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OSCILLATING FIELD CURRENT DRIVE FOR REVERSED FIELD FINCH DISCHARGES* 

by 

Kurt F. Schoenberg, Robert F. Gribble, and Don A. Baker 

ABSTRACT 

Oscillating Held Current Drive (OFCD), also kno«n 
as F-0 pumping, is a steady-state current-drive technique 
proposed for the Reversed Field Pinch (RFP). Unlike 
other current-drive techniques, which employ high-
technology, invasive, and power intensive schemes using 
radio frequency or neutral particle injection, F-0 
pumping entails driving the toroidal and poloidal 
magnetic field circuits with low-freqjency (audio) 
oscillating voltage sources. Current drive by this 
technique is a consequence of the strong nonlinear plasma 
coupling in the RFP. Because of its low frequency and 
efficient plasma coupling, F-0 pumping shows excellent 
promise as a reactor-relevant current-drive technique. A 
conceptual and computational study of this concept, 
including its experimental and reactor relevance, is 
explored in this paper. 

I. INTRODUCTION 

A variety of techniques has been proposed to drive steady-state current in 

toroidal containment devices.1 To a large extent, the techniques employ high 

technology, invasive, power intensive schemes utilizing radio frequency or 

neutral particle injection. For large-scale systems, the engineering and 

economic designs of these schemes are complex. 

The dc drive situation for a Reversed Field Pinch (RFP) may be different. 

In an RFP, the poloidal and toroidal winding currents are nonlinearly coupled by 

the plasma. As a consequence, with certain circuit programming, the possibility 

This is a revised and updated version of a manuscript submitted December 10, 
1981. This report also forms the basis of a manuscript to be published in the 
Journal of Applied Physics in Vol. 55, September 1984. 



arises of maintaining a mean (time-averaged) toroidal current against 

dissipation without a continuous expenditure of mean magnetizing (or driving) 

flux.2 Thus, the promise exists for a relatively simple, steady-state current-

drive system that entails driving the toroidal and poloidal magnetic field 

circuits with low-frequency (audio) oscillating voltage sources. In addition, 

this Oscillating Field Current Drive (OFCD), also known as F-9 pumping, shows 

excellent potential as a reactor-relevant current-drive technique.3 A conceptual 

study of OFCD will be explored in this paper. 

II. A ^REVIEW OF DIRECT-CURRENT PRODUCTION FROM AN ALTERNATING-CURRENT-
DRIVEN NONLINEAR CIRCUIT 

One normally considers the production of direct current from an ac voltage 

source in terms of a rectifier. For illustrative purposes, we shall begin with 

a more general nonlinear single-port system, which includes the rectifier, and 

then proceed to a two-port system suitable for representing the RFP. 

A. The One-Port System 

In a on^-port (one-terminal pair) system (Fig. 1), for a passive linear 

system, the steady-state current response to a sinusoidal voltage of radian 

frequency on is given by 

= Y(w)V(w) , (1) 

where V(w) = Ve i u t, I(to) = iei(ot, and Y(w), called the complex driving point ac 

admittance, is the reciprocal of the complex impedance Z(io). As usual, the 

instantaneous values of the voltage and current are represented by the real 

parts of v(w)eiwt and I(co)eia)t, respectively. The relationship defined by 

- o 

Fig. 1. 
One-port system. 



Eq. (1) is linear and homogeneous, in that it involves the current and its time 

derivatives or integrals in a linear fashion, and only a steady-state ac of 

frequency oi is produced by steady—state ac driving voltage. Fo^ a nonlinear 

system, the situation is quite different. 

In a nonlinear system, the equation relating the current to the applied 

voltage contains nonlinear expressions. These nonliaear expressions may contain 

the voltage, the current, and/or their time derivatives or integrals. For 

example, consider the generation of direct current by an ac voltage in a 

nonlinear circuit for the case where the instantaneous current and voltage are 

related as follows: 

f(v(t)) , (2) 

where I = 0 if the driving voltage is Identically zero for a passive dissipative 

system and where f is some nonlinear function of the voltage. To obtain the 

current response for a small ac voltage, we expand f(V) in a power series about 

V = 0. That is, 

= f'(0) V + ~ f"(0) V2 + ... , (3) 

where the prime denotes differentiation with respect to V. For V = Vsin(wt), 

the current is given by 

= f'(0) Vsin(wt) + ̂  f"(0) V2sin2(wt) + ... . (4) 

Noting that sin (wt) = -j (l - cos(2wt)), we have 

"2 
K t ) = ^ _ f " ( 0 ) + f'(0) Vsin(wt) -jLf"(O) V2cos(2wt) ... . (5) 



Hence, the nonlinearity, f"(0) £ 0, has allowed the sinusoidal voltage to 

generate a direct-current component 

(6) 

and a second harmonic with an amplitude equal to the dc value. If higher order 

terms in the expansion are kept, higher harmonics and further contributions to 

the dc component are generated. If the higher terms are negligible, the first 

and second harmonic ripple factors are 

= (VV)|f'(0)|/|f"(0)| 

and 

(7) 

(8) 

The generation of the direct current from a nonlinear current-voltage curve is 

shown schematically in Fig. 2(a) (the imperfect rectifier). For comparison, an 

ideal rectifier with a constant series resistance, where f = 0 for V < 0 and f 

±s linear for V > 0, is shown in Fig. 2(b). 

NONLINEAR I v3 V ClrlVE 

LINEAR I va V CURVE 

Fig. 2. 
Nonlinear systems representing an (a) imperfect rectifier and 
(b) ideal rectifier. 



B. The Two-Port System 

We now proceed In an analogous fashion to examine the production of a 

direct current from a single-frequency, sinusoidally driven rwo-port (two-

terminal pair) system (Fig. 3). For a linear, passive two-port system in ac 

steady state, the relationship analogous to Eq. (1) is given by 

Y11(w)V1(u) + Y12(w)V2((o) . 

Y21(w)V1(co) + Y22(w)V2(io) , (9) 

where the Yj^'s are elements of the complex admittanc • matrix. As before, 

steady-state ac voltages can produce only steady-state ac currents with the same 

frequency. 

- o 

Fig. 3. 
Two-port system. 

As an example of direct-current generation in a nonlinear two-port system, 

we assume a relationship analogous to Eq. (2): 

F1(V1(t),V2(t)) 

F2(V1(t),V2(t)) 

with F^O.O) = -2(
0»°) = ° • 

(10) 



Expanding Ij and I2 in a double power series about Vj and V2 = 0 yields 

where 

n) E BFn/aV1 (n =1,2) , 

i,j = 1,2) , (12) 

evaluated at Vj = V2 = 0 

For the applied voltages V-̂  

are positive, 

and V2 = V2Sin(wt+6), where V^ and V2 

I n ( t ) 

sin(wt+6) 

(13) 

where a^2 =
 a21 (interchangeability of partial differentiation). Expanding 

sin(wt+6) = sin(wt) cosfi + sin6 cos(o)t) and then collecting terms, assuming 

terms higher than second order are negligible, yields 

- T [»[l V + ̂iS 

For positive a^^'s, Eq. (16) is maximized for cos6 = 1. The first harmonic 

amplitude is 

(15) 



while the second harmonic amplitude is 

T li <«f 1 V + 2.{§>V1V2co.6 + 

2 ] 1 / 2 . (16) 

We see that the two-port network introduces an extra degree of freedom aside 

from the network coefficients a£n', aj n , namely, the phase 6 between the ac 

driving voltages. For given values of the coefficients, the phase can be chosen 

to minimize the ripple. For 6 = 0 , assuming terms higher than the second order 

in Eq. (11) are negligible, the ripple factor for the second harmonic becomes 

unity as it does for the one-port network. 

C. The More General Two-Port System 

A more general case, applicable to RFP modeling, is given by a pair of 

equations relating the voltages and currents: 

F^Vj.Vj.I^^.t,...) - 0 , 

F2(V1,V2,I1,I2,t,...) = 0 , (17) 

where the dots can represent derivatives and integrals of the voltages and 

currents. For the RFP model discussed in the next section, the variables are 

vl»v2>Il»I2»I2't> alK* ^vidt» where the subscript 1 denotes the poloidal (6) 

variables and 2 denotes toroidal ($) variables. We ne;:t generate the equations 

describing the RFP as a nonlinear two-port system. 

III. THE REVERSED FIELD PINCH AS A NONLINEAR CIRCUIT 

The RFP is an axisymmetric toroidal containment device 1*»5 in which plasma 

is confined by a poloidal magnetic field (Bg), due to a toroidal plasma current, 

and a toroidal magnetic field (B.) generated by a poloidal plasma current and 

external windings. In contrast to the Tokamak, the RFP Is characterized by a 



high-shear magnetic field configuration where the toroidal field is reversed on 

the plasma exterior with respect to its value on axis. 

A. The Taylor Model 

Taylor6 postulated, for the case of a plasma inside a perfectly conducting 

shell, that the RFP field configuration origi.iates from a process of field-line 

recoanection in which the plasma relaxes to a state of minimum field energy. J,i 

this model, the relaxed magnetic fields are eigenfunctions of the force-free 

equation 

V x B = \B , (18) 

where X is a constant. The symmetric solution to Eq. (18), in the cylindrical 

approximation, is given by the Bessel function field profiles B.(r) = B J (\r), 

and BQ(r) = BQJ^(\r), where BQ denotes the toroidal field on axis and r defines 

the minor radial coordinate. 

The relaxed states are independent of initial conditions and can be 

described by the dimensionless parameters F and 0; 

<h() B*(a) W,Ifi 
Field Reversal Parameter = _5 = I = ° B <"19) 

< B > 0 ,a " $ : 

(2/a2) / B(b(r) r dr o 

Bfi(a) Bfi(a) 
0 = Pinch Parameter = _ = ° = " f } (20) 

(2/a2) / BA(r) r dr 

where 

We shall use the cylindrical approximation to torus throughout this paper. The 
cylindrical coordinates will be denoced by r, 0, <|> instead of the more common r, 
0, z in order to keep a closer identification with a torus (major circumference 
2uR). The poloidal and toroidal coordinates are identified with 6 and (j> 
respectively. Toroidal corrections to the fields are small and thus will be 
neglected. 



LQ = Vacuum Toroidal Inductance = „ , 

e = Inverse Toroidal Aspect Ratio = a/R , 

4> = Toroidal Flux = / B^(r) 2icr dr , and 

o ™ 

<> denotes a cross-section average 

(21) 

(22) 

(23) 

The symbol a_ denotes the conducting wall radius; R is the major radius of the 

torus; and IQ , 1^ represent the poloidal current in the conducting wall and :he 

plasma current, respectively. The locus of relaxed states accessible to the RFP 

forms a curve in F-0 space as shown in Fig. 4. 

-1.4 
1.4 1.6 I.B 2.0 2.2 

Fig. A. 
The F-G curve. Here, BFM refers to the locus of relaxed states assuming Bessel 
function field profiles (Taylor curve). 

The symmetric Bessel function field profiles may be expressed in terms of 6 

a s B<t> = Bo J o ( 2 0 r/ a) a n d BG = Bo Jl(2© r/a). Taylor found that these field 

profiles represent minimum field energy states for \a < 3.1 (i.e., the first 

root of J^) and for a given magnetic helicity K = /A»BdV where B = VxA. For 

higher values of Xa, the lowest energy states are no longer axisymmetric. 

B. Derivation of the Nonlinear System Equations 

Present RFP experiments differ from Taylor's model in that a perfectly 

conducting wall is not used. Instead the experiments usually employ a double 

wall consisting of a thin resistive vacuum liner surrounded by a thick, highly 

conducting shell. The shell contains gaps to allow flux to enter the plasma 



region during startup. In addition, the experimental RFP can be driven by 

voltages applied to poloidal and toroidal field windings located on the 

conducting shell. Thus, we are interested in extending Taylor's concept 

considerably beyond the simple relaxation model of a plasma inside a perfectly 

conducting;, flux—conserving shell. We will therefore adopt the following 

premises related to the idealized Taylor model: 

(1) After the initial discharge formation, the plasma evolves to a relaxed 

state in a time that is short compared with that cf changes imposed by the 

external driving circuits. The relaxed states are assumed to be 

cylindrically symmetric. 

(2) There exists a unique locus in F-0 space on which the relaxed states lie. 

TJ- 3 form of the field distributions depends only on the parameter 0 and the 

magnitude of the fields scale with the instantaneous value of the toroidal 

flux. 

(3) The relevant conducting wall radii a_ and R are assumed to be those of the 

vacuum liner. 

Using these premises, we may write the magnetic field components in the 

following functional form: 

:e,r) (24) 
T v if 

and 

Be = Bo($)fe(0,r) , (25) 

wh' :e 0 and 9? are defined by Eqs. (20) and (23) as before. 

From Eq. (23), the scale factor BQ is related to the toroidal flux $(t) as 

follows: 

BQ - $//
af(j)(0,r)2-/crdr. (26) 

By Faraday's law, 9? = -/ E^a d9 so that the toroidal flux is given by a time 

integral of the poloidal loop voltage. From Ampere's law, the toroidal plasma 

10 



current I, and the single-tum-equivalent poloidal wj.nd.tng current Ig are given 

by 

1^ = (2ira/no) Be(a) = (2wa/|i0) Bofe(6,a) (27) 

and 

Ie - (2nR/ji0) B0(a) = (2nH/|io) BQf(()(e,a) . (28) 

The magnetic field energy in the plasma volume V is 

a ( B ^ + B Q 2 ) 
Wm = /(B

2/2nQ)dV = 2nR/ — ^ — - — 2nrdr . (29) 

We now wish to obtain a pair of equations in the form of Eq. (17) that 

relate the currents 1^ and Ig to the applied loop voltages Vi and V Q . We will 

adopt the usual circuit theory sign conventions of Fig. 3; i.e., the product of 

a positive voltage and a positive current gives a power entering the system (the 

plasma volume). Thus the power entering the plasma volume will be V^Ix + VQIQ. 

This convention requires V, = ^E^R d<|> and VQ = -^Ega d8 when the line integrals 

are evaluated by the right-hand rule. 

The electromagnetic power entering the system is given by Poynting's 

theorem 

f(E x H)«ndS = dWffl/dt + JJ-E dV , (30) 

where n is the inward normal to the bounding surface element dS, J is the plasma 

current density, and W m is given by Eq. (29). Defining an "effective plasma 

resistance" as 

R
P = £J'E dVVl,,,

2 , (31) 

we can write the energy balance of Eq. (30) as 

11 



dV d t 

We may now express Wm in terms of 1^ and 0. This is most simply done by 

defining a function L (0) called tha "effective plasma inductance" such that 

wm " 1 

where from Eqs. (24), (25), (27), and (29) 

.r)] rdr . (34) 

Although this expression for Lp(G) is suitable for analyses, it becomes singular 

at G = 0. This singularity ;;ives rise to difficulties when numerical 

simulations, starting at 1^ = 0, are performed. The difficulty basically 

results from the fact that the toroidal field energy is finite when L = 0. At 

first it would seen that a natural solution to the problem would be to define Wffl 
1 7 1 9 

= — L.IT + .i LQIQ using two inductance parameters based separately on the 

toroidal and poloidal magnetic field energies. This makes L, finite for all 0. 

However, for the RFP, LQ becomes singular at the 0 value corresponding to the 

case where the toroidal field vanishes at r = a, since at that 0 value, Ig is 

zero but the toroidal magnetic field energy is not. To avoid all singular 

behavior, one may add a well-behaved function to Eq. (33) that reduces to the 

toroidal field energy at © = 0. One choice of such a function gives 

corresponding to 

12 



Lp<0) - -5-Jr- {/a[f!(e,r) + f |(6,r)] rdr - ±[faf AQ,r)rdr]2} . (36) 
a2f§(0,a) ° a2 ° V 

Note that Lp(6) is nonsingular if fj,(0,r) :Ls a constant (i.e., the vacuum 

field).* 

We now proceed to obtain a pair of equations for the RFP in the form of 

Eq. (17). Using L (0) defined from Eq. (35), Eq. (32) can be written as 

d/dt[I LpI^
2 + $2/(2L0)] - V ^ - V el e + I$

2Rp = 0 V37) I LpI^ + $/(2L0)] - V ^ - Vele 

or 

V 0 ) V * + 1 h(e)hl + *i/Lo - V * - V a + rJ RP 

where dots represent time diffwreatiation and primes denote differentiation with 

respect to ©. Differentiating Eq. (20) and using Faraday's law with the present 

sign convention Vg = $ , one obtains 

® = iJ (io> - W $ ) • (39) 

Substitution for 0 in Eq. (38} then gives 

~ V* 

The simplest, nonsingular Lp(e) is obtained from Eq. (36) by setting 6 = 0 in 
the last integral on the right. However, in this paper, we have chosen L_(0) 
as defined from Eq. (35) for continuity with previous work.7 [The definition of 
Eq. (35) was provided by A. A. Newton, Culham Laboratory, Abingdon, England, 
1981.] If Eq. (33) is used instead of Eq. (35) to define L the effect is to 
replace the factor (1-F) by -F in Eq. (43). 

13 



From the postulated F - 0 curve we obtain F = F(0), where in terms of the 

dimensionless field distributions of Eqs. (24) and (25), 

F(6) = i a2f(()(0,a)//
af(j)(0,r)rdr . (41) 

Using Eq. (19), IQ may then be expressed as 

la = ($/Lj F(G) . (42) 

If we note that $ = /Vgdt and the definition of 0, we see that the equation 

pair (40) and (42) is in the form of Eq. (17). We can also obtain a single 

equation for 1^ by substituting IQ from Eq. (42) into Eq. (40). Further 

elimination of * in favor of 0 using Eq. (20) yields 

2 " 

+ [Lp + (0/2)Lp]i()) +[-§•- - ^ T ^ K -• 0 . (43) 

Equation (43), although complex, illustrates the important nonlinear 

plasma-circuit properties ne RFP. This nonlinear coupling between the 

toroidal current and the drl- voltages arises via the F-0 diagram. The 

nonlinear plasma circuit behavior described by Eqs. (42) and (43) forms the 

basis for the OFCD concept. 

IV. SMALL-SIGNAL ANALYSIS OF THE DIRECT-CURRENT GENERATION IN THE RFP FROM 
OSCILLATING APPLIED VOLTAGES (F-G PUMPING) 

In the spirit of Sec. II, we now comment on small-signal periodic solutions 

of Eqs. (40) and (42) for assumed sinusoidal driving voltages of radian 

frequency w as follows: 

Ve = V9sin(a)t) ; (44) 

6) , (45) 

14 



where V, = [v* + v£)1'2 and 6 

We assume, in the small signal approximation, that variations of quantities 

about the operating point values of S and $, denoted by 0Q and 3>o, are small. 

Expanding L and F in a Taylor series about 8O yields 

Lp(6) = Lp(0o) + Lp(9o)(0 - 0O) + ... (46) 

and 

F(8) = F(0o) + F'(0 Q)(0 - 0O) + ... - (47) 

Integrating Eq. (44) gives 

$ = /Vgdt = -(Ve/u)cos(wt) + $ o . (48) 

For a periodic solution, I* and R_ may be expanded in Fourier series 

CD M 

1,1,(t) = Io + L [ d n sin(nwt) + In cos(nwt)] (49) 

ana 

Rp(t) = RQ + f [Rj, sin(nut) + ^ cos(najt)] . (50) 

The quantity IQ is the dc component of the toroidal plasma current of primary 

interest for current drive. The corresponding expressions for 0 and 0 can be 

obtained using Eqs. (20), (48), and (49), expanding about the operating point 

0 O = LoIo/e<t>o. Substituting these expressions into Eq. (43) and equating the 

coefficients of sin(najt) and cos(nwt) for each n value to zero, one obtains a 

system of equations. The voltages are regarded as prescribed, and the R (t), 

L_(0), F(6) functions and geometry constants LQ and e are specific for a given 

RFP experiment. The desired quantities to be obtained are the corresponding 

direct current IQ and the ac current ripple for each harmonic described by Ifl 

and In for n > 0. 

15 



In general, the system of simultaneous equations contains polynomials in the 

unknowns I n and In whose coefficients are real, rational algebraic functions of 

the driving ac voltage coefficients VQ, V^, Vij the frequency w; the values of 

the F and L functions and their first derivatives at the operating point QQ; 

the effective resistance parameters RQ, K^, Rj,; and the geometry parameters LQ, 

e; and 3 . The degree and complexity of these equations depend strongly on the 

truncation and the ordering of small quantities that are used. The ordering of 

small quantities involves the unknowns and must be checked for self-consist«ncy 

for the parameter values of interest after solutions to the system of equations 

are obtained. We shall reserve the parameter study of the small-signal 

solutions for a separate paper and proceed to a direct computational study of 

F-0 pumping making use of Eqs. (42) and (43). However> it is instructive to 

first explore an alternate description of F-0 pumping using magnetic heliclty 

conservation. 

V. F-0 PUMPING AND MAGNETIC HELICITY CONSERVATION 

The preceding description of F-9 pumping as a consequence of the nonlinear 

behavior of RFP discharges is based en a model of electromagnetic power balance 

(Poynting's theorem). An alternate description of the F-G pumping concept can 

be formulated based on a model of magnetic helicity balance.2 Magnetic helicity 

in the RFP can be interpreted as the "knottedness" of magnetic field lines 

within the toroidal vacuum vessel excluding the coupling of plasma fields with 

externally linked fields.8'9 That is, 

K = JA-Bdv - m , (51) 
v~ ~ 

where A is the vector potential such that B = V x A, $ denotes the toroidal flux 

[(Eq. (23)], and ¥ is defined as the external poloidal flux threading the 

central hole of the torus (also called the magnetizing flux). 

In an RFP with a conducting shell or equivalent equilibrium-stabilizing 

system, the component of B normal to the shell surface is small and the time 

derivative of Eq. (51) becomes2'10'11 

16 



- 2/E.BdV , (52) 
V 

where V* denotes the toroidal loop voltage. 

In Eq. (52), the term 2§>Vlt) represents the magnetic helicity input per unit 

time while the term 2/E.BdV denotes the total helicity dissipation per unit time 

within the plasma. In steady state, -j— <K> = 0, which implies 

= </E.BdV> , (53) 

where <> denotes a time average. For normal inductive drive of an RFP 

experiment, where the toroidal flux and plasma current are held constant, 

helicity balance [(Eq. (53)] is maintained by a dc toroidal voltage (V^), 

However, because V^ = -Ym, inductive drive does not yield a true steady-state 

current-drive solution. 

Bevir and Gray2 first suggested that helicity balance and hence the plasma 

current could be maintained in a mean steady state by simultaneously modulating 

both the toroidal voltage and toroidal flux. For example, consider the toroidal 

and poloidal sinusoidal driving voltages Vg = Vgsin(o)t) and V^ = V(j)sin(wt+6) 

from Eqs. (44) and (45). From Eq. (48), $ = /Vgdt = -(Ve/o))cos(wt) + $ o, and 

thus evaluating the left-hand side of Eq. (53) yields 

vfiv<fc 
^-i <cos(tot) sin(iot+6)> 

for 6 = - n/2 . (54) 

Thus the applied ac voltages are most effective in supplying the helicity when 

Vx lags Ve by 90°. If the dissipation term </E«BdV> is not adversely affected 

17 



by the sinusoidal driving voltages, then Eq. (53) demonstrates steady-state 

helicity balance because both <V(j)> and <VQ> are zero. This, of course, implies 

from time averaging Faraday's Law that <$> and <^m> are constant in time. 

The conjecture that steady-state helicity balance implies steady-state 

current drive relies on the nonlinear coupling as discussed earlier. The same 

set of assumptions previously invoked in the power-balance model (i.e., the 

pinch remains in a quasl-ralaxed state during the voltage modulations and there 

exists a unique locus in F-0 space on which the relaxed states lie) implies that 

the sinusoidal driving frequency must remain below the inverse characteristic 

relaxation time of the pinch. Also, it is crucial that tht driving terms do not 

adversely affect the time-averaged helicity dissipation.11 The validity of 

these assumptions must ultimately be tested by experiment. 

VI. ZERO-DIMENSIONAL SIMULATIONS OF F-9 PUMPING 

As stated earlier, the Taylor model and assumptions do not totally 

correspond to actual RFP experiments. In general, the measured F-0 curve lies 

above the corresponding Taylor prediction (see Fig. 4). Because our aim is to 

demonstrate the dc drive properties for parameters believed to be relevant in 

RFP experiments, we must make specific choices for the F(0), L (0), and Rp(t) 

functions. 

The function F(0) can be obtained experimentally since F and 9 are easily 

measured by external electrical diagnostics. However the L and R_ quantities 

involve internal field measurements that entail inserting magnetic field probes 

into hot plasmas. For the high current and long pulse duration in the operating 

ranges of interest,, the insertion of material probes seriously perturbs the 

plasma behavior. In addition, there is a risk of probe breakage and serious 

contamination of the vacuum chamber. In the absence of internal field 

mesurements, L_ and R_ are determined from a specific model for the field 

distributions of Eqs. (24) and (25). The objective is to use a model that is 

close to the Taylor-Bessel functions, but modified to give agreement with the 

experimental F-0 diagram.7'11 Using the approximation that the cross-field 

current flow Is small In low beta plasmas, we use the modified force-free 

equation 

V x B = Ur)B , (55) 

18 



where X is no longer a constant (as in Taylor theory) but is a function of minor 

radius and specifies the current profile. Furthermore, we choose a X profile 

that drops to zero at the wall (see Fig. 5). The resulting field configuration 

is called the modified Bessel function model (MBFM) (not to be identified with 

the modified Bessel functions of the mathematics literature). Figure 6 shows an 

example of the MBFM field and current density profiles. The corresponding MBFM 

F-Q curve is shown in Fig. 4. Details of this model are given in Refs. 7 and 

11. 

1.0 0.5 0 0.5 1.0 
••—r/a—•-

Fig. 5. 
Spatial profile of \(r) used in generating the fields of T±%. 6. 

(b) 3 

0 0.2 0.4 0.6 0.8 1.0 
RADIUS r/a 

2 -

0 0.2 0.4 0.6 0.8 1.0 
RADIUS r/a 

Fig. 6. 
Toroidal and poloidal spatial profiles from the MBFM for (a) magnetic fteld and 
(b) current density. 

This model was proposed by A. A. Newton, Culham Laboratory, Abingdon, England 
1981. 
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With these profiles, which have been parameterized to give a good fit to a 

given experimental F-0 diagram and voltage and current waveforms, Lp(0) is 

computed from Eq. (36). R may then be calculated from Eq. (32).7 

A. Simulations of F-6 Pumping on ZT-40M 

A conceptual diagram of an RFP is shown in Fig. 7. It consists of a metal 

vacuum vessel surrounded by a close-fitting conducting shell. The purpose of 

the shell is to provide the initial plasma equilibrium and stabilize the plasma 

against MHD instabilities. The toroidal and the poloidal magnetic fields are 

initiated and sustained by currents flowing in the field windings external with 

the shell. Currents flowing in the poloidal field windings also provide the 

vertical field necessary for plasma equilibrium on timescales that are long 

compared with the shell diffusion time. 

TOROIDAL RFP 

POLOIDAL 
FIELD 
WINDINGS 

TOROIDAL 
FIELD 
WINDINGS 

CONDUCTING 
SHELL 

TOROIDAL 
PLASMA 
CURRENT C 

VACUUM 
VESSEL 

Fig. 7. 
Conceptual diagram of the RFP. 

An equivalent electrical schematic of the ZT-40M RFP system is shown in 

Fig. 8. Both the poloidal and toroidal magnetic field circuits are driven by 

EMF sources that typically utilize capacitor banks. The schematic illustrates 

that the RFP may be treated as a two-port system in which I Q and Vg represent, 

respectively, the single-turn equivalent (s.t.e.) poloidal winding current and 

voltage. VJ, is the s.t.e. toroidal winding voltage and IJ, is the plasma 

current. The coupling of the RFP plasma to tbs external circuit equations is 
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B« CIRCUIT 

Fig. 8. 
Conceptual schematic of the RFP. 

MAGNETIZING FLUX 

V. Sin ( W T + 8 ) 

Fig. 9. 
Oscillating field current-drive schematic. 
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described by Eqs. (42) and (43). Figure 8 thus forms the conceptual basis of a 

zero-dimensional computational code that, to date, has successfully simulated 

the electrical behavior of RFP discharges7. The remainder of this section 

discusses the application of this code to evaluating the OFCD concept. 

Figure 9 illustrates a conceptual schematic of an OFCD system. The system 

consists of dc supplies to provide pinch initiation and startup in series with 

the ac drivers. The ac drivers are essentially phase-locked variable amplitude 

audio oscillators. For steady-state operation, the B| dc supply provides a 

negative toroidal field bias, and the BQ dc supply drives only the external 

circuit ohmic drop in order to maintain plasma equilibrium. The combined and 

properly phased VQ and VA oscillators drive the plasma current by means of the 

nonlinear F-0 coupling. 

The F-0 pumping concept was initially studied by simulating the effect of 

ac VA and VQ sources on the Los Alamos ZT-40M experiment.12'13 In these 

simulations, the MBFM field profiles and concomitant Lp(9) were chosen to give a 

good fit to an exper'. ntal ZT-40M F-0 diagram (Fig. 4). The plasma resistance, 

Rp, wat, chosen to give the best fit to the experimental ZT-40M current and 

voltage waveforms when the MBFM model is used in computer simulations.7 

Figure 10 shows the simulation results for a 200-kA discharge modulated at 

2.5 kHz. Figures 10(a) and 10(b) illustrate the effect of F-0 pumping on 

sustaining the plasma current and mean toroidal field waveforms. The effect of 

the ac drive is apparent. Figure 10(c) shows the time history of the 

magnetizing flux ¥ m that threads the central hole of the torus. Note that the 

time-averaged magnetizing flux remains constant during current drive as is 

required for steady-state operation. 

For a given RFP, current drive by F-0 pumping is basically controlled by 

five parameters: the amplitudes, VQ and VA., of the ac modulating voltages; the 

phasing 6 between the voltages; the operating point 0Q; and the driving 

frequency u. The simulation resu.Ks illustrated in Fig. 10 were optimized in 

order to balance the ac power requirements in the toroidal and poloidal field 

circuits. This was accomplished by first adjusting the phase 5 between V^ and 

VQ uo maximize the current-drive effect. Optimum performance required VA to lag 

VQ by 90° as shown in Fig. 10(d), which is consistent with the predictions of 

the magnetic helicity model given by Eq. (54). The driving frequency was 

selected to be much larger than an inverse discharge lifetime and smaller than 

an inverse plasma relaxation time. Finally, the poloidal ac driving voltage 
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Fig. 10. 
Computational simulations of F-G pumping on ZT-40M: (a) plasma current with and 
without F-0 pumping, (b) mean toroidal field with and without F-0 pumping, and 
(c) simulated waveform tor the magnetizing flux (¥m) with and without F-0 
pumping. Here, f denotes the magnetic flux threading the central hcle of the 
torus, (d) Applied voltages Vg and Vi valuated at the plasma. 
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was maximized subject to the constraint that the toroidal field at the wall 

remain reversed during modulation. 

The simulation code used o 'btain the results in Fl^- 10 makes several 

assumptions regarding plasma behavior ia the RFP. These assumptions are 

1) The modulation does not significantly degrade overall pinch performance. 

In particular, no overt deleterious effects are observed with respect to 

confinement., equilibrium, plasma-wall interactions, resistivity, etc. 

2) During modulation, the plasma remains in a quasi-relaxed state. That is, 

the plasma's dynamic response to modulation remains along a well-defined 

trajectory in F-0 phase space. This requires the plasma's relaxation time 

to be much shorter than one modulation period, which sets an upper limit on 

the driving frequency. 

In order to test these assumptions, an experimental series was run on 

ZT-40M that entailed modulating the toroidal and poloidal field circuits during 

120-kA discharges over the frequency range from 750 Hz to 1.4 kHz.11* No attempt 

was made during this exercise to drive current by F-0 pumping, because 

simultaneous modulation of both field circuits required significantly more power 

and phase control accuracy between the respective drivers than was available. 

Overall pinch behavior during modulation was monitored by a standard set of 

plasma diagnostics. Plasma parairsters such as electron density, resistivity, 

impurity content, and equilibrium position showed no substantial departures from 

normal 120-kA operation as long as the toroidal magnetic field reversal was 

adequately maintained. Of particular interest were the data taken from a 

multichannel deuterium-alpha (Da) monitoring system that measures plasma-wall 

interactions. The Da monitors did not show any significant increase in plasma-

wall interactions during modulation, even during the temporal periods when the 

Poynting flux was outward.1'1 

As previously noted, the magnetic field coupling in a RFP is defined by tne 

discharge's trajectory in F-0 phase space. Figure 11 illustrates typical 

discharge behavior during one experimental modulation period. The bold curve 

represents the F-0 trajectory predicted by the modified Bessel function model 

(MBFM) and used by the simulation. For the case where the toroidal voltage (VJ 

is modulated, the operating point of the discharge moves clockwise in an 

elliptical path where one elliptical revolution corresponds to one modulation 

period. Similarly, when the poloidal voltage (Vg) is modulated, the operating 

point moves counterclockwise around the ellipse. The major axis of the ellipse 

24 



0.0 

-0.2 

F 

-0.4 

' ' I ' ' ' ' I ' ' ' ' i 

MBFM PREDICTION 

— Q ft i | I i | i i 1 i i i i I i i i i I 

1.4 1.5 1.6 1.7 1.8 

(H) 

Fig. 11. 
An experimental F-0 trajectory for one modulation period during 1-kHz 
uodulation. The bold curve shows the trajectory predicted by the 
modified Bessel function model. 

approximately corresponds to the predicted MBFM F-9 trajectory for this run's 

conditions, and its length is dependent on the modulation amplitude of the 

voltage driver. The minor axis of the ellipse, and the orientation with which 

the operating point traverses the elliptical path, implies a 100-us time delay in 

the coupling between the orthogonal field components. This 100-jis relaxation 

time is consistent with resistive tearing mode time scales for ZT-40M and is 

much less than one modulation period. 

The effect of a finite relaxation time on F-9 pumping was checked by 

incorporating a coupling delay in the current-drive simulations.* Figure 12(a) 

This was done by replacing 0 in Eqs. (A2) and (43) by the value obtained by 
simultaneously integrating 9 - (L0I./E$ - 0 ) / T d > where xd is a constant delay 
time parameter, instead of using Eq. (20). 
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(a) An F-0 trajectory for a simulated 40-|is delay due to a finite 
relaxation time showing several modulation periods. This temporal delay 
corresponds to the same 0.6-rad phas~ delay experimentally deduced from 
Fig. 11. (b) An F-0 trajectory for a IOO-JIS delay. (c) Corresponding 
simulated plasma current waveform for a 100-us delay. 
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shows the resulting F-0 diagram for a 40-us delay. This temporal dp?ay 

corresponds to the same phase delay (0.6 rad) that was experimentally deduced 

from Fig. 11. Figures 12(b) and (c) show the simulated F-G trajectory and 

plasma current waveform assuming a 100-us delay. This amount of delay does not 

adversely effect che nondelayed simulation results illustrated in Fig. 10. 

B. The Reactor Relevance of F-6 Pumping 

The relatively large modulation amplitudes (I(j)/<I(j)> ~ 10%) and concomitant 

power requirements shown in Fig. 10 illustrate that F-8 pumping is difficult to 

achieve in a low-temperature (200- to 300-eV) RFP plasma. However, F-G pumping 

shows excellent promise as a viable current-drive mechanism for the RFP reactor. 

Recent results from a study by Bathke et al. are shown in Fig. 13. Figures 

13(a) and 13(b) plot I(j)/<Î > vs £/<$> and V())/<I(t)Rp> vs $/<*>, respectively, for 

a steady-state 18.5-MA Compact RFP Reactor (CRFPR). Here, I./<I.> denotes the 

ac toroidal current swing normalized to the mean toroidal current, V./<I.R > 

denotes the ac toroidal voltage normalized to the mean resistive component of 

the toroidal loop voltage, and $/<$> represents the ac toroidal flux swing 

normalized to the mean toroidal flux. The curves are generated by substituting 

the ac voltages (Vg and V*) in Eq. (43) and iterating their amplitudes until 

<IJ,> = 0. The driving frequency is set equal to 50 Hz, which is a reasonable 

power grid value. In each figure, the two curves represent solutions based on 

both the Taylor-state Bessel-function model (BFM) and the modified Bessel 

function model (MBFM) adjusted for a reactor relevant f3 of 0.23. An overall 

summary of the current-drive system for the CRFPR is listed in Table I (Ref. 3). 

An examination of Fig. 13 elucidates several important features of current 

drive by F-Q pumping. First, steady-state current drive is viable over a wide 

range of V^ and Vg or equivalently V(j)/<Ijj)Rp> and $/<<£> parameter space. This 

implies that the exact operating point in V.,VQ space can be determined by 

physics and engineering constraints in order to maximize the system efficiency 

and minimize its effect on reactor plasma properties. 

Second, the current-drive effect is relatively insensitive to the exact RFP 

field model employed, as long as there exists a locus in F-0 space on which the 

relaxed states lie. For example, Fig. 13(c) illustrates the F-© trajectories 

for both the BFM and MBFM (p = 0.23). These substantially different models 

result in a modest (<50%) difference between the ac modulation requirements. 
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Fig. 13. 
Computational study of F-0 pumping on a Compact RFP Reactor (CRFPR). 
The system is driven at 50 Hz and optimum phase. The solid curves 
assume the BFM^while the dotted curves assume the MBFM corrected for a 
P of 0.23: (a) ij<I^> vs $/<*>, (b) VJKI.JL? vs £/<$>, and (c) F-0 
trajectory for the BFM and MBFM (p = 0.23). (FroiE Bathke et al., 
Ref. 3.) 
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TABLE I 

TYPICAL (F-© PUMPING) 

CURBENT-DRIVE CRFPR PARAMETERS 

PARAMETER VALUE 

Fractional Flux Swing $/<$> 0.01 

Normalized Voltage Swing, V(()/<I())Rp> 200 

Toroidal Voltage, <I(|)Rp> (V) 0.31 

Normalized Current Swing, !,/<!.> 0.004 

Current Swing, ]L (MA) 0,078 

Frequency, w (Hz) 50 

Dissipative Power, <P> (MW) 5.74 

Poloidal, <Pe> (MW) 3.44 

Toroidal, <P())> (MW) 2.30 

Efficiency Factor, <I^>/<¥> (A/W) 3.2 

Stored Energy, Eg (MJ) 0.26 

Finally, with the expected low plasma resistivity of an ignited reactor, 

the power requirements and concomitant voltage and current modulation amplitudes 

for c. \rent drive are low. For example, the design point for the F-G pumping 

system . n the Compact RFP Reactor3 requires only <P> = 6 MW of power (Table 1). 

This gives a current-drive efficiency of <I<j)>/<P> = 3.2 amperes per watt, more 

than an order of magnitude larger than the 0.2 value quoted as probably 

attainable for rf current drive assuming Tokamak reactor parameters.*5 

Modulation-induced plasma motion has been estimated by E x B drift arguments and 

time-dependent equilibrium modeling to be less than one per cent of the minor 

radius. 

VII. F-G PUMPING AND THE DYNAMO EFFECT 

One plausible explanation for the strong, nonlinear coupling and 

concomitant F-G pumping in an RFP is the existence of a "plasma dynamo." In one 

model the dynamo maintains the RFP mean field topology in a relaxed state by a 

process of field-line reconnection and plasma turbulence. That is, the plasma 

internally creates toroidal flux in order to maintain itself on the F—6 curve. 

Observation of self-reversal in past RFP experiments and recent work on ZT-40M 

with multimillisecond-current risetimes substantiate the flux generetion 
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effect.16'17 Other possibilities include a tangled discharge model18 and a 

kinetic model19 of RFP sustainment in which magnetic field stochasticlty allows 

electron currents to be driven against the applied electric field in the 

reversed field region thus maintaining the RFP profiles. Although a 

comprehensive treatment of dynamo physics is beyond the scope of this paper, an 

introduction to one possible dynamo model, using the a-effect,8 is given below. 

However, it must be emphasized that F-G pumping relies only on the existence of 

a nonlinear plasma coupling and not on the particular nature of the physical 

coupling mechanism. 

A. Simple Ohm's Law Model 

A simple form of Ohm's law is given by 

(56) 

where u(x,t) denotes the velocity field of the plasma and r\ represents the 

plasma resistivity tensor. Applying Faraday's and Ohm's laws to any closed 

plasma magnetic field line yields 

^ E « d A = (St|»J»dA = -d>~ , (57) 
X ~ ~ J - o 

where <|> denotes a generalized magnetic flux. 

For an RFP, Eq. (57) is easily evaluated in terms of the orthogonal 

components (EQ.EX) by choosing the integration path along the toroidal field 

null (in the 9 direction) and magnetic axis (in the $ direction), respectively. 

For these cases, 

null *-\ 

and 

v axis *••) v 

30 



where $ represents the toroidal magnetic flux enclosed by the path of length X-^ 

along the toroidal field null and <\i denotes the total flux enclosed by the 

magnetic axis of length J!̂* For a constant current steady-state operation, <j* 

includes the monotonically changing magnetic flux through the central toru= 

hole. Thus, the constraint that <\> remain finite limits the present inductively 

driven experiments to a pulsed mode of operation. 

Finite positive resistivity rules out a constant steady toroidal flux in 

the plasma because Eq. (58) implies 4> must decay.*7 There are two possible ways 

to circumvent this decay and explain the long (~30 ms) constant current pulses 

observed on ZT-40M: (1) Ohm's law may not be valid and/or (2) the discharge may 

not be symmetric. The tangled discharge model retains a local Ohm's law and 

gives up local field symmetry while the kinetic model abandons Ohm's law and 

local field symmetry. Both models can retain symmetric space-averaged mean 

fields.^8'1? -jhe turbulent dynamo retains a local Ohm's law and gives up 

symmetry for the local instantaneous fields but retains symmetry and has an 

altered Ohm's law for the mean fields. 

B. The Turbulent Dynamo 

In general, the magnetic and velocity u fields of an RFP plasma may be 

expressed in terms of a mean and fluctuating component, represented by <> and 6 

symbols respectively, 

B(x,t) = <B(x,t)> + 6B(x,t), <6B> = 0 (60) 

and 

u(x,t) - <u(x,t)> + 6u(x,t), <6u> = 0 . (61) 

Thus 

<u x B> = <u> x <B> + <6u x 6B> . (62) 

Using Eq. (62), the mean value of Ohm's law [Eq. (56)] may be written as 

J> - <u> x <B> - <6u x 6B> , (63) 
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where <E> is the mean electric field in the laboratory frame of reference. With 

the assumption that <6ji x 6B> may he expressed as a power series expansion in 

<B>, then to lowest order for 6u isotropic,8 one may write 

<6u x 6B> = a<B> , (64) 

where a is a pseudoscalar function of space and time. The mean-valued Ohm's law 

becomes 

J> - <u> x <B> - ct<B> . (65) 

The appearance of the last term in the mean-field Ohm's law is called the a 

affect. For positive a, it is now possible for <E> to vanish even though J 

remains finite. Hence, by utilizing the a effect dynamo, it ij possible to 

sustain a steady-state mean pl.asma current. From Eq* (59), and for a steady 

state where <u> = 0 , 

<E(J)> = <T| • J>n - ct<B> = - <^>/H2 , (66) 

where II denotes the component parallel to <B>. Note that <E,> can vanish if the 

two terms cancel. In this case, a mean J, and hence <!*> can be maintained with 

[ = 0. 

VIII. CONCLUSIONS 

F-0 pumping is at present a plausible and reactor-relevant candidate for 

RFP current drive. Analytic and computational studies indicate that F-6 pumping 

Is relatively insensitive uo RFP plasma models as long as the plasma's dynamic 

response to field modulation remains along a well-defined trajectory in F-0 

space and the modulation does not significantly degrade overall pinch 

performance. Recent experimental measurements on the ZT—40M experiment have 

tentatively confirmed these conditions. Although many aspects of F-9 pumping 

must yet be tested by experiment, F-9 pumping may provide a technologically 

simple method for driving future steady-state RFP devices. 
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