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I. INTRODUCTION 

I 've been asked t o  describe the  technique of capture' 
reaction studies  of  giant resonance properties. Most of my 
discussion w i l l  be based on examples, since the  c leares t  
way t o  i l l u s t r a t e  technique is by example, and I have t r i e d  
t o  choose recent measurements of general in teres t .  In addi- 
t ion,  since one's understanding of the physics of giant  reso- 
nance properties is best achieved by comparing results o f  
quite different  types of experiments, I have included such 
comparisons where appropriate. Since t h i s  paper is not 
meant t o  be a review, I 've not attempted t o  adequately repre- 
sent all of  the  recent work of in te res t  i n  t h i s  f i e l d ;  indeed, 
t h i s  would be impossible i n  such a short space. Most of the 
recent work of in te res t  has been i n  proton capture, i n  pa r t  
because of  the great ut t i l i ty  (and ava i l ab i l i ty )  of polarized 
beams; and most of  my discussion w i l l  be about t h i s  reaction. 
1'11 also br ief ly  discuss alpha capture, which has been a 
useful too l  f o r  exploring isoscalar  ( I S )  E2 strength, a d  
neutron capture, which i s  coming of age with the  high qual i ty 
work being done now a t  TUNL. 

F i r s t ,  I 'd  l i k e  t o  mention some advantages of capture 
reactions: 
a )  Detailed information with good energy resolution can be 

obtained on t h e  contributions of d i f ferent  mul t ipo ly i -  .+ 
t i e s  t o  a speci f ic  reaction channel. The a, p and n 
entrance channels allow the l e a s t  ambiguous separation 
of different multipoles f o r  reactions with simple spin 
sequences. Radiative capture has a l so  been observed 
with d, 3 ~ e ,  ' ~ i  and I2c project i les .  The sens i t iv i ty  
of capture t o  E l ,  M l ,  E2 and E3 multipoles has been 
demonstrated: t h i s  r e l a t ive ly  res t r i c t ed  sens i t iv i ty  
t o  low order multipoles i s  a simplifying advantage. 

b) Because d i f ferent  multiples in ter fere  in the  differen- 
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re l a t i ve ly  weak multipoles. Thus information about 

'*k2 tial cross section,  one has an enhanced sens i t i v i t y  t o  

the phases and the  magnitudes of reaction amplitudes 
is  obtained. 

c )  Specific information may be obtained on the  isospin 
character ( i sosca la r  vs. isovector) of t he  radiation 
and on isospin purity.  % 

11. METHOD OF ANALYSIS FOR NUCLEON CAPTURE 

(@tion u(E, 8 ) and analyzing power A(E ,€I ) ' 
f o r  61: f polarized pa r t i c l e s  may be defined i n  
the  manner as 

and 

where a4 and US are  the cross sections f o r  an incident beam 
of energy E and vector polarization of 9agnitgde P oriented 
along ( 4 )  o r  againt  ($1 the  normal = Ki, x Kout t o  the  
reaction plane. 

The dependence on Y-ray emission angle 8 may be expanded 
a s  

and 

Here atotal = 41TAo, hax i s  the  maximum multipole 
which contributes (bax =2 f o r  dipole + quadrupole) and 
the  QK a r e  the  usual angular at tenuation factors.  It is 
often convenient t o  define f rac t iona l  Legendre coeff ic ients  
a~ = AK/Ao, bK = BK/Ao. For the  capture of polarized spin- 
L/2 pa r t i c l e s  on unpolarized ta rge t s ,  with only the  y-ray 
intensi ty  ( a t  a given energy and angle) observed i n  t he  out- 
going channel, the  above equations completely specify t he  
(parity-allowed)captwe'procesc, 

The usual angular momentum coupling ru les  t e l l  us t h a t  
interference between opposite (same) par i ty  radiat ions  con- 
t r i bu t e s  t o  the  odd (even) coeff ic ients  so t h a t  El-M1 i n t e r -  
ference contributes t o  A1 and B1, El-E2 t o  A1, B1, A g ,  B g ,  
e tc .  The exact re la t ions  may be writ ten down a s  
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and 

where Tt ,  T t ,  a r e  t h e  r e a c t i o n  ampli tudes f o r  d i f f e r e n t  
channels t and t ' ,  t h e  Dtt'k a r e  angular  momentum coupling 
f a c t o r s  and 

where 2 ,  j ,  R', j '  are t h e  i n t e r f e r i n g  o r b i t a l  and t o t a l  
angu la r  momenta f o r  t h e  i n c i d e n t  nucleon. 

For t h e  simp1e:st s p i n  sequences (Jtarget = 1 / 2 ,  
J r e s i d u d  = 0 O r  v i c e ' v e r s a ) ,  on ly  2 complex r e a c t i o n  
ampli tudes c o n t r i b u t e  f o r  each mul t ipole .    or cases  of  
t h i s  s o r t  involving l p l / 2 - s h e l l  t a r g e t s ,  t h e  amplitudes a r e  

If only e l e c t r i c  mul t ipoles  c o n t r i b u t e  a t  a given energy,  
t h e  problem i s  overdetermined (e .g . ,  9 independent A K ,  BK 
versus  7 amplitude parameters  f o r  E l  + E2) whereas i f  magnetic 
mul t ipoles  c o n t r i b u t e ,  t h e  problem i s  underdetermined ( E l  + 
E2 + M 1  r e q u i r e s  11 amplitude parameters)  and t h i s  l a t t e r  
s i t u a t i o n  r e p r e s e n t s  a l i m i t a t i o n  t o  t h e  technique.  However, 
as we show below, one may use ($,y) t o  uniquely determine E l  

- 

ampli tudes,  i d e n t i f y  t h e  m u l t i p o l a r i t y  E l ,  E2 o r  M 1  o f  reso-  
nances, and provide i n t e r e s t i n g  l i m i t s  on E2 c ross  s e c t i o n s  
f o r  broadly d i s t r i b u t e d  s t r e n g t h  i n  t h e  continuum. 

111. E l  PROPERTIES I N  ($,y) 

A t  most bombarding energ ies  E l  is t h e  dominant mul t ipole  
in  (p ,y )  and measurements with po la r i zed  beam p lace  important  
r e s t r i c t i o n s  on t h e  E l  ampli tudes and phases which c o n t r i b u t e  
t o  t h e  capture  process .  The p ioneer ing  work o f  t h i s  s o r t ;  
i nc lud ing  ( i fyy)  measurements o f  E2 s t r e n g t h ,  was c a r r i e d  ou t  
at  Stanford  Univers i ty .  ' y 2  For t h e  simple sp in  sequences 
descr ibed above, where only  2 complex E l  ampli tudes may con- 
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t r i b u t e ,  ( 3 ,  y ) angular  d i s t r i b u t i o n  measurements r e s t r i c t  , 

t he  ampli tudes t o  2  p o s s i b l e  s o l u t i o n s .  This  2-fold ambig- 
u i t y  i s  i n h e r e n t ,  r e s u l t i n g  from t h e  q u a d r a t i c  na tu re  o f  
the  equat ions  r e l a t i n g  t h e  ampli tudes t o  t h e  da ta .  A t y p i c a l  
example i n  l i g h t  n u c l e i  i s  t h e  1 2 ~ ( p  3~ r e a c t i o n ,  3 3 4  

i l l u s t r a t e d  i n  Fig.  1. The GDR region extends from Ep % 8-30 
MeV with ($,yo) angular  d i s t r i b u t i o n  r e s u l t s  a v a i l a b l e 3  f o r  . 
Ep = 10-17 MeV. Only incoming s- and d-wave amplitudes 
(with j = 1 / 2  and 3/2, r e s p e c t i v e l y )  may c o n t r i b u t e  t o  E l  
cap tu re ,  and Fig. 1 shows t h a t  one o f  t h e  2  s o l u t i o n s  i s  
predominantly d-wave ( d > )  and t h e  o t h e r  predominantly s-wave 
(s,). Simi la r  d> and s> s o l u t i o n s  are obtained for  o t h e r  
cap tu re  r e a c t i o n s  such a s  l4c(S,y0 l 5  and 1 5 ~ ( $ , y 0  )23637 ( s e e  
f i g .  21, i n d i c a t i n g  t h a t  one i s  observing a  genera l  f e a t u r e  

Figure 1. U e r  p a r t  
O t o t a l  foFER=-f ( r e f s  . 
3,4) .  Lower p a r t :  The d-s 
phase d i f f e r e n c e  and t h e  
r e l a t i v e  d-wave i n t e n s i t y  
f o r  Ep = 10-17 MeV ( r e f .  3  
p l u s  r e f .  5  f o r  14  < Ep < 15  
MeV). The p o i n t s  and 
c rosses  correspond t o  t h e  
d; and s, s o l u t i o n s ,  r e -  
s p e c t i v e l y .  The s o l i d  
l i n e s  a r e  DSD c a l c u l a t i o n s  
descr ibed i n  r e f .  3. 

F igure  2.   he r e l a t i v e  d- 
wave i n t e n s i t y  and t h e  
d-s phase d. ifference f o r  
1 4 c ( q , ~ o )  ( r e f .  5 )  and 
1 5 ~ ( p , y o )  ( r e f .  6,7). 
The s o l i d  curves  a r e  DSD 
model p r e d i c t i o n s  (see 
r e f .  7 ) .  
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of  t h e  GDR b u i l d  on l p l / 2 - s h e l l  n u c l e i .  The d>  s o l u t i o n  i s  
expected on t h e o r e t i c a l  grounds-vir tual ly a l l  models o f  
r a d i a t i v e  cap tu re  through t h e  GDR such as t h e  doorway-state8 
.or t h e  d i rec t - semid i rec t  (DSD)7 models p r e d i c t  t h a f  d-waves 
should dominate, with r e s u l t s  i n  reasonable  agreement with 
t h e  experimental  d a t a  i f  t h e  d> s o l u t i o n  is t h e  c o r r e c t  

. (phys ica l )  one. 
The expecta t ion  t h a t  d-waves should dominate stems from 

b a s i c  s h e l l  model cons ide ra t ions .  A s  d iscussed by Wilkinson 
many y e a r s  ago ,9 t h e  GDR should be dominated by nucleon ex- 
c i t a t i o n s  o f  t h e  form nR + n'll '  where nR i s  an occupied s h e l l  
model o r b i t a l  and n'R1 an unoccupied o r b i t a l ,  wi th  n '  = n 
and R '  = R + 1. Consequently, when t h e  t a r g e t  nucleus is  
r e l a t e d  t o  t h e  f i n a l  nucleus by removal o f  a  nucleon from 
o r b i t a l  n ,  r a d i a t i v e  cap tu re  amplitudes with R '  = R + 1 
should dominate i n  t h e  GDR region.  I n  t h e  l p - s h e l l  t h i s  
means d-wave nucleon emission from t h e  GDR should dominate. 

Thus t h i s  b a s i c  s h e l l  model p roper ty  o f  t h e  GDR could 
be t e s t e d  i f  one could determine uniquely t h e  E l  ampli tudes 
i n  r a d i a t i v e  cap tu re ;  i . e . ,  determine if  t h e  d> s o l u t i o n  i s  
t h e  phys ica l ly  c o r r e c t  one. A t  S e a t t l e  we d i d  t h i s  recently10 
i n  t h e  1 2 ~ ( $ , y 0 )  r e a c t i o n  by studying t h e  i n t e r f e r e n c e  be- 
tween t h e  lowest T = 3/2 Ml(E2) resonance a t  Ep = 14.23 MeV 
and t h e  E l  background. The b a s i c  idea  i s  t o  use i n t e r f e r e n c e  
with a known resonance t o  determine unknown p r o p e r t i e s  o f  t h e  
background. 

The dominant M1-El i n t e r f e r e n c e  e f f e c t s  should appear 
in t h e  A 1  and B1 c o e f f i c i e n t s ;  hence w e  measured e x c i t a t i o n  
curves a t  90° with a polar ized  beam and 5S0 and 125O wi th  
an unpolarized beam. The r e s u l t s  a r e  shown i n  Fig. 3 f o r  

The experimental  d a t a  f o r  t h e  l a t t e r  2 q u a n t i t i e s  c l e a r l y  
show pronounced i n t e r f e r e n c e  e f f e c t s .  

I n  our  c a l c u l a t i o n s  we used t h e  T = 3/2 resonance para-  
meters o f  r e f .  11 and background E l  and E2 ampli tudes d e t e r -  
mined from off-resonance angular  d i s t r i b u t i o n s .  The shapes 
o f  o ( 9 0 ° ) ' ( n o t  shown) and a(55O) + ~ ( 1 2 5 ~ )  were used t o  
determine t h e  asymmetric energy r e s o l u t i o n  and t h e  resonance 
energy. a ~ ( 9 0 0 )  w a s  then  f i t t e d  with t h e  phase of  t h e  M1 
resonance r e l a t i v e  t o  t h e  E l  background a s  t h e  only f r e e  
parameter.  The 2 bands (Fig.  3) i n d i c a t e  t h e  range o f  d> 
and s> s o l u t i o n s  obtained from off-resonance angular  d i s t r i -  
but ions  a t  Ep = 14.00, 14.17, 14.39 and 14.49 MeV.. The 
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Figure 3 .  Exci ta t ion  
curves ' taken near  t h e  
lowest T = 3/2 reso-  
nance i n  1 2 ~ ( p , y o ) 1 3 ~  
( r e f .  1 0 ) .  The s o l i d  
curve i n  t h e  top  p a r t  
is  a ca lcu la ted  f i t .  
The bands i n  t h e  lower . ,.6 

2 p a r t s  r epresen t  t h e  : 

spread o f  ca lcu la ted  , 0.8 
curves f o r  t h e  d> and 
s, so lu t ions  cons i s t en t  
with off-resonance 
angular  d i s t r i b u t i o n s .  

Ep (MeV) 

corresponding bands f o r  t h e  55-12S0 c ross  sec t ion  d i f fe rence  
were ca lcu la ted  with no f r e e  parameters. These bands a r e  
i n s e n s i t i v e  t o  t h e  E2 parameters, which se rve  only t o  de te r -  
mine the  off-resonance va lues  f o r  aA(90°) and ~ ( 5 5 ~ )  - 
a(12S0).  The results c l e a r l y  s e l e c t  t h e  d, s o l u t i o n  a s  t h e  
physica l ly  c o r r e c t  one. 

A s  w e l l  a s  t h e  gross  s t r u c t u r e ,  t h e  - f i n e  s t r u c t u r e  o f  
E l  amplitudes has  an important bear ing on t h e  charac te r  o f  
the  GDR-see, f o r  example, t h e  d iscuss ion o f  LWI. 12 ~ ~ e g a ~ d -  
ing  secondary doorway s t a t e s  i n  t h e  160 GDR. 

I V .  E2 STRENGTH I N  Cp,yO) 

Here one should '  d i s t i n g u i s h  roughly 3 d i f f e r e n t  energy 
regimes i n  l i g h t  n u c l e i :  (1) The low energy (Ep 6 10 MeV) 
region of  semi-isolated resonances where, i n  many cases ,  t h e  
m u l t i p o l a r i t i e s  of  ind iv idua l  resonances may be determined 
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I ' uniquely. This is g e n e r a l l y  t h e  , region below t h e  main g i a n t  

e l e c t r i c  resonances,  where one may explore  low-,energy f rag-  
ments. ( 2 )  The GDR region (Ep a 10-20 MeV). Here resonances 

' a r e  broad and one t r i e s  a t  a  given energy t o  decompose t h e  
continuum i n t o  i t s  mult ipole c o n s t i t u e n t s .  ( 3 )  Above t h e  
GDR (Ep & 20 MeV) where no polar ized beam d a t a  a r e  a v a i l a b l e ,  
and higher mul t ipoles  l i k e  .E3 may be important.  

By far t h e  most extens ive  ($,yo) d a t a  e x i s t  f o r  t h e  GDR 
region f o r  A 2 20. The r e s u l t s  f o r  E2 c ross  s e c t i o n s  f a l l  
i n t o  2  c a t e g o r i e s :  ,a) cases  where one does not  s e e  s t r o n g  
dev ia t ions  from d i r e c t  E2 capture  p r e d i c t i o n s ,  inc luding 
12c($,y0) (E = 10-17 c13($,yl)  ('8-16 MeV),13 and 
1 4 ~ ( $ , y 0 )  (19-18 M ~ v ) ~ ;  and b )  o t h e r  cases  where a s i g n i f i -  
can t .  E2 con t r ibu t ion  i n  excess of. d i r e c t  capture  may be 
p resen t ,  such a s  1 4 ~ ( $ , y 0 )  ( s e e  below) and perhaps l 1 ~ ( $ , y 0 )  
( r e f .  1 9 ) .  

This is i l l u s t r a t e d  i n  t h e  case  o f  1 2 ~ ( $ , y 0  ) 3~ i n  
Figs. 4 and 5. Figure 5 shows t h e  E2 c ross  s e c t i o n s  deduced 
from the  measured a i ,  b i  c o e f f i c i e n t s  displayed i n  Fig. 4. 
The E2 c r o s s  s e c t i o n s  a r e  ex t rac ted  by so lv ing  equations ( 5 )  
and (6) f o r  t h e  T-matrix amplitudes and phases assuming only 
E l  and E2 r a d i a t i o n  and then c a l c u l a t i n g  0 ~ 2  = p2 + f2 .  

Figure 4.  1 2 ~ ( $ , y o )  
angular  d i s t r i b u t i o n  
c o e f f i c i e n t s  ( r e f .  3 ) .  
The s o l i d  curve is  a  
DSD model c a l c u l a t i o n  
with d i r e c t  E2 and 
the  dashed curve in-  
cludes c o l l e c t i v e  E2. 
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1 1 1 1 1 , , 1  

3.0 - - 
Figure 5. E2 c r o s s  s e c t i o n s  

f o r  1 2 ~ ( $ , y , 0 ) 1 3 ~  ( r e f .  3 ) .  
The s o l i d  p o i n t s  a r e  de te r -  
mined from f i t t i n g  a l l  t h e  e a  - 
a i  b i  , inc luding secondary VEZ 

minima which s a t i s f y  a 1% r b )  I.'- 

confidence l e v e l .  The open 
c i r c l e s  a r e  determined from 
f i t s  excluding a1  and b l .  
The curves a r e  described i n  
F i g ,  11 oaption.  

F i t t i n g  a l l  c o e f f i c i e n t s  ( s o l i d  p o i n t s )  g ives  a t  some ener-  
g i e s  two x2 minima f o r  0 ~ 2 .  The higher  0 ~ 2  vaiues  correspond 
t o  l a r g e  s / d  E l  amplitude r a t i o s  t h a t  would be i n c o n s i s t e n t  
with t h e  smooth E l  behavior argued above. Small E2 solu-  
t i o n s  e x i s t  everywhere; roughly cons i s t en t  with c a l c u l a t e d  
d i r e c t  E2 capture .  Furthermore E l -d i rec t  E2 i n t e r f e r e n c e  
c a l c u l a t i o n s  us ing t h e  DSD model c o r r e c t l y  p r e d i c t  t h e  gen- 
e r a l  f e a t u r e s  of  t h e  a i  and b i  ( ~ i g .  4 ) .  The open po in t s  i n  
Fig. 5 r e s u l t  from an E2 a n a l y s i s  i n  which t h e  a i  and bi a r e  
excluded, t h e  idea  being t o  r r y  t o  m i r ~ i n ~ i ~ e  first older-, 
e f f e c t s  from poss ib le  M1 con t r ibu t ions .  This r e s u l t s  i n  much 
bigger  values and e r r o r s  f o r  ffE2, a t  s e v e r a l  energies  i n  
apparent disagreement with t h e  lowest s o l i d  p o i n t s .  This 
a n a l y s i s  depends s t rong ly  on t h e  t i n y  a4 and b4 c o e f f i c i e n t s ,  
which a r e  n o t  well-determined experimental ly.  Hence these  
d i f fe rences  cannot be used a s  r e l i a b l e  ind ica r ions  of MI 11arl- 
i a t i o n .  Other s t u d i e s  show a s i m i l a r  p a t t e r n  o f   result^^-^.,^^ 
i n d i c a t i n g  t h a t  t h e  lowest  s o l i d  p o i n t s  ( lowest  X2 minima f o r  
f i t t i n g  a l l  a i  bi) represen t  est imated lower l i m i t s  f o r  0 ~ 2  
which a r e  i n  f a c t  our  bes t  e s t ima tes  o f  t h e  values  of UE2 i f  
M1 can be neglected .  S imi la r  r e s u l t s  ale  f o u ~ d  for t h e  C2 
c r o s s  s e c t i o n s  deduced i n  t h e  1 3 ~ ( I f , y l ) 1 4 ~  ( r e f .  1 3 )  and 
1 4 ~ ( $ , y 0 ) 1 5 ~  ( r e f .  5 )  r e a c t i o n s  (Fig .  6 ) .  

The E2 c ross  s e c t i o n s  deduced from 5 ~ ( $ , y  0) 160 mea- 
surements a t  ~ e a t t l e  a r e  shown i n  Fig. 7 f o r  Ep = 1.4  t o  
18 .0  MeV, (Ex = 13.4 t o  25 MeV). The d a t a  inc lude a reanalyd 
sis of  t h e  work o f    us so let ti et  a1. ,6 plus  new r e s ~ l t s l . ~  
mainly a t  t h e  lower energ ies .  Aside from some s m a l l  reso-  
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i 
j Figure 6. E2 c r o s s  s e c t i o n s  
I .  f o r  1 3 ~ . ( $ y y l ~ 1 4 ~  ( r e f .  1 3 )  i 

and 1 4 ~ ( $ , y o ) 1 5 ~  ( r e f .  5 ) .  
The s o l i d  l i n e s  a r e  c a l -  
cu la ted  d i r e c t  E2 capture .  8 10 12 14 16 18 

E, (MeV) 

E~( '~NI (M~v)  

nances below. Ex = 20 MeV, t h e  only region o f  poss ib ly  s i g -  
n i f i c a n t  s t r u c t u r e  i s  f o r  Ex = 23-27 MeV, where t h e  p resen t  
d a t a  i n d i c a t e  a s t r e n g t h  o f  roughly 5-10% o f  t h e  i s o s c a l a r  
E2 energy weighted sum r u l e  (EWSR)16 i n  excess o f  a smooth 
"background" est imated from t h e  lower p o i n t s  i n  t h i s  r eg ion ,  
i n  q u a l i t a t i v e  agreement wi th  Stanford  work. l8 For E = 
17.9-27.3 MeV where ( a , a t p o )  coincidence decay s t u d i e s  1 Zf 

Figure 7. E2 c r o s s  14 16 18 20 22 24 26 28 
I I 

sections f o r  t h e  
I 

6 - 
1 5 ~ ( $ , y 0 ) 1 6 0  reac-  
t i o n s  ( r e f s .  6 ,  

OL - 
15) .  - w 

b 2- 

. r If. 
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Figure  8. A comparison 
o f  160(y,n0) and 

6 ~ (  ,p ) r e a c t  ions  
(from r e f .  1 9 ) .  

show 9% o f  t h e  EWSK.we f i n d  i n  ( p , y O )  12-22% of t h e  EWSR 
(ca lcu la ted  d i r e c t  E2 cap tu re  accounts  f o r  ~ 8 %  of  t h e  EWSR). 
Thus t h e  i n t e g r a t e d  E2 s t r e n g t h  seen i n  t h i s  Pegion i n  
(c i ,a lpo)  and Cp,yO) may be compatible when one accounts  f o r  
d i r e c t  cap tu re ,  without t h e  need t o  invoke t h e  presence of  
s i g n i f i c a n t  i sovec to r  (IV) E2 s t r e n g t h .  For Ex = 13.4 t o  
29 MeV ( p , ~ ' ~ )  shows 20-30% o f  t h e  EWSR, with d i r e c t  capture  
accounting f o r  1~11% of  t h e  EWSR.- 

The reg ion  above t h e  GDR i n  160 has rece ived s p e c i a l  
a t t e n t i o n  r e c e n t l y  with new 160(y ,no ) 50 r e s u l t s  from Liver- 
more. l  F igure  8 shows a comparison o f  160(y ,no)  da ta  19,20 

5~ r e s u l t s  der ived from unpolarized r a d i a t i v e  
capture  da ta .  , 
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I 
! .  The odd a 1  and a3 c o e f f i c i e n t s  should be dominated by 

El-E2 i n t e r f e r e n c e .  A comparison o f  t h e  va lues  o f  a1  and 
a3 f o r  P O  and no channels  y i e l d s  information on t h e  i s o s p i n  
o f  t h e  E2 ( s i n c e  t h e  E l  i s  e s s e n t i a l l y  pure  I V ) .  Pure IS 

' o r  pure I V  E2 would l ead  t o  comparable magnitudes f o r  a3  

/ (and a l )  i n  po compared wi th  no,  with t h e  same s i g n s  f o r  I V  
I 
1 .  

E2 and opposi te  s i g n s  f o r  IS  E2. The r e s u l t s  c l e a r l y  f avor  
I I V  dominance, al though some IS  s t r e n g t h  must a l s o  be present  

s i n c e  t h e  a l ' s  don ' t  agree  i n  magnitude. This may be p a r t l y  
due t o  d i r e c t  E2 cap tu re  (which is  an equal  mixture o f  IS 
and IV). 

The au thors  o f  r e f .  19 have es t imated  a minimum E2 

based only on t h e  assumption t h a t  mul t ipoles  o f  higher o r d e r  
than E2 may be neglec ted .  The corresponding lower-l imit  in-  
t e g r a t e d  E2 s t r e n g t h  i s  23% of t h e  E W S R ? ~  The l a r g e  value 

. f o r .  t h i s  lower l i m i t  r e s u l t s  from the  l a r g e  measured a 4 '  s 
( i n  c o n t r a s t ,  (p ,yo)  shows smal l  negat ive  a 4 ' s  between 0.0 
and. -0.1 f o r  Ex = 27-37 MeV). The importance o f  t h i s  r e -  
s u l t ,  a long with t h e  d i f f i c u l t y  o f  t h e  experiment, make an 

1 

independent m e a s ~ e n i e n ~  highly  d e s i r a b l e .  The a 1  and a3  
c o e f f i c i e n t  a lone  i n  po and no, a s  w e l l  a s  t h e  a4. observed 
i n  t h e  po channel. a r e  c o n s i s t e n t  with s u b s t a n t i a l l y  smal l e r  
E2 c r o s s  s e c t i o n s .  

Figure 9 .  E2 c r o s s  
section f o r  
160(y , n o ) .  The 
s o l i d  l i n e s  repre-  
s e n t  upper and 

' -lower l i m i t s ,  and 
t h e  d a t a  points  
r e p r e s e n t  e s t i -  
mated values  ( from 
r e f .  1 9 ) .  Excitation Energy (MeV) 

V.  . M 1  STRENGTH I N  ($,yo ) 

O f  p a r t i c u l a r  i n t e r e s t  i s  t h e  r ecen t  discovery a t  
s e a t t l e 7  , 2 3  t h a t  M 1  e x c i t a t i o n s  can be uniquely i d e n t i f i e d  
i n  r a d i a t i v e  capture .  This has  been done i n  t h e  region o f  
semi- iso la ted  resonances below t h e  GDR i n  t h e  1 5 ~ ( $ , y 0 ) 1 6 0  
r e a c t i o n ,  a s  i l l u s t r a t e d  i n  F ig .  10. Here t h e  X2 f o r  f i t t i n g  
angular  d i s t r i b u t i o n s  assuming only E l  and E2 r a d i a t i o n  i s  
p l o t t e d  versus energy, along wi th  o t h e r  observables.  Strong 
dev ia t ions  from acceptable  va lues  (x2 2 2 )  i n d i c a t e  a r e a s  
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E, (MeV) 

Figure 10.  Exci ta t ion  curves 
15 f o r  N ( ~ , Y ~ ) ~ ~ O :  a (90° ) ,  

A(90°) and t h e  a l ,  a2  and 
b2 c o e f f i c i e n t s  (3rd and 
4 k t 1  order  c o e f f i c i e n t s  n o t  t 

shown) and t h e  reduced 
X2 f o r  angular  d i s t r i b u t i o n  0.5 

. f i t s  assuming only  E l  and 0.2 
E2 r a d i a t i o n .  The curves . 

a r e  t o  guide t h e  eye. Ver- - 
t ica l  s o l i d  and dashed l i n e  - o  
l i n e s  i n d i c a t e  M 1  and E l  
resonances,  r e s p e c t i v e l y  
( r e f .  23).  

E, (MeV) 

of concentrated M 1  s t r e n g t h .  Analysis of  t h e  a i  and b i  nea r  
these  energ ies  shows t h a t  t h e  prominent resonances a t  16.22 
and 17.14 MeV a r e  M1, with a t h i r d  M 1  resonance near  18.8 
MeV which ' in  t h e  c r o s s  s e c t i o n  is unresolved from a  neigh- 
bor3ng E l  resonance,  

These M I  resonances in 160 correspond t o  a'tbtal ground- 
' s t a t e  M1 s t r e n g t h  B(M1)+ % 0.24 ~ 8 .  This i s  q u i t e  s i z a b l e  
compared t o  a  non-closed s h e l l  A = 4n.nucleus  such as 
1 2 c ( ~ (  ~ 1 )  + ' = 0.93 ~ 6 )  , when one r e c a l l s  t h a t  such s t r e n g t h  
i s  "forbidden" s i n c e  t h e  doubly-magic closed s h e l l  cannot 
con t r ibu te  t o  IQ e x c i t a t i o n s .  Th.e observed M 1  decays stem 
from t h e  ground-state c o r r e l a t i o n s  (p r imar i ly  2  p a r t i c l e - 2  . 

hole)  and a r e  i n  reasonable accord with r e c e n t  s h e l l  model 
c a l c u l a t i o n s .  24. Very r e c e n t l y ,  e l e c t r o n  s c a t t e r i n g  has been 



I 
: . used t o  search f o r  s imi l a r  t r a n s i t i o n s  i n  4 0 ~ a ,  with a de f i -  

n i t i v e  ~1 assignment fo r  a s t rong ( B ( M ~ ) +  = 0.37, I J ~ )  t r a n s i -  
t i on  a t  10.32 M ~ V .  25 It is  in t e r e s t i ng  t o  note t h a t  t h i s  

.one s t a t e  i n  4 0 ~ a  ca r r i e s  more M 1  s t reng th  than the  t o t a l  
of a l l  the  known M 1  s t rength i n  160. These r e s u l t s  a r e  
summarized i n  Fig. 11. 

, . MI DECAYS IN LIGHT DOUBLY-MAGIC NUCLEI 

Figure 11. Summary of 
t known ground s t a t e  M 1  

I 

decays i n  t h e  doubly- 
i magic 160 and 4 0 ~ a  

nuclei .  w v  

j 
0 - 

The u t i l i t y  o f  (6,~) f o r  discovering M 1  t r a n s i t i o n s  
has- so  f a r  been demonstrated only i n  the  one case discussed 
above. In  t he  fu tu re  it u i l l  be i n t e r e s t i ng  t o  extend t h i s  , 

technique t o  o ther  nuclei ,  and t o  see i f  M 1  resonances can 
be i den t i f i ed  i n  reac t ions  which do not. have t he  simplest  
spin sequences. 

V I .  ALPHA CAPTURE 

The experimental technique o f  r ad i a t i ve  a-capture is  
pa r t i cu l a r ly  straightforward.  For capture on a spin-zero 
t a rge t  leading t o  a spin-zero r e s idua l  s t a t e  (of  t h e  same 
pa r i t y )  only e l e c t r i c  multipoles may contr ibute  ( i n  p rac t i ce  
E3 and higher multipoles may usually be neglected) ,  and from 
the  angular d i s t r i bu t ion  one can uniquely separate  E l  and E2. 

3 + $50E1(E) s ine  sin28 cos$(E) 

where is the  El-E2 r e l a t i v e  phase. The above equation 
is appropriate f o r  a point  geometry-finite geometry e f f e c t s  
are 1lsmal.l.y acr.oi.~nted f o r  by expressing the  above i n  terms 
of Legendre polynomials Pk(cose) and rep lac ing  Pk by QkPk. 

The systematics of a capture a re  reasonably well- 
es tabl ished (see r e f .  26 f o r  many of  t h e  re levant  experi-  
mental re fe rences) .  E l  capture i s  generally dominated by 
compound process,es-that t h i s  should be t r u e  f o r  isospin 
allowed (TZCtarget) # 0 )  a s  well  a s  f o r  isospin forbidden 
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cases  fol lows from t h e  smallness o f  t h e  kinematic E l  e f fec-  . 
t i v e  charge; i . e . ,  t h e  a-nucleus i n t e r a c t i o n  is  e s s e n t i a l l y  
pure i s o s c a l a r  and hence cannot e x c i t e  t h e  i sovec to r  door- 
way GDR. Since E l  capture  i s  compound, t h e  in te r fe rence  
term above averages t o  zero  i n  cases  where the  compound l e v e l s  
a r e  s u f f i c i e n t l y  dense. The a0 channel,  except i n  s p e c i a l  
cases  i n  l i g h t  n u c l e i ,  is no t  a s t rong  decay mode o f  t h e  TS . 
G Q R ' ~  and aE2 ('a, y ) does not  genera l ly  show t h e  GQR gross  
s t r u c t u r e  envelope ( i n  con t ras t  t o  E l  r a d i a t i o n  i n  t h e  Cp,y) 
r e a c t i o n  which does show t h e  GDR gross s t r u c t u r e  envelope). 
This i s ,  apparent ly ,  because dE2(a ,y)  i s  dominated by com- 
pound decay. The dominance o f  compound decay expla ins  t h e  
peaking of CJE2(aY y )  below t h e  main GQR i n  l i g h t  n u c l e i  ( f o r  
A Q, 58, aE2(a ,y)26 and t h e  GQR s t r e n g t h  function27 have s i m i -  
l a r  shapes due t o  t h e  a c c i d e n t a l  proximity of  t h e  GQR t o  t h e  
a-nucleus Coulomb b a r r i e r ) .  However, s t a t i s t i c a l  decay cal- 
c u l a t i o n s  using t h e  GQR s t r e n g t h  funct ion deduced from ( a , a '  ) 
experiments genera l ly  f a l l  s h o r t  of  reproducing t h e  observed 
( a , y )  c ross  s e c t i o n s ,  i n d i c a t i n g  some pre-equilibrium c o n t r i -  
bution i n  t h i s  r eac t ion .  This.makes it d i f f i c u l t  t o  determine 
t h e  GQR s t r e n g t h  funct ion from aE2(a ,y )  da ta .  On t h e  o the r  
hand, such d a t a  has proven very use fu l  i n  mapping t h e  f rag-  
mentation of E2 s t r e n g t h  below t h e  GQR i n  l i g h t  nuc le i .  

Thegross p r o p e r t i e s o f t h e I S  GQRarenow wel l -es tabl ished,  
p r imar i ly  from a -sca t t e r ing  experiments (see  ref. 27). I t  
i s  i r o n i c a l ,  perhaps,  t h a t  i n  such experiments t h e  e l e c t r o -  
magnetic (EM) i n t e r a c t i o n , d o e s  n o t  p lay  an important r o l e ,  
but  r a t h e r  it i s  from t h e  s t rong  (nuc lea r )  i n t e r a c t i o n  t h a t  
one infers how The nucleus would respond t o  E2 photons a t  
g i a n t  resonance energies .  However, E2 s t reng th  i n f e r r e d  
from decay coincidence A( a , a '  a0 )B experiments may be d i r e c t l y  
compared with E2 s t r e n g t h  observed i n  B(a,yo)A reac t ions .  
160 i s  c u r r e n t l y  t h e  - b e s t  case f o r  such a comparison. 
Here, low-lying (Ex < 12 MeV) electromagnetic s t r e n g t h  
agrees  f a i r l y  we l l  with ( a  ,a1  ) s t rength28 bu t  i n  t h e  "GQR" 
region (Ex = 17.9-27.3 MeV) t h e  ( a , a l a g )  E2 strength1'  is  more 
than a f a c t o r  o f  2 g r e a t e r  than ( a , y o ) .  E2 s t reng th29  (13% 
of  t h e  EWSR compared t o  5%, r e s p e c t i v e l y ) .  For Ex- = 19.2 
t o  27.3 MeV ( t h i s  excludes t h e  resonance j u s t  above 18 MeV), 
( a , u ' a o )  shows 10% of t h e  EWSR, and ( & , y o )  only 2.5% of t h e  
EWSR. Isospin  mixing has been c i t e d  a s  a p l a u s i b l e  expla- 
na t ion  f o r  these  d i f fe rences ,  but  t h e  magnitude required  
i s  s u b s t a n t i a l .  For mixing of  IS and I V  ( i s o v e c t o r )  exci -  
t a t i o n s  o f  comparable i n t r i n s i c  s t r e n g t h ,  one must have a 
r e l a t i v e  T = 1 t o  T = 0 amplitude impurity2' i n  t h e  I S  GQR 
of B I / B o  Q, 0.3-0.5 (where (1 + fi1/~0)'2 = 2-4) t o .  explain 
a f a c t o r  o f  2-4 i n  t h e  ( a , a t a o ) / ( a , y o )  s t r e n g t h  r a t i o .  
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1 Since a s t rong  T-mixing matr ix  element i s  0.15 MeVY3O t h i s  
! . . r e q u i r e s  energy denominators o f  o r d e r  0.5-0.3 MeV f o r  2 - s t a t e  

mixing, which is unreasonably s m a l l  i f  one t a k e s  resonance 
.wid ths  a s  we l l  a s  ene rg ies  i n t o  account.  If many l e v e l s  a r e  

involved,  then one would expect  s u b s t a n t i a l  v a r i a t i o n  i n  1 
i T-mixing over energy i n t e r v a l s  o f  t h i s  magnitude. However, 
! ' t h e  c l o s e  s i m i l a r i t y  o f  t h e  s t r u c t u r e  i n  t h e s e  r e a c t i o n s  
f over  t h e  much wider GQR range (18-27 MeV). ( s e e  Fig. 3 o f  

r e f .  17 )  makes it un l ike ly  t h a t  t h i s  i s  happening. I f e e l  
i t h a t . t h e s e  s t r e n g t h  d i f f e r e n c e s  a r e  y e t  t o  be explained 
i 
i s a t i s f a c t o r i l y .  
i 
1 V I I  . NEUTRON. CAPTURE 
I 
I 

The TUNL g-roup3 is r a p i d l y  pushing back t h e  technolo-  
g i c a l  f r o n t i e r  i n  t h e  a r e a  o f  neutron cap tu re .  The l a t e s t  
q u a l i t a t i v e  advance i n  technique i s  descr ibed i n  ref.  31 
where r e s u l t s  o f  impressive q u a l i t y  a r e  presented  f o r  t h e  
' + O ~ a ( d , ~ ~ )  r e a c t i o n  a t  En = 10  MeV, i n  t h e  region o f  t h e  IS 
GQR ( s e e  Fig. 1 2 ) .  These r e s u l t s  show d e f i n i t e  evidence f o r  

Figure. 12. . The 4 0 ~ a ( 8 , y 0  )''lea 
r e a c t i o n  a t  E, = 10.0 MeV 
(from r e f .  31). 

non-zero E2 (M1) r a d i a t i o n ,  with b l  = 0.13 f 0.02; however, 
it w i l l  t a k e  a d d i t i o n a l  energy p o i n t s  t o  r e v e a l  whether 
these  e f f e c t s  come from t h e  GQR. It  i s  i n t e r e s t i n g  i n  t h i s  
context  t o  n o t e  t h a t  i n  ( 5 , ~ )  i n t o  160, f o r  example, t h e  b l  
c o e f f i c i e n t s  a r e  much l a r g e r  below t h e  main IS  GQR reg ion ,  
where r e l a t i v e l y  narrow E2 and M 1  resonances occur.  

VIII.GIANT RESONANCES BUILT ON HIGHLY EXCITED STATES 

One o f  the  very i n t e r e s t i n g  a r e a s  o f  r e sea rch  c u r r e n t l y  
a c c e s s i b l e  only through t h e  technique o f  r a d i a t i v e  cap tu re  
is t h e  study o f  g i a n t  resonances b u i l t  on exc i t ed  nuc lea r  
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s t a t e s .  Recent work by B l a t t  and c o - ~ o r k e r s ~ ~  has  revealed  . 
s t r o n g  r a d i a t i v e  proton capture t r a n s i t i o n s  from t h e  con- 
tinuum t o  h ighly  exc i t ed  r e s i d u a l  s t a t e s  a t  bombarding ener-  
g i e s  o f  40-100 MeV i n  s e v e r a l  l i g h t  n u c l e i .  These h ighly  
exc i t ed  r e s i d u a l  s t a t e s  a r e  themselves unbound, so  t h a t  . t h e '  
"capture1' process  i s  r e a l l y  a  "nuclear  b r e m s ~ t r a h l u n g ' ~  
( p ,  yx) r e a c t i o n  where x r e p r e s e n t s  t h e  (unobserved) p a r t i c l e s ,  
emi t ted  fol lowing the  y-ray. I d e n t i f i c a t i o n  o f  t h i s  process  
was made from the  experimental  observat ion  o f  t h e  proper 
k inemat ica l  r e l a t i o n  between Ey and Ep. 

F igure  13 ,  taken from t h e  d iscuss ion of  ~ r n o l d , ~ ~  d i s -  
p lays  s p e c t r a  from t h e  ' B ( ~ ,  Y) and 1 2 ~ ( p , y )  r eac t ions32  
a t  E = 40 MeV. The l ~ ( ~ , y  r e a c t i o n  a t  t h i s  energy s t rong ly  
popu!?ates a group of  s t a t e s  nea r  19 MeV e x c i t a t i o n  energy. 
The specrrum shzpe i s  i n  q u a l i t a t i v e  accord wi th  t h e  s o l i d  
v e r t i c a l  l i n e s  which rep resen t  t h e  shell-model 1f-p p a r t i c l e -  
hole spectrum f o r  16 < Ex ,$ 25 MeV, c o n s i s t i n g  mainly of  
C ( ~ ~ ~ / ~ ) - ' ( ~ S , I ~ ) ~ I ( J ~  = 0- . . . 4-1 c o n f i g u ~ a t i o n s ,  wi th  
t h e  high s p i n  s t a t e s  expected t o  dominate. 

Figure 13. So l id  curves : 
Spect ra  from l l ~ ( p  ,y )  and 
1 2 ~ ( p , y )  a t  E = 40 MeV 
( r e f .  32). T R ~  so l id  
v e r t i c a l  l i n e s  r ep resen t  
L-11e s l l e l l  rrludel 1h w 
p a r t i c l e - h o l e  spectrum 
f o r  E, % 16-25 MeV i n  
12c (from r e f .  33). 

Ex in "C ( MeV ) 

The 1 2 ~ ( p , y )  spectrum a t  a  s i m i l a r  y-ray energy should 
show a roughly s i m i l a r  shape, corresponding t o  t h e  low-lying 
s i n g l e  p a r t i c l e  sd-s t rength  d i s t r i b u t i o n  i n  1 3 ~ ,  a s  appears 
t o  be t h e  case  (F ig .  1 3 ) .  Simple cons ide ra t ions  l e a d  one t o  
expect  a  g i a n t  E l  resonance b u i l t  on every  exc i t ed  s t a t e ,  
with a s t r e n g t h  in ( p , y )  r e l a t e d  t o  t h e  s t r i p p i n g  spect ro-  
scop ic  f a c t o r  connectin'g t h e  t a r g e t  and t h e  exc i t ed  ( f i n a l )  
s t a t e  ( i n  t h e  DSD model, such a spect roscopic  f a c t o r  e n t e r s  
e x p l i c i t l y  1. For example, t h e  magnitudes bf  t h e  l . ~ ( ~ ,  ) 
and 1 2 ~ ( p , y )  r e a c t i o n s  f o r  s i m i l a r  y-ray energy should be 
equal  if one sums over f i n a l  s t a t e s  which con ta in  t h e  same 



s i n g l e - p a r t i c l e  s t r i p p i n g  s t reng th .  
Weak-coupling arguments would say that the expected 

GDR energy is  j u s t  t h e  ground-state GDR energy p l u s  t h e  
' exc i t a t ion  energy of t h e  f i n a l  s t a t e ,  o r  Ex = 19 + 23 = 42 
MeV (E = 28 MeV) f o r  t h e  I ~ B C ~ , ~ )  example above, a s  appears . t o  be !he case experimental ly.  34 Thus it is q u i t e  p o s s i b l e  
t h a t  one is seeing " 2 b  g i a n t  resonances"; i . e . ,  1f-u g i a n t  
E l  resonances b u i l t  on t h e  lfiu f i n a l  s t a t e s .  However, it 
might be p o s s i b l e  t h a t  a  simple d i r e c t  cap tu re  mechanism 
could expla in  t h e  r e s u l t s .  For f i n a l  s t a t e s  below 10 MeV 
in  12c, f 'g iant l f  resonances a r e  observed i n  t h e  l l ~ ( p , y )  r e -  

i a c t i o n ,  35 with p r o p e r t i e s  i n  rough accord with t h e  above 
discuss ion.  

IX. DECAY OF H I G H  SPIN PARTICLE-HOLE STATES 

Narrow "stretched" high sp in  p a r t i c l e  hole  s t a t e s  a r e  
found i n  n u c l e i  from 12c t o  2 0 8 ~ b  and have been s tud ied  i n  
high energy e l e c t r o n ,  proton,  and pion s c a t t e r i n g  and i n  
some cases  i n  d i r e c t  t r a n s f e r  r eac t ions .  The lowest T =, 1 
l e v e l s  of  t h i s  s o r t  such as ~ d ~ / ~ ~ ~ ~ / ~ - ~ 1 ( 4 - 1 )  i n  12c and 
160 ( r e f s .  36,37.) and [f7/2,d5/2 '  l (6-1)  i n  ' ' M ~  and 2 8 ~ i  
( s e e  r e f .  38) a r e  be l i eved '  t o  be predominantly 1 p a r t i c l e -  
1 hole  s t a t e s ,  which is  p a r t  o f  t h e  reason why they a r e . s o  
i n t e r e s t i n g .  I n  160, f o r  example, t h e  4-,1 s t a t e  a t  18.98 
MeV has nea r ly  a l l  of  t h e  expected ( d , t )  pickup s t r e n g t h ,  39 
and has %1/2 of  t h e  M4 "s ingle  p a r t i c l e "  i n e l a s t i c  e l e c t r o n  
s c a t t e r i n g  s t r e n g t h .  38 The e x c i t a t i o n  of t h e s e  l e v e l s  f s 
t h e  sub jec t  o f  a separa te  paper by Lindgren a t  t h i s  confer-  
ence-what I ' d  l i k e  t o  do here  is t o  b r i e f l y  d i scuss  t h e  
y-decay of these  s t a t e s ,  which can provide valuable  s t r u c t u r e  
information complementary t o  t h e  e x c i t a t i o n  experiments. 

Figure 1 4  shows some o ld  Oxford da,ta40 for t h e  
L 5 ~ ( p  ,il , 2)  60 r e a c t i o n  populat ing t h e  0+, 3- doublet  a t  
6.1 MeV. O f  p a r t i c u l a r  i n t e r e s t  a r e  t h e  resonances a t  
Ex = 18 and 19 MeV) which correspond t o  t h e  y-decays.of 
t h e  3-, T = 1 (18.03 MeV) and 4', 1 (18.98 MeV) l e v e l s ,  
r e spec t ive ly ,  t o  t h e  3', 0  (6.13 M e V )  l e v e l .  These a s s i  n- 
ments a r e  based p r imar i ly  on recen t  S e a t t l e  measurements f 1 
of ' 5 ~ ( ~ , ~ 1 , 2 ) ,  ( p , a l ~ )  and ( p , p l y 2  3 ~ )  which show agreement 
i n  e x c i t a t i o n  energy and i n  t h e  dominant. p a r t i c l e  decay- 
channel wi th  t h e  Heidelberg data.42 The angular  d i s t r i b u t i o n s  
f o r  these  resonances a r e  c o n s i s t e n t  with pure M 1  decay. 4 0 

.Combining t h e  resonance s t r e n g t h s  o f  r e f .  40 with t h e  po 
branching r a t i o s  o f  ref. 42 / = 0141 k ( 0  .lo-0.20) .and 
0.12 k 0.05 f o r  t h e  (3',1) and (4- ,1)  l e v e l s ,  r e s p e c t i v e l y )  
g ives  rough decay s t r e n g t h s  B(M1) % 0.1 W.U. and $0.2 W.U..43 
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Figure 14. 
curve f o r  
and t h e  
r e a c t  ions  

90° y i e l d  
t h e  5 ~ ( p  
. 5 ~ ( ~ , ~ 1  , 2  
(from r e f  

f o r  t h e  (3',1) -t (3',0) and t h e  (4',1) + (3',0) decays, r e -  
spec t ive ly .  The (4-,1) + (3- ,0)  decay s t r e n g t h  is  i n  accord 
with the .  s h e l l  model value of  0.23 W .U .  ca lcu la ted44  by J. 
Millener (us ing a 1fy.11 b a s i s ) ,  but  ii n o t  accura te  enough t o  
se rve  a s  a r e a l  t e s t  of  t h e  lp - lh  p u r i t y  of  t h e  (4',1) l e v e l .  
Such a test  must await improved s t r e n g t h  measurements which 
a r e  i n  progress a t  S e a t t l e .  41 The reasonably s t rong  (3' ,1)  + 
(3- ,0)  decay s t r e n g t h  i s  a l s o  i n t e r e s t i n g  s ince  t h i s  l e v e l  
i s  n o t  p a r t i c u l a r l y  s t rong  i n  pickup,39 implying it should 
be mostly 3p-3h. 

A s  a  f i n a l  comment, I would l i k e  t o  po in t  ou t  t h e  one 
o t h e r  case where a y-decay i s  k n o k  f o r  a  s t r e t c h e d  high 
spin  p a r t i c l e -  hole  s t a t e .  I n  '%i t h e  [f7 ,d 5/2-1~(6- ,1 )  
l e v e l  a t  14.36 MeV has a y-branchb5 of 1004 t o  t h e  (6-,0) 
"antianalog" s t a t e  at  11.58 MeV, with B ( M 1 )  = 0.7 L 0.15 
W . U .  (assuming I' >> ry). This is  considerably weaker than' 
t h e  cal~u1ated"~analog-antianalog decay s t r e n g t h  of  8 W.U. 
f o r  pure ~ f ~ / ~ , d ~ / ~ - ~ ~ ( 6 - )  conf igura t ions ,  perhaps due t o  
fragmentation o f  t h e  an t i ana log  conf igura t ion.  

Clear ly  t h e  decay s p e c t r o s c o p y o f  these  s t r e t c h e d  
p a r t i c l e - h o l e  s t a t e s  is  s t i l l  i n  i t s  infancy,  and should 
l ead  i n  t h e  f u t u r e  t o  a g r e a t  d e a l  of  'useful  information 
regarding t h e  s t r u c t u r e  o f  these  unusual s t a t e s .  

X.  CONCLUSIONS 

I hope I l eave  you with t h e  impression t h a t  t h e r e  is  a 
l o t  o f  new and e x c i t i n g  work going on i n  r a d i a t i v e  capture  
s t u d i e s .  Besides t h e  new d i r e c t i o n s  t h a t  I ' v e  ind ica ted  i n  
my discuss ion above, I would l i k e  t o  comment s p e c i f i c a l l y  on 
2 a d d i t i o n a l  a r e a s  t h a t  one should watch f o r  fu tu re  develop- 
ments. One, which I ' v e  ba re ly  mentioned a t  a l l  ( s ince  t h i s  
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was by des ign mainly an experimental  t a l k )  i s  t h e  t h e o r e t i c a l  
development o f  r adda t ive  cap tu re  c a l c u l a t i o n s .  In p a r t i c u l a r  
one may hope t h a t  t h e  work o f  D i e t r i c h  and ~ e r m a n ~ ~  w i l l  l ead  

. t o  a p r e d i c t i v e  cap tu re  theory .  The value o f  such a theory  
is  obvious when one r e c a l l s  t h e  wide v a r i e t y  o f  experimental  
d a t a  on El-E2 i n t e r f e r e n c e  e f f e c t s  i n  (p ,y)  and (n ,y )  which 
I ' v e  hardly  touched upon, which'might be understood with an 
improved theory .  The second a r e a  is t h e  f i e l d  o f  po la r i zed  
proton cap tu re ,  where e s s e n t i a l l y  a l l  experiments t o  d a t e  
o f  which I ' m  aware have been l i m i t e d  by source i n t e n s i t y .  
The new genera t ion  o f  high i n t e n s i t y  po la r i zed  nega t ive  
hydrogen ion  sources  w i l l  permit  q u a l i t a t i v e  advances i n  + 
( p , y )  s t u d i e s  in .  t h e  resonance region.  
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