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ELASTIC WAVE SCATTERING_CALCULATIONS AND THE
MATRIX VARIATIONAL PADE APPROXIMANT METHOD

J. E. Gubernatis
University of California
Theoretical Division
Los Alamos Scientific Latoratory
Los Alamos, New Mexico 87545

ABSTRACT

The matrix variational Padé approximant and its generalization to elastic wave scattering are dis-

cussed.

Predictions of the method for the scattering of a longitudinal plane wave are compared with the
exact scattering from spherical voids and inclusions,

Its predictions are also compared to those of the

first and second Born approximations and to the standard matrix Padé approximant based on these Born

approximations,
INTRODUCTION

This is a preliminary report on the applica-
tion of the Lippmann-Schwinger cariational princi-
ple to the scatiering of elastic waves from voids
and inclusions.' This pariicular variational prin-
ciple has the advantage of be.ng formulated in
terms of the scattering matrix and hence direztly
giving the physical quantities of experimental
interest., The trial functions used in this appli-
cation of the variational principle allow the sta-
tionary value of the variational form to be expies-
sed in a compact block-matrix form with the block-
matrix elenents corresponding to terms in the Born-
Neumann series solution to the integral equation
of scattering.

Our principal motivation for using the varia-
tional approach 1s to develop a method for treating
the scattering of elastic waves from col. plexly-
shaped defects when the wavelength of the incident
wave is comparable to the size of the defrct end
from collectionr of defects. Presen& gethods, Vike
the elgenfunction expansion methods,<"” are for
practical reasons limited to axially-symmetric
defects and arc awkward to apply to a collection of
defects.

Below we summarize some exact results from the
integral equation approach to scattering theory,
Then we discuss four approximations: tha first and
second Born approximations, the [1/1] matrix Padd
approximant, and the varifational approach, formally
called the variational maty ix Pad€ approximant,

The first two approximations are necessary compon-
ents to nur application of the fourth approximation,
We include Lhe third method as & way to bridge the
varfational method and the two perturbation approxi-
mations.

CXACT LESULTS

The integral equation describing the scatter-
|n? of an elastic wave from volds and inclusionsy
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and « and # equal to the longitudinal and transverse
wavunumbers. We also !iave that

with *, and ¢C K; itqual to the density and stiff-
ness diffuroncég between the flaw and host material
and with
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The parameter ,- is the dersity of the host materiar,
and w s the circular frequency of the incident
wave,

In the far=field the splution to (1) has the
form
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and the f-vector defined by
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where k= keoand ¢ 1w the direction ot weattering,

fnterest {4 the
It the incident wave

The quantity of exper{mental
ditterential cross-sectfon,
Iv a plane wave of the form
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then the differential cross-section
for the longitudinal compone.at of the scatteriny is
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There 1< an alternate integral equation
approach to the scattering that 1s formulated 1in
terms of the scattered amplitudes, If both sides
of (1) were operated gr by expl- 1t-r)v Er) and
then integrated over r, it Tollows fror11j 6) that
(1) 1y now equivalent to

f1(’ [-/dre k. 1J(r)uje to -F +

ﬁﬁfd?-e"“"v,j(F)gjkG.?-)ka(?')uk(F')] (9)

50 with the definitions

f(R) 7 g Ty (R0 (10)

+0 -

ORI L S OR L an

and the usc of the Fouri.r transform of (¢),
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The matrix function T
Ing simple relation to the
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and the shape factor

SOk M) ‘,‘/:“-_”(,-,)rl(f“_“.," (16)

Several additional detinftions and equations
will prove waeful, ety 11y une L) tar {ndd-
dont. wave and {f we define Ull(r) hy

u‘(ﬁ) - U,J(f)dJ (1)

then we can vewrite (1) as
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where
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Also, we note that the specific formula for the
scattering matrix 1s now
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The First and Sezond Born Approximations ~ A formal
solution to the integral equation for the scatter-
ing matrix can be obtained by iterating the equa-
tion to produce what is often called the Born-
Neumann series. If only the first term 1. this
series Is used {1.e., no 1terations are performed),
then the resulting approximation is called the
first Born approximation, ;he first Born approxima-
tion to (12) corresponds to

Ty5(KoKO) o vy (K, (21)

If the first two terms of the Born-Neumann
series are kept (i.e., one iteration is performed),
then che approximation is called the second Born

approximation, For (12) the second Born approxi-
mation corresponds to
Ty (k&) = T("(i k0) + TSZ'(u k°) (22)
where
1“)(2 ro) = vy (ki) (23a)
T20(6,50) = faie 1ksth, D)6, (0
. s(ﬁ.i”)th(&.ﬁu) (23n)

The matrix functions T(}) and Tgﬁ) are called the
first and second Born trrmy,

The evaluation of the second Born term {4 not
A rivial numerical task, Normally, the second
Born term 15 a 6-dimensional integral with a singu-
lar integrand, 1In our particular case, because
the deiect volume §5 a:-umed Lo be fin{te, the
Integral e finlte,  The way we chove to express
the second Burn term hay reduced the dimensfonal ity
of the inteqration t 33 the fntegrand {4 stil
stonqular, but the tntegral 14 now infinite, A
possible advantage to the present approach 1o the
frolation of the shape dependence of problem {n the
shape factor (16),  dow the second Born tevm s
Integrated nunerically ts essentially independe nt
of the tlaw shape,  The shape tactor 4 ju.t ome
subroatdne, usually a simple one since (16) can
often be svaluated analytically or else reduced to
a one or two-dimen<{onal numerical inteqration,

throuah the shape factor {t 1y alag oany to
study multinle defect problems,  lor example, to
N tdentical defects whose contratdy ave located hy
i the shape factor ety replaced by
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where S(%,k°} 1s the shape factor for one of the
defects. The summation in the above {5 called the
structure factor,

The [1/1] Metrix Padé Approximation - If F,.) is a
matrix tunction of x and if

Fix) = FO 4 f ey Dy 4 oo

then the [M/N] matrix Padé approximation to F(x) f{s
defined by8

FMN () gy (0)gy (0] (250)
where
gy (XJE(x) = By(x) =20 (25b)

(For compactness, we now denote matrices by under-
lined, capital Roman letters. Below, all matrices
representing prysical quantities are 3-3,)

Specifically, from (18) and (20),
e - AR )

Herr.e, 1f tne first two terms of the Born series
are known, it 1s a trivial procedure to evaluate
the [1/1] matrix Padf approximant. The result may
be a better approximation than given by the second
Born approximation,

Technically, the definition (21) is of a left-
handed matrix Padé approximant, I Pu{x) is
inverted instead of the Qu(x), then a right-
handed matrix Pudf approximant {5 cefined. The
different definitions can be shown to qive equiva-
lent answers,

The Variation.) Matrix Padé Approximant - First, we
fdentify WV & The matrin functlon satisfying the
adjoint equation of (18)

Wir) = Wo(r) cﬁlF‘ g (ror vir W(r) (27a)
whore
WO(F) -1 etk (210)

Next, we oprrate an both «{des of (1n) with
W V(r), integqrate over v, and subtract (0) from
the result to find
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Clearly, 1f W(F) and U(F) are exact, the above is
an exact enxpression for the scattering matrix.

The expression also has the feature that considered
as a functional of W(r) and U(r) 1t is stationary
with respect to independent and arbitrary varia-
tions of W(r) and Lir) about their exact values.
When used as a varlational form, the expression

is a generalization to elastic wave scattering ?f
the Lippmann-Schwinger variatinnal principle.””

There are many ways to choose the trial
functions W(r) and U(r). We chose
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When (28) is made stationary witl respect to these
choices,

9(1) . 2(1)

and (28) can be expressed in the fcllowiny compact
form
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where we have defined
_x_” " _T(])(i(‘).i(‘”) - I(")(l'(‘)'f(i)) £30n)
Equation (30) 15 a block-mat: f« equation: Matrix

mulciplication {s done by the rule of bloch-matrix

multiplicatfon. The transpase aprration is on

block elements and not on tne indi-{dual matrices

comprising those elements. In (30) the need to

calculate the first and second Born approximetions
zs evident, The reader should compare (30 with
20),

RLSULTS

For an inciden’ longitudinal plane wave we
computed the Tongitudinal backscaitering from
spherice” detocts predictod by each of the four
approximations and compared the results to the
exact isnllﬂr!nq from spherical volds and ‘nclu-
stons, We studied the breakdown of the approxi-
mation. a. ka {5 {ncreased and as the density and
stiffnesy of an inclunfon ts {ncrementally
decreased from that of the host matertal (o that of
a vold, (kK Is the scattered wave number, and a iy
the radius of the sphere.)

for the varfationa) part of the calculation



our trial function was ational calculation, when (31) is used, is never
better than the first Born approximation. In Fig.
3 9Y T 1 we plotted our results only for the second Born
(1)eit° o, i(z)eik r

Ulr) = a (31) approximation. Includirg the results of the other
caiculations clutters tn2 figure without revealing

not a serious choice. It was, however, an effec- more information than whiet was just said. Pre-
tive and convenient choice to study the internal sently we are trying to find a more reasonable
behavior Jf our computer program. (If (31) were choice of trial functions. We will report our
used to calculate the forward scattering, then the results elsewhere, accompanied by a more expansive
two wave vectors in (31) become equal, and the treatment of the theoretical methods.
square matrix in (31) becomes singular and non-
invertible, With (3)) anc the second Born term, ACKNOWLEDGEMENTS
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Ftg. 1 The longitudinal backscattering from a
sphertca’ vold and inclusiens that {s * re-
dicted by the second Born approximation
plotted a% a function of ka. Lach tine {s
for an inclustion whose density ani, Lamé
parametors are reduced by a factor of 0,1,
0.3, 0.5, and 1,0 relative to the host
medium. The reduction of 1.0 corresponds
to a vold,

We were uncertain how well the variational
tateulation would work, but believed that the
second Born approximation would have larger ranges
of validity than the 11t Born approximation and
that the [1/17] matrix Padf approximant would be at
Trant valld a+ the second Rorn approximation, This
{v what we found., Additionally, we found the var{-



