

PPPL-2078

UC20-F

PPPL-2078

DE84 015155

NOTICE

1-16-1988
PORTIONS OF THIS REPORT ARE ILLEGIBLE. It
has been reproduced from the best available
copy to permit the broadest possible avail-
ability.

INITIAL CONFINEMENT STUDIES OF OHMICALLY HEATED PLASMAS IN THE
TOKAMAK FUSION TEST REACTOR

By

P.C. Efthimion et al.

JUNE 1984

MASTER

PLASMA
PHYSICS
LABORATORY

PRINCETON UNIVERSITY
PRINCETON, NEW JERSEY

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY,
UNDER CONTRACT DE-AC02-76-CHO-3073.

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Printed in the United States of America.

Available from:

National Technical Information Service
U. S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22151

Price: Printed Copy \$ * ; Microfiche \$3.50

<u>*PAGES</u>	<u>NTIS</u> <u>Selling Price</u>	
1-25	\$5.00	
26-50	\$6.50	
51-75	\$8.00	
76-100	\$9.50	
101-125	\$11.00	
126-150	\$12.50	
151-175	\$14.00	
176-200	\$15.50	
201-225	\$17.00	
226-250	\$18.50	
251-275	\$20.00	
276-300	\$21.50	
301-325	\$23.00	
326-350	\$24.50	
351-375	\$26.00	
376-400	\$27.50	
401-425	\$29.00	
426-450	\$30.50	
451-475	\$32.00	
476-500	\$33.50	
501-525	\$35.00	
526-550	\$36.50	
551-575	\$38.00	
576-600	\$39.50	

INITIAL CONFINEMENT STUDIES OF OHMICALLY HEATED PLASMAS IN THE
TOKAMAK FUSION TEST REACTOR

P.C. Efthimion, M. Bell, W.R. Blanchard, N. Bretz,
J.L. Cecchi, J. Coonrod, S. Davis, H.F. Dylla, R. Fonck, H.P. Furth,
R.J. Goldston, D.J. Grove, R.J. Hawryluk, H. Hendel^a, K.W. Hill,
S. von Goeler, J. Isaacson^b, D.L. Jassby, L.C. Johnson, R. Kaita, S. Kaye,
R.B. Krawchuk, R. Little, M. McCarthy, D. McCune, K. McGuire, D. Meade,
S.S. Medley, D. Mikkelsen, D. Mueller, E. Nieschmidt^c, D.K. Owens, D. Post,
A. Ramsey, A.L. Roquemore, P. Rutherford, L. Samuelson, N. Sauthoff,
J. Schivell, J.A. Schmidt, S. Sesnic, C. Singer, J. Sinnis, J. Strachan,
G.D. Tait, G. Taylor, F. Tenney, M. Ulrickson, S. Yoshikawa, and K.M. Young

Plasma Physics Laboratory, Princeton University
P.O. Box 451, Princeton, New Jersey 08544, U.S.A.

ABSTRACT

Initial operation of the Tokamak Fusion Test Reactor (TFTR) has concentrated upon confinement studies of ohmically heated hydrogen and deuterium plasmas. Total energy confinement times (τ_E) are 0.1 - 0.2 s for a line-average density range (\bar{n}_e) of 1 - $2.5 \times 10^{19} \text{ m}^{-3}$ with electron temperatures of $T_e(0) \sim 1.2 - 2.2 \text{ keV}$, ion temperatures of $T_i(0) \sim 0.9 - 1.5 \text{ keV}$, and $Z_{\text{eff}} \sim 3$. A comparison of PLT, PDX, and TFTR plasma confinement supports a dimension-cubed scaling law.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

The initial operation of the Tokamak Fusion Test Reactor (TFTR)¹ with a major radius (R) of 2.5 m and a minor radius (a) of 0.68 m offers an opportunity to study the confinement of ohmically heated plasmas and to test confinement size scaling developed from previous smaller tokamaks ($R < 1.5$ m and $a < 0.44$ m).²⁻⁹ Confinement studies in ohmically heated discharges have been carried out with a toroidal magnetic field (B_ϕ) of 2.7 T, plasma currents (I_p) of 500-800 kA, and safety factors $q(a)$ of 3.0 - 5.0, with fixed position carbon limiters. After vessel and limiter conditioning with pulsed and glow discharge cleaning, the line-average electron densities $\bar{n}_e = 0.9 - 2.5 \times 10^{19} \text{ m}^{-3}$ were achieved with a peak Murakami parameter $\bar{n}_e R / B_\phi = 2.3 \times 10^{19} \text{ m}^{-2} \text{T}^{-1}$.¹⁰

For a typical deuterium discharge, the time evolutions of the plasma current, surface voltage, and of the electron temperatures near the geometrical center of the outermost plasma flux surface at $R = 2.48$ m and at $R = 2.22$ m are shown in Fig. 1 ($\bar{n}_e = 2.7 \times 10^{19} \text{ m}^{-3}$). The total discharge duration is 2.0 s, with the first 1.6 s shown here. In TFTR the feedback systems control the plasma current, position, and electron density. During the constant-current phase of the discharge, the loop voltage decreases to ~ 1 V with an e-folding time of approximately 0.3 s, which corresponds to the current penetration time due to the plasma conductivity.

The central electron temperature stops rising when the sawtooth activity begins, as in most other ohmically heated tokamaks. However, the temperature outside the $q = 1$ surface ($r = 0.15-0.2$ m from the magnetic axis) increases slowly with time. This increase in stored energy coupled with the falling loop voltage (and approximately constant Z_{eff}) results in an increase in the electron energy confinement time during the constant-current portion of the plasma discharge. These electron temperatures are ascertained from the

measurement of the blackbody ordinary-mode fundamental electron-cyclotron emission by a calibrated fast scanning heterodyne receiver. This instrument provides a measurement of the temperature profile from the geometrical plasma center to the plasma inner edge at $R = 1.82$ m every 4 ms. The magnetic axis is near $R \approx 2.55$ m. The peak temperature measurements are corroborated by temperature measurements obtained from pulse-height analysis (PHA) of the soft x-ray spectrum in the energy range 1 - 10 keV. Agreement of the two measurements is better than 20% for all plasma discharges during the initial operating phase of TFTR and typically $T_e(0) \sim 1.2 - 2.2$ keV.

Impurity K_α lines of chlorine, iron, nickel, copper, and the enhancement of the continuum due to impurity recombination and bremsstrahlung are observed in the soft x-ray spectrum. From the intensity of the K_α lines the concentration of these impurities is obtained. From these impurity concentrations and the enhancement of the continuum, the concentration of the light impurities (i.e., oxygen or carbon) and Z_{eff} are deduced. For the deuterium discharge shown in Fig. 1, the resulting Z_{eff} is 3.0 and is typically 2.5 - 4.0. Furthermore, the impurity line intensities provide an estimate of iron concentration $n_{Fe}/n_e < 10^{-3}$ and oxygen $n_o/n_e \sim 2 \times 10^{-2}$. The measurement of the radial profile of visible bremsstrahlung emission at 5230 Å provides a combined profile measurement of Z_{eff} , n_e , and T_e .¹¹ Assuming $Z_{\text{eff}}(r)$ is constant, Z_{eff} can be estimated using \bar{n}_e and $T_e(r)$. These estimates of Z_{eff} agree with those obtained from PHA to within 20%. With the same assumption of a flat $Z_{\text{eff}}(r)$ profile, the density profile determined from the visible bremsstrahlung emissivity is generally found to be parabolic in shape, but sometimes has a flat center. The total radiation loss from the plasma is measured with a wide angle bolometer and is in the range of 50-75%.

Central ion temperatures were measured from the energy spectra of charge exchange neutrals, and by neutron counting in deuterium discharges with ^{235}U and ^3He detectors. Figure 2 compares these ion temperatures with a calculation based upon an analysis of the plasma energy balance that assumes neoclassical ion heat conduction.¹² The charge-exchange energy spectrum has been corrected for reabsorption of neutrals, and therefore the ion temperature is 15% higher than obtained directly from the slope of the measured energy spectrum. The deuteron density is estimated from \bar{n}_e and z_{eff} in order to determine the ion temperature from the neutron flux. The peak neutron flux in this discharge was $3 \times 10^{11} \text{ n/s}$. Near equilibration of electrons and ions ($T_e \approx T_i$) is observed at a density of $\bar{n}_e \sim 2 \times 10^{19} \text{ m}^{-3}$ in this deuterium discharge. Because the electron and ion temperature difference is small and the uncertainty in the temperature measurements is $\pm 20\%$, it is possible to specify the ion confinement time only within the range of 0.5-2.0 s and the ion conduction loss to within 0-4 times neoclassical, assuming classical electron-ion heat transfer.¹²

Presently, there are a number of confinement scaling laws that are considered in the design of tokamaks. Jassby *et al.*² developed the size scaling $\tau_E \propto \bar{n}_e a^2 q^{0.5}$ for ohmically heated plasmas which was later simplified ($\tau_E \propto \bar{n}_e a^2$), and referred to as INTOR scaling.¹³ More recently, a regression analysis of tokamak confinement data for ohmic heating by Pfeiffer and Waltz³ suggested a strong major radius scaling for confinement $\tau_E \propto \bar{n}_e^{0.9} R^{1.91} a^{1.14} z_{\text{eff}}^{0.14}$. The Alcator C group⁸ studied the confinement of ohmically heated plasmas with different major and minor radii and essentially confirmed the size scaling of Pfeiffer and Waltz ($\tau_E \propto \bar{n}_e R^{2.04} a^{1.04}$).

The plasma power balance and energy confinement of TFTR have been analyzed by the time-dependent transport analysis code, TRANSP.¹⁴ This code

infers tokamak transport by analyzing the experimental data in terms of a one-dimensional magnetic-field-diffusion equation, and the particle and energy conservation equations. $T_e(r,t)$, $\bar{n}_e(t)$, $V_L(t)$, $I_p(t)$, and z_{eff} are used as input data, $n_e(r)$ is taken to be parabolic, and the ion conduction loss is taken to be neoclassical.¹² Approximately 30 plasma discharges representing some 16 conditions were investigated with TRANSP.

Total energy confinement is defined as $\tau_E = (E_e + E_i)/(P_{OH} - \dot{E})$, where E_e and E_i are the total stored energy in the electrons and ions, respectively, P_{OH} is the net ohmic heating power corrected for inductive effects, and \dot{E} is the time rate of change of the plasma energy. This definition does not remove radiation losses. (Removing them would give a higher confinement time estimate.) A variation of the plasma parameters within the known accuracy of the measurements indicates that the possible error in the total energy confinement time is $\pm 20\%$.

The TRANSP analysis of the TFTR plasma discharges indicated that the total energy confinement is 0.1 - 0.19 s for the density range $\bar{n}_e \sim 1-2.5 \times 10^{19} \text{ m}^{-3}$. These confinement times are calculated at 1.6 s into the plasma discharge, so the plasma is near equilibrium and the inductive and time-rate-of-change corrections are less than 5%. The confinement characteristics of hydrogen and deuterium plasmas cannot be distinguished. This initial TFTR ohmically heated plasma confinement data base is combined with that of PLT^{15,16} and PDX¹⁷ to test the confinement predictions of various size scaling laws. PLT data are particularly helpful, because at high density, $\bar{n}_e > 8 \times 10^{19} \text{ m}^{-3}$, confinement times were as long as 0.12 s. There is, therefore, an overlap in confinement times of TFTR and PLT plasmas. In addition, PLT at high density has values of $\bar{n}_e R^2 a$ and $\bar{n}_e a^2$, which are comparable to those in TFTR.

A comparison of this ohmic data base with $\bar{n}_e a^2$ is shown in Fig. 3 along with the INTOR scaling prediction. On this linear plot, $\bar{n}_e a^2$ scaling is not well supported and, in particular, INTOR scaling cannot predict the results.

A comparison of the data base with $\bar{n}_e R^2 a$ scaling is shown in Fig. 4. The solid line is the $\tau_E = 0.192 \bar{n}_e R^{2.04} a^{1.04}$ (MKS) empirical scaling of the Alcator C group, which was derived from a fit to the confinement results of many tokamaks.⁸ On the linear scale, the agreement is quite good. Specifically at $\bar{n}_e R^2 a \sim 6 \times 10^{19}$, both PLT and TFTR have the same confinement. However, PLT, TFTR, and PDX have nearly the same aspect ratios, R/a , and therefore, it is not possible to differentiate among $R^2 a$, R^3 , $R a^2$, or a^3 scalings. It is not surprising that T-11 scaling⁶ also fits the data ($\tau_E \propto \bar{n}_e R^{17/6} q^{7/6} (a/R)^{5/24} B^{-1/3}$). The TFTR-PLT-PDX data base is clearly inconsistent with dimension-squared scaling, but rather indicates a dimension-cubed scaling law. For densities up to $2.5 \times 10^{19} \text{ m}^{-3}$ the energy confinement of the TFTR plasmas does not saturate with increased density. The neoclassical z_{eff} of plasmas with the same \bar{n}_e in the PLT and TFTR are comparable. A comparison of the quantity τ_E/\bar{n}_e vs z_{eff} for both tokamaks indicates no clear dependence of τ_E on z_{eff} .

In conclusion, the TFTR tokamak has successfully operated during its initial period of ohmic heating experiments and has provided new information on plasma confinement. Tokamak plasma confinement has been longer than previously observed (τ_E up to 0.19 s). These discharges offer a favorable target plasma for neutral beam heating experiments, which are expected to begin in the summer of 1984. Future ohmic heating experiments with a movable limiter will investigate the explicit form of dimension-cubed size scaling and study confinement at higher densities and currents, and in larger plasmas ($B_\phi = 5 \text{ T}$, $I_p = 2.5 \text{ MA}$, and $a = 0.83 \text{ m}$).^{7,15,18}

We wish to thank M.B. Gottlieb, P.J. Reardon, J. French and Ebasco/Grumman, and D. Carden and the Princeton Area Office of DOE for their work during the conceptual and construction phases of the TFTR project. We gratefully acknowledge the support of J.B. Joyce, D. Mullaney, C. Staloff ,R. Daniels, and the PPPL engineers and technicians who brought TFTR into operation.

This work is supported by the United States Department of Energy Contract No. DE-AC02-76-CHO-3073.

REFERENCES

- ^a On leave from RCA David Sarnoff Research Center, Princeton, NJ
- ^b Magnetic Fusion Energy Fellow, Princeton U.
- ^c On leave from Idaho National Engineering Laboratory, EG&G, Idaho, Inc.
- ¹ K.M. Young et al., *Plasma Phys.* 26, 11 (1984).
- ² D.L. Jassby, D.R. Cohn, and R.R. Parker, *Nucl. Fusion* 16, 1045 (1976).
- ³ J.W. Connor and J.B. Taylor, *Nucl. Fusion* 17, 1047 (1977).
- ⁴ W. Pfeiffer and R.E. Waltz, *Nucl. Fusion* 19, 51 (1979).
- ⁵ Equipe TFR, *Nucl. Fusion* 20, 1227 (1980).
- ⁶ V.M. Leonov, V.G. Merezhkin, V.S. Mukhovatov, V.V. Sannikov, and G.N. Tilinin, in Plasma Physics and Controlled Nuclear Fusion (IAEA, Vienna, 1981) Vol. 1, p. 393.
- ⁷ S. Fairfax et al., in Plasma Physics and Controlled Nuclear Fusion (IAEA, Vienna, 1981) Vol. 1, p. 439.
- ⁸ B. Blackwell et al., in Proceedings of the Ninth International Conference on Plasma Physics and Controlled Thermonuclear Fusion Research, Baltimore, 1982 (International Atomic Energy Agency, Vienna, 1983).
- ⁹ B. Coppi and E. Mazzucato, *Phys. Lett.* 71A, 337 (1979).
- ¹⁰ M. Murakami, J.D. Callen, and R.R. Berry, *Nucl. Fusion* 16, 347 (1976).
- ¹¹ K. Kadota, M. Otsuka, and J. Fujita, *Nucl. Fusion* 20, 209 (1980).
- ¹² C.S. Chang and F.L. Hinton, *Phys. Fluids* 25, 1493 (1982).
- ¹³ International Atomic Energy Agency Report on the International Tokamak Reactor Workshop, Vienna, 1979 (IAEA, Vienna, 1980), p. 85.
- ¹⁴ P.J. Hawryluk, in Proceedings of the Course in Physics Close to Thermonuclear Conditions, Varenna, Italy, (Commission of European Communities, Directorate General XII, Fusion Program, Brussels, 1980).

- 15 K. Bol et al., in Plasma Physics and Controlled Nuclear Fusion Research (IAEA, Vienna, 1979) Vol. 1, p. 11.
- 16 R.J. Hawryluk et al., Nucl. Fusion 10, 1307 (1979).
- 17 S. Kaye et al. (private communication).
- 18 R.J. Goldston, Plasma Phys. 26, 87 (1984).

Figure Captions

Fig. 1 The time evolution of the surface voltage, plasma current, and the electron temperature at two different positions ($R = 2.48$ and 2.22 m).

Fig. 2 A comparison of the ion temperature ascertained from charge exchange and neutron-flux measurements and the ion temperature calculated from the plasma power balance assuming neoclassical ion conduction loss.

Fig. 3 Confinement time vs $\bar{n}_e a^2$ for PLT-PDX-TFTR ohmic confinement results. The predictions of INTOR scaling are included.

Fig. 4 Confinement time vs $\bar{n}_e R^{2.04} a^{1.04}$ for PLT-PDX-TFTR ohmic confinement results. The predictions of the Alcator C scaling law are represented by the straight line.

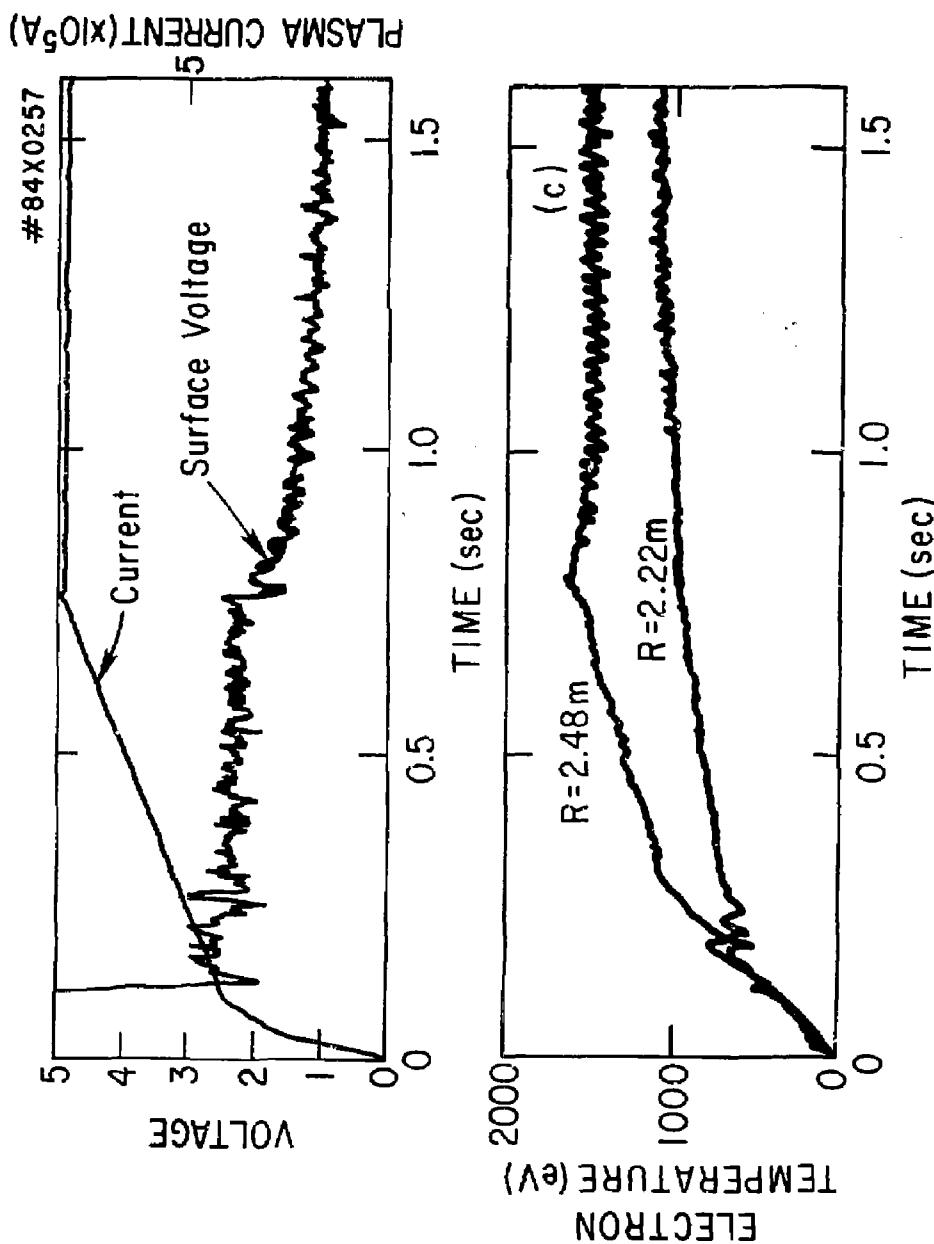


Fig. 1

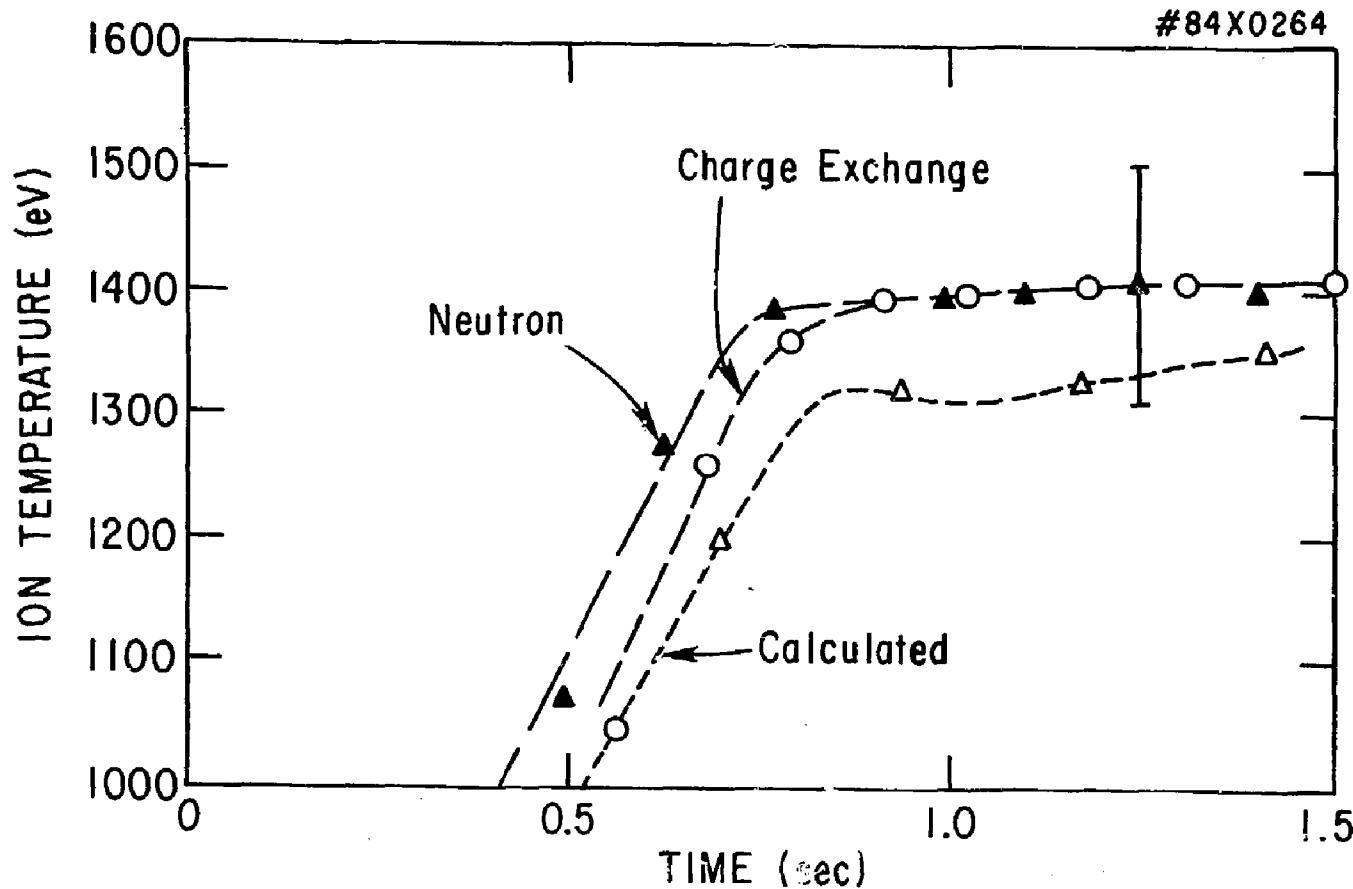


Fig. 2

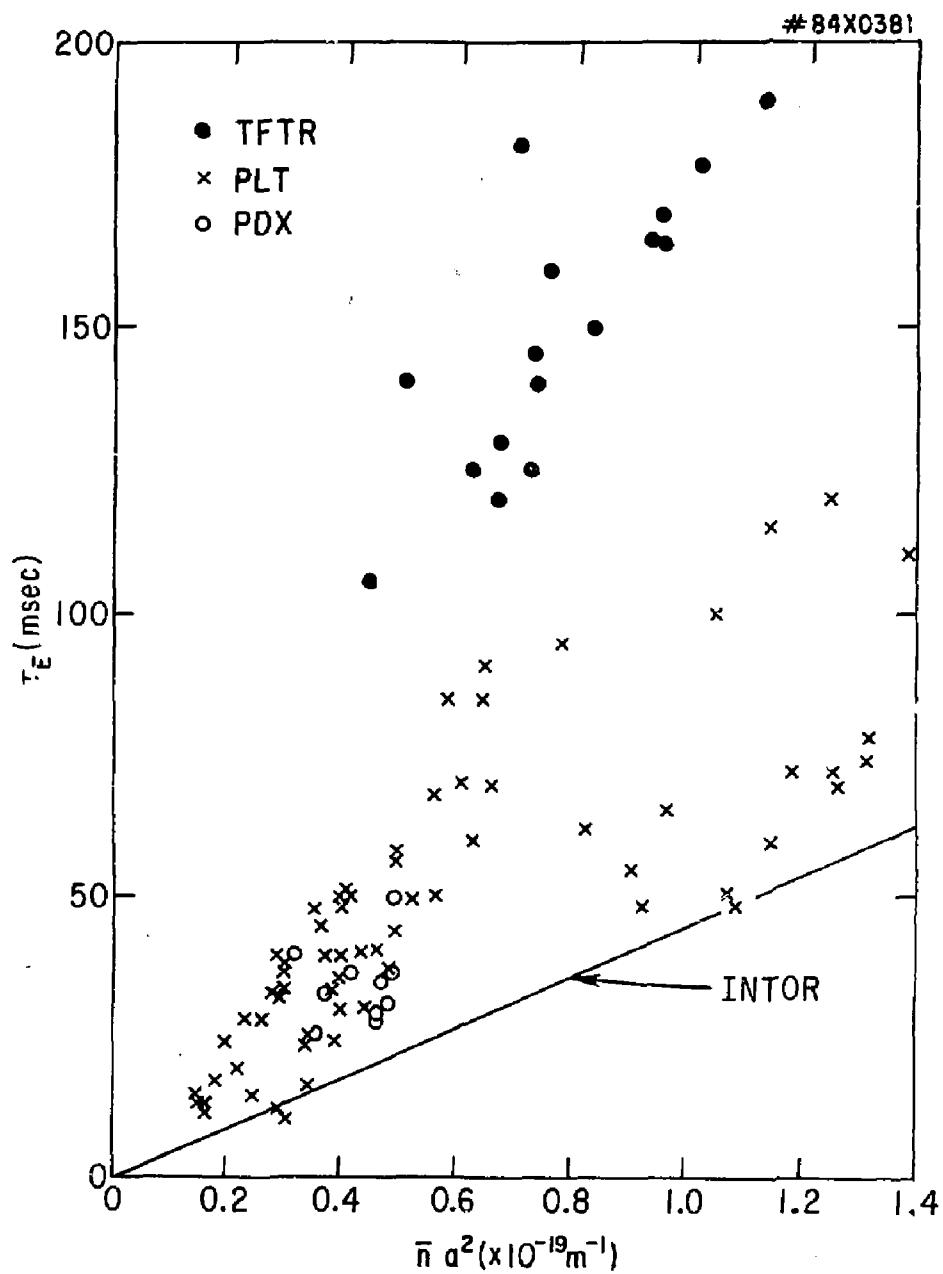
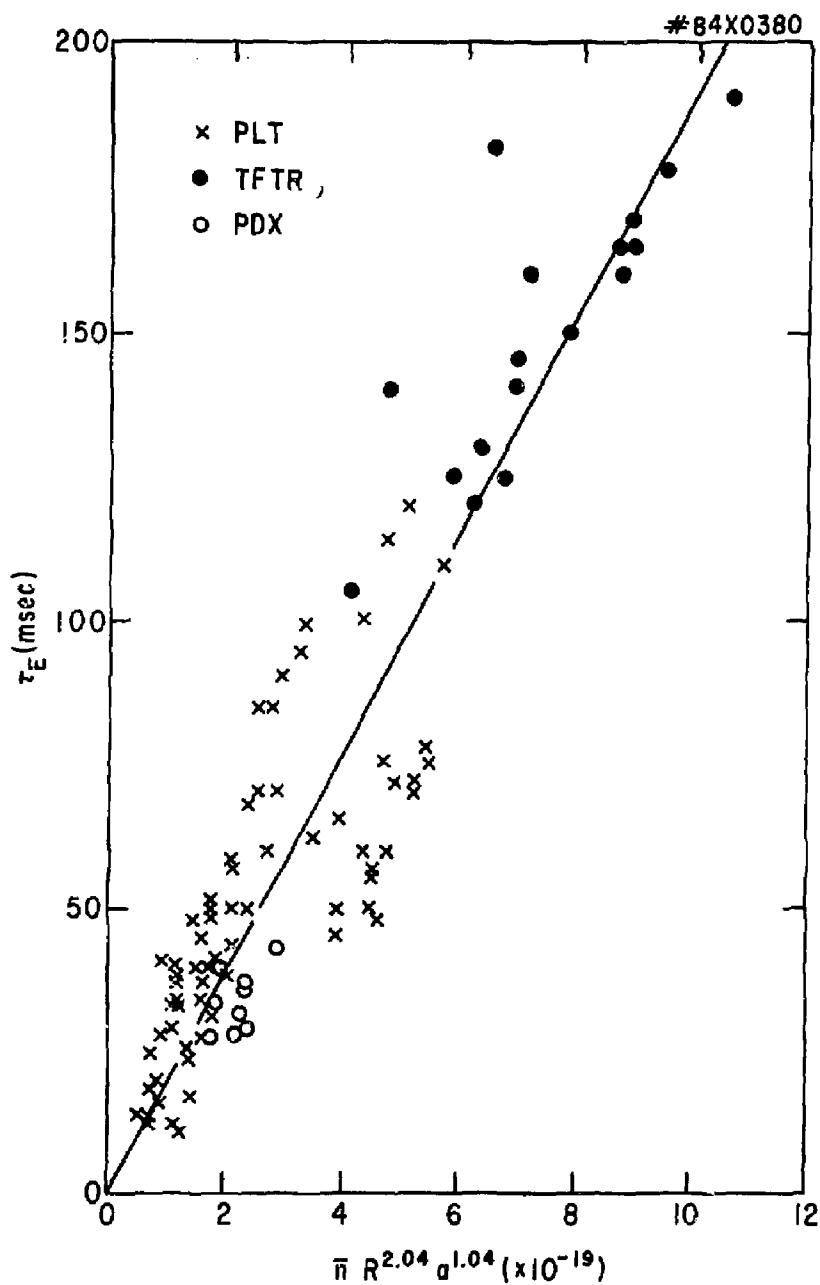



Fig. 3

EXTERNAL DISTRIBUTION IN ADDITION TO TIC UC-20.

Plasma Res Lab, Austr Nat'l Univ, AUSTRALIA
Dr. Frank J. Paoletti, Univ of Wollongong, AUSTRALIA
Prof. I.R. Jones, Flinders Univ, AUSTRALIA
Prof. M.H. Brennan, Univ Sydney, AUSTRALIA
Prof. F. Cap, Inst Theo Phys, AUSTRIA
Prof. Frank Verhaest, Inst theoretische, BELGIUM
Dr. D. Palumbo, Dg XII Fusion Prog, BELGIUM
Ecole Royale Militaire, Lab de Phys Plasmas, BELGIUM
Dr. P.H. Sakanaka, Univ Estadual, BRAZIL
Dr. C.R. James, Univ of Alberta, CANADA
Prof. J. Teichmann, Univ of Montreal, CANADA
Dr. H.M. Skarsgard, Univ of Saskatchewan, CANADA
Prof. S.R. Sreenivasan, University of Calgary, CANADA
Prof. Tudor W. Johnston, INRS-Energie, CANADA
Dr. Hannes Bernard, Univ British Columbia, CANADA
Dr. M.A. Bachynski, MPB Technologies, Inc., CANADA
Zhenru Li, SW Inst Physics, CHINA
Library, Tsing Hua University, CHINA
Librarian, Institute of Physics, CHINA
Inst Plasma Phys, Academia Sinica, CHINA
Dr. Peter Lukac, Komenskeho Univ, CZECHOSLOVAKIA
The Librarian, Culham Laboratory, ENGLAND
Prof. Schatzman, Observatoire de Nice, FRANCE
J. Roet, CEN-3PE, FRANCE
AM Dupas Library, AM Dupas Library, FRANCE
Dr. Tom Muoi, Academy Bibliographic, HONG KONG
Preprint Library, Cent Res Inst Phys, HUNGARY
Dr. S.K. Trehan, Panjab University, INDIA
Dr. Indra, Mohan Lal Das, Banaras Hindu Univ, INDIA
Dr. L.K. Chavda, South Gujarat Univ, INDIA
Dr. R.K. Chhajed, Var Ruchi Marg, INDIA
P. Kaw Physical Research Lab, INDIA
Dr. Phillip Rosenau, Israel Inst Tech, ISRAEL
Prof. S. Cuperman, Tel Aviv University, ISRAEL
Prof. G. Rostagni, Univ Di Padova, ITALY
Librarian, Int'l Ctr Theo Phys, ITALY
Miss Clelia De Palo, Asso EURATOM-DNEN, ITALY
Biblioteca, del CIR EURATOM, ITALY
Dr. H. Yamato, Toshiba Res & Dev, JAPAN
Prof. M. Yoshikawa, JAERI, Tokai Res Est, JAPAN
Prof. T. Uchida, University of Tokyo, JAPAN
Research Info Center, Nagoya University, JAPAN
Prof. Kyoji Nishikawa, Univ of Hiroshima, JAPAN
Prof. Siguru Mori, JAERI, JAPAN
Library, Kyoto University, JAPAN
Prof. Ichiro Kawakami, Nihon Univ, JAPAN
Prof. Setsuji Itoh, Kyushu University, JAPAN
Tech Info Division, Korea Atomic Energy, KOREA
Dr. R. England, Ciudad Universitaria, MEXICO
Bibliotheek, Fom-Inst Voor Plasma, NETHERLANDS
Prof. B.S. Lilley, University of Waikato, NEW ZEALAND
Dr. Suresh C. Sharma, Univ of Calabar, NIGERIA
Prof. J.A.C. Cabral, Inst Superior Tech, PORTUGAL
Dr. Octavian Petrus, ALI CUZA University, ROMANIA
Prof. M.A. Hellberg, University of Natal, SO AFRICA
Dr. Johan de Villiers, Atomic Energy Bd, SO AFRICA
Fusion Div, Library, JEN, SPAIN
Prof. Hans Williamson, Chalmers Univ Tech, SWEDEN
Dr. Lennart Stenflo, University of UMEA, SWEDEN
Library, Royal Inst Tech, SWEDEN
Dr. Erik T. Karlson, Uppsala Universitet, SWEDEN
Centre de Recherches, Ecole Polytechn Fed, SWITZERLAND
Dr. W.L. Waisel, Nat'l Bur Stand, USA
Dr. W.M. Stacey, Georg Inst Tech, USA
Dr. S.T. Wu, Univ Alabama, USA
Prof. Norman L. Oleson, Univ S Florida, USA
Dr. Benjamin Ma, Iowa State Univ, USA
Prof. Magne Kristiansen, Texas Tech Univ, USA
Dr. Raymond Askew, Auburn Univ, USA
Dr. V.T. Talok, Kharkov Phys Tech Ins, USSR
Dr. D.D. Ryutav, Siberian Acad Sci, USSR
Dr. G.A. Ellseev, Kurchatov Institute, USSR
Dr. V.A. Glukhikh, Inst Electro-Physical, USSR
Institute Gen. Physics, USSR
Prof. T.J. Boyd, Univ College N Wales, WALES
Dr. K. Schindler, Ruhr Universitat, W. GERMANY
Nuclear Res Estab, Jülich Ltd, W. GERMANY
Librarian, Max-Planck Institut, W. GERMANY
Dr. H.J. Kaeppler, University Stuttgart, W. GERMANY
Bibliothek, Inst Plasmaforschung, W. GERMANY