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1. INTRODUCTION

The.utility of numerical methods for predictlng transonic flows

over'wings and bodies is by now well established. The computer pro-

pgram FLO22, based on a method presented at the 1973 IFIP Sym0051un on

Computing Methods [1], has actually been widely used to calculate the.

aerooynamic performance of wings of transport aircraft. Provicded that

a correction is made for the displacement effect of the viscous bound-

ary iayer,Athis code has been found to give predictions which. are

accurate enough to serve as a useful design guide [2]. The salient

features of the code are: ‘ "A‘ A

(1) the use of a.potentialiflow approximation to the equations of -
motion ' | ' ' '

(2) the use of upwind,differencing in the supersonic zone to simulate

.the region of dependence of the flow, and to prevent the appear-

ance of expansion shock waves which would violate the entropy

inequality - _ '
(3).1the use of a relaxation procedure based on an artificial time

dependent equation to solve the-difference equations

'(4) the use of a curvilinear coordinate system generated by a seguence

of simple transformations to -produce.coordinate surfaces following
the wing shape. ' . o
,The use of the potential flow apprOXimation greatly reduces the

amount of computation required. Since the resulting flow is irrotation-

]al, it is consistent to approximate shock waves by discontinuities.

across which entropy is conserved. This approximation has been found-
quite satisfactory in practice, since the shock waves generated by air-

planes cruising at subsonic speeds are generally quite weak. In fact

 the appearance of stronger shock waves. marks the onset of drag rise,

~ which sets an upper bound.on the cruising speed. In order to- obtain a

unique solution to the potential flow equation, it is necessary to

* Tnis work was supported by the Office of Naval Research under Contract

N00014-77-C-0032, and also by NASA under Grants NGR. 33-016-167 and
NGR 33-016-201. The calculations were performed at the ERDA Mathe-
- matics and ComputingALaboratory,_under Contract EY-76-C-02-3077.%*000.
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.exclude'eXpansion shock waves)’corresponding to the condition that

cntyopy can only'increase. The use of upwind differencing in the

supersonic zone, first introduced by Murman and Cole [3], has been

- found an effective way to enforce the entropy condition. The non-

linear equations generated by the discrete approximation are not easy

- to solve. The use of a relaxation process modeled on an artificial

time dependent equation [4] has been found to.give reliable and
acceptably fast convergence. ‘ '

The main disadvantagescﬁfthe scheme used in FL022 are“the'ﬁse of
nonconservative difference fornulas, which result in a failure to sat-
isfy conservation of mass across shock waves, and the difficulty of
finding suitable transformations of coordinates to permit the treatment
of more complex geometric configurations. The method to be described
here is an attempt to overcome these shortcomings, while retaining the
successful features of the previous method, The basic idea is to use
a discrete approximation .which directly represents a balance of the.
mass,flow through small volume elements. This leads to a relatively
simple treatment of the potential flow equation in conservation form.
The volume elements are distorted cubes generated by local trilinear
transformations defined by the .element vertices.. Elements of this kind
can be packed around any reasonably,smooth configuration. The subsonic |
difference formuias can-conveniently be .derived from the Bateman varia-
tional principle [5)]. . A directional bias is introduced in the super-
sonic'zone.by adding an artificial viscosity, which is constructed in
such a way as to produce an effective switch to upWind-differencing;

This serves to prevent the appearance of expansion shock weves. The

-artificial viscosity has a divergence form, so that the conservation’

form of the equations is preserved by the difference scheme,.and proper

‘shock jump relations, consistent with the isentropic approximation,

are satisfied in the limit as the mesh width is decreased to zero [6].

.The most promising alternative to the use of artificial viscosity to
enforce the entropy condition appears to be the optimal ‘control method . -
proposed. by Glowinski and Pironneau [7], in which the entropy condition

is represented by penalty functions.

2. ' FORMULATION OF THE EQUATIONS

The flow is assumed to be isentropic and to satisfy the equations
of potential flow. Let ' q be the ve1001ty vector, with magnitude q .,
and P the density. Then the ‘potential flow equation can be written 1n

conservation form as
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where q is the‘gradient of the potentiai .
(2) . g=Y%

Let a be the local,speea of sound, and M the Mach number g/a. Also let

M, a9,=1 and p, = 1 be the Mach number, speed and density of the

uniform flow at infinity. Then the local density is given by the
formula S

——

(3) , p = .{1‘ + L2 - %)

5117 (y-1)
. .

- where y is the ratio of spec1f1c heats, ‘and the pressure and speed of

sound follow from the relatlons

(4) : o - P - 'Lz" r A ' ) 82 = P 5
. YM R M7

_Equation (1) is hyperbolic in supersonicfflow (1M > lf end~elliptic

'in subsonic flow, ‘and shock waves w1ll generally appear if there is a

.regicn of supersonic flow. The shock jump conditions are

(a) continuity of ¢ implying continuity of the tangential velocity
caomponent ' , . i

(b) continuity of Pq, where q, is the normal veloc1ty comoonent ,

(c) the entropy condltlon that q, decreases through the shock.

Under the assumption of isentropic flow, conditions (a) and (b) imply‘

that the normal component”of momentum is not conserved. The resulting

momentum deficiency causes the appearance of a drag force, which is

an approximation to the wave drag ([8].

The boundary condition at the body is

n on

To obtain a unique lifting solution we also impose the. Kutta condltlon

.that the flow leaves the tralllng -edge smoothly with equal veloc1t1es

along the upper and lower. surfaces. The resulting spanwise variation-

in the circulation T = g ds around each section of .the wing causes.

‘a vortex sheet to be shed. from the trailing edge. The'vortex sheet

will be convected with the flow,and roll up along its side edges..In»
the calCulations this will be ignored and the vortex cheet w1ll be

assumed to coincide with a coordlnate surface. The condltlons applleo
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‘zone.

at the sheet are then

(a) thc jump T in the potentlal is constant along lines parallel to

the free stream

(b) the normal velocity component d, is continuous through the shock.

According to an analysis of the asymptotic behavior of the potential
in the far field [9], ¢ approaches the potential of the undisturbed |
unlforﬂ flow except in the Trefftz- plane far downstream, where it
satisfies the two dimensional Laplace equation for the flow induced by
the vortex sheet. ' . ,

In a finite domain R with boundary S equations (1)-(5) are equiva;

lent to the Bateman variational principle that
(6) - | I = [ b am
is stationary. In fact accordlng to equatlons (3) and (4), ‘a varia-

tion 8¢ causes a variation

Thus . o
8T =.4_I pq+V 8¢ dR
- . R . . .

I 8¢ V;(pg) drR - J 6¢:p‘qn ds
R . 8

and the boundary terms vanish if-6¢ = 0 or q, 5_0.-

NUMERICAL SCHELIE

The Bateman variational principle will be used to derive differ-

énce formulas through the introduction of a discrete approximation to

" the integral I defined by equation (6). This leads to a central diff-

erence scheme. When such.a scheme is used to compute  the flow past a

profile with fore and aft symmetry, such as an ellipse, the fore and’

aft syrmetry is preserved in the solution, and expansion shocks will

appear in transonic flow. Thus any scheme which is not desymmetrized

©  in some way is restricted to subsonic flow. The basic difference

\ . .
formulas will therefore be modified by the addition of artificial vis-

~cesi£y to introduce the desired directional bias in the supersonic

In order to represent the Bateman integral, the region in which

“the flow is to be computed:is divided into distorted cﬁbic cells,

'lm



generated from cubes bylseparate transformationq hetween local
A coordinates X,Y,2 and Cartes1an coordlnates x,y,z, as illustrated
S.w . in Flgure 1.

Figure 1

‘The Qertiees of the cells define the computetional'mesh, and subscripts
i,j,k will be used'to denote ‘the value of 'a quantity at a mesh point.
~.In order to reduce the amount of computation a s1mole one point inte-
gratlon scheme w1ll be used, in which the contribution of each cell
; | to the integral will be evaluated as the pressure at the cell center
; (defined as the point mapped from the center of the cube in the X,Y,%2
P coordinate system) multiplied by the cell volume. Quantitites eval—-
‘uated at the cell centers will be denoted by subscripts i+1/2, J*1l/2;
k+l/2 Averaging and difference operators will be 1ntroouced through
the notatlon

v e

1
2

! O 2 Binya,50t ficage, 5,0

X i, 3.k
fi, i,k = Fiviz2,5,x T fi-1/2,5.x
It will also be convenient to use notations‘such as

e Syexf

Sg(8xE) L Bgyf = 6, (8,)

Numberlng the vertlces of a partlcular cell from 1 to 8 as in

Flgure 1, the vertlces in . the local coordlnates are assumed to be at
_ 1l . 1 1. -
Xi = i 5 Xi = + 5 2 =+ 5 - If x, ,y 1 are the Cartesian coordi 5

i ~ nates of the itl ‘vertex, the local mapplng is then deflned by the

trilinear form
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with similar formulas for y, z. ‘The potehtial is assumed to have a

similar form inside the. cell

(8) ¢ =8 _Xl_¢i(z + X.X) (3 + v,¥) (7 + 2,2)

These‘formulas preserve the continuity of x,y,z and ¢ at the cgli

boundaries because the mappings in each cell reduce to the same bilin-
ear form at the common face. At the cell center the derivatives of
the transformation can be evaluated by formulas such as '1>

4

Xy = 7 [x2 Xy Xy Xyt xg | X; + Xg 871,__UY26XX

Similarly it follows from equation (8) that

ox = Hyzdx® gy T Hglxy® v Oxyz T Sxyp?

In order to evaluate the contribution of each cell to the Bateman
integral it is now necessary to express:the.preésure and cell volume .in
terms of the local derivatives of the mapping and the potential. Let H

be the transformation matrix

, . X v . A }
(99 S T H= Yy Yy ¥y
‘ z z z

and let h be the determinant of H. Then the metric tensor is defined -
by the matrix ' ' ‘
(10) o | e =H4H

Also the contravariant véiocity components are U,V,W where

ayn v|=¢"1 by |
o w ¢q }' '
.Tken

q° = Ud, + Vo, + W,
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- and the variation 'in p due to a variation &¢ is

. co 92 . : .
,§P = = 96(—3—J==fp[U6¢x + V§¢Y + W6¢£} s

. According to the one point integration scheme, the contribution from

the cell centered at i+l/2, j+1/2, kfl/ZA is the volume of the cell,

given by the detefminant h. " mulfiplied by the pres-

| , i+1/2,3+1/2,k+1/2
sure pi+l/27j+1/2,k+l/2" On setting -
) 31
; 3. . .~ O
! i,j.k
1

" and éollecting thé contributions from the 8 cells with a common vertex
| .

i,j,j, we then obtain the formula

(12) L Hyz Sy (PRU) * HzxOy (PBV) +-uX¥§Z(phW) =0
at each interior mesh poiht. Along the boundary there are only 4
cells adjacent to each mesh point,and equation (12) is correspondingly
modified.

Equation (12) is a discrete approximation to the conservation law 
13y 2 (phu) + 2 (phv) + 2= (phw)
ST X oY } 92

which can be derived directly-ffbm eqﬁétion (1) by uéing the tensor
formula for the divergence operator [9]. 1In fact we can derng equa-—
tion (12) by representing a. flux balance through a set of auxiliary
cells, each of which is generated from a cube joining the centers of 8

primary cells, .as illustrated in Figure 2.

: "~ Flux balance cell
XY,z - XY,

Piguretz.
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In this int i . . is an approximation to
n is 1nterpretation (phU)1+l/2,j+l/2,k+l/2 is an approximation to

‘the flux across the face X - 0 of Lhat part of the secondary cell which

lies in the primary cell A in Figure 2. The boundary condition (5)

feduces to U = 0, V=0o0rW=0 on cell faces which coincide with the 3

4 boundary. The flux balance is then represented with secondary cells

- bounded on one or more faces by the body surface,as illustrated in .

Figure 3.

Flux balance cell

N

O '
TETTTIIT] 7T

L body surface
X,V,2 _ o .X,Y,2

Figure 3

" The lumping error 1ntroduced by the one point 1ntegrat10n schene
now appears as an error 1ntroduced by calculating p, h, U V, W at the
corners of each secondary cell, instead of averaging these quantities
over the cell faces. If the vertices of the ptimary cells are gener-
ated by a global mapping smootn enough to allow Taylor series -expan-
sions of x,y,z as functions of X,Y,Z, then the contributions to this
error from adjacent primary cells offset each. other, with the result

that equation (12) approximates equatlon (13) w1th a secona order local

Adlscretlzatlon errorxr.

-The one point 1ntegrat10n scheme has another dlsadvantage,however,
which can be seen from the following simple example. Setting h = 1

p = 1, equation (12) reduces in the two dimensional case to

(Myydyx + UyySyyld =0

which is the rotated Laplacian scheme




- The odd aﬁd even pointsAare decoupled, so. that high frequency ozcil-
‘lations in which ¢ = 1 at odd pdints and -1 at even points are admitted
‘.byfthe scheme.s To overcome this difficulty we can shift the point of .
" evaluation of the flux ¢X across the side AB in Figure 4 from A towards

~the center of the side by adding a compensating term _.€¢XY'

; T -F - =
1 1 .
L B .Flux at C is
Ll ST e e
A
" Figure 4

The additich of similar terms on all faces produces the formula

. {“Yz§xx * MxxOyy - eaxyxy)¢ =0
which reduces to the usual 5 point second order accurate formula when
'€‘= 1/2, and to the 9 point fourth order accurate formula when & = 1/3.
 Similarly in the discrete approximation to equation (13) we want
to prevent excessive spatial averaging in the approximation of
¢XX?¢YY’¢ZZT Allowing for the dependence of p on ¢ '¢Y'¢Z , the coef-
flclents cf ¢XX’¢YY'¢ZZ 1n.equat10n (13) are

eh(gtt - u?/a?)

(22 - v¥/a?)

“ By 4ph(933 - Wz/az)

where gij are the elements of'G_;. Ia order to compensate equationA

(12),w¥e can use these coeff1c1ents to determine the nagnltude of the
‘terms which should be added to shift the locations at whlch ¢ ¢ ,¢
_.are effectlvely evaluated in calculating the fluxes across each face,
'for example, € Axu Y¢ to shift ¢ in the Y dlrectlon. Collecting
_the contrlbutlons from each of the 8 primary cells surroundlng a

nesh p01nt, we obtaln the follow1ng formulas. Let _




_is recovered in the limit as the cell width is reduced to zero. The

“upwindé differencing in the supersonic zone. Presuming the distribution

. and we construct P by the formula

with é:imilar shifts for Q, R. Flnally, equation (14) is modlfled by

',QXY:%~(AX.+ AYI”ZGXY?

w1th similar formulas for QYZ. , QZX , and let_:

Ogyg = (Bx + By * A7) Oyyqpd

Then the final compensated equation is

(14) uYZGx(phU) + uZX(SY(phV) + uXYGZ(phW) .
s

- E{UZGXYQXY+ ux vnQv"+ UYGZXQZX 5 Syvz%yzl = O

where 0 < € < L/2. 1In practice the valué e =1/2 has been used.

It remains to add the artificial viscosity required to desymmetrize
the scheme in the supersonic zone. Instead of equatlon (13) we shall"
satlsfy the modlfled conservation 1aw

-22-(phU+P) + 3— (phV+Q) + 3—,(phw+R) =0

where the added fluxes P,Q,R are proport'ional to the. cell widths in

the physical domain, with the result that the correct conservation law
artifiecial .visAcosity'is designed to produce an effective switch to

of mesh points to be smooth, it is construc’téd in the following manner.

First we introduce the switching function

¥ - = h max {0,[1;%}}
- q

a P 2. . . A ‘. :
P = K a2 (U GXX"}' UV'LIXY(SXY'*' WULIZX(SZX](b

and 9, R by similar formulas. Then. .

hay 4. . .f > B
Pl,J,k \l u 0'
i+1,3,k ifu<o

"U>

Pi+1/2,5.k ={ _

the addition of

'GxP.+ GYQ f GZR




‘Sin¢e¢1é OAwhen q < a, P,Q,R vanish in the subsonic zone. In the
supeisonic’ zone they approximate -u[U|8,0 , -u[V]|é,p ., -u[W[8,p.
It maytmzﬁérified [11] that the coefficients of the third deriva-

tives of tﬁe'potential such as ¢. _introduced by

wxx’ Syxxs Saxx
P,Q,R are the same as in the artificial viscosity generated by the
rotated difference scheme which has been previously used in three

" dimensional transonic flow calculations [1,2,4].

-Finally the nonlinear equations generated by this discretization
process are solved by a generalized relaxation method which is derived
by emdedding the steady state equation in an artificial time dependent
equation. Thus we solve a‘disqrete approximation to | ‘

.
‘3%

3
oY

g—x (ohU+P) + (phV+Q) +- 3 (phwtR)

where the coefficients a,B,YA are chqsen to make. the flow directibn'
timelike, as in the steady state equation, 'and § controls the damp--

"ing [$}.

4, CONSTRUCTION OF THE MESH

The formulation of the artificial viscosity présupposes a smooth
distribution of cells. Also the one point integrétion scheme will
cause a loss of accuracy if the mesh is not smooth. It isiimportant,
therefore, to use a reasonably smooth mesh. This is most easily
éccmmﬁishedlby using global mappings to generate the‘mesh poinﬁs.
All other steps, such as the transformation of the equatlons of motion,
- are then taken over by the numerical scheme. _

Swept wing calculatlons.have been performed on a mesh generated
by a sheared parabolic cobrdinate system, which has been found to give
- good results with earlier methods [1,2,4]. First, wé introduce
parabslic coordinates in_planes containing the wing section by the

transormatlon

- e /2
X+ 1Y = {{x - x5(2) + iy - y,(2))1/t(2)}
where z is the - panw1se coordinate, Xq (z} -—and yo(z) deflne a singular

llnejust 1n516e the leadlng edge, and t(z) is a scallng factor which




can be used to control the number of cells covering the wing.

21er A : ) i'i'z

Figure 5

The effect of this transformation is to unwrap the wing to form a
shallow bump Y'= S(§,§), as illustrated in Figure 5. Then we use a

shearing transformation
X=X, Y=Y-s(X,2), 2=2%

to map the wing to the surface ¥ = 0. The mesh is now construéted by
the reverse sequence of transformations from a rectangular grid in the
X,Y,Z coordinate,éystem. The vortex sheet trailing behind the wing is
assumed to coincide with the coordinate surface leaving the trailing

" edge. This mesh can be modified to treat wing cylinder combinations
by first mapping the cylinder to a vertical slit by a Joukowsky trans-
formation, as illustrated in Figure 6, and then using the same sequence
of transformations to generate a sheared parabolic coordinate around

the wing projecting from the slit..

Front view of

niyﬁng—cylinder'combination _ Cylinder mapped to‘vertiéai slit

Figure 6
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An alternative mesh generating scheme for wing fuselage combina-
tions [12] starts by introducing cylindrical coordinates as illustrated
in Figure 7. TR f o L , 1 .
T S 8 = m/2 Lo TR I e e

é = ~-%/2 "

Cylindrical coordinate sysfem for
wing body combination

FiQure”7
" In each cylindrical surface the wing section then appears as a profile
in a channel bounded by the intersection of the cylinder with the
plane of symmetry at 6 = + w/2. This configuration can be mapped to .
a channel with a bump on the upper wall, as illustrated in Figure 8,

by the transformation

o = log (lff'cosh(c)).

0 = /2 : \ o - -
. o . _
C . B
.0 ... B
B —= - o . : .
o = -n/2 9 = /2 '

. Figure 8.

-~ Finally the bumpzis removed by a shearing transformation.
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" 5.  RESULTS

Two examples of numerical calculations are presented in this sec-

tion to illustrate the capability of the finite volume method. The

first mesh generating procedure proposed in Section 4, the sheared

parabolic coordinete system, was used in these calculations, both of
which were performed oh a sequence of three progressively finer meshes.
After the calculation on each of the first two meshes, the number of
intervals was doubled in each coordinate direction and the interpolated -
result was used as the starting point for the calculation on the new

mesh. Thelfine mesh contained 160 intervals in the chordwise XAdirec—

‘tion,'16 intervals in the normal Y direction, and 32 intervals in the

spanwise Z direction, for a total of 81,920 cells. 100 relaxation
cycles were used on each mesh. Such a calculation takes about-15 min-
utes on a CDC 7600. ’ ' A |
"The first example is a calculation of the flow past the ONERA M
Wing, for vhich experimental data is available [13]. The result is |
displayed in-Figure 9. Separate pressure distributions are shown for
stations at 20, 45, 65 and 95 perceht of the semispan. Section lift
and drag coefficients CL and CD were obtained by integrating the4pres-
sure coefficient Cp over the profile. The critical pressure coeffici-
ent at 'which_the flow has sonic'speed is marked by a horizontal line
on the pressure axis: Although the calculation did not include a
boundary layer correction, it can be seen that the agreementfwith the’
experimental data is quite good. The triangular shock pattern is
clearly visible in the three dimensional plot of the pressure distri-
bution (Figure 9f). The front shock, emanating from the ieading edge
at the wing root, merges with the rear shock about three‘quarters:of
the way out across the_span. The secbna example is indicative of the

level of geometric complexity which can be treated with the existing

code. The result is displayed in Figure 10. It is for a Douglés DC 10

wing mounted on a cylinder in a low mid position. The true DC 10 con-

figuration is not exactly modeled, because the code does not provide

for a wing root fillet.

These results confirm the promise of the new method. It.appears
'that it can be used to treat configurations of more or less arbitrary
complexity, subject“USlimits set by the.power of the available comput-
ers. The extension to new conflguratlons is prlnarlly .a matter of

devising mesh generating schemes, since the internal computatlons are

'essentlally 1ndependent of the configuration, apart from the 1dent1—

fication of which elements are the boundary elements.
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