH
D2 =_D2sFoUR
63 To &5
IF (ABS(D]) .BE. SIXTH) GO To 93
D1 = DINSIXTN
p2 : D2-FOUR
68 79 90
CONTINUE
JP1 = J+)
IF (JP1 ,6T, N) GO TO 108
DIVIDE BY PIVOT ELEMENT U(J,J)
P8 LU(J, )
DO 160 1&JP1,N
LUl1, 3% ='Lut1, /e
cenaénu&

PERFORM ACCURACY TEST
‘IDBIQ'EQ' 0) B0 TO 2003

3=N:
HA.l FI'IHREL
{ER(HA010.OII(-IDGT) .NE, WA) GO TG 900%
&
B0 TS 9000
IER = 129
D1

ALGIRITHMIC SINBULARITY
= ZERG
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~NOy
=14

=00

~O00S ARV ~OOONARLLN~OBOINALOR=IOBIRADLBR—~OBEIN R DB BOEINAE S

02 = ZERO
COODD CONTINUE

CALb UERTST(1ER, BHLUDATF)

PRINT ERROR

9008 RETURN
SUBRO E LUELMF (A,B, IPVYT,N 1A X)
DIMEN: ALTA, 1), BcH EPYTONDY , x(1)
c SOLVE LY ='B FOR Y
Do 8
8 X{1)
W =
0a 20
P 1
SUM_= )
X{IP} 3
IF (1w .EQ. 0) 6O TS 15
[M1 = |
06 10 J 1M1
UM UM~ACT, J)xX(J)
10 CONTINUI
G0 T0 2
13 IF (SUM .NE. 0.) IW = |
20 X{1) a SUM
c SOLVE UX = Y FOR X
0O 30 1B=1,N
1 = N+*1°18
IP1 = [+]
SUM = X(I)
IF (1P1 .GT. N) GO T@ 30
0o 25 J=iP1,
SUM™ = SUM-ACT,J)eX(J)
25  CONTINUE
30 x¢I) = SUM/ACE,1)
RETURN
SUBROUTINE UERTST (1ER, NAME)
DIMENS1ON 1TYP(2,4),181T(4)
[NTEGER WARN, WARF  TERM, PRINTR
EQUIVALENGE CIBIFC1), WARNY | (1BIT(2),WARF), (1BIT(3), TERM)
DATA ITYP /10HWARN NG 10H ,
= TOAWARNING (W1, §OHTH F1X)
= 1OHTERMINAL _; 10H .
» ,1gHng N-DEFINE 10HD 7,
» T 32 64,
c PRINIR CONTROLS-4HE OOTBUT UNIT FOR ERROR
g MESSAGES FROP _UERTST. FOLLOWING WAS IN ORIGINAL.
c DATA PRINTR/6LOUTP
g para THE FOLLOWING S COMPATIBUE WITH "PRINT" STATEMENT
c para USE THE FOLLOWING FOR TELETYPE ouTPUT.
c USE THE FOLLOWING FOR STANDARD LLL UNIT Q.
g DATA PRINTR/ 3/
1ER2= |ER
IF (IERZ .GE. WARN) GO TO 5
c NON-DEF | NED
1ER1=4
GB TO 20
8 IF (IER2 .LT. TERM) 0O TO 10
c TERMINAL
1ER1=3
GD TO 2D
10 IF (IER2 .LT. WARF) GO TO 15
c WARNING(WITH FiX)
JER1=2
66 TO 20
c WARNING
18 1ER1=1

EXTRACT =N«

RINT ERROR MESSAGE
WRITE_(PRINTR,25) (1TYP(] lERI) 121,2) NAME, 1ER2, 1ER
28 FORVAT(26H x¢ £71'm s LIUERTST) #xx '2A10, 4k, A6, 4X, 12,

R = ,13,1H))
RETURN

KRN KX R R AR AN R A NN NN AN R KN RN RN RN AR KA RN TN REA T

FPLOTT-=PLOTTING SUBROUTINE
SUBROUTINE FPLOTT (1FR,IPL, IMAP,NTOT, ARAY, XP)

FPLOTT WILL CREATE A DDB0O PLOTT FILE IN
WHICH NTOT POINTS_OF ARAY ARE

XP_WITH LABELS

BEL(30)

»18,

G

¢ 20 [IER2=1ER2-IBIT(I1ERT)

EL{

8,21) MAY BE _NUMERIC

R BLANK A10 FORMAT
LABELS ARE ALL A10 FORMAT
A M
o

APPING PLUS A TRACE
LY A TRACE OF ARAY VS, XP

QoooonoO0000 00
»
|
3
g
m
r
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0000000000

%1

NN

NN NN NNNNNNO QOO OO DR

WRN—=OWBNOBLLIN~OLONACAGN=OWENOADIN+ODR NN R —

LANDABAD

NOABWN=O DDA BDON—~O ODNDAA LN =ODDNN AL WM~

00000000000000

o000

000

Kz
PU.

[o]
B
T

SAME AS_1FR=1 PLUS DDBO FILENAME
TTEN OUT ON THE TTY

CAUSES ORID MAPPING
CAUSES PLAIN MAPPING

L JRACE & SIMPLE LINE
1HE, 1 E
or L1 RERul 15 LEREHE [oenTIFIER
ALLING PROGRAM MUST_CONTAIN COMMGN
LGCKS BLK AND QOPLOT AS WELL AS CALLS
6 GRTID, KEEP80 AND PLOTE
DIMENSION ARAY(1),XP(1)
NK=10

8| =
gSE DIMCOM

VH X=0
IF(lFR EG o) 60 TO 1

GO (2,4)
wPlTE(RQ 103 1PLOT(1210)

2 CALL FRAME
TF(YMAX.EQ.O0,) CALL AMINMX(ARAY,1,NTOT,1,YMIN, YMAX, M1,M2)

S
6
7
9
[+
8
*
S5

SCALE=YMAN-YM
=YMIN-.O5xABSF(SCALE)

El XMIN, XMAX, YMIN, YMAX, . 11328, .
.Ri XMIN; XMAX] YMIN] YMAX, (11328 .
cl 0,0}
I L=§ 2)
L c 40, 1 0, b)
Iy L=a,6>
CAL| c 39.,1 0,6)
WR 0 Ly, L=%,9)
CAl Cl s. 1,0,1,0,0)
TR ( =L . NK) ' WRITE(100,8) 0,12}
1F( EL ; NK) WRITE{100,7) 0.12)
CALL SETC 5. 1,0,1,0,0)
[F (ALAREL . NK] 'WRITE(100,8) 3,18)
I F ( ALABEL . NK) WRITE(100,7) 3,1%5)
CALL SETCH (45.,39..1,0,1,0,0)
TF (ALABEL CEGTBLANK) 'WRITE(100, 6) 6,18)
[F (ALABEL 'NEBLANK) WRITE(100,7) 6.18)
CALL SETCH 38, .1 .0,0)
[F(ALABEL (27).EQ. BLARK) WRITE¢100,86) 9,21)
1F(ALABEL (21) [NE.BLANK) WRITE(100]7) 8,21)
CALL SETCH(30.,2..1,0,2,0 0)
WRITE(100,9) (ALABEL(L):L=22,23)
caLL SETCH(2.,30.,1,0,2,1,0)
WRITE(100,9) (ALABEL(LY,L:24, 25)
CALL _SETCH(14.,41.,1,0,2,0,0}
WRITE(100,5) (ALABELIL},{=26,30)
CALL_SETCRT (XP{1),ARAY{1),1,0)
TF(IPL.EQ. 1HA) CALL TRACEC!1HA,XP,ARAY,NT,1,1)
IFCIPL.EQ. 1HB) CALL TRACEC(IHBIXPIARAYINTI1,1)
IE(IPL.EQ. 1HC) CALL TRAGEG(IHC,XP,ARAY,NT.1.1)
IF(IPL.EQ. 1HD) CALL TRACEC(1HD.XP.ARAY.NT 1.1}
IE(IPL.EQ. 1HE) CALL TRACEC(1HE;XP,ARAY;NT,1,1)
IF(IPL,EQ.0) CALL TRACE (XP,ARAY,NT,1,%)
FORMAT(5A10)
FORMAT (3A10)
FORMAT (2A10,E15.6)
FORMAT(2A10)
FORMAT (¥DDBO FILENAME IS "A10)
RETUR
EE N RN I R RN F N E RN R R R AN ERY RSN ER R NR RN
CYL--POISSON SOLVER IN CYLINDRICAL COORDINATES
RAUBER AND ET, "EFFICIENT_FORTRAN SUBPROGRAM
aR ARESeruton aE PTIC PARTIAL OIFFERENTIAL
QUATIGNS "~ “NCAR-TN-TA-109, (JULY 19
SUBROUTINE PUSGYL (leL A R BDeND BDA, DY, & NBDCND, BOC,
D, ELMBOA.F, 101 ME, PERTRE, lénhek

LCH (BDA)Y, (BDB!.(BDC) QBDD)

DJMENSIUN F(IDIMF,1),BDA{1),BDB(1),BDC(1),8DD{1),W(1)

CHECK FOR INVAL1O PARAMETERS.
1IERROR = O
1F (A ,LT.
iF .GE.

0.

} 1ERROR = 1
8) IERROR = 2
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000

=1
RNSCEONOGL OGN~ BONDNDL IR~

IF (MBDCND.LE.O .OR. MBOCND.BE.?) IERROR = 3

i1F (C .GE, D} 1ERROR =

1F (NCHECK(N).GT.1_.OR. N.LE.2) IERROR = B

IF (NBDCND.LE.-1 .6R. NBDCND.GE.S) 1ERROR =

1F (+~.EQ (MBDCND E .OR. MBDCND. EG 4)) IERROR = 7

IE (A AN HRREHR- S8 B INAOR Eo%uo. ok, 5) 1ERROR
N : .NE.O, .GE, =9

1E (ID . 1)_1ERRBR = 10

A;I(IE . D) RETURN

DELTAR FLOAT(M)

DLRBYZ2

DLRSC

NPT =

DELTHT FLOAT(N)

DLTHSQ = 4

NP = NBDCND+1

DEFINE RANGE OF INDICES 1 AND J FOR UNKNOWNS U(C1,J).

MSTART = 2

MSTOP = M

6o _Te ¢ 20, 15, to, &, S, 10},MBDCND

MSTART = 1

ag_ToO

MSTART = 1

MSTOP = MP1

HUNK = MSTOP'MSTART‘!

NSTQR

GD TB ( 40 25, 30, 35, 40),NP

NSFART

G6_TO 40

NSTART = 2

NSTBP =

NP1
NUNK = NSTOP-NSTART+1
DEFINE A,B,C COEFFICIENTS IN W-ARRAY.

ALDAMDADRDAGABDADDARA

X S priarirdarpurturterturfart S
N=0OONNPMAON=0O O

oo

(33
60
70

1B1 = GNUNKCLSEMUNK
1D2 = [D1+
1B2 = |DeapuNg
fLa = 1DI+MUNK
105 = I1DI-S«MUNK
1D6 = ITD5+MUNK
ISTART = _1
fj = S /DLRSG
IF (MBOCND.EG,3 .GR. MBOCND.EG.4) 14 = 1
[F (MCDEND .LE. 4) 60 TO
WiiD1+1) = O,
p2t1) = -2.xA1
D3+1) = 2. 3A1
ISTART = 2
jJ = 1
00 50 1=ISTA!
R°2 A TAT MY SsoeL TR
J = 1D5+i
W(J) = R
J = [D6+[
WeJ) = 1, /Rex2
J 3 1D14]
W(J) = (R-DLRBY2)/(RxDLRSG)
J = 1D+l
W(J) = (R+DLRBY2)/(R¥DLRSQ)
K = 1D6+]
J = 1D2+]
W(J) = =A1+ELMBOARW(K)
CONT I NUE
60 Tg ( 70, 5%, 60, 65, 70, 60),MBDCND
wilp2y = Al
@0 1o 70
WwiID2) = Al
W(ID3+1) = A1*FLOAT(ISTART)
CONTINUE

ENTER BOUNDARY DATA FOR R-BOUNDARIES,
(<14} Tﬂ 78, 7%,

Al = W(ID141)

DB 80 JENSTART,N:
F(2,J) =

CONTINGE

GO TO_ 85

Al = _2.%DELTAR®

DO 90 J=NSTART,NSTOI
F(1,J) = F(1

CONTINOE

60 TO (g

Al = W(1D4}

DB 105 J=NSTART, N
F(M,J) = FIM,

CONT i NUE

98,

F(2; Jl AIIF(I J)

N(lD1+|J

,J)*AIIBDA(J)

TOP
J)=AV¥F(MP1,J)

$3),MBDCND
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0000

AT N FOTRY b ot b ot i it s
BON=0VEANNARLN—=O WD

RN O O O O
AN
~ A,

828 C

ne

115

120

125
130
135

175
180
185

185 a2 =

)-Al1=BDBC(J)

ENTER BOUNDARY DATA FOR Z-BOUNDARIES,

A] 2 /DLTHSQ
ST, ART*!

-Ms
700 128, 125, 195, 135, NP
st

N

O

o
01
SSTTESAIN e

R? 5fop

L]
o 2)-AllFl] ”n

Q=~QO0 =
Z—O =0
~iN

—e-

ELTH
MSTART, MSTOP
= F{I,1)+A12BDCCD)

—~—h
—Z-0n

b4
T L
-

160,160, 150), NP
1. M5 {0P
[,N)=- AIIF(IANPil

o
(151
O —BND ~noo

—C~

Juo
o= i)
~0r
b
npT
4

MSTOP
JNPTI-ATSBDD(1)

“Am O——o0
——I ZZ~0n Z—u

ccy
zx MM Z e yTZ

S XGHT SIDE OF SINGULAR PROBLEMS TO INSURE EXISTENCE OF A

PERTRB = O,
[F (ELMBDA} 230,180,175
OR = 11
lD5+2) DLRBY2)

230, 185),MBDCND
0, 195,230) NP

200 A2 =

205

210

215

220
230

235
240

K = 1D5+MUNK
Weky =7 Bx(W(K-1)+DLRBYZ)

NSTART+}
NSTOP-1
"JENSPT  NSTHI
SV+F(l, D)

il =2
m

(A2«ST1+F(1,NSTART)+F(],NSTOP) ) s (K)

TE(M)xA+(, 75+FLOAT([M-1)5{M+1)))ADLRBY2
CND_.EQ. 8) S2 = 520 ZS!DLRB
+A; ZIFLOAT(NUNK-Z)

X z
I~ DR~ W-GUW‘O OZZ

oTN=~0O

am-=nAa
~Q ANI X =

awnwﬂznnz

ZZ
S —NN

CON.
CONTINUE
MULTIPLY 1-TH EQUATION THROUGH BY DELTHT=22 T U U,
CORRECT FORM FOR SUBROUTINE POLS. EL.THT¥2 Ta PUT EQUATION INTO
0G 240 1=MSTART,MSTOP

1-MSTART+1

14K
£ W(J)xDLTHSO
D2+
= W(J)=DLTHSQG
D3+K

DELLLLLA
gEX-X
TN~ ©

1

H
T
INO|
£
5
ERAD

'z
0

mz
nAAG
20-0
WUZZ

NBDCND
WNE, 4) 60 TO 200
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A
00000

R

NN NN NN
CWENAAN.

A
[

LRR—=OOONNTALN-OWRNUIRLR—

00000

&

Nttt bttt 2 O O O O
COENCADLN—-OBOND

REVERSE COLUMNS SO THE DERIVATIVE SPECIFIED-SOLUTION SPECIFIED
BOUNDARY CONDITIONS BECOME SGLUTION SPECIFIED-DERIVATIVE SPECIFIED

NPEROD s 2
1D5 = 1

K = N2
245 Do 255 Je),K
L = N+1-J
G0 250 I1=MSTART,MSTOP
5= Fe1,L)
F(I,L) £ FU1,0
(1;J) = §
25 INDE

25g CON$?“UE
60 TO (260,280),10%5

CALL F31S TO SOLVE THE SYSTEM OF EQUATIONS,
260 CALL POIS (INTL,NPEROD, NUNK,MBOCND, MUNK, W{1D1+1),HW(1D02+1),
TERR1,W)

D3+17, IDIMF,F {(MSTART, NSTART)
Go_Te (270,280, 280, 280, 26%) ,NP ' ‘

265 IDS_=
GO 1O 745
270 DO 275 |=MSTART,MSTOP
F(1,NPY) = FED,1)
275 CONTINUE
280 GONTINUE
BETURN
FUNCT] &N NCHECK (N}
OPTINIZE
THIS SUBPREGTAM CHECKS THE FORM OF N,
IF N = 2%xP, THEN NCHECK = .
IF N = (2--#)(3--0)(5--01, THEN NCHECK = 1,
OTHERWISE, NCHECK = 2.
s &= "nby2
IF (2xK .NE. NP) GO To 10
gg ;GK 5
f0 [F (NP -NE. 1) BO TO 15
NCHECK = O
15 K-1UREg
IF (3xK .NE. NP) G0 TO 20
NP 2 K
6o To_ 15
20 K_= NP/5
IF (5xKk NE. NP) 6O TO 2%
NP+ K
GO TS 20
25 IF (NP .NE. 1) 60 TO 90
NCHECK = 1
RETURN
30 NCHECK = 2
EEEURN
Sg??g?géNE POIS (1FLG,NPEROD,N,MPERGD,M,A,B,C, IDIMY,Y, IERROR, W)
e
EXTERNAL TRID L, TRIDP
DIMENSION Y(IDIMY, 1)
BIMENSION W) .8 LJALY) ,CL1)
JERRGR = O
IF (M .LE, 2) 1ERROR = 1
1 = NCHEGK(NPERGD-2% ( (2¢NPEROD} /3) 4N)
IF (N,LE.2 .OR. |.BT.1) JERROR = 2
IF (1DIMY_.LT. M) TERROR = 3
IF (NPEROD.LT.O ,OR. NPERGD,OT.3) IERROR = 4
IF_(JERROR NE. 0) 6O TG 28
IWDIMT £ GEN+T
IWDIM2 = IWDIM1+M
IWDIM3 = IWDIM2+¢M
IWDIMA = IWDIM3+M
IWDIMS = IWDIMa+M
oo 5 IEV,N
All) = =ACD)
Cei) = =CC1)
K = 1WDIMS+i-)
s ¥(K)E¢ -BlI)+2.
CONTINU
IF (MPEROD .EG. ©) 66 TG 10
CALL PG1SGN’ (NPEROD, N, IFLO, M A, W(IWDIMS) ¢, IDIMY. Y, W(1)
1o 15 WOIWDIAY S, wOIwDlME), wiiwDiMa) W 1wpiMa), TRED)
60 To
10 CALL POISGN (NPERGD,N, 1FLG, M A W(IWDIMS), G, IDIMY.Y,W(1)
4© WeiWDIft ), WOIwDiME) , WliwDTHEY ;W T1WDiNa), TRIDP)
15 D0 2o I=1,M
ACI) = “AC1)
c(1) & -CC1)
20 CONTINUE
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621 2% RETURN

63z
523 SUBROUTINE FBISON (NPERGD.N, 1FLG,M,BA,BB,BC, IDIMG, O, TWOCAS,B, T, D,
635 M1 2!
626 BINENSTEN Q(IDIHO,I)
87 DIMENSIGN BACT) \BB(1) ,BC(1) ., TWECOS(1>
1 B(1) JTC 1B 5
c IF (IFLG .NE. 0) GO TO B
¢ DG INITIALIZATION IF FIRST TIME THROUGH.
CALL POINIT (NPEROD,N, 1EX2, |EX3, 1EXS, N2PW,N2P3P, N2P3P5, KS3,KS5,
NPSTOP, TWOCOS
5 MM1 s M-1
©o 20 J=1,N
D6 10 §=1,M
B(I) = “Q¢1,J)
10 CONTINUE
CALL TRI ¢1,1,1,M,MM1,BA,BB,BC,B, TWICES, 0, W)
Do 1S 1Is=1,
acl, )y = B(I1)
15 conTINUE
20 CONTINUE
P21

DADDALDDDRA

8
]
<]
1
2
3
rl
]
6
7
8
9
0
1
2
3
4
2 ¢
Z‘ E‘ START REDUCTION FOR POWERS OF TWO
g IiF “EXZ .EQ. 0) GO TG 60
1 1F (IEK)’IEKS NE [<}) GU 5 25
2 IF (NPEROD .EQ. L -1
3 1IF (L _.EQ. 0) GO T0° \90
4 25 Do 55 KOUNT=1,L
S K NP
-] NP = 2aNP
Y4 K2 = NP-1
658 K3 = NP
3 K4 = ZIN -1
0 JSTART NP
1 1F (NPE oD _.EQ. 3) JSTART =t
2 Do 50 J JSTART
3 JM1 =
1 JP1 =
S IF ¢J . ) JM = JP1
6 1F ¢J } GO TO 30
? JPY =
8 IF (NI LEQ. 0) JP1 = K
9 30 [»[- I
0 B( JIM13EQCL, JPY)
71 3% CONTI
72 CALL K2,1,M,MM1,BA,BB,BC,B, TWOCES,D, W)
73 oo _4
74 TC [, JI+Bc1)
25 B( 3]
76 40 CONT}
27 CALL «K4,1,M,MM1,BA,BB,BC,B, TWOCOS,D, W)
78 0o 4
79 Q( T(1:+2.38(1)
0 a8 CONTI
1 s0 CONTINUE
:2' c 85 CONTINUE
g g START REDUCTION FJR POWERS OF THREE
; [:]=] II_F (}EXG VEQ. D) GO TO 120
8 IF [1EXS .NE. 0) GO TGO 635
9 IF (NPEROD .E@. 1) L = L-1
D iF (L cEaC 0) 80 T8 190"
1 65 K2 = NP’!
2 D6 115 KOUNT=1,L
3 K = NP
a NP =
5 K1
6 K2 = K2+K
7 K3 = K2+1
=4 Kd_c K2+NP
9 JSTART =
00 IF (NPERSD .EQ. 3) JSTART = 1
01 Do 110 J=JSTART N, NP
202 IF (J NE. 13 66 16 70
03 ML= JeK
7049 M2 = IMI1eK
705 GO TO 80
706 70 JM1 & J-K
707 JM2 = JM1-K
708 IE (4 .NE. N) GO TO 80
708 IF (NPEROD .EQ. 0) GO To 78
710 JPL s JM1
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N
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AR WR=OWDPNOANRIN—O!

797
7

o000

7%

80
a5
80

95

130

135

140
145

180

158

160

JP2_s JM2
Go'To "85
JP1E K
JP2_=
Go 1o
JPY = J
JP2 =
bs”_so
B[
CONTIN
gALL T .K2,1,M,MM1,BA,BB,BC, B, TWSCOS, D, W)
T(1 1)+Q(1,JM1)+QC),JIP1)
B(}J 1)
CONTIN
gaLL T ,K2,1,M,MM1,BA,BB,BC, B, TWOCOS, 0, W)
[~18] afl,J1+B(1)
B(I} 1)
CONT § NUI
géL%ogR SK4,3,M,MM1,8A, BB, BC, B, TWOCOS, D, W)
Qlr, 1,01+3.3B(1)
CONT ] NU!
CONT I NUE
CONTI NUE
START REDUCTION FOR POWERS OF FIVE
L = IEXS
IF (NPEROO .EQ, 1) L a L-1
[F (L .LE. o 10 190
K2 = (NZPW+N2P3P)/2-1
D6 185 KOUNT=1,L
K = NP
NP = SNP
K1 = K2+1
K2 = K2+K
K3 = Ka+)
Kd_= K2+NP
JSTaAR NP
1F (NPERDD .EQ. 3) JSTART £ §
DO 180 J=JSTART, N, NP
IF NE. 15 60 To 125
JM +K
JM JM1+K
JN3 24K
JM. JMI+K
GO Ta 13%
JoK
M2 = IMT-K
JM3 JM2-K
JM4 = IM3-K
1F (J .NE. ) GO TO 135
IF (NPZCROD .EQ. 0) GO TO 130
JP1 = JMY
JPa JM2
JP3 = JU3
JPA_z JH4
P
3
JP4 = JP3+K .
Do 145 1=1
cﬂN?:h&E= é.lG(l,J)Od.l(O(l,JMZ)'O(I.JPZ))‘O(I.JMQ)VO(I,JP4)
SGL%SER{ {K1.K2,7,,1M1,BA, BB, BT, B, TWOCOS, D, )
con i hde” BC1)48, %G1, JM1I+Q(1,JP1))+0(1, JMBI+QC 1, JPI)
CALL_TRI (K1,K2,1,M,MM1,BA,BB,BC,B, TWOCOS, D, W)
68 155 I=1,M
TCI) & Be1)
B(1) = 2.%x0(1,J)+Q{1,JM2)+Q(1, JPR2)+B(1)
CONTINUS
GALL TR{ (K1,K2,1,M,MM1,BA,BB,BC,E. TWOCOS,D,W)
66 160 1=1,M
Be1) = BCI)+Q(I, JM1I+QCT, JPL)
CONTINUE
CALL TRI (K1,K2,1,M,MM1,BA,BB,BC,B, TWOCOS,D, W)
Do 155 11, M
TEMP = BI1)+QU1,J)
B(I) = 4,%Q(1,J5%3. xcQC1,IM2)+QC1, IP2))+QL1,IMA) +
Q(1,JPA)-T(1)
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ooo

165

175
180
185
180

195

200

205
210
215
220

225
230

235

240
24%
2%0
255

260
285

C
CONT1
CONTINUE

INITIAL PHASE OF BACK SUBSTITUTION

IF (NPERSD
1F [NPEROD

.EQ.1 .OR. NPERCOD.EQ.2) GO TO 238
.EQ. D} GO TO 205

DO 195 1=1,M
B(1) = &,e(1,1)

CONTINYE

CSLL TRI (K3,K4,1,M,MM1,BA,BB,BC,B, TWOCDS,D, W)

23
Z 2
DR~ HONC RN —FEE0

ARZeAR e

o]}

REGULAR BA
?DNTINJ

E
{ (Kdel
N

Q01 N)+BCT)
a. 6ci, N

(Ka+1,K4+2xNP-1,2,M,MM1,BA,BB,BC,B, TWOCOS,D, W)

M
bleacr, Ny

QUI,N)I+B(])

.EQ. 0) GO TO 238

L «QCI,N)

a,Kd,1,H,MMI,BA,BB,BC,B,THOCOS,D,H!
CE, 1) +BUD)

CK SUBSTITUTION FOR POWERS OF FIVE

EQ. D) GO TO 35%

3

EXS .
5

a0
SU|

T »z

D=CRRRARAARZRC~ I 0~
=3

OTOONRAN—=LOH

c
=
c
E
c
Al
(NP
345
JM
JB1
Jrza
JP3
JP4

I

1
D

R
N
4
M
P
P
P
P
F
F
]

Z
@y~ ~

»Q 0G0 aQ0
k-4

~Z
T~ ={ PN~ —~ DR

800 o000 oo

:EQ. 1) K3 = KI+NP/S
NT=1, 1EXS

ROD .EQ. 3) JSTART = 1+NP
+N,K

.NE. D)} GO TO 255
oD .EQ. D) GO TO 245

21,0
&0, JP1)

-3

1,M
&C1, 9P +QII, N

M
G601, 3P 4001, UM1)

Qe1,J248(1)
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ghbé) = TEMP
7ER§={KI,KZ,1.M.MNI,BA,BB.BC,B,THUCUS,D,H)

;kGE= BCI)+2.2(001, JM1Y+0(1,JP11)I+QC], JMII+GC T, IPI)
7;R}=§§3,K4,l,M,MM1,BA.BB.BC‘B.THUCUS,D,H)

{(1,J) 3 Q(1,J)+5.%B¢C1)

éNUE

,Ka+NP-1,2,M,MM1,BA,BB,BC,B, TWOCCS,D,W)

,K4,1,M,MM1,BA,BB,BC,B, TWOCOS,D, W)
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B(1) = QUI,JP1)+Q(I,JPB)
270 CONTINUE
€aLL TRT_(K3,K4,1.M,MM1,BA,BB,BC,B, TWOCES, D, W)
Q(1,JP2% = QC1,JP2)+B(1)
275 onT I NOE
F (JPA
o 280
B(I)
280 T1NUE
10 295
285 290 1=
B(1) = £.,20(1,3P2)+01),J)
290 CONTINUE
295 GALL TRI (K1,K2,1,M,MM1,BA,BB,BC,B, TWOCES,D, W)
06 300 1=1,M
(1,3P2) = Ql1 JP2)+B(I)
B(13 = 0C1,JP2)%0(1,J)
300 CONTINUE
CALL TRI (K5,K6,1,M,MM},BA,BB,BC,B, THOCES,D, W)
06 305 1=1#
acl, Jp2) = acr, JP2reB(l)
B(19" = (T, 3 +4(1,IP2)
305 CONTINYE
CALL TRI (K7,K8,1,M,MM},BA,BS,BC,8, TWOCOS, D, W)
DS 310 1=1,M
(I, d) 2 et J3B(1)
Bc13 = ocl,d3%acl, JP2)
310 CONTINUE
CALL TRI (K3,Kd4,1,M,MM1,BA,BB,BC,B, TWOCAS,D, W)
Do 315 I=1,M
acl, Py = 0(1,JPtI+BL1)
315 CONTINUE
IF (JP4 .GT. N) GO TO 325
Do 320 1=1 M
BCi) = OC1,JP2)+0QUI, JPA)
320 CONTINUE
69 10 335
325 D8 330 I=1,M
B(1) = OC1,JP2)
ggg EEEEI¥3$ [K3,K4,1,M,MM1 ,BA,BB,BC,B, TWOICOS,D, W)
K4, ,BB,BC,B, s
Oo 340 1=1,M e !
af1,JP3) = Q(1,IP8)+BC1)
340 CONT | NUE
345 NUE

CONTI
350 CONTINUE
REGULAR BACK SUBSTITUTION FOR POWERS OF THREE
355 IF (I1EX3 .EQG. 0) GO TO 455
= NzPaP

= KS3
IF (NPEROD.EQ.1 .AND. IEXS.EQ.0) K3 = K3+NP/3
bo 450 ﬁgUNT=1.IEXG

K
RS
T el
K3 = K3 ¥
Kl = K2+1
K2_= K2+2eNP
JSTART = NP
IF (NPEROD .EQ. 8) JSTART = NP+l
DS 445 J=ISTART,N,K
JMI = J-NP
JPL & JiNP
JP2 e JPI+NP
IF (JM1 .EQ. O} GG TO 385
Do 360 11
BOI) = AC1,JP1)+QCE, IM1)
360 CONTINUE
G6 T 365
365 IF (NPEROD .EQ. 0) GO To 378
DO 370 1%1,M
B(I) = &C1,JP1)
370 CONTINUE
GO 10 368
373 DO 380 1I=t, M
BI) = &C1,JP1)4QCI,N)
360 CONTINUE
385 CaLL TRI (K3,K4,1,M,MM1,B4,BB,BC,B, TWOCOS, D, W)
s
Qil,J} 5 Qe1,J1+B¢1}
390 GONTINUE
[F (JP2 .6T, N) GO TO 40C
DO 395 I=1
B8(1) = &(1,J5+a(1,JP2)
ass CONTINUE
400 88 285710 w
a
Bl = &(1,9
405 CONTINUE
410 GALL TRI (K1,K2,1,M,MM1,BA,BB,BC,8, TWOCOS,D,W)
GO 415 ia1,M
acl,J) & Qc1,90B(1)
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000000
000 O000GON0

bl
O
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N

2043

oon

a1 CUNTllUE
{JP2 GT N) G0 Ta 423
85 gzo it
Iy = b(l Jr+@11,9P2)
420 CONTlNUE
GG Tg 435
425 6 430 1=1,M
B8ei) e &C1,9)
430 CONTINUE
438 géLhdsR{ %KG.Kd,I,H.MH1.BA.BB.BC,B,THOCES.D.H)
=
o(l.JP1$ = OC1,JPII+B(I)
449 NT INUE
4as conTINUE
450 CONTINUE
REGULAR BACK SUBSTITUTION FOR POWERS OF TWO
455 IF (1EX2 .EQ. ©) 6O TO S10
[»]-] 205 KOUNT=1, lEX2
e ey
JSTART = NP
iF CNFERGD .EQ, a) (ISTART = 1+P
a0 500 J-JSTART.
JMm o=
JP1 & J
TF' (im1""RE. 0) oo TO 470
IE (JP1_:GT. N) GO _TO B
5;1(NPERUD. Eo'1 S8R NREROD.EG.2) o To 40
GO TO 480
450 DS 465 1:=1,M
Bil)» = &(1,JP1)
485 CONTINUE
68 TG 490
470 1IF (JPY1 .LE. N) B0 TGO 480
00 475 1:1
B(1) = &C1,0M0)
a7s CONTINUE
@6 1o _as0
480 D6 485 1z1,M
Bi1) = &(1,JM1)+Q11,IP1)
485 CONT I NUE
490 CALL TRI (NP,K3,1,M,MM),BA,BB,BC,B, TWOCOS,D, W)
Do 495 1=1,M
011,01 & G(L,J)+B(1)
495 CONT I NUE
50 T1NUE

Ll
’ES%E;*ERZ""’"'"Z

—-—

R
a0

D CON
g?s CONTINUE

END
SUBROUTINE POINIT (NFEROD N
OPTIMIZE

OIMENSION
PARAMETER NPSTOP 1S NOT USED IN THIS SUBROUTINE.

TWOCOS (1}

MACHINE DEPENDENT CONSTANT
P1=3, 14t 7 4626
Pl = 3.14159265356979

COMPUTE EXPONENTS OF 2,3, ANO S IN N,

TMT_MmMm|mY

"X

X,

nx

IEX2 IEXO TEXS, N2PW, N2P3P, N2P3PS, KS3,
NPSTOPR, Twhcos

841971

751088209749446

NPERED JEQ., 1) NP = NP+)
NPEROD JEQ, 3) NP = NP-1
a
NP/Z
235K .NE. NP) GO TO 10
; 1EX2+1
R
= 0
NP/3
xK .NE. NP) GO TO 20
!l..( 1EX3+1
o 18
= 0
NP/3
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CONAGLRRN=ORONNARLON-COANRAL N —O

WARAANNOANAL LA LD S bbb

]
(=]

o00

as

5%

75

80
as

1]

a5

100
105

1s

1F (8*K .NE. NP) GO 7O 30
IEXS'I( 1EXS+1

TINUE
NPy = Zarx
N2P3P_= NZFHI(GIII
N2P3PS = NZPGPI(S-IlEXS)

COMPUTE NECESSARY VALUES OF 2xCOS(X)

NP = 1
TWOCOS(1) = O,
IF (1EX2 .EQ. 0) GO TO SO

L = 1EX
1F (IEX3+IEX5 +NE, O} GU Tﬂ s
1F (NPEROD .EQ. T) =
1F (L EG a3 GO TO 145
BO 4% KOUNT=1,L
NP = 23NP
oo 40 é'i » NP
THOCGS(J) = 2.%COS({FLOAT(1)-.5)xP1/FLOAT(NP)}
CONTINUE
K = K+NP
CONTINI
{F ({EXG .EQ. 0) GO TO 70
IF (IEXS .NE. 0) GO TG 55 3
IF (NPEROD .£G. 1) L = L= i
IF (L_.EQ. 0) 6o T 8%
on 6% KOUNT=1,
NP = 3xNP
[+-} 50 l:},NP
THOCOS(J) 2 2.8COS({FLOAT(1)-,S)=P|/FLOAT(NP))
CONTINI
K = K+N
CONT ! NUE
L = IEX5
IF (NPEROD .EQ, 1) L L-1i
1F (L .Ll 0) GO ro 8%
DO B0 KOUNT=1,L
NP = NP
Do J75 1=},NP
+
TWOCHS(J) = 2, *CCS((FLOAT(I)~,.5)aP]/FLOAT(NP))
CONT INU
K = K+NP
CONT 1 NUE
1F (NPEROD.EQ.1 .GR. NPEROD ED 2) 65 To 105
IF_(NPEROD .EG. 0) GO 7O
NPT2 = 2xNP
D& JSO é=}.NPT2
TWELES(J) = 2, #COS(FLOATI1)2PI/FLOAT(NP))
CONT ] NUE
= K+NPT2
G TS 105
Do 300 &:} ,NP
£
TWOCOS{JI) = 2.ACOS(2.xFLOAT(1)=P1/FLOAT(NP))
CONT] NUE
K = K+NP
NP = NZPGP
IE (IEX5 Q. 0) GO TO 130
KSS =
DG 126 K UNT=1 1EXS
NP _=
NPT2 = 2INP
Do }10 &:},NFTZ
TWOCAS(J) = 2. 8COS(IFLOAT(1)-,.5)*Pl/FLOATINPT2))
CONTINUE
K_r K+NFT2
PO 115 1=1,NP
J 3 Kedxl
TWOCOS(J-8) = 2. =COSC{FLOAT(I)-.8)=P]/FLOATINP))
TWOCAS(J-2) = 2 BCOS({FLOAT(1)}-.6)sPI/FLUATINP))
TWOCOS(J=-1) ® 2. %COS((FLOAT(I)-,4)xP1/FLOATI(NP))
TWOCOS(J) = 2.%¥COS((FLOAT(1)~.2)xPI/FLOATINP))
CUNTINUE
K
® 2, XCOS(FLOAT(3x}-2)2xPI/FLOAT(3%NP) )
2.xCOS(FLOAT(3s1-1)sP] /FLOAT(3xNP))
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1DlMENSlUN

08 135
e

NP

2 2, 2COS(FLOAT(3x
TWOCOS() = 2,%COS(FLOAT(Ax1-
CUNTINUE
= K+2x
140 CONTINUE
145 RETURN
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THOCOS(1)

,B(1)
Loet)

TTMUTINE TO SOLVE TRIDIAGONAL SYSTEMS

,C01)
SN

PARAMETER W NDT USED IN THIS SUBROUTINE.
L] K KSTART KSTDOP
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O<XO<L=~XNQ
e Fats Tole ]

ND
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B0
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K188}

SUBROUTINE TO SOLVE PERIODIC TRIDIAGGNAL SYSTEM

bo
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GE

LIVERM
SUBROUTINE DEC (N, NOIM, A,

DIMENSION AC(NDIM,N}, IP(N)

1) GO TG 70
NMt

EQ.

D~ OXDuXZ: O

ZRN=

ACK,K)

X
R WOA—D =4 XK ID:

et aC
»CDR=\T-
on re arm

GO0 TS SD
W)+ ACT

~oon
gowvd
L]
a
CHNIPZZO OD—=bP»—

w2z _Z~A -0
x 2 ~Zp

80
UBROUTINE DEC

SUBROUTINE SOL (N, NDIM, A,
THE_FOLLOWING CARD 1S FOR OPT]
OPTIMIZE

DIMENSION AINDIM,N), BIN),
SOLUTION OF LINEAR SYSTEM AsX
INPUT,

Q00 O 00 00 O

/SOL: SOL

~DCI)aY{I+1)=Wi1)aY (M)

EIRIEFUCIREITIICIXIIICIRIEES
DEC AND SOL FROVIDE A HORE RAPID MATRIX INVERSIGN CAPABILITY

ET. Al 10N DENSE _SYSTEMS OF LINEAR
BRAAE EOUATIONS. gGlD 30137 LAWRENCE LIVERMORE LABGRATORY,

OF

)
IP, 1ER)

THE_FOLLOWING CARD 1S FOR OPTIMIZED COMPILATION UNDER CHAT.
OPTIMI 2E

JK)xT

B8, 1P}

MIZED COMPILATION UNDER CHAT.

IPIN)
8 USING CUTPUT OF DEC.
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N = ORDER OF MATRIX.

NDIM_= DECLARED _FIRST_DIMENSION CF ARRAY

A = TRIANGULARIZED MATRIX OBTAINED FROM DEC

B_= RI ND DE VECTOR,

1P_= PIVOT INFORMATICON VECTOR OBTAINED FROM DEC.
887§3¥ USE IF DEC HAS SET IER .NE. O

B = SGLUTION VECTOR, X .
1F (N NEG. 1) 6o 7O 50

&
000000000

1= 1
C  APPLY ROW PERMUTATIANS ANO MULTLIPLIERS TG 8.
05 20 K = 1,NM1

KP1 = K +
M = IF(K)
T = B(M)
BIM) = B(K)
BiK) = T
DO 10 1 =_KP1,N

10 B{i) = BC1)'+ ACL,KI=T

20 CONT [ NUE

- € BACK SSLVE,
0D 40 KB = 1,NM1

KM] = N - KB
K = KM1_+ 1
B(K) = B(KIZAK,K)
T = -B(K)
DO 30 1 = 1,KM1

30 BCI) = BCI) ¢ AC1,K)xT

ag GONTINU

50  B(I) = B(1)/A(1,1}
TURN

&
C END OF SUBROUTINE SOL
END

~137-



Sample Input

o
a
z
w
o -~
3 =
0 o
w o
- o
W= D
@ng -~
NOZ
LY. A4 n
«iJ o a
5 @ &
4
-0 - A~ T O
S 56 8 &
0 N W O
~gO On z
EE @ -~ ©O
S6. ~. " a
A= BT - O
nn ON O E
-] DM Z
Swoda 1 [T
€®00 Ww. 0 o
u 4L D @ wo
FUWE VO Z ~z
26927 o 84
=" o
Z6 "0 . tu -
-3 -OY —D~
wuo -0 QDO
Q & o~ EEeo
ong 0
- o0
PUE O
o020 -0
ZZ ~0
=6 8
e ~Z-
BorEs
N
N -0
wu o
qZ -0
o
-0 -
DEO
Q0
NOX - Q=D
i o~a B~
280 Zhio
Dt

~=NOTDUNDAO—-NO

-

-138-~



-6EL-

WN=OVENOADLN—-CDRNOABO=

O NI YA b =t mh b bttt b
A

28

HICKNE$S= 2 0000 IN. RADIUS=
SHELL DENS
TIME INCRE E 0O0E -
’F"’IEUID DENS[TY 0.0350 LBS. /CIJ IN.

. 2830 LBS. /cu IN, E 30000000. PS
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NBDCNDO= 1
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LOADING FREQUENCY ON SHELL SURFACE 0. HZ

BOUNDARY CONDI TIONS

IME= 8,00E-05 SECS X=0

T
u
v
W
M

0000
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X1

PRESSURES AT TIME= 1.00E-02 SECS

STATION (I PRESSURE (PS1)
Q. 0.
160.00 0.
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328.00 o,

9,00 1.0%52€-04 2.180E-19 -6.813E
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