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1 ,  * * ,  NUI.IEIIICAL CALCULATION OF T?Ln,l$TSOiJIC FLOSq PA6T A S?IEPT W I N G  BY h 
* \ . . FINITZ VOLUXE IrlETSOD. . . 

." , ,. . . 
I ,  Antony Jameson 

I Courant I n s t i t u t e  of.Mathematica1 Sciences ,  New York Unive r s i ty  

The u t i l i t y  of n w e r i c a l  methods f o r  p r e d i c t i n g  t r a n s o n i c  f lows 

- over 'wings and bodies  i s  by now w e l l  e s t a b l i s h e d .  The computer pro- 

gram FL022, based on a  method presented  a t  t h e  1973 IFIP Syrrposiun on 

compbting 14ethods [ I ] ,  has  a c t u a l l y  been widely use2 t o  c a l c u l a t e  t h e  

/ . - aerobynaraic of wings of t r a n s p o r t  a i r c r a f t .  P rov i sed  t h a t  
I 

l a c o , r e c t i o n  i s r n a d e  f o r  t h e  dis2lacernent e f f e c t  of t h e  v i scous  bound- 4 .  
a r y  l a y e r ,  t h i s  code has been found t o  g i v e  p r e s i c t i o n s  which. a r e  

a c c u r a t e  enough t o  s e r v e  a s  a  u s e f u l  des ign  guide [2 ] .  The s a l i e n t  

f e a t u r e s  of t h e  code a r e :  
1 

(I) ' tne use  of a . p o t e n t i a 1  flow a p p r o x i ~ a t i o n  t o  t h e  equa t ions  of . . 

mot ion  
I " . ! (23 t h e  use of upwind d i f f e r e n c i n g  i n  t h e  supersonic  zone . t o  s imula te  

. . 
t h e  region  of dependence of t h e  flow, and t o  prevent  t h e  appear- 

I 
i ance of expansion shock waves which would v i o l a t e  t h e  ent ropy 

&equa l i ty  ! . . 

( 3 )  t h e  u s e  of a  r e l a x a t i o n  procedure based on an a r t i f i c i a l  t i n e  
1 

I ! -  dependent equat ion t o  s o l v e  t n e : d i f f e r e n c e  equat ions  

I . 4 t h e  use of a c u r v i l i n e a r  coord ina te  system genera ted  by a sequence 
4 

of s imple t r a n s f o r m a t i ~ n s  t o . p r o d u c e . c o o r d i n a t e  s u r f a c e s  fo l lowing 
' 

t h e  wing shape. 
. I 

. . . . 
The use  of t h e  p o t e n t i a l  flow approxi.na.tion g r e a t l y  reduces t h e  

amount of computation requ i red .  Since t h e  r e s u l t i n g  flow i s  i r r o t a t i o n -  

: , a l ,  it i s . c o n s i s t e n t  t o  approxh-a te  shock waves by d i s c o n t i n u i t i . e s .  

! . '  a c r o s s  which entropy i s . conse rved .  This  approximation has  been found-  

q u i t e  s a t i s f a c t o r y  i n  p r a c t i c e ,  s i n c e  t h e  shock waves genera ted  by a i r -  -' 

I : .  p lanes  c r u i s i n g  a t  subsonic spe.eds. 'are g e n e r a l l y  q u i t e  weak. I n  f a c t  . . 
. . 1 ! 

j i .  t h e  appearance of s t r o n g e r  shock waves.marks t h e  o n s e t  of '  d rag  r i s e ,  . .  

which s e t s  an upper bound . . on the,  c r u i s i n g  speed. I n  o rde r  t o ' o b t a i n  a  

unique s o l u t i o n  t o  the'  p o t e n t i a l .  f low equa t ion ,  it i s  necessary  t o  

. . * This  w6rk was supported by t h e  O f f i c e  of Naval Research under Contrac t  
. . N00014-77-C-0032, and' a l s o  by NASA under Grants  N G R .  33-016-16.7 and 

. . NGR 33-016-201. The c a l c u l a t i o n s  'were .perf  orrtied. a t  t h e  Z2DA Xathe- 
mat.ics and Computing .Laboratory,  under Contrac t  EY-76-C-02-3077.*000. 
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" e x c l u d e  expansion shock waves, ,corresponding t o  t h e  c o n d i t i o n  t h a t  I 

en t ropy  can on ly  i n c r e a s e ,  The u s e  of upwind d i f f e r e n c i n g  i n  t h e  
'v' . . superson ic  zone,; f i r s t  introduced by ~ u r m a n '  and Cole [ 31 , has  been 

found an e f f e c t i v e  way t o  en fo rce  t h e  entropy condi t ion .  The non- 

l i n e a r  e q u a t i o n s  genera ted  by t h e  d i s c r e t e  approximation a r e  no t  easy, 

. . - t o  so lve .  The use of a . r e l a x a t i o n  process  modeled on an a r t i f i c i a l  . 

t i m e  dependent equa t ion  [41 has  been found t o  g i v e  r e l i a b l e  and 
# . . accep tab ly  f a s t '  convergence. 

 he main d isadvantagesof  t \e  scheme used i n  FL022 a r e t h e .  use  of 

nonconservat ive  d i f f e r e n c e  fornulas . ,  which r e s u l t  i n  a  f a i l u r e  t o  s a t - .  
:. ,-. . isfy c o n s e r v a t i o n  o f  mass a c r o s s  shock waves; and t h e  d i f f i c u l t y . o f  

f i n d i n g  s u i t a b l e  t r ans fo rmat ions  of coord ina tes  t o  permit  t h e  t r e a t n e n t  
. . 

of more complex g e a i e t r i c  ' conf igura t ions ,  The method t o .  .be desc r ibed  

h e r e  i s  an a t t e m p t  t o  overcome t h e s e  snortcoming.s, wh i l e  r e t a i n i n g  t h e  

, s u c c e s s f u l  f e a t u r e s  o f  t h e  previous  method. The b a s i c  i d e a  i s  t o  use  

a d i s c r e t e  approximation which d i r e c t l y  r e p r e s e n t s  a  ba lance  of t h e  .. 

mass f low th rough  s m a l l  volume elements.  Th i s  l e a d s  t o  a  r e l a t i v e l y  

s imple  t r e a t m e n t  of t h e  p o t e n t i a l  f low equat ion i n  conse rva t ion  fo rn .  

The volume e lements  are. d i s t o r t e d  cubes genera ted  by 1 o c a l . t r i l i n e a r  

t r a n s f o r m a t i o n s  de f ined  by t h e  element v e r t i c e s .  Elements of t h i s  kind 

I : 
, can  be  packed around any reasonably smooth conf igura t ion .  The subsonic 

; d i f f e r e n c e  -formulas can convenient ly  be der ived  from t h e  Sateman v a r i a -  
I 

i 
t i o n a l  p r i n c i p l e  [ 5 ] ,  A d i r e c t i o n a l  b i a s  i s  in t roduced i n  t h e  super- 

s o n i c  zone by adding an  a r t i f i c i a l  v i s c o s i t y ,  which i s  c o n s t r u c t e d  i n  
, 
! such a way as t o  produce an e f f e c t i v e  switch t o  upwind d i f f e r e n c i n g .  

Th i s  s e r v e s  t o  p reven t  t h e  appearance of expansion shock waves. The 
. . 

. a&if  i c i a l  v i s c o ' s i t y  h a s  a  divergence form, s o  t h a t  t h e  conse rva t ion .  
i 

form of t h e  equa t ions  i s  preserved by t h e  d i f f e r e n c e  schene , .and  proper  
. 

.shock jump r e l a t i o n s ,  c o n s i s t e n t  w i t h  t h e  i s e n t r o p i c  approximation, 

are s a t i s f i e d  i n  t h e  l i m i t  a s  the.mesh width i s  decreased  t o  z e r o  161. 
. . .The most promising a l t e r n a t i v e  t o  t h e  use  of a r t i f i c i a l  v i s c o s i t y  t o  

. ! e n f o r c e  t h e  en t ropy  condi t ion .  appears  t o  be t h e  opt imal  ' c o n t r o l  method- 
proposed- .by Glowinski and -Pironneau 171 , i n  which.  t h e  ent ropy c o n d i t i o n  

is r e p r e s e n t e d  by p e n a l t y  func t ions .  
. . 

i . . 
1 ' 2. FORMULATIOLJ OF THE EQUATIONS 
. 

.. . ! '  . . 

The f l o w  is assumed t o  be i s e n t r o p i c  and t o  s a t i s f y  t h e  equa t ions  

of p o t e n t i a l  flow. Let  q  - be t h e  v e l o c i t y  v e c t o r ,  w i th  magnitude q , 
! . . and P t h e  d e n s i t y .  Then' t h e  p o t e n t i a l  flow equat ion  can be w r i t t e n  i n  

conse rva t ion  f  o m  a s  
3 .  

. . . .  . 



1 .  
.-:< - - -  . . . . . . 

. . . . 1 . .. . (1) V . ( p q )  =' 0 i -  
*" . . 

1 .  ' v .  1 .  . where q i s  t h e  g r a d i e n t  of t h e  p o t e n t i a l  . i . ' .  , . . .  . . - . . ! , . ;  
. . .  . . 

. . .  
. . 

. , ( 2 )  s = .V@ . . - . . 

- .  

Let a  be. t h e  l o c a l - s p e e d  of sound, and M t h e  Kach number q/a. Also l e t  
- M m ,  q, = 1 and pm = 1 be t h e  Mach number, speed and d e n s i t y  of t h e  

uniform f low a t  i n f i n i t y .  Then t h e  loca l  d e n s i t y  i s  g iven  by t h e  

formula 

i . . 
where y i s  t h e  r a t i o  of spec i f ic .hea ts ;and t h e  p r e s s u r e  and s p e e d o f  

sound follo 'w f ro= t h e  r e l a t i o n s  

. . 
. . Y-1 

pY . . ( 4 )  . '  P = -  2. . . . . .. a 2 = ~  2 i . . . . . .  

YMm . . M, 

~ ~ u a t ' i o n  (1) i s  hyperbol ic  i n  s u p e r s o n i c . f l o w  0 1  > 1) a n d . e l l i a t i c  

i n  subson ic  f low,  and shock waves w i l l  g e n e r a l l y  appear i f  t h e r e  i s  a 

reg ion  o f  superson ic  flow. The shock jump cond i t ions  a r e  
i 
I (a) c o n t i n u i t y  of @ iinplying c o n t i n u i t y  of t h e  t a n g e n t i a l  v e l o c i t y  

ccmponent 
i 

(b) c o n t i n u i t y  o f  pqn , where q i s  t h e  normal v e l o c i t y  component n  
! (c) t h e  ent ropy c o n d i t i o n  t h a t  qn dec reases  tllrough t h e  shock. 

Under t h e  assumption of i s e n t r o p i c  flow, c o n d i t i o n s  ( a )  and ( b )  i v p l y  

t h a t  t h e  n o m a l  component of momentuq i s  n o t  conserved. The r e s u l t i n g  
i momentum d e f i c i e n c y  causes t h e  appearance of a  drag  f o r c e ,  b~h ich  i s  

an approximation t o  t h e  wave drag  [ S ] .  
I T h e  boundary cond i t ion  a t  t h e  body is  

To o b t a i n  a unique l i f t i n g  s o l u t i o n  we a l s o  impose t h e . K u t t a  c o n d i t i o n  

t h a t  the flow l e a v e s  t h e  - t r a i l i n g  e d g e  smoothly wi th  e q u a l .  v e l o c i t i e s  

a long t h e  upper a n d " l o w ~ r . s u r f a c e s .  The r e s u l t i n g  spanwise v a r i a t i o n  

i n  t h e  c i r c u l a t i o n  .I' = I q  d s  around each s e c t i o n  of : the  wing causes  
I 

a  v o r t e x  . s h e e t ,  t o  be shed'. from t h e  t r a i l i n g  edge.   he ' v o r t e x  s h e e t  

w i l l  be convected w i t h  the  flour,and r o l l  up along i t s  s i d e  edges.  I n .  

t h e  c a l c u l a t i o n s  t h i s  w i l . l . b e  ignored and t h e  v o r t e x  s h e e t  w i l l  be . . , 

, b 

assumed t o  c o i n c i d e ,  'with a coord ina te  su r face .  The c o n d i t i o n s  a p p l i e d  



a t  . t h e  s h e e t .  are t h e n ,  

( a )  thc  jump r i n  t h e  p o t e n t i a l  i s  cons tan t  along . . l i n e s  p a r a l l e l  t o  

t h e  f r e e  s t ream . .  

(b) t h e  n o r m a l v e l o c i t y  component qn i s  cont inuous through t h e  shock. 

According t o  an  a n a l y s i s  of t h e  asymptot ic  behavior o f . t h e  p o t e n t i a l  

i n '  t h e  f a r  f i e l d  [9] , 4 approaches t h e  p o t e n t i a l  o f '  the.  undis turbed  

uniform f low except  i n  t h e  T r e f f t z -  p lane  f a r  downstream, where it 
. . 

s a t i s f i e s  t h e  t w o  dimensional Laplace equat ion  f o r  t h e  ' f low induced by 

t h e  vortex s h e e t .  

I n  a f i n i t e  domain R wi th  boundary S equat ions  (1) - (5 )  are equiva- 

l e n t  t o  the '8a teman v a r i a t i o n a l  p r i n c i p l e  t h a t  . . 

is s t a t i o n a r y .  I n .  f a c t  according t o  equat ions  ( 3 )  and ( 4 )  , 'a v a r i a -  

t i o n  6 9  causes  a  v a r i a t i o n  

Thus 

61 = - '1 p q * ~  64 dR . . . . . . 

- .  
R 
. . 

1 : and the' .boundary terrns vanish i f  6 @  = . ,O or. q  = 0. 
1 n . 

I 

The Bateman v a r i a t i o n a l  p r i n c i p l e  w i l l  be used t o  d e r i v e  d i f f e r -  

! ence formulas through t h e  i n t r o d u c t i o n  of a  d i s c r e t e  approximation t o  

? 
t h e  i n t e g r a l  I de f ined  by equat ion  ( 6 ) .  This  l e a d s  t o  a  c e n t r a l  d i f f -  

erence scheme. When such .a  scheme i s  used t o  compute. t h e . f l o w  p a s t  a  
I 

- p r o f i l e  w i t h  f o r e  and a f t  syxnet ry ,  such a s  an e l l i p s e ,  t h e  f o r e  and 

f a f t : symne t ry  i s  p r e s e r v e d ' i n  t h e  s o l u t i o n ,  and expansion shocks w i l l  
' appear i n  t r a n s o n i c  flow. Thus any scheme which i.s n o t  desymletr ized 

] ' .  

! i n  sorne way is  r e s t r i c t e d  t o  subsonic flow. The b a s i c  d i f f e r e n c e  - .  
\ 

i. formulas w i l l  t h e r e f  o re  b e  rnolif i e d  by t h e  ' a d d i t i o n  of a r t i f i c i a l  v i s -  

c o s i t y  t o  in t roduce  t h e  d e s i r e d  d i r e c t i o n a l  b i a s  i n  t h e  superson ic  
. . zone. 

i . . '  

I n  o r d e r  t o  r e p r e s e n t  t h e  Bateman i n t e g r a l ,  t h e  r eg ion  i n  which 

i t h e  flow is  t o  be computed:is d iv ided  i n t o  d i s t o r t e d  c u b i c  c e l l s ,  . . 
. \ . . 



. . 
. , . . ' 

generakp6 from c u b e s  by s e p a r a t e  t r a n s £  ormations hetween , l o c a l  
. c o o ~ d i n a t e s  X,Y,Z and C a r t e s i a n  coord ina tes  x , y , z ,  a s  i l l u s t r a t e d  

i n  Figure . ,  1. 
. . .  I... ..... _ 

., I n  o rde r  t o  reduce t h e  amount of  co r~~pu ta t ion  a  s imple one p o i n t  i n t e -  

. . 

gra t ion .scheme w i l l  be used; i n  which t h e  c o n t r i b u t i o n  of  each c e l l  

X J Y I Z  x ,y ,z  ' , 
.. _ , _ _  , . . . . . . . . .  .- - - . . . . . . . . . . . . .  

Figure  1 

t o  t h e  i n t e g r a l  w i l l  be e v a 1 u a t e d . a ~  t h e  p r e s s u r e  a t  t h e . c e l 1  c e n t e r  

. 
T h e  v e r t i c e s  of t h e  c e l l s  d e f i n e  t h e  computational mesh, and s u b s c r i p t s  

i , j , k  w i l l  be used t o  d e n o t e . t h e  va lue  of a  q u a n t i t y  a t  a  mesh p o i n t .  

(def ined as t h e  p o i n t  mapped from t h e  c e n t e r  of t h e  cube i n  t h e  X , Y , Z  

3 coordina te  system) m u l t i p l i e d  b y  t h e  c e l l .  volune. Q u a n t i t i t e s  eva l -  

ua ted  a t  t h e  c e l l  c e n t e r s  w i l l b e  d e n o t e d b y  s u b s c r i p t s  ' i+1/2,  j+1/2; 

* k+1/2. Averaging and d i f f e r e n c e  o p e r a t o r s  w i l l  b e i n t r o d u c e d  through 
I '  t h e  n o t a t i o n  . . . . . . 

. . 

1t  w i l l  a l s o  be convenient  t o  use  n o t a t i o n s  such a s  

dxxf = 6 ( 6  f), , . X X  

Numbering t h e  v e r t i c e s .  o f  a  p a r t i c u l a r  c e l l  from 1 t o  8"as  i n  

Figure 1, t h e  v e r t i c e s  i n  t h e  l o c a l  coord ina tes  a r e  assumed t o  be a t  
1 ' 1  1 .  x i = + -  = + - , z = + -  

* 1 . - 2  y Y i  - 2  - 2 . I f  xi ,yi ,zi  a r e  t h e  C a r t e s i a n  coordi -  

, 
n a t e s  of t h e  i t h v e r t e x ,  t h e  l o c a l  mapping i s  then  de f ined  by t h e  

t r i l i n e a r  form 
. . . .  



: 1 .. . . wi th  s i m i l a r  formulas f o r  y ,  i. The p o t e n t i a l  is  assumed t o  have a  

j . s i m i l a r  form i n s i d e  t h e .  c e l l  , . . 
! 

These formulas p rese rve  t h e  c o n t i n u i t y  of x ,y , z  and 4 a t  t h e  c e l l  

boundaries because t h e  mappings i n  each c e l l  reduce t o  t h e  same b i l i n - ,  

a e a r  form a t  t h e  common face .  A t  t h e  c e l l  c e n t e r  t h e  d e r i v a t i v e s  of . t 
! . .  

the t ransformat ion  can be evalua ted  by f o r n u l a s  such a s  
I' 

. . 

1 x = -  (x2 - X  + x  - x + x  - x  + x  - X I =  pyZdx.x 
. : X - 4  ,1 . 4 3 6 5 8 . 7  . . . 

4 

, . ,  . . 
I Simi la r ly  it fo l lows from equat ion  ( 8 )  t h a t  

. . 
i I n  o r d e r  t o  e v a l u a t e  t h e  c o n t r i b u t i o n  of each c e l l  t o  t h e  Batenan 
i 

i n t e g r a l  it is now necessary  t o  express  t h e  p r e s s u r e  and c e l l  volume i n  
.i 

terms of t h e  l o c a l  d e r i v a t i v e s  of t h e  mapping and t h e  p o t e n t i a l .  L e t . H  

be t h e  t ransformation matr ix  
J 

. . . . . . . .  

and l e t ' h  be t h e . d e t e r m i n a n t  of  H.  Then t h e  me t r i c  t e n s o r  i s  de f ined  
! 

. . by t h e  matr ix  , : 

.. - 
Also. . the  c o n t r a v a r i a n t  v e l o c i t y  components a r e  U,V,W. where 



. . . ' and the variation i n  p due to a variation A $  is . 

CI 

I '  '. 
I . '  . . 

According to the one point integration scheme, the contribution from 

the cell centered at i+1/2, j+1/2, k+1/2 ' is the volume of the cell, 

given by the determinant hi+l/2 , j+1/2, . k+1/2 multiplied by the pres- 

On setting Sure Pi+1/2, j+1/2, k+1/2 * '  . . 

and collecting the contributions from the 8 cells with a common vertex 
I 

- .  . 
i f  j ,$, we then obtain the formula . . 

at each interior mesh point. Along the boundary there are only 4 

cells adjacent to each mesh pointland equation (12) is correspondingly 

modified. 

Equation (12) is a discrete approximation to the conservation law 

(13) 
a a a - (P~U) + (P~V) + Z-phW) ax 

which can be derived directly from equation (1) by using the tensor 

formula for the divergence operator [ 9 ] .  In fact we can derive equa- 

tion (12) by representing a flux balance through a set of auxiliary 

cells, each of which is generated from a cube joining the centers of 8 

primary cells, as illustrated in Figure 2. 

. . '; . . ' X f Y f Z  X,Y,Z 
. . . .  . . 

' :  
. . 

: . .  
. . 

. . .' . .  . . .  , 

, Figure 2 . .  .. . 
: i . .  . 

1 . . 
. .. . . . . 



' I n .  t h i s  i n t e r p r e t a t i o n  ( p h ~ )  
i+1/2,-j+1/2,k+1/2 i s  an approximat ion t o  1': . 

' t h e  f l u x  a c r o s s  t h e  fa.ce X - 0 of  Lliat p a r t  o f  . t h e  secondary c ' e l l  which 

.. 't 
l ies  i n  t h e  pr imary c e l l  A i n  F igu re  2. The boundary c o n d i t i o n  (5 )  

I 

r educes  t o  U = 0, v'= 0 o r  W = 0 on c e l l  f a c e s  which c o i n c i d e . w i t h  t h e  

boundary. The f l u x  b a l a n c e  is  t h e n  rep, resented w i t h  secondary c e l l s  

. .  bounded on one o r  more f a c e s  by t h e  body sur face ,  a s  i l l u s t r a t e d  i n  
. F i g u r e  3.' 

F lux b a l a n c e  c e l l  

. . 
body s u r f a c e  

, ' . .X , Y, Z 
. . . .  . . . .  . . . . .  

. '  The lumping e r r o r  i n t roduced  by t h e  one p o i n t  i n t e g r a t i o n  schene 

now appea r s  a s  an e r r o r  ' i n t r o d u c e d  by c a l c u l a t i n g  p , h ;  U, V, : " a t  t h e  

I ? . co rne r s  of each  secondary c e l l ,  i n s t e a d  of  ave rag ing  t h e s e  q u a n t i t i e s  
1 - { . .  
8 .  

8 . .  
o v e r  t h e  ce l l  f a c e s .  I f  t h e  v e r t i c e s  of t h e  p r i n a r y  c e l l s  are, gener-  

. . 

1 . ' . . .  a t e d  by a g l o b a l  n a p ~ i n g  sn~ooth  enough t o  a l l o w  Tay lo r  series expan-  

I - s ions  of x , y , z . a s  f u n c t i o n s  of X , Y , Z ,  t h e n  t h e  c o n t r i b u t i o n s  t o  t h i s  
1 .  i I  e r r o r  from a 2 j a c e n t  p r imary  ce l l s  o f f s e t  e a c h . o t h e r ,  w i t h  t h e  r e s u l t  
1 

t h a t  equa t ion  (12) approximates  e q u a t i o n  (13) w i t h  a second o r d e r  l o c a l  

d i s c r e t i z a t i o n  e r r o r .  . . 1 ; ' .  
.The one p o i n t  i n t e g r a t i o n  scheme has  a n o t h e r  disadvantagethowever ,  . 

which can be seen  from t h e .  fo l lowing  s imple  e x m p l e .  S e t t i n g  ,h = 1, 

1 j. 
p = 1, . e q u a t i o n ,  . (12) r e d u c e s  i n  t h e  two d imens iona l  case t o  

. . 
. . 

. - . . i s I . $ =  0 
. . (pyy6xx + p x ~  YY I . . . . . . 

: I . x 
. . . . 

. . which i s  t h e  r o t a t e d  Laplac ian  scheme , ,  ' . . . . . . 

! .  
. . .  . . 

. i . . ' @ii-i, j+l, + 'i-l,,j+l + 'i+l;,-l + 'i-l, . .  - 4@., = o . . . .  I . . 
. . . . .  . . .I .. . . 

. . . .  ' 

. . .  . . . .  . .  . . . . .  -. . < .?., .--. -. :' . .  " .- - -- - -. ...-.-- l .-.,------.-----.- --- ---.-.---..-I....-r..." . .  
. . ..-: . . .*., . , F V T Y  . . . .  



\ 
. . 

. ' 
. . ,. The odd and even p o i n t s  a r e  decoupled, s o . t h a t  high frequency 0sc.i.l- 

* l a t i o n s  i n  which @ = 1 a t  odd p o i n t s  and -1 a t  even p o i n t s  a r e  admit ted 
I 

! b y t h e  scheme.  To overcome t h i s  d i f f i c u l t y  w e  can s h i f t  t h e  p o i n t o f  . . 

' . . ' evalua t ion  of t h e  f l u x  OX a c r o s s  t h e  s i d e  AB i n  F igure  4 frorn A towards 
.. ! 

i 
t h e  center  of the s i d e  by adding a compensating term - , ~ ( 9 ~ ~ .  

,.._. - . . . 
. -. . . 

Flux a t  C is  

' Figure  4 

. . .  . . The addi t ion  of ' s i n i l a r  terms on a l l  f a c e s  produces t h e  formula 
i .. 

' 1  : which reduces  to. t h e  usual '  5 p o i n t  second o r d e r  a c c u r a t e  formula when 

E = 1/2,  and t o  t h e  9 p o i n t '  f o u r t h  o rde r  a c c u r a t e  formula when E = 1/3. ' 4  
S i m i l a r l y ' i n  t h e  d i s c r e t e  approximation t o  equa t ion  (13) we want 

i . .  t o  prevent excess ive  s p a t i a l  averaging i n  . t h e  approximation of 
1 

4 (9 @ @xx' YYr zz - .  Allowing f o r  t h e  depenaence of p on @ X , @ Y , @ Z  , t h e  c o e f  - 
., . f i c i e n t s  of $xx,$,y, O Z Z  i n .  equat ion  (13) a r e  . . 

. . . . 

. . 
2 '2 . . 

%' = p h  (gll - u /a ) 
I . . . . 

2 2.. 22 
. . + = p h ( g  - V /a 1 i . . 

. . . . .  
. . . .  ' 2  '2 . . 

, . A, = ,ph,(g33 - w /a 1' . . . . 
I . . 

. . . . . . . . 
- 

. ,, where gij are the elements of G-1. 1 ;  order  t o  compensate e q u a t i o n '  " .  ' 

. (12),we can use  t h e s e  c o e f f i c i e n t s  t o  determine t h e  magnitude of t h e  
. . i 

t e r m s  which should be added t o  s h i f t  ' t h e  l o c a t i o n s  a t  which ( 9 X , @ Y  , Q ~  
f '  . 

. . .  . ,  . a re  e f f e c t i v e l y  eva lua ted  i n  c a l c u l a t i n g  t h e  f l u x e s  a c r o s s  each f a c e ,  
, . 
3 .  . . 
, f o r  example, E %pz6Xy @ t o  s h i f t  bX i n  t h e  Y d i r e c t i o n .  C o l l e c t i n g  
1 .  

. - . .the' con t r ibu t ions  from ea.ch of t h e  8 primary c e l l s  surrounding a i 
mesh po in t ,  w e  o b t a i n ,  t h e  fol lowing formulas.. Let  . . . . 

. . 
........................ . ........................... . . . .  

. 7 - .  

. . 
. . . . .  . . . . , ............................ 

. . . . . .  . . : ... , 
. .  , . . . . ' 3. 
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. . 
I . . w i t h  s imi lar '  forraulas f o r  QYZ , QZX , and l e t  . . 

. . . . 
I '  

. . 

~. Then the f i n a l  compensated equa t ion  i s  

1 . where 0 < E < 1/2'. I n  p r a c t i c e  t h e  va lue  .E = , 1 /2  has  been used. I .  - - 
1 It remains t o  add t h e  a r t i f i c i a l  v i s c o s i t y  r equ i red  t o  desymmetrize 
1 I 
I 

t h e  scseme i n  t h e  supersonic  zone, I n s t e a d  of equat ion  (13) we  s h a l l ' .  

s a t i s f y  t h e  modified conservat ion  'law i '  

1 i where the added f l u x e s  P ,Q,R a r e  p ropor t iona l .  t o  t h e .  c e l l  widths  i n  
1 

t h e  physical donain,  wi th  t h e  r e s u l t  t h a t  t h e  c o r r e c t  conse rva t ion  law I : 
I " 

! ?  i s  recovered i n  t h e  l i m i t  as' t h e  c e l l  width i s  reduced t o  zero.  The . . 

a r t i f i c i a l  v i s c o s i t y  i s  designed t o  produce an e f f e c t i v e  swi tch  t o  . ,  

I ' 

upwind d i f fe renc ing  i n  t h e  'supersonic zone. Presuming t h e  d i s t r i b u t i o n  
I 1 .  

i of mesh p o i n t s  t o  be smooth, it i s  cons t ruc ted  i n  t h e  fo l lowing manner. 

F i r s t  we i n t roduce  t h e  switching func t ion  

p = ti max {0,[1 -,$I} 
. . h 

and t7e c o n s t r u c t  P by, t h e  formula 
. . 

. . 
A n 

and Q, R by . s i m i l a r .  f o r n u l a s .  Then . . . . 

A 

P i f  U > 0. 
i , j  ,k 

'i+l/i, A i f - u  < 0 - 
' i+ l ,  j., k 

I w i t h  s imi lar  s h i f t s  f o r  Q ,  R. F i n a l l y ,  equat ion  ( 1 4 )  i s  modi'fied by 
. . . . 

t h e  a a . i t i o n  of 



k -4 
.- - -. -. . . 

' ,  

Since \t = . . '0, when q < a, P,Q,R vanish  i n  t h e  s u b s o n j . ~  zone .  I n  t h e  

s u p r ~ s u n i c :  zone t h e y  apprbxiaa te  - p  I U 1 6 p , -p I V  1 byp . , -p I V J  1 6&p. 
X 

1 
L. 

. . It may be v e r i f i e d  [11] t h a t  t h e  coeff  i c ' i e n t s  of t h e  ' t h i r d  de r iva -  
. . 

. t i v e s  of the. p o t e n t i a l  such a s  4,. in t roduced by ,XXt @,,xf @zxx 
i 
i '  

P,Q,R are t h e  same a s  i n  t h e  a r t i f i c i a l  v i s c o s i t y  generated by t h e  

- ,  rotated d i f f e r e n c e  scheme'which has been previous ly  used i n  t h r e e  

dimenssonal t r a n s o n i c  flow c a l c u l a t i o n s  [l ,2,4]  . 
E n a l l y  t h e  n o n l i n e a r  equat ions  genera ted  by t h i s  d i s c r e t i z a t i o n  

' 

process are solved  by a  genera l i zed  r e l a x a t i o n  method which i s  de r ived  

by emkdding t h e  s t eady  s t a t e  equat ion  i n  an a r t i f i c i a l  t ime 'dependent  

equatzon. Thus we. s o l v e  a, d i s c r e t e  approximation t o  ' ' . . 

. . 

where the c o e f f i c i e n t s  a, B ,y a r e  chosen t q  make. t h e  flow d i r e c t i o n  
. . 

t i m e m e ,  as' i n '  t h e  s t eady  s t a t e  equat ion ,  and 6 c o n t r o l s  t h e  'damp-' 
. . i n g  [.4J;. . . . .  . 

. . 
. . 

. .. 
4. CONSTRUCTION OF .T% 1.ESH 

. . .  

The formulat ion of t h e  a r t i f i c i a l  v i sc 'os i ty  presupposes a  smooth 

d i s t r % u t i o n  of  cells. Also t h e  o n e  p o i n t  i n t e g r a t i o n  scheme w i l l  

cause a l o s s  of accuracy i f  t h e  mesh i s  no t  smooth. I t  i s  impor tant ,  

thereore,  t o  use  a reasonably smooth mesh. This  i s  most e a s i l y  

accorc#ished.by us ing  g l o b a l  mappings t o  genera te  the 'mesh  p o i n t s .  

A l l  &&er s t e p s , .  such a s  . the t r a n s f o r 3 a t i o n  of t h e  equa t ions  of motion, 

I " 
a r e  then taken over  by t h e  numerical  scheme. 

. Swept wing c a l c u l & t i o n s  have been performed on a  mesh genera ted  

by a  sheared p a r a b o l i c  coordina te  system, tyhich has  been found t o  g i v e ,  

good z s u l t s  wi th  . e a r l i e r  methods [ l  ,2 ,4]  . F i r s t ,  we in t roduce  

. p a r a b l i c  coord ina tes  i n  p lanes  con ta in ing  t h e  wing s e c t i o n  by t h e  
. .- 

transformation , . .  

. .. 

I :  where z i s  t h e  spanwise coord ina te ,  xo ( z )  :and y ( z )  d e f i n e  a: s i n g u l a r  .o  
. . . . . 

l ine  . jus t .  i n s i d e  t h e  l e a d i n g  edge, and t ( z )  i s  a  ~ s c a l i n g  f a c t o r  which 
. . . .. 

! .  i , . .  ---- ..: . - . . .- .- .. -- ... , , . . .  . . , . . .  . . . . - . .. . -- -, . - . . . . . . . ----... .---- -.- .__-____-_,.. . ..,.. _ ..,.. . .. . - . -. .. , ' rr"' ",,,: 



1 ' -  . 
can be used t o  c o n t r o l  t h c  number 01 k e l l s  covering t h e  wing .  

F igure  5 . -  

The e f f e c t  of  t h i s  t r ans fo rmat ion .  i s  t o  unwrap t h e  wing t o  f o m  a 

shallow buiip Y ,=. ,S (z ,? ) , ,  a s  i l l u s t r a t e d  i n  F igure  5. Then w e  u s e  a 

shearing. t ransformat ion  . . . . . . .  . . . . 

. . .  

t o  map t h e  wing t o  t h e  s u r f a c e  Y. = ,O. The mesh i s ' now cons t ruc ted  by 

t h e  reverse. sequence of t r ans fo rmat ions  from a r e c t a n g u l a r  g r i d  i n  t h e  

X , Y , Z  coordinate,  system. The v o r t e x  s h e e t  t r a i l i n g  . . behind t h e  wing i s  

assweif t o  co inc ide  wi th  t h e  coord ina te  s u r f a c e  l eav ing  t h e  t r a i l i n g  

edge. This mesh can be modified t o  t r e a t  wing c y l i n d e r  combinatiohs 

by f i r s t  mapping -the c y l i n d e r  t o  a v e r t i c a l  s l i t  by a Joukowsky t r a n s -  

formation, a s  i l l u s t r a t e d  i n  F igure  6., and then. us ing  ' t h e  same sequence 

of t ransformations t o  g e n e r a t e  a sheared p a r a b o l i c  coord ina te  arounZ 

t h e  wing p r o j e c t i n g  from t h e  s l i t . .  
. . .  . . .  . . . .  

... . 
. . Front'  view of 

. . 
1 wing-cylinder 'conbinat ion  Cylinder  ' mapped to ,  v e r t i c a l  s l i t  . 

. . 

. . .  . . . . .  
. . Figure  6 ' . . '. . . . . .  . . .  . . . . . . . . . . .  . . . . . . .  . . . . .  . . . . . . . . ; ;  . . . . . . 

- . .  



I : - An a l t e r n a t i v e  mesh g e n e r a t i n g  scheme f o r  wing f u s e l a g e  combina- 

1 . .  . t i o n s  [121 s t a r t s  by i n t r o d u c i n g  c y l i n d r i c a l  c o o r d i n a t e s  'as  i l l u s t r a t e d  

i n  F i g u r e  7. . .  ! '  ___-. . --. - .  ..... . . . . .  . . . . _  . . .  . . . . . .  . -. . .  ................. . . . . . . .  8 = , ~ / 2  . . -  . . . . 
9 - -  

. . .  . . . . 

. . . . 

C y l i n d r i c a l  c o o r d i n a t e  system f o r  I j . '  . . 

wing body combinat ion . . 

'... . . . . . .  ..... :. . .  .:. . .  - . . . . . . . .  . , . 7 . . . . . .  - . .  
, . . . . .  ..... . . . _ . . . . .  - . .  -.- . 

F i g u r e  7 . . 

,! . . . . . 

I : .  ,: 
I n  each  c y l i n d r i c a l  s u r f a c e  t h e  'wing s e c t i o n  t h e n  appea r s  as a p r o f i . l e  

I I i n  a c h a n n e l  bounded by t h e ' i n t e r s e c t i o n  of the .  c y l i n d e r  w i t h  t h e  

I p l a n e  of symmetry a t ' 0  ='.+ - ~ / 2 .  T h i s  c o n f i g u r a t i o n  can  be  mapped t o  

I .  a channe l  w i t h  a bump on t h e  upper w a l l ,  a s  i l l u s t r a t e d  i n  F i g u r e  8 ,  

by t h e  t r a n s f o r n a t i o n  

a = , log  (1: - cosh  ( 5 )  ) 
... 

. .~ 
. F i g u r e  8 

. . 
. . 

F i n a l l y  thc' b u m p  i s  remoGed by a s h e a r i n g  t r a n s f o r m a t i o n .  



. . . . I ' .  . . 5. RESULTS . . . , 

Tt~o e x m p l e s  of n u i e r i c a l  c a l c u l a t i o n s  a r e .  p r e s e n t e d . i n  . t h i s  sec-  

t i o n  t o  i l l u s t r a t e  t h e  c a p a b i l i t y  of t h e  f i n i t e  v o l u i e  method- The 

f i r s t  mesh g e n e r a t i n g  procedure proposed i n  Sec t ion  4 ,  t h e  sheared 

- parabol ic  coord ina te  system, was used i n  t h e s e  c a l c u l a t i o n s ,  both  of 

which were performed on a  sequence of t h r e e  p rogress ive ly  f i n e r  meshes. 

A f t e r  the  c a l c u l a t i o n  on. each of t h e  f i r s t  two rr.eshes, t h e  number of 

i n t e r v a l s  w a s  doubled i n  each coord ina te  d i r e c t i o n  and t h e  i n t e r p o l a t e d  

r e s u l t  was .used  a s  t h e  s t a r t i n g  p o i n t  f o r  t h e  c a l c u l a t i o n  on t h e  new 

mesh. The f i n e  mesh contained 160 i n t e r v a l s  i n  t h e  chordwise X d i r e c -  
. . 

t i o n , ' l 6  i n t e r v a l s  i n  t h e  normal Y d i r e c t i o n ,  and 32 i n t e r v a l s  i n  t h e  

spanwise Z d i r e c t i o n ,  f o r  a t o t a l  of 81,920 c e l l s .  100 relaxat ion,  

c y c l e s  were used on each mesh. Such a . c a l c u l a t i o n  t a k e s  abou t .15  min- 

u t e s  on a CDC 7600. . . 

' The f i r s t  example i s  a  c a l c u l a t i o n  of . t h e  flow p a s t  t h e  OMEX4 !.J6 

wing, for which experimental  d a t a  i s  a v a i l a b l e  [13] .  The ' r e s u l t  i s  

displayed i n  Figure  9. Separa te  p r e s s u r e  d i s t r i b u t i o n s  a r e  shown f o r  

s t a t i o n s  a t  20 ,  45, 65 and 95 percent  of t h e  s e n i s ~ a n .  Sec t ion  l i f t  

and drag c o e f f i c i e n t s  CL and CD were obta ined  by i n t e g r a t i n g  t h e  pres-  

s u r e  c o e f f i c i e n t  C? over  t h e  p r o f i l e .  The. c r i t i c a l  p r e s s u r e  c o e f f i c i -  

e n t  a t  . tvhich . the  flow has s o n i c  speed i s  marked by a  h o r i z o n t a l  l i n e  

on t h e  p ressu re  a x i s .  Although t h e  c a l c u l a t i o n  d i d  no t  inc lude  ..a 

boundary l a y e r  c o r r e c t i o n ,  it can be seen t h a t  ' t h e  agreement. wi th  t h e '  

experimental d a t a  i s  q u i t e  good. The t r i a n g u l a r  shock p a t t e r n  i s  

c l e a r l y  v i s i b l e  i n  t h e  t h r e e  dimensional  p l o t  of t h e  p r e s s u r e  d i s t r i -  

but ion  (Figure 9 f ) .  The f r o n t  shock, emanating from t h e  l ead ing  edge 

a t  t h e  wing r o o t ,  merges wi th  t h e  r e a r  shock about t h r e e  .qua r t e r s '  of 

t h e  way o u t  a c r o s s  t h e  span. The second example i s  i n d i c a t i v e  of t h e  

l e v e l  of geometr ic  complexity which can be t r e a t e d  wi th  t h e . e x i s t i n g  

code. The r e s u l t  i s  d i sp layed  i n  Figure  10. I t  i s  f o r  a  Douglas DC 10 

wing mounted on a c y l i n d e r  i n  a  low mid p o s i t i o n ,  The t r u e  DC 10 con- 

1 f i g u r a t i o n  i s  no t  e x a c t l y  modeled, because t h e  code does n o t  provide  

i 
f o r  a wing r o o t  f i l l e t .  

These r e s u l t s  confirm t h e  promise of t h e  new method. It appears  

a t h a t  it can be used t o  t r e a t  c o n f i g u r a t i o n s  of more o r l e s s  a r b i t r a r y  

i complexity, s u b j e c t  to l i m i t s  s e t  by t h e  power of t h e  a v a i l a b l e  comput- 
I 

ers. The ex tens ion  t o  new c o n f i g u r a t i o n s  i s  p r i n a r i 1 y . a  m a t t e r  of 

devis ing mesh genera t ing  schemes, s i n c e  t h e  i n t e r n a l  computations a r e  
f e s s e n t i a l l y  independent of t h e  c o n f i g u r a t i o n ,  a p a r t  from t h e  i d e n t i -  

2 

I 
f i c a t i o n  of which e l m e n t s  a r e  t h e  boundary elements.  

~ 
I 
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