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Anomalous Slowing of a Perpendicularly-Injected 

Ion Beam in Both Quasilinear and Trapping Regimes* 

1 

' Masaaki Yamada and Steven W. Seiler . 

Plasma Physics Laboratory, Princeton University, 

Princeton, New Jersey 08540 

ABSTRACT 

The anomalous slowing of an ion beam injected 

perpendicularly to the confining magnetic field of a 

low f3 plasma is experimentally verified in the nonlinear 

stages of the excited lower-hybrid instability. Further- 

more, a transition of the main nonlinear mechanism from 

the quasilinear to the particle trapping regime is 

demonstrated by varying beam parameters. 



The i o n  d i s t r i b u t i o n  r e s u l t i n g  from n e u t r a l  and/or i on  beam 

i n j e c t i o n  pe rpend icu la r  t o  t h e  conf in ing  magnetic f i e l d  i s  7,- 

t h e o r e t i c a l l y  p r e d i c t e d  t o  d e s t a b i l i z e  m i c r o i n s t ~ b i l i t i e & ,  1-3 

and t h e  i n j e c t e d  beam i s  expected t o  l o s e  i t s  momentum anomalously 

f a s t  a s  a  r e s u l t  of  wave-par t ic le  i n t e r a c t i o n .  We wish t o  p re sen t  

t h e  f i r s t  exper imenta l  ve r i f i i ca t i on ,  t o  our  knowledge, of t h e  

anomalous s lowing and t h e  v e l o c i t y  space d i f f u s i o n  of a  perpendicu- ,  

l a r l y  i n j e c t e d  i o n  beam due to '  t h e  nonl inear  i n t e r a c t i o n  of t h e  

beam wi th  t h e  e x c i t e d  lower-hybrid i n s t a b i l i t y .  

Two major n o n l i n e a r  w a v e : p a r t i c l e  i n t e r a c t i o n s  have h ~ e n  

s e p a r a t e l y  invoked a s  t h e  s a t u r a t i o n  mechanism of beam-driven 

plasma i n s t a b i l i t i e s ,  i . e . ,  p a r t i c l e  t r app ing  i n  a  coherent  wave 

t rough  5 ' 6  o r  q u a s i l i n e a r  ve loc i ty -space  d i f f u s i o n  i n  a  broad 

spectrum of waves. 7 t 8  Another novel  c o n t r i b u t i o n  of t h e  p re sen t  

experiment i s  t h a t  a  t r a n s i t i o n  of  t h e  nonl inear  mechanism from 

t h e  q u a s i l i n e a r  t o  t h e  p a r t i c l e  t r app ing  regime i s  obser ted  

t o g e t h e r  wi th  t ime-resolved measurements of t h e  beam's ve loc i ty -  

space  mod i f i ca t ion .  

The experiments were performed i n  t h e  P r i m e t o n  Q-1 device ,  

u s ing  t h e  machine l a y o u t  i n  which t h e  lower-hy.brid wave, e x c i t e d  

by s p i r a i  i o n  beam i n j e c t i o n ,  had been i d e n t i f i e d  by t h e  wave's 

d i s p e r s i o n  (a, $) . To f o l l o w  t h e  , non l inea r  evo lu t ion  of t h e  

instability, a  pu lsed  i o n  beam i s  used i n  t h e  p r e s e n t  experiment;  

t h e  beam fo l lows  a  h e l i c a l  pa th  (rhelix - - 5pi I Pi  = t a r g e t  

i o n  Larmor r a d i u s )  and c r e a t e s  a double-humped .ion v e l o c i t y  

d i s t r i b u t i o n  I f  (vl) 1 i n  a  c y l i n d r i c a l  s h e l l  of t h e  t a r g e t  



plasma column (rcolumn - - rhelix)' A flute-type (kZ = 0) 

lower instability destabilizes when the average beam density 

throughout the column reaches a threshold value and propagates 

with the same azimuthal velocity as the beam. The mode is a 

standing wave in both the parallel and radial directions. Before 

reaching the nonlinear stage, the instability grows in time 

with the growth-rate predicted by linear warm-plasma theory. 

Figure 1 shows the growth and saturation of the lower-hybrid 

instability for different beam densities but constant beam energy 

and temperature. In Fig. l(a) the instability monotonically 

approaches a constant saturation level in a few growth times 

( -  100 psec), which is consistent with the quasilinear diffusion 
- 

time estimate for the measured wave amplitude, e@max / T ~  = 0 . 0 ~  

The amplitude overshoots in Figs. l(b1 and (c), with higher 

beam densities and growth rates, are not consistent with a slowly 

developing stochastic process; they represent the beginning of a 

trapping cycle and indicate some coherence in the interaction. The 
- 

maximum amplitude of the overshoot Omax is often 2-3 times the 
- 

steady-state level, up to e m  - 1 The potential fluctuation 

$ is measu~ed with calibrated Langmuir and capacity-coupled probes. 3 

In Fig. l(d), where spectral measurements show two modes of . . 
high growth rate, wave-wave interactions become an important 

nonlinear effect. After the overshoot of the fastest growing 

wave, the second wave (y2 < yl) can suddenly detrap ions from 

the main'wave, and the reappearance of random-phase interactions 

allows a quasi-linear-like plateau to be formed. These results are 

in good agreement with particle simulation results for one 

dimensional beam plasma systems. J. 0 



\ ,  

The c o h e r e n c e  o f  a  w a v & i s  de termined by i t s  a u t o c o r r e l a t i o n  

t i m e  [ T = l / A w  o r  n o r e  s t r i c t l y  d e f i n e d  by t h e  p h a s e . v e l o c i t y  a c  

s p r e a d ,  -r ac = ( k  6v )-I] !, which h a s  t o  b e  compared t o  t h e  l i n e a r  
P . . 

growth t i m e  ( T  = y - l )  , bounce f requency  f o r  a  t r a p p e d  p a r t i c l e  I 

g  
[ T ~  = 2n/wb =   IT ( ~ ~ / e @ k ~ ) ~ / *  ] , and t h e  beam's v e l o c i t y - s p a c e  

3 -. 2  - 2  d i f f u s i o n  t i m e  { T~ ' (6vp) / i Z j e / M )  1 k$k 11. The requ i rements  f o r  

q u a s i l i n e a r  t h e o r y  t o  be  v a l i d  a r e  y < <  w r  and T~~ < T < T~ ' , 
9  

w h i l e  t r a p p i n g  becomes i m p o r t a n t  when T < T 5 T 
b  a c  . These t i m e  a 

s c a l e s  a r e  shown - v s .  wave ampl i tude  i n  Fiq. 2 fo r ,  t h e  present .  beam- 

plasma p a r a m e t e r s .  Roughly s p e a k i n g ,  if T > T 
ac t h e  growth and 

'J 
s a t u r a t i o n  of t h e  i n s t a b i l i t y . w i l 1  proceed a s  d e s c r i b e d  by q u a s i -  

l i n e a r  t h e o r y  on t h e  t i m e  s c a l e ,  , I .  - .r - -2 
ci a 'max . For -r ' n T g  - a c t  

q u a s i l i n e a r  t h e o r y  i s  i n v a l i d ,  and e v e n t u a l l y  t h e  wave s a t u r a t e s  

by t r a p p i n g  and s lowing  t h e  beam; t h e  t i m e  s c a l e  for t h e  non- 

l i n e a r i t y  i s  t h e n  r n  - 
- T b  

a ' -' * '  . The s o l i d  l i n e s  i n  F i g .  2 mmax 

i n d i c a t e  t h e  v a l i d  n o n 1 i n e a r i . t ~  t i m e  s c a l e s .  T h e  o p e n - c i r c l e s  

a r e  t h e  measured n o n l i n e a r  growth t i m e s  which a r e  d e f i n e d  h e r e  

as t h e  t i m e  i n t e r v a l  from t h e  c e s s a t i o n  of  l i n e a r  g r o w t h . t o  

s a t u r a t i o n ;  t h e  d a t a  c l e a r l y  shows t h e  expec ted  t r a n s i t i o n .  

I n  t h e  e x p e r i m e n t ,  w i t h  t h e  i n j e c t i o n  of  a low-densi ty  warm 

beam, t h e  maximum wave growth i s  predominant ly  de termined by 

i n v e r s e  : l a n d a u  damping ( y  a f i  (w/k) a nh/nt I Y < A w )  , 

and t h e  q u a s i l i n e a r  e f f e c t  domi'nates wave n o n l i n e a r i t y  [ F i g .  l ( a ) l .  

With h i g h e r  . beam d e n s i t y !  , ' . 'thf growth r a t e  of t h e  wave 

w i t h  phase  v e l o c i t y  w/k - u  [ l  - 1/2 (nb/2no) 
b  

'I3 ] becomes 

l a r g e  mainly  due t o  r e a c t i v e  c o u p l i n g  t o  s a t i s f y  y  > A w .  I n  , 

t h e  l a t t e r  c a s e ,  p a r t i c l e  t r a p p i n g  c a u s e s  wave s a t u r a t i o n  a f t e r  

t h e  a m p l i t u d e  r e a c h e s . t h e  v a l u e  t o '  f u l f i l l  (2e6/m)1/2 = ub - w/k, 

[ F i g .  l ( c , d ) l .  These c h a r a c t e r i s t i c s  a r e  i n  agreement w i t h  t h o s e  

o f  O ' N e i l  and  ~ a l r n b e r ~ l '  who d d f i n e  a  beam t h e r m a l i z a t i o n  parameter  



S = (vb/ub) (2no/nb)1/3 u is the beam's velocity spread; if S < 1 
b 

reactive coupling dominates while for S > 1 resonant effects prevail. 

The present experiments were performed in the transition region S - 0.2 -+ 5. 

To strengthen the association of the overshoot with trapping, 
.., 

the fall time (rf) is plotted as a function of .+max in Fig. 2, 

in good agreement with the trapping relation r a . The b 

appearance of a strong bounce frequency modulation is usually 

observed only for one bounce cycle after the initial growth; 

a coherent trapping oscillation tends to.be suppressed d.ue to the 

fact that the trapped beam ions in different spiral steps oscillate 

with different phases in the potential trough of this flute-type 

(kZ = 0) wave. After the overshoot, we note, the wave frequency a ! 

shifts to a slightly lower value (Aw/wLH < 0.1) and the spectral . . .; 
width increases. 

An ion energy analyzer (size 2 mrn) is used to directly . , ., 

observe the nonlinear modification of the beam distribution using 
t i*? 

Boxcar sampling techniques with a resolution time of 2 - 4 vsec. 

Because the instability propagates perpendicularly, it has no 

effect on the parallel component of the beam velocity. The time 

evolution of the perpendicular velocity distribution is shown 
L 

in Fig. 3. In this case the instability overshoot is weak and 

the time scale f0.r the nonlinear modification of the distri- 

bution, r - 15 psec , agrees with the time est,imate from n ... 
quasilinear diffusion for /T - 0.2 whi& falls in the e'max o 
transition region, r n = ' c ~  = T~ . The beam distribution 

actually becomes monotonically decreasing,before setting down 

to a level plateau, an effect also observed in particle simulations. 10 

For lower beam densities (the quasilinear regime), accurate f (v ) 
. . . . . - . . . .  . . . -  

b 1 
- .  - .  . 

measurements could not bemade because of the' sensitivity of the energy analyzer. 
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; 
F i g u r e  4 g i v e s  an  example o f  t h e  e v o l u t i o n  when t h e  over-  

-< L 

s h o o t  i s  s t r o n g e r  (eema$To ' 0 . 3 )  and a  bounce back b 

o f  t h e  i n s t a b i l i t y  a m p l i t u d e . o c c u r s .  The d i s t r i b u t i o n  remains -. J 

- 
peaked u n t i l  r e a c h e s  a maximum and t h e n  r a p i d l y  f l a t t e n s .  A s  

t h e  a m p l i t u d e  r e a c h e s  a  minimum, t h e  peak r e a p p e a r s  and s l i d e s  t o  

lower  energy  a s  t h e  wave regrows.  Although,  t h i s  p r o c e s s  occurs  

on a  l i t t l e  l o n g e r  t i m e  s c a l e ;  t h a n  t r a p p i n g ,  it. r e p r e s e n t s  t h e  

p a r t i a l l y  r e v e r s i b l e  c o h e r e n t  o s c i l l a t i o n  of beam i o n s  inwave t r o u g h s .  

(whole p r o c e s s  o c c u r s  i n  less i t h a n  t h e  beam t r a n s i t ,  - t i m e .  ) 

The q u a s i l i n e a r  t h e o r y  f o r  a  two-dimensional r i n g  o r  

l o s s - c o n e  d i s t r i b u t i o n  4,12 a l s o  s u g g e s t s  t h e  occurrence nf an  

o v e r s h o o t , a l t h o u g h  t h e  p r e d i c t e d  ampl i tude  dependence i s  

--2 
T f  a 4 i n s t e a d  of T~ m-lJ2 as observed h e r e .  I n  a d d i t i o n ,  

t h e  p r e s e n t  geometry i s  e f f e c t i v e l y  one-dimensional  because  

b o t h  beam and wave p r o p a g a t e  a l o n g  t h e  same az imutha l  p a t h .  
3 

A s  t h e  i n s t a b i l i t y  grows and d i f f u s e s  t h e  beam i n  v e 1 n c i . t ~  

space, i t  a l s o  d i f f u s e s  t h e  beam r a d i a l l y  inward;  a s  t h e  beam 

i o n s  s l o w  i n  p e r p e n d i c u l a r  v e l o c i t y ,  t h e i r  Larmor r a d i i  a r e  

reduced. '  T h i s  e f f e c t  i s  obserGed a s  a  f l a t t e n e d  r a d i a l  beam 

d e n s i t y  p r o f i l e  a f t e r  i n s t a b i l i t y  s a t u r a t i o n .  Wave h e a t i n g  of  

t h e  t a r g e t  plasma was t o o  s m a l 2 . t o  he d e t e c t e d  due t o  t h e  

r e a s o n s  s t a t e d  i n  t h e  e a r l i e r  c~ommunication, 
3 

The anomalous beam s lowing (veff/vclassical 
3 = l o 2  - l o  ) 

o b s e r v e d  i n  t h e  p r e s e n t  exper iment  h a s  a  s t r o n g  impact  on perpen- 

d i c u l a r  n e u t r a l  beam i n j e c t i o n  i n  Tokamak o r  M i r r o r  f u s i o n  d e v i c e s .  
* 

I n  t h e  p r e h e a t i n g  s t a g e  t h i s  anomalous e f f e c t  may be  u s e f u l ,  b u t  

it w i l l  have d e l e t e r i o u s  r e s u l t s  on t h e  r i p p l e  i n j e c t i o n  scheme, 
1 3  

o r  on t h e  d e u t r o n  i n j e c t i o n  burning s t a g e  because  of t h e  r a p i d  



loss of fusable ions. In future fusion devices, high-energy 
3 4 

charges fusion-reaction products (H, T, He , He ) may also 

destabilize the lower hybrid wave. These ions may be poorly 

confined because of their large banana orbits, and in this 

case, anomalously fast perpendicular momentum loss would be 

beneficial as it would improve the confinement of these particles. 

Discussions with Dr. H. Ikezi, P. K. Kaw, M. N. Rosenbluth, 

T. H. Stix, W. Tang, and S. Yoshikawa have been very valuable. 

We also thank L. Gereg for his expert technical assistance. 
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772161 
Fie. lj Instability evolution for various beam densities. 

n = 10 c f  , ubs/yo = 5.44,  Tb = 0.5 eV. All time scales are 
28 usec/div. (a) n /n = C.18%, e k ~  = (O.l)/div; (b) 0.27%, 
(0.1) (c] 0.45%, (8.27; (6) 2.4% ( 0 . 8 ) .  
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Fig. 3. Beam perpendicular energy distribution and wave 
amplitude vs time. The target ion distribution is not shown 
for claritr eema,/To = 0.2 * 50%. 



Fig. 4. Beam perpendigular energy distribution 
amplitude (b) vs time for e@max/~o ' 0.3 k 50% and a 
tial overshoot7 (1/2)m = 8 eV. The arrow shows 
gy scale of the trappingbath around (1/2) m (w/k,) 2 

7 7 3 4 3 4  
(a) and wave 
large ini- 
rough ener- 
at t = 80 




