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OSCILLATING FIELD CURRENT DRIVE FOR REVERSED FIELD FINCH DISCHARGES*

by

Kurt F. Schoenberg, Robert F. Gribble, and Don A. Bzker

ABSTRACT

Oscillating ¥Field Current Drive (OFCD), also know~n
as F-0 pumping, is a steady-state current-drive technique
proposed for the Reversed Field Pinch (RFP). Unlike
other current-drive techniques, which employ high-
technology, invasive, and power intensive schemes wusing
radio frequency or neutral particle injection, F-0
pumping entails driving the toroidal and poloidal
magnetic field circuits with low-freguency (audio)
oscillating voltage sources. Current drive by this
technique is a conseguence of the strong nonlinear plasma
coupling in the RFP. Because of its low frequency and
efficient plasma coupling, F-0 pumping shows excellent
promise as a reactor-relevant current-drive technique. A
conceptual and computational study of this concept,
including its experimental and reactor relevance, 1is
explored in this paper.

I. INTRODUCTION
A variety of techniques has been proposed to drive steady-state current in

toroidal containment devices.! To a large extent, the techniques employ high
technology, invasive, power intensive schemes utilizing radio frequ=zncy or
neutral particle 1injection. For large-scale . systens, the engineering and
economic designs of these schemes are complex.

The dc drive situation for a Reversed Field Pinch (RFP) may be different.
In an RFP, the poloidal and toroidal winding currents are nonlinearly coupled by

the plasma. As a consequence, with certain circuit programming, the possibility

*This is a revised and updated version of a manuscript submitted December 10,
1981. This report also forms the basis of a manuscript to be published in the
Journal of Applied Physics in Vol. 55, September 1984.



arises of maintaining a mean (time-averaged) toroidal current against
dissipation without a continuous expenditure of mean magnetizing (or driving)
flux.? Thus, the promise exists for a relatively simple, steady-state current-
drive system that entails driving the toroidal and poloidal magnetic field
circuits with low-frequency (audio) oscillating voltage sources. In addition,
this O0scillating Field Current Drive (OFCD), also known as F-8 pumping, shows
excellent potential as a reactor-relevant current-drive technique.3 A conceptual

study of OFCD will be explored in this paper.

II. A REVIEW OF DIRECT-CURRENT PRODUCTION FROM AN ALTERNATING-CURRENT-
DRIVEN NONLINEAR CIRCUIT
One normally considers the production of direct current from an ac voltage
source in terms of a rectifier. For illustrative purposes, we shall begin with
a more general nonlinear single-port system, which includes the rectifier, and

then proceed to a two-port system suitable for representing the RFP,

A. The One-Port System
In a on~-~port (one-terminal pair) system (Fig. 1), for a passive linear

system, the steady—state current response to a sinusoidal voltage of radian

frequency w 1s given by
I(w) = Y(wV(w) , n

where V(w) = Vel®t ) I(w) = Iel®t and Y(w), called the complex driving point ac
admittance, is the reciprocal of the complex impedance Z(w). As usual, the
instantaneous values of the voltage and current are represented by the real

parts of V(w)eiwt and I(w)eiwt, respectively. The relationship defined by

Fig. 1.
One-port system.



Eq. (1) is linear and homogeneous, in that it iavolves the current and its time
derivatives or integrals im a linear fashion, and only a steady~state ac of
frequency w 1s produced by steady-state ac driving voltage. Fo. a nonlinear

system, the situation is quite different.

In a nonlinear system, the equation relating the current to the applied
voltage contains nonlinear expressions. These nonliaear exprezsions may coutain
the voltage, the current, and/or their time derivatives or integrals. For
example, consider the generation of direct current by an ac voltage in a

nonlinear circuit for the case where the instantaneous current and voltage are

related as follows:

1(t) = £(v(t)) , (2)

where I = 0 1if the driving voltage is ldentically zero for a passive dissipative
system and where f is some nonlinear function of the voltage. To obtain the
current response for a small ac voltage, we expand f£(V) in a power series about

V = 0. That is,

I(t) = £°(0) v +‘% £9°C0) V2 4 ..., (3)

where the prime denotes differentiation with resvect to V. For V = Gsin(wt),

the current is given by
I(t) = £(0) Vsin(wt) +,} £97(0) V2sinZ(wt) + vue . (4)

1

Noting that sin(wt) = (1 - cos(2wt)), we have

™|

~

I(t) = %'_ £77¢0) + £7(0) VUsin(wt) - X

£97(0) V2cos(2wt) eus o (5)

&



Hence, the nonlinearity, £’°(0) # 0, has allowed the sinusoidal voltage to
generate a direct-current component
L
Tge = o £77°(0) (6)
and a second harmonic with an amplitude equal to the dc value. If higher order
terms 1in the expansion are kept, higher h-rmonics and further contributions to
the dc component are generated. If the higher terms are negligible, the first

and second harmonic ripple factors are

Ry = T,./15qc1 = (A/DIIETCON/IE (O] (7
and

Royy =1 (8
The generation of the direct current from a nonlinear current-voltage curve is
shown schematically in Fig. 2(a) (the imperfect rectifier). For comparison, an
iieal rectifier with a coustant series resistance, where f = 0 for V < 0 and £

+8 linear for V > 0, is shown in Fig. 2(b).
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Fig. 2.
Nonlinear systems representing an (a) imperfect rectifier and
(b) ideal rectifier.



B. The Two-Port System

We mnow proceed in an analogous fashion to examine the production of a
direct current from a single-~frequency, sinusoidally driven two-port (two—
terminal pair) system (Fig. 3). For a linear, passive two—port system in ac

steady state, the relationship analogous to Eq. (1) is given by

it

I(w) = Y1 1(w)Vi(w) + Yj9(w)Vy(w)

Ip(w) = Yoi(w)Vy(w) + Yop(w)Vy(w) (9)

where the Yij’s are elements of the complex admittanc: matrix. As Dbefore,

steady-state ac voltages can produce only steady-state ac currents with the same

frequency.

L
+ O—-—> -

Fig. 3.
Two—port system.

As an example of direct-current generation in a nonlinear two-port system,

we assume a relationship analogous to Eq. (2):

Fl(vl(t)’VZ(t)) s

]

Il(t)

Io(t) = Fo(Vy(t),Va(t)) , (10)

with F(0,0) = .5(0,0) = 0 .



Expanding I} and I; in a double power series about V; and Vy = 0 yields

2 2 2
I = n) +,!'_ n) - see
n = a{™vy + 3 & af PV + , (11)
where
a{™ =z oF_/ov, (n=1,2) ,
afn) = 32r sav,av. (1,j = 1,2) (12)
ij ~ o 10Y5 | s ’

evaluated at Vl = V2 =0 .

For the applied voltages vy = Glsin(vr) and V, = stin(wt+6), where Gl and 62

are positive,

In(t) = afn)elsin(wt) + agn)ozsin(wt+6)

+u% [af?)ﬁlzsinz(wt) + 23%2)016251n(wt) sin(wt+58)

+ a$B¥,2sin?(wt+8) ]+ o, (13)

where ajy = ay; {interchangeability of partial differentiation). Expanding

sin(wt+5) = sin{wt) cos& + sind cos{wt) and then collecting terms, assuming

terms higher than second order are negligible, yields

(n) =1 7 (n)y 2 (n)g ¢ n)yj. 2
Idc( = Z-[al1 vyt o+ 2312 V{Vycoss + aéZ)VZ ] . (14)
For positive aij's, Eq. (16) is maximized for cosd = 1. The first harmonic

amplitude is

I&H) = [@f™ip? + 2a{Maf?)¥ V)coss + (ag™ip21t2 (13



while the second harmonic amplitude is
Iég) =-% [% (ag?)Glz + Zaig)Glecosé + agg)622c0526)2

+ (aig)\“ll{lzbiné + -% a53)62281n26)2]1/2 . (16)

We see that the two-port network introduces an extra degree of freedom aside
from the network coefficients ai“), aig), namely, the phase & between the ac
driving voltages. For given values of the coefficients, the phase can be chosen
to minimize the ripple. For & = 0, assuming terms higher than the second order
in Eq. (11) are negligible, the ripple factor for the second harmonic becomes

unity as it does for the one-port network.

C. The More General Two—Port System

A more general case, applicable to RFF modeling, is given by a palr of

equations relating the voltages and currents:

Fl(vl’VZ’Il’IZ’t"”) =0 3

FZ(VI,VZ,II,Iz,t,co-) =0 > (17)

where the dots can represent derivatives and integrals of the voltages and
currents. For the RFP model discussed in the next section, the variables are
Vl,Vz,Il,Iz,iz,t, and JSV,;dt, where the subscript 1 denotes the poloidal (8)
variables and 2 denotes toroidal (¢) variables. We ne:xt generate the egquations

describiag the RFP as a nonlinear two—port system.

III. THE REVERSED FIELD PINCH AS A NONLINEAR CIRCUIT

The RFP is an axisymmetric toroidal containment device®*5 in which plasma
is confined by a poloidal magnetic field (Bgy), due to a toroidal plasma current,
and a toroidal magnetic field (B¢) generated by a poloidal plasma current and
external windings. In contrast to the Tokamak, the RFP is characterized by a



high-shear magnetic field configuration where the toroidal field is reversed on

the plasma exterior with respect to its value on axis.

A. The Taylor Model
Taylor6 postulated, for the case of a plasma inside a perfectly conducting

shell, that the RFP field configuration origiaates from a process of field-line
reconnection in which the plasma relaxes to a state of minimum field energy. Tn

this model, the relaxed magnetic fields are elgenfunctions of the force-free

equation

VxB:}\g R (18)

~

where A 1s a constant. The symmetric solution to Eq. (18), in the cylindrical
approximation,* is given by the Bessel function field profiles B¢(r) = BOJO(Xr),
and Be(r) = BoJl(xr), where B, denotes the toroidal field on axis and r defines

the minor radial coordinate.
The relaxed states are independent «»f initial conditions and can be

described by the dimensionless parameters F and 0O;

B B L. I
F = Fileld Reversal Parameter = ¢(a) = ¢(a) =2 © .(19)
<B¢> 2 a <] )
(2/a%) [ By(r) r dr
o
Bp(a) Bn(a) L. I
O = Pinch Parameter = _° = 6 =00 s (20)
<B¢> 2 a ed
(2/a%) | By(r) r dr
o
where

*We shall use the cylindrical approximation to torus throughout this paper. The
cylindrical coordinates will be dencced by r, 6, ¢ instead of the more common r,
08, =z in order to keep a closer ldentification with a torus (major circumference
27R). The poloidal and toroidal coordinates are identified with 6 and ¢
respectively. Toroidal correct.ons to the fields are small and thus will be

neglected.
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Hod

L, = Vacuum Toroidal Inductance = 7R . (21)

€ = Inverse Toroidal Aspect Ratio = a/R , (22)
a

® = Toroidal Flux = fo B¢(r) 2nr dr , and (23)

<> denotes a cross—section average .

The symbol a denotes the conducting wall radius; R is the major radius of tle
torus; and Ig, I4> represent the poloidal current in the conducting wall and 'he

plasma current, respectively. The locus of relaxed states accessible to the RFP

forms a curve in F~0 space as shown in Fig. 4.
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Fig, 4.
The F-0 curve. Here, BFM refers to the locus of relaxed states assuming Bessel

function field profiles (Taylor curve).

The symmetric Bessel function field profiles may be expressed in terms of B
as By = B, J,(20 r/a) and Bg = B, J;(20 r/a). Taylor found that these field
profiles represent minimum field energy states for Aa < 5.1 (i.e., the first
root of J;) ard for a given magnetic helicity K = SA+BdV where B = VxA. For

higher values of Aa, the lowest energy states are no longer axisymmetric.

B. Derivation of the Nonlinear System Equations

Present RFP experiments differ from Taylor’s model 1im that a perfectly
conducting wall 1s not used. Instead the experiments usually employ a double
wall consisting of a thin resistive vacuum liner surrounded by a thick, highly

conducting shell. The shell contains gaps tc allow flux to enter the plasma



region during startup. In addition, the experimental RFP can be driven by
voltages applied to poloidal and toroidal field windings located on the
conducting shell. Thus, we are interested in extending Taylor’s concept
considerably beyond the simple relaxation model of a plasma inside a perfectly
conducting, flux—conserving shell. We will therefore adopt the following
premises related to the idealized Taylor model:

(1) After the initial discharge formation, the plasma evolves to a relaxed
state 1n a time that is short compared with that cf changes imposed by the
external drivieng circuits. The relaxed states are assumed to be
cylindrically symmetric.

(2) There exists a unique locus in F-0 space on which the relaxed states lie.
Ttz form of the field distributions depends only on the parameter © and the
magnitude of the fields scale with the instantaneous value of the toroidal.
flux.

(3) The relevant conducting wall radii a and R are assumed to be those of the
vacuum liner.

Using these premises, we may write the magnetic field components in the

following functional form:

By = Bo()fy(0,1) (26)

and

By = By(®)Eg(0,r) , (25)

wh: .e © and & are defined by Eqs. (20) and (23) as before.
From Eq. (23), the scale factor B, is related to the toroidal flux B(t) as

-

follows:

a
B, = &/ £4(0,r)2nrdr. (26)
o

. 2n
By Faraday’s law, & = -f Ega d6 so that the toroidal flux is given by a time
o
integral of the poloidal loop voltage. From Ampere’s law, the toroidal plasma

10



current I¢ and the single-turn—equivalent poloidal winding current Ie are given
by

I, = (2ma/uy) Bg(a) = (Zna/p,) B,fqg(0,a) (27)
and

(2nR/py) Bof¢(0,a) . (28)

Ig = (27R/py) By(a)

The magnetic field energy in the plasma volume V is

W= f(B2/2p,)dV = 27R[" (?gfifgil 2nrd (29)
= B v = 27 —_ nrdar .
Ty ° o 2y,

We now wish to obtain a pair of equations in the form of Eq. (17) that
relate the currents I¢ and Ig to the applied loop voltages V¢ and Vg. We will
adopt the usual circuit theory sign conventions of Fig. 3; i.e., the product of
a positive voltage and a positive current gives a power entering the system (the
plasma volume). Thus the power entering the plasma volume will be V¢I¢ + Vglg.
This convention requires V¢ = §E¢R d¢ and V4 = —4E9a d® when the line integrals
are evaluated by the right-hand rule.

The electromagnetic power entering the system 1is given by Poynting’s

theorem

I(E x )+ndS = dW,/dt + [J.E 4V , (30)

where é is the inward normal to the bounding surface element d$S, J is the plasma
current density, and W, is given by Eq. (29). Defining an "effective plasma

resistance" as

= T 2
R, = 65 E dv/1, (31)

we can write the energy balance of Eq. (30) as

11



v¢1¢ + Vglg = aw,/dt + I¢2Rp . (32)

We may now express W, in terms of I¢ and 0. This is most simply done by

defining a function Lp(o) called the "effective plasma inductance" such that

Wy = 2 L (0I5 (33)
where from Eqs. (24), (25), (27), and (29)
bR a2 2
Ly(e) = —_— [£5(0,r) + f5(0,1)] rdr . (34)

a’gl(e,a) "°

Although this expression for LP(O) is suitable for analyses, it becomes singular
at 0 = 0. This singularity gives rise to difficulties when rumerical
simulations, starting at I¢ = 0, are performed. The difficulty basically
results from the fact that the toroidal field energy is finite when I¢ = 0. At
first it would seem that a natural solution to the problem would be to define W,
= %- L¢I$ + .% Lelg using two inductance parameters based separately on the
toroidal and poloidal magnetic field energies. This makes L¢ finite for all 0.

However, for the RFP, Le becomes singular at the © value corresponding to the
case where the toroidal field vanishes at r = a, since at that 0 value, Ie is
zero but the toroidal magnetic field energy is not. To avoid all singular
behavior, one may add a well-behaved function to Eq. (33) that reduces to the

toroidal field energy at © = 0. One choice of such a function gives

_ 1 - 2 .
Wy = 5 Lp(0)I,° +

(35)

corresponding to



boR a 2 2 2, 2
L 5 ————— £ (0, + f5(o, dr - = , .
>(0) T {fo[ $(0,1) + £5(0,1)] rdr a2[jof¢(e r)rdr )4} (36)

Note that Lp(e) is noasingular if f¢(0,r) is a constant (i.e., the vacuum

field).*
We now proceed to obtain a palr of equations for the RFP in the form of

Eq. (17). Using Lp(@) defined from Eq. (35), Eq. (32) can be written as

2 4 32 N 2, _ :
d/dt[ Lply” + @°/(2Ly) ] = VoI, = VgIg + LRy = 0 (37)
or
1 - . 2 »c _ ~ 2 -
Lp(e)L, I + 5 Lp(@)OLy + 42/L, = VoI, = VoI + Iy Ry =0 (38)

where dots represent time differentiation and primes denote differentiation with
respect to ©. Differentiating Eq. (20) and using Faraday’s law with the present

sign convention Vg = & , one odbtains
0= ——-(I¢ - I¢Ve/®) - (39>

Substitution for © in Eq. (38) then gives

L,L. I$ : L;Lo
(LI¢+_——--——- ¢—_2_8;E +RPI -VI +(¢/L°—Ie)ve=0 . (40)

*The simplest, nonsingular Lp(e) is obtained from Eq. (36) by setting 06 = 0 in
the last integral on the right., However, in this paper, we have chosen L (e)
as defined from Eq. {35) for continuity with previous work.’ [The definition

Eq. (35) was provided by A. A. Newton, Culham Laboratory, Abingdoen, England,
1981.] 1f Eq. (33) is used instead of Eq. (35) to define LP’ the effect 1s to

replace the factor (1-F) by -F in Eq. (43).

13



From the postulated F — O curve we obtain F =

F(0), where 1in terms oi the

dimensionless field distributions of Eqs. (24) and (25),

F(0) = %—a2f¢(9,a)/f:f¢(e,r)rdr .

Using Eq. (19), Iy may then be expressed

Iy = (3/1,) F(O) .

If we note that & = fVedt and the definition of ©,

(41)

as

(42)

we see that the equation

pair (40) and (42) is in the form of Eq. (17), We can also ocbtain a single
equation for I¢ by substituting I from Eq. (42) into Eq. (40). Further
elimination of ® in favor of 0 using Eq. (20) yields
s 1p €07,
- + y I, + |— - ——— b .

TR, = Vo + [Ly + (0/2L, )T, + [Z5 % Jvg = 0 (43)
Equation (43), although  complex, illustrates the important nonlinear
plasma~circuit properties ne RFP, This nonlinear coupling between the
toroidal current and the dri- voltages arises via the F-0 diagram. The

nonlinear plasma circuit behavior

basis for the OFCD concept.

Iv.

described by Egs. (42) and (43) forms the

SMALL~SIGNAL ANALYSIS OF THE DIRECT-CURRENT GENERATION IN THE RFP FROM

OSCILLATING APPLIED VOLTAGES (F-0 PUMPING)

In the spirit of Sec. II, we now comment on small-signal periodic solutions

of Eqs. (40) and (42) for assumed sinusoidal driving voltages of radian
frequency w as follows:
Vg = Vgsin(wt) ; (44)
Vo = vesin(wt) | Yycos(ut) = G¢sin(wt +8) , (45)

14



where 6¢ = (v% + V%)I/Z and & = tan-l(v¢/7¢) .

We assume, 3in the small signal approximation, that variations of quantities
about the operating point values of € and &, denoted by 6, and &,, are small.

Expanding L, and F in a Taylor series about O, yields

P

Lp(0) = L,(85) + Ly(86)(8 = 0,) + ... (46)
and

F(9) = F(9,) + F (8,)(0 = 0,) + vev - 47)
Integrating Eq. (44) gives

& = fVedt = -(Qelm)cos(mt) + 3, - (48)

For a periodic solution, I¢ and Rp may be expanded in Fourier series

1]

I¢(t) I, +nzl[(1n sin(nwt) + En cos(nwt) | (49)

and

Rp(t) R, +nzl[Rn sin(nwt) + En cos(nwt)] . (50)

The quantity I, 1is the dc component of the toroidal plasma current of primary
interest for current drive. The corresponding expressions for 0 and @_1 can be
obtained using Egs. (20), (48), and (49), expanding about the operating point
Op = LOIO/5¢O. Substituting these expressions into Eq. (43) and equating the
coefficients of sin(nwt) and cos{nwt) for each n value to zero, one obtains a
system of equations. The voltages are regarded as prescribed, and the Rp(t),
Lp(e), F(6) functions and geometry constants L, and £ are specific for a given
RFP experiment. The desired quantities to be obtained are the corresponding

direct current I, and the ac current ripple for each harmonic described by I,

and En for n > 0.

15



In general, the system of simultaneous equations contains poiynomials in the
unknowns I, and fn whose coefficients are real, rational algebraic functions of
the driving ac voltage coefficients 69, Vs 7¢; the frequency w; the values of
the F and Lp functions and their first derivatives at the operating point 0O,;
the effective resistance parameters R,, R,, R,; and the geometry parameters L,

The degree and complexity of these equations depend strongly on the

€; and g
of

truncation and the ordering of small quantities that are used. The ordering
small quantities involves the unknowns and must be checked fcr self-consistency
for the parameter values of interest after solutions to the system of equations
are obtained. We shall reserve the parameter study of the small-signal

solutions for a separate paper and proceed to a direct computational study of

F-0 pumping making use of Eqs. (42) and (43). However, it is instructive to

first explore an alternate description of F-0 pumping wusing magnetic helicity

conservation.

V. F-0 PUMPING AND MAGNSTIC HELICITY CONSERVATION

The preceding description of F-0 pumping as a consequence of the nonlinear
behavior of RFP discharges is based cn a model of electromagnetic power balance
(Poynting’s theorem). An alternate description of the F-0 pumping concept can
be formulated based on a model of magnetic helicity balance. 2 Magnetic helicity
in the RFP can be interpreted as the "knottedness" of magnetic field lines
within the toroidal vacuum vessel excluding the coupling of plasma fields with

externally linked fields.8°% That is,

K = [AeBdv - @V , (51)
v

where A is the vector potential such that B = V x A, & denotes the toroidal flux
{(Eq. (23)], and ¥ is defined as the cxternal poloidal flux threading the
central hole of the torus (also called the magnetizing flux).

In an RFP with a conducting shell or equivalent equilibrium-stabilizing

system, the compouneut of B normal to the shell surface is small and the time

derivative of Eq. (51) becomes2?10511

16



dK _ _ .
36 = 29V, - 2fEepav (52)

where V¢ denotes tne toroidal loop voltage.

In Eq. (52), the term 2¢V¢ represents the magnetic helicity input per unit
time while the term ZIP-QdV denotes the total helicity dissipaticn per unit time
within the plasma. In steady state, é% <K> = 0, which implies

<Vy> = <[EeBdv> , (53)

where <> denotes a time average- For normal inductive drive of an RFP
experiment, where the toroidal flux and plasma current are held constant,
helicity balance [(Eq. (53)] 1is wmaintained by a dc toroidal voltage (V¢),
However, because V¢ = =¥,, Inductive drive does not yield a true steady-state

current-drive solution.
Bevir and Gray2 first suggested that helicity balance and hence the plasma

current could be maintained in a mean steady state by simultaneously modulating
both the toroidal voltage and toroidal flux. For example, consider the toroidal
and poloidal sinusoidal driving voltages Vg = Gesin(wt) and V¢ = G¢sin(wt+6)
from Eqs. (44) and (45). From Eq. (48), & = fVedt = —(Ge/w)cos(wt) + &,, and
thus evaluating the left-hand side of Eq. (53) yields

<¢V¢> === <cos{wt) sin(wt+8)>
Vv
- _ 8%
50 sind ,
Vv
- 9% - _ -
e for & /2 . (54)

Thus the applied ac voltages are most effective in supplying the helicity when
V¢ lags Vg by y0°. If the dissipation term <f§-§dv> is not adversely affected

17



by the sinusoidal driving voltages, then Eq. (53) demonstrates steady-state
helicity balance because both <V¢> and <Vg> are zero. This, of ccurse, implies
from time averaging Faraday’s Law that <&> and <{¥ > are constant in time.

The conjecture that steady-state helicity balance 1implies steady-state
current drive relies on the nonlinear coupling as discussed earlier. The same
set of assumptions previously invoked in the power-balance model (i.e., the
pinch remains in a quasi-rzlaxed state during the voltage modulations and there
exists a unique locus in F-0 cpace on which the relaxed states lie) implies that
the sinusoidal driving frequency must remain below the inverse characteristic
relaxation time of the pinch. Also, it is crucial that the driving terms do not
adversely affect the time-averaged helicity dissipation. !l The validity of

these assumptions must ultimately be tested by experiment.

VI. ZERO-DIMENSIONAL SIMULATIONS OF F-0 PUMPING

As stated earlier, thé Taylor model and assumptions do not totally
correspond to actual RFP experiments. In general, the measured F-0 curve lies
above the corresponding Taylor prediction (see Fig. 4). B:cause our aim is to
demonstrate the dc drive properties for parameters believed to be relevant in
RFP experiments, we must make specific choices for the F(0), Lp(e), and Rp(t)
functions.

The fuvrction ¥F(O) can be obtained experimentally since F and 6 are easily
measured by extermal electrical diagnostics. However the Lp and Rp quantities
involve internal field measurements that entail inserting magnetic field probes
into hot plasmas. For the high current and long pulse duration in the operating
ranges of interest, the insertion of material probes seriously perturbs the
plasma behavior. In addition, there 1s a risk of probe breakage and serious
contamination of the vacuum chamber. In the absence of internal field
mesurements, Lp\and RP are determined from a specific model for the field
distributions of Eqs. (24) and (25). The objective is to use a model that is
close to the Taylor-Bessel functions, but modified to give agreement with the
experimental F-0 diagram.7’11 Using the approximation that the cross-field

current flow is small in low beta plasmas, we use the modified force-free

equation

VxB=A(0)E , ' (55)
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where A 18 no longer a constant (as in Taylor theory) but is a function of minor
radius and specifies the current profile. Furthermore, we choose a A profile
that drops to zero at the wall* {(see Fig. 5). The resulting field configuration
is called the modified Bessel function model (MBFM) (not to be identified with
the modified Bessel functions of the mathematics literature). Figure 6 shows an
example of the MBFM field and current density profiles. The corresponding MBFM
F-© curve is shown in Fig. 4. Details of this model are given in Refs. 7 and

11.
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Fig. 5.
Spatial profile of A(r) used in generating the fields of Fig. 6.
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Fig. 6.

Toroidal and poloidal spatial profiles from the MBFM for (a) magnetic field and
(b) current density.

This model was proposed by A. A. Newton, Culham Laboratory, Abingdon, England,
1981.
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With these profiles, which have been parameterized to give a good fit to a
given experimental F-0 diagram and voltage and current waveforms, LP(O) is

computed from Eq. (36). Rp may then be calculated from Eq. (32).7

A. Simulations of F-0@ Pumping on ZT-40M
A conceptual diagram of an RFP 1s shown in Fig. 7. It consists of a metal

vacuum vessel surrounded by a close-fitting conducting shell. The purpose of

the shell is to provide the initial plasma equilibrium and stabilize the plasma
against MHD instabilities. The toroidal and the poloidal magnetic fields are
initiated and sustained by currents flowing in the field windings external with
the shell. Currents flowing 1in the poloidal field windings also provide the
vertical field necessary for plasma equilibrium on timescales that are long

compared with the shell diffusion time.

TOROIDAL RFP

POLOIDAL

FIEL

DINGS VACUUM

WiN TOROIDAL TOROIDAL  VESSEL
WiNBINGS CURRENT (L)

Fig. 7.
Conceptual diagram of the RFP.
An equivalent electrical schematic of the ZT-40M RFP system is shown in
Fig. 8. Both the poloidal and tcroidal magnetic field circuits are driven by
EMF sources that typically utilize capacitor banks. Tha schematic illustrates
that the RFP may be treated as a two~port system in which Ig and Vg5 represent,
respectively, the single-turn equivalent (s.t.e.) poloidal winding curreat and
voltage. V¢ is the s.t.e. toroidal winding voltage and I¢ is the plasma
current. The coupling of the RFP plasma to ths e.ternal circuit equations is

20



B 8 CIRCUIT

] e RFP
B 4 CIRCUT | Regl r——--9 1 PLASMA
N g 1L [ ] K]
b :\fmf T >
: LSG ( 189S
ETRE T D g

Fig. 8.
Conceptual schematic of the RFP.
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Fig. 9.
Oscillating field current-drive schematic.
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described by Eqs. (42) and (43). Figure 8 thus forms the conceptual basis of a
zero-dimensional computational code that, to date, has successfully simulated
the electrical behavior of RFP discharges7. The remainder of this section
discusses the application of this code to evaluating the OFCD concept.

Figure 9 1llustrates a conceptual schematic of an OFCD system. The system
consists of dc supplies to provide pinch initiation and startup in serles with
the ac drivers. The ac drivers are essentially phase-locked variable amplitude
audio oscillators. For steady-state operation, the By dc supply provides a
negative toroidal field bias, and the By dc supply drives only the external
circuit ohmic drop in order to maintain plasma equilibrium. The combined and
properly phased Vg and Vo oscillators drive the plasma current by means of the
nonlinear F-0 coupling.

The F-0 pumping concept was initially studied by simulating the effect of
ac V¢ and Vg sources on the Los Alamwos ZT-40M experiment.lz’13 In these
siculations, the MBFM field profiles and concomitant Lp(e) were chosen to give a
good fit to an exper’.._.ntal ZT-40M F-0 diagram (Fig. 4). The plasma resistance,
Rp, was chosen to give the best fit to the experimental ZT-40M current and
voltage waveforms when the MBFM model 1s wused in computer simulations.’
Figure 10 shows the simulation results for a 200-kA discharge modulated at
2.5 kHz. Figures 10(a) and 10(b) 1llustrate the effect of F-0 pumping on
sustaining the plasma current and mean toroidal field waveforms. The etfect of
the ac drive 1is apparent. Figure 10(c) shows the time history of the
magnetizing flux ¥, that threads the central hole of the torus. Note that the
time-averaged magnetizing flux remains constant during current drive as is
required for steady-state operationm.

For a given RFP, current drive by F-0 pumping is basically controlled by
five parameters: the amplitudes, 09 and G¢, of the ac modulating voltages; the
phasing & between the <voltages; the operating point O9; and the driving
frequency w. The simulation resulis 1llustrated in Fig. 10 were optimized in
order to balance the ac power requirements in the toroidal and poloidal field
circuits. This was accomplished by first adjusting the phase 5 between V¢ and
Vg to maximize the curreat~drive effect. Optimum performance required V¢ to lag
Vg by 90° as shown in Fig. 10(d), which 1is consistent with the predictions of
the magnetic helicity model given by Eq. (54). The driving frequency was
selected to be much larger than an inverse discharge lifetime and smaller than

an inverse plasma relaxation time. Finally, the poloidal ac driving voltage
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Fig. 10.
Computational simulations of F-© pumping on ZT-40M: (a) plasma current with and
without F-0 pumping, (b) mean toroidal field with and without F-0 pumping, and
(c) simulated waveform for the magnetizing flux (‘I’m) with and without F-0
pumping. Here, Ym denotes the magnetic flux threading the central hcle of the
torus. (d) Applied voltages Vg and V, valuated at the plasma.
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(Ve) was maximized subject to the comstraint that the toroidal field at the wall
remain reversed during modulation.
The simulation code used o -btain the results in Fi,. 10 makes sevcral

assunptions regarding plasma behkavior i.. the RFP. These assumptions are

1) The modulation does not significantly degrade overall pinch performance.
In particular, no overt deleterious effects are observed with respect to
confinement, equilibrium, plasma-wall interactions, resistivity, etc.

2) During modulation, the plasma remains in a quasi-relaxed state. That is,
the plasma’s dynamic response to modulation remains along a well-defined
trajectory 1in F~0 phase space. This requires the plasma’s relaxation time

to be much shorter than one modulation period, which sets an upper limit on

the driving frequency.

In order to test these assumptions, an experimental series was run on
ZT-40M that entailed modulating the toroidal and poloidal field circuits during
120-kA discharges over the frequency range from 750 Hz to 1.4 kHz.1% No attempt
was made during this exercise to drive current by F-0 pumping, because
simultaneous modulation of both field circuits required significantly moie power
and phase control accuracy between the respective drivers than was available.

Overall pinch behavior during modulation was moritored by a standard set of
plasma diagnostics. Plasma pararzters such as electron density, resistivity,
impurity content, and equilibrium position showed no substantial departures from
normal 120~kA operation as 1long as the toroidal magnetic field reversal was
adequately maintained. Of particular interest were the data taken from a
multichannel deuterium-alpha (D,) monitoring system that measures plasma-wall
interactions. The D, monitors did not show any siznificant increase in plasma-
wall interactions during modulation, even during the temporal periods when the
Poynting flux was outward.l"

As previously noted, the magnetic field coupling in a RFP is defined by ine
discharge’s trajectery 1n F-0 phase space. Figure 11 1illustrates typical
discharge behavior during one experimental modulation period. The bold curve
represents the F-0 trajectory predicted by the modified Bessel function model
(MBFM) and used by the simulation. For the case where the toroidal voltage (V¢)
is modulated, the operating point of the discharge moves clockwise in an
elliptical path where ome elliptical revolution corresponds to one modulation
period. Similarly, when the poloidal voltage (Vg) is modulated, the operating

point moves counterclockwise around the ellipse. The major axis of the ellipse
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Fig. 11.
An experimental F-@ trajectory for one modulation period during 1~kHz
wodulation. The bold curve shows the trajectory predicted by the
modified Bessel function model.

approximately corresponds to the predicted MBFM F-0 trajectory for this run‘s
conditiqns, and its length 1is dependent on the modulation amplitude of the
voltage driver. The minor axis of the ellipse, and the orientation with which
the operating point traverses the elliptical path, implies a 100-ps time delay in
the coupling Qgtwe&n the orthogonal field components. This 100~ps relaxation
time 1s consistent with resistive tearing mode time scales for ZT-40M and is

much less than one modulation period.
The effect of a finite relaxation time on F-© pumping was checked by

incorporating a coupling delay in the current-drive simulations.* Figure 12(a)

*This was done by replacing ©,in Eqs. (42) and (43) by the value obtained by
simultaneously integrating O = (L I?/sé - ©)/1q, where 14 is a constant delay

time parameter, instead of using Eq? 20).
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(a) An F-0 trajectory for a simulated 40-ps delay due to a finite
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corresponds to the same 0.6-rad phas~ delay experimentally deduced from
Fig, 11. (b) An F-© trajectory for a 100-us delay. (c) Corresponding
simulated plasma current waveform for a 100~us delay.



shows the resulting F-0 diagram for a 40-pus delay. This temporal delay
corresponds to the same phase delay (0.6 rad) that was experimentally deduced
from Fig. 11. Figures 12(b) and (¢) show the simulated F-@ trajectory and
plasma current waveform assuming a 100-ps delay. This amount of delay does not

adversely effect che nondelayed simulation results illustrated in Fig. 10.

B. The Reactor Relevance of F-0 Pumping

The relatively large modulation amplitudes (f¢/<1¢) ~ 10%) and concomitant
power requirements shown in Fig., 10 illustrate that F-0 pumping 1s difficult to
achieve in a low-temperature (200~ to 300-eV) RFP plasma. However, F-0 gpumping

shows excellent promise as a viable current-drive mechanism for the RFP reactor.
Recent results from a study by Bathke et al.d are shown 1in Fig. 13. Figures
13(a) and 13(b) plot i¢/<1¢> vs &/<3> and \7¢/<I¢RP> vs &/<®>, respectively, for
a steady-state 18.5-MA Compact RFP Reactor (CRFPR). Here, I¢/<I¢> denotes the
ac toroldal current swing normalized to the mean toroidal current, V¢/<I¢Rp>
denotes the ac toroidal voltage normalized to the mean resistive component of
the toroidal 1loop voltage, and 5/(@) represents the ac toroidal flux swing
normalized to the mean toroldal flux. The curves are generated by substituting
the ac voltages (Ve and V¢) in Eq. (43) and iterating their amplitudes until
<I¢> = 0. The driving frequency is set equal to 50 Hz, which 1s a reasonable
power grid value. 1In each figure, the two curves represent solutions based on
beth the Taylor-state Bessel~function model (BFM) and the modified Bessel
function model (MBFM) adjusted for a reactor relevant B8 of 0.23. An overall
summary of the current~drive system for the CRFPR is listed in Table I (Ref. 3).

An examination of Fig. 13 elucidates several important features of current
drive by F-0 pumping. First, steady-state current drive 1s viable over a wide
range of G¢ and GB or equivalently G¢/<I¢Rp> and é/(@) parameter space. This
implies that the exact operating point in V¢’Ve space can be determined by
physics and engineering constraints in order to maximize the system efficlency
and minimize its effect on reactor plasma properties.

Second, the current-drive effect is relatively insensitive to the exact RFP
field model employed, as long as there exists a locus in F-0 space on which the
relaxed states 1lle. For example, Fig. 13(c) illustrates the F-© trajectories
for both the BFM and MBFM (B = 0.23). These substantially different models

result in a modest (<50%) difference between the ac modulation requirements.
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Computational study of F-0 pumping on a Compact RFP Reactor (CRFPR).

The system is driven at 50 Hz and optimum phase, The solid curves
assume the BFM while the dotted curves assume the MBFM corrected for a
B of 0.23: (a) Iy/<Ty> vs /<>, (b) ¥ /<I¢Rp> vs &/<&>», and (c) F-0
trajectory for the BFM and MBFM ?ﬁ ='0.23). (From Bathke et al.,

Ref. 3.)



TABLE I
TYPICAL (F-0 PUMPING)
CURRENT-DRIVE CRFPR PARAMETERS

PARAMETER VALUE
Fractional Flux Swiag $/<¢> 0.01
Normalized Voltage Swing, §¢/<I¢Rp> 200
Toroidal voitage, <I¢Rp> (V) 0.31
Normalized Current Swing, I¢/(I¢> 0.004
Current Swing, I¢ (MA) 0.078
Frequency, w (Hz) 50
Dissipative Power, <P> (MW) 5.74
Poloidal, <PG> (Mw) 3.44
Toroidal, <P¢> (MW) 2.30
Efficiency Factor, <I¢>/<P> (A/W) 3.2
Stored Energy, Eg (MJ) 0.26

Finally, with the expected low plasma resistivity of an ignited reactor,
the power requirements and concomitant voltage and current modulation amplitudes
for c¢.:rent drive are low. For example, the design point for the F-0 pumping
system .na the Compact RFP Reactor? requires only <P> = 6 MW of power (Table 1).
This gives a current-drive efficiency of <I¢>/<P> = 3.2 amperes per watt, more
than an order of magnitude larger than the 0.2 value quoted as probably
attairnable for rf current drive assuming Tokamak reactor parameters.15
Modulation-induced plasma motion has been estimated by E x B drift arguments and
time~dependent equilibrium modelirg to be less than one per cent of the minor

radius.

VII. F-0 PUMPING AND THE DYNAMO EFFECT

One plausible explanation for the strong, nonlinear coupling and
concomitant F-O pumping in an RFP is the existence of a "plasma dynamo." In one
model the dynamo maintains the RFP mean field topology in a relaxed state by a
process of field~line reconnection and plasma turbulence. That is, the plasma
internally creates toroidal flux in order to maintain itself on the F-0 curve.
Observation of self-reversal in past RFP experiments and recent work on ZT-40M

with multimillisecond-current risetimes substantiate the flux generztion
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effect.16517 other possibilities include a tangled discharge modell® and a
kinetic modell? of RFP sustainment in which magnetic field stochasticity allows
electron currents to be driven against the applied electric field 1in the
reversed field region thus maintaining the RFP profiles. Although a
comprehensive treatment of dymamo physics is beyond the scope of this paper, an
introduction to one possible dynamo model, using the a~effect,® is given below.
However, it must be emphasized that F-0 pumping relies only on the existence of

a nonlinear plasma coupling and not on the particular nature of the physical

coupling mechanism.

A. Simple Ohm’s Law Model
A simple form of Ohm’s law is given by

B=7n-+J (56)

el
+

e
X

where u(x,t) denotes the velocity field of the plasma and 7 represents the
plasma resistivity tensor. Applying Faraday’s and Ohm’s laws to any closed

plasma magnetic field line yields
% Ecdg=¢n+J+dg-= 'ig s (57)

where ¢g denotes a generalized magnetic flux.
For an RFP, Eq. (57) 1is easily evaluated in terms of the orthogonal

components (Ee,E¢) by <choosing the integration path along the toroidal field
null (in the © direction) and magnetic axis (in the ¢ direction), respectively.

For these cases,

~
1 -
E = — Jg d&y = =&/R 58
olwi1 ° ¢nyJq d2, 1 (58)
and
1 .
E = J, dfs = =~¢/R 59
¢[axis 22 4“" ) 2 ¢ 2 9 (59
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where & represents the toroidal magnetic flux enclosed by the path of length 4
along the toroidal field null and ¢ denotes the total flux enclosed by the
magnetic axis of length %,. For a constant current steady-state operation, i
includes the monotonically changing magnetic £lux through the central torus<
hole. Thus, the constraint that ¢ remain finite limits the present inductively
driven experiments to a pulsed mode of operation.

Finite positive resistivity rules out a constant steady toroidal £flux in
the plasma becausa Eq. (58) implies & must decay.l? There are two possible ways
to circumvent this decay and explain the long (~30 ms) constant current pulsec
observed on ZT-40M: (1) Ohm’s law may not be valid and/or (2) the discharge may
not be symmetric. The tangled discharge model retainc a local Ohm’s law and
gives up local field symmetry while the kinetic model abandons Ohm’s law and
local field symmetry. Both models can retain symmetric space—averaged mean
fields.1811? The turbulent dynamo retains a local Ohm’s law and gives up

symmetry for the local instantaneous fields but retains symmetry and has an

altered Ohm’s law for the mean fields.

B. The Turbulent Dynamo

In general, the magnetic and velocity u fields of an RFP plasma may be
expressed in terms of a mean and fluctuating component, represented by <> and §

symbols respectively,

B(x,t) = <B(x,t)> + 6B(x,t), <&B> = 0 (60)
and

u(x,t) = <ulx,t)> + bu(x,t), <Su> =0 . (61)
Thus

<u x B> = <u> x <B> + <6u x 88> . v (625
Using Eq. (62), the mean value of Ohm’s law [Eq. (56)] may be written as

<E> =< * J> - <u> x <B> - <6u x 6B> , (63)
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where <E> is the mean electric field in the laboratory frame of reference. With
the assumption that <6y x &B> may be expressed as 2 power serles expansion in

<B>, then to lowest order for &u isotropic,® one may write
<8u x 6B> = a<B> , (64)

where a is a pseudoscalar function of space and time. The mean-valued Ohm’s law

becomes

<E> = <F » D> = <u> x <B> - akB> . (65)

The appearance of the 1last term in the mean-field Ohm’s law 1s called the «
affect. For positive a, it is now possible for <E> to vanish even though J
remains finite. Hence, by wutilizing the o effect dynamo, it is possible to

sustain a steady-state mean plasma current. From Eq. (59), and for a steady

state where <{u> = 0,

B> = <G+ Dy - a<B> = - <>/, (66)

where | denotes the component parallel to <B>. Note that <E¢> can vanish if the

two terms cancel. 1In this case, a mean J¢ and hence <I¢> can be maintained with

&> = 0.

VIII. CONCLUSIONS
F~0 pumping 1is at present a plausible and reactor-relevant candidate for

RFP current drive. Analytic and computational studies indicate that F-0 pumping
is relatively insensitive vo RFP plasma models as long as the plasma’s dynamic
response to field modulation remains along a well-defined trajectory in F-0
space and the modulation does not significantly degrade overall pinch
performance. Recent experimental measurements on the ZT-40M experiment have
tentatively confirmed these conditions. Although many aspects of F-0 pumping
must yet be tested by experiment, F-0 pumping may provide a technologically
simple method for driving future steady-state RFP devices.
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