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The Search for Omega!
by

David M. Young? and Tsun-Zee Mai®

Abstract

For the effective use of iterative algorithms for solving large sparse linear systems it is
often necessary to select certain iteration parameters. Examples of iteration parameters are
the relaxation factor, omega, for the SOR and SSOR methods and the largest and smallest
eigenvalues of the matrix for a basic iterative method when Chebyshev acceleration is
used to speed up the convergence. For many iterative algorithms the performance is
extremely sensitive to the choice of iteration parameters. Moreover, uncertainty as to
how to choose iteration parameters has often, in the past, tended to discourage the use of
iterative methods, as opposed to direct methods, for certain classes of problems.

The purpose of this paper is to review the development of procedures for choosing
iteration parameters, with special emphasis on methods applicable to linear systems arising
from the numerical solution of partial differential equations. The discussion will include a
priori procedures including analytic techniques, spectral methods, and methods based on
related differential equations. Automatic, or “adaptive”, procedures, wherein the iteration
parameters are improved as the computation proceeds, will also be discussed. Some of
these procedures have been incorporated into the ITPACK software packages for solving
large sparse linear systems. Numerical experiments indicate that the amount of overhead
needed to determine satisfactory parameters is usually not excessive. Methods for choosing
iteration parameters for nonsymmetric systems will also be considered.

1 The research was supported in part by the Nationa: Science Foundation under Grant
DCR-8518722, by the Department of Energy under Grant DE-FG05-87ER25048, and by
the U.S. Air Force Office of Scientific Research and Development under Grant AFSOR-85-

0052 with The University of Texas at Austin.
2 Center for Numerical Analysis, The University of Texas, Austin, Texas.
3 Mathematics Department, The University of Alabama, Tuscaloosa, Alabama.
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1. Introduction

For many iterative algorithms for solving large sparse linear systems the rate of
convergence is very sensitive to the choice of the iteration parameters. It seems fair to say
that uncertainty as to how to choose iteration parameters has been an important stumbling
block which has tended to discourage the use of iterative methods, as opposed to direct
methods, for solving certain classes of problems. In this paper we review some of the
procedures which have been developed over the years for choosing iteration parameters.

A prime example of an iteration parameter is the relaxation factor, omega, which
is used for the SOR method and for the SSOR method. Much of our discussion will be
devoted to the “search for omega” for these methods. Another example of an iterative
algorithm involving iteration parameters arises when Chebyshev acceleration is used to
speed up the convergence of a basic iterative method with an iteration matrix G. Here the
iteration parameters which are needed are the smallest and largest eigenvalues of G.

Other examples of iteration parameters include: the shift parameter for the shifted in-
complete Cholesky method proposed by Manteuffel [1980]; the parameters for the strongly
implicit method, see e.g. Stone [1968] and Dupont et al [1968]; and the parameters for the
alternating direction implicit method of Peaceman and Rachford [1955].

~ Before discussing procedures for choosing iteration parameters we give a review, in
Section 2, of various types of iterative algorithms where iteration parameters arise. In Sec-
tion 3 we describe a prior: procedures for choosing iteration parameters. Here one attempts
to estimate the parameters in advance. The techniques used include analytic techniques,
spectral techniques, and techniques involving the use of related partial differential equa-
tions. While such techniques are often useful, in many cases they do not yield sufficiently
accurate parameter estimates. In Section 4 we describe adaptive techniques where im-
proved estimates are determined automatically as the computational process proceeds. In
many cases these procedures yield satisfactory parameters without an excessive amount of
additional computational effort. Some of the adaptive procedures have been incorporated
into the ITPACK software packages. The discussion includes methods used in searching
for omega for the SOR method as well as adaptive methods for finding acceleration param-
eters for Chebyshev acceleration. Adaptive SSOR with Chebyshev and conjugate gradient
acceleration and variational-based adaptive methods are also considered.

For most of our discussion it is assumed that the matrix A of the linear system is
symmetric and positive definite (SPD). The case where the matrix A is nonsymmetric is
much more complicated. Various approaches for choosing iteration parameters for the SOR
method and for Chebyshev acceleration are considered in Section 5. A composite adaptive
procedure, based on the use of a generalized conjugate gradient method, is described for
finding parameters associated with certain basic iterative methods.

We wish to emphasize that our review is by no means complete. There are no doubt



many excellent schemes of which we are not aware. We would be grateful to have these
called to our attention.

2. Iterative Algorithms and Iteration Parameters

In this section we describe some iterative algorithms for solving the linear system
(2.1) Au=1b

where A is given square matrix and b is a given column vector. Usually, as in the case of a
linear system derived from the discretization of a partial differential equation, the matrix
A is very large and very sparse.

A typical iterative algorithm for solving the linear system (2.1) consists of a basic
iterative method together with an acceleration procedure. A basic iterative method is a
one-step procedure of the form

(2.2) u"tD = Gul™ 4 &
where

G=I-Q'4
(2.3) {k — Q.

Here @ is the “splitting” matrix corresponding to the basic iterative method and the matrix
G is the iteration matrix. The matrix @ is usually chosen to be a simple easily-inverted
matrix such as a diagonal, tridiagonal, upper triangular or lower triangular matrix or as a
product of such matrices.

Examples of frequently-used basic iterative methods include:
Richardson’s method : Q=1

Jacobi method : Q=D
SOR method : Q=1ID-Cg
SSOR method : Q=5>(D-C)D™ (1D -Cy)

Here A =D — C — Cy where D is the diagonal matrix with the same diagonal elements
as A and where Cf and Cy are strictly lower and strictly upper triangular matrices,
respectively. The parameter w is known as the “relaxation factor.”

- For some basic iterative methods, often referred to as “approximate factorization
~ methods,” Q has the form LU where L and U are lower and upper triangular matrices,
respectively. (Often L and U have the same “sparsity” as A). Examples of such methods
are the incomplete Cholesky (IC) method considered by Varga [1960] and by Meijerink
and Van der Vorst [1977], the shifted incomplete Cholesky (SIC) method of Manteuffel
[1980], and the modified incomplete Cholesky (MIC) method of Gustafsson [1979]. Another
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example is the strongly implicit (SIP) method of Stone [1968]. See also Dupont et al [1968].
Except for the IC method, each of the above methods involves a parameter. We refer to a
parameter associated with a basic iterative method as a “splitting parameter.”

In many problems arising from the numerical solution of partial differential equations
by discretization methods the rate of convergence of the SOR method with the optimum
value of w is faster by an order-of-magnitude than that of the Jacobi method. However,
the rate of convergence is very sensitive to w. Similarly, the rates of convergence of many
other basic iterative methods are sensitive to the choice of the splitting parameter.

A basic iterative method (2.2) is symmetrizable if the matrix I — G is similar to
an SPD matrix or, equivalently, if Z(I — G) is SPD for some SPD matrix Z. Most of
the standard iterative methods, involving Richardson’s method, the Jacobi method, the
SSOR method, and the IC method are symmetrizable if A is SPD. More generally, a basic
iterative method is symmetrizable if A and @ are SPD. It should be noted, however, that
the SOR method is not symmetrizable.

If a basic iterative method (2.2) is symmetrizable, then the eigenvalues of G are real
and less than unity. The convergence of a symmetrizable basic iterative method can be
speeded up by the use of a polynominal acceleration procedure. Examples of polynominal
acceleration procedures are Chebyshev acceleration, see e.g. Varga [1957, 1962], Golub and
Varga [1961], and Hageman and Young [1981], and conjugate gradient (CG) acceleration.

The formulas for Chebyshev acceleration are given by
(2.4) u(™ = o {u™ + 41 (Gul™ + & — w4+ (1 = pagr)u™ D,

Here the parameters {p,4+1} and {yn41} are given by

2
(25) M=M= = e e
1 , n=20
Prgl = (1-)! n=1
(1- oszn)_l n=2
where
(2.6) M(G) - m(G)

7= 3 M(G) = m(G)

where m(G) and M(G) are the smallest and largest eigenvalues of G, respectively. In a
given case one normally uses estimates mg and Mg for m(G) and M(G) respectively. We
refer to the parameters mg and Mg as “acceleration parameters.”

For a symmetrizable basic iterative method the rate of convergence of the Chebyshev
acceleration procedure, with exact estimates mg and Mg, is an order-of-magnitude faster
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than that of the unaccelerated method. However, the rate of convergence is often very
sensitive to the choice of mg and Mg. Moreover in the case of Chebyshev acceleration
applied to a basic iterative method with a splitting parameter, such as the SSOR method,
one must choose the splitting parameter as well as the acceleration parameters, mg and
MEg. In the case of the SSOR method, however, it can be shown that m(G) > 0; hence
one can choose mg = 0.

For conjugate gradient acceleration of a symmetrizable basic iterative method one
must choose an auxiliary matrix Z such that Z and Z(I — G) are SPD. In the case where
A and @ are SPD, typical choices of Z are Z = A and Z = Q. There are several equivalent
forms of CG acceleration; see e. g. the discussion of Young et al [1988]. One such form,
which was considered by Concus et al [1976), see also Hageman and Young [1981], is given
by (2.4) where

(Z6(™), 5(n))
(Z§(), (I — G)é6(m)

(2.7) Ynt1 =

-1

_ Tn+1 (Z‘S(n)’ 5(n)) 1 —
Prt1 = [1 T e (26D ey | 0 2 h (b1 =1).
Here the “pseudo-residual” vector §(™ is given by
(2.8) 6™ = Gu™ 4+ k — o™,

It should be noted that there are no acceleration parameters involved. Moreover, it can
be shown that, for a given basic iteration method, CG acceleration converges at least as
fast (in a certain norm) as any polynomial acceleration procedure including Chebyshev
acceleration, applied to the basic method. On the other hand, CG acceleration requires
the computation of inner products after each iteration and thus may require more time per
iteration than Chebyshev iteration. Also, for some parallel computers the communication
time needed to compute the inner products may be costly.

It should be noted that, given an accurate estimate Mg of M(G), one can obtain
a good bound on the norm of the error ||u(™ — @||, where @ = A7'b is the true solution
of (2.1), in terms of the norm of the pseudo-residual vector 6(™). Thus one can estimate
lut™ — al| by

1
(n) _ 5 [ . (n)
(2.9) e o Ll

(For a suitable choice of norm one can replace “~” by “<”.) Thus an accurate estimate
of M(G) is useful in determining when an iterative process should be terminated. We
remark that for the CG method an accurate estimate of M(G) can be obtained by solving
an eigenvalue problem for a tridiagonal matrix involving the {v;} and the {p;} of (2.7);
details are given in Hageman and Young [1981); see also Mai [1986).
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3. A Priori Techniques

In this section and in the next section we review some of the techniques which can
be used to estimate optimum iteration parameters. We consider two types of procedures,
namely “a priori” techniques, which are usually carried out before the iteration process be-
gins, and “adaptive techniques” which are carried out along with the iterative process. The
a priori techniques described in this section include analytic techniques, spectral methods
and procedures involving the use of related differential equations.

Analytic Techniques

In some cases it is possible to relate the eigenvalues of the iteration matrix G corre-
sponding to a relatively complicated iterative method, such as the SOR method, to those
of a relatively simple method, such as the Jacobi method. Thus, for example, if A is a
consistently ordered matrix then the eigenvalues A of the SOR matrix and the eigenvalues
p of the iteration matrix B of the Jacobi method are related by

(3.1) Adw—1=wpVX

see Young [1971] for details. If A is an SPD matrix the optimum value of w for the SOR
method is

(3:2) I /1-5B)y

where S(B) is the spectral radius of B. Thus for the consistently ordered case the determi-
nation of the optimum value of w can be reduced to the determination of S(B). Moreover
for some linear systems derived from problems involving elliptic partial differential equa-
tions with constant coefficients one can find S(B) using spectral methods as described
below.

Even if A is not consistently ordered, but is an “L-matrix” (i.e. if a;; > 0 for all ¢
and a;,; < 0 for ¢ # j) the use of (3.2) gives a “good” value of w. This follows from work
of Kahan [1958]; see also Wachspress [1966] and Young [1971], Chapter 12.

Another example of the use of an analytic technique involves the SSOR method for the
case where A is SPD.* Good estimates for the optimum value of w and the corresponding
value of S(S,), where S, is the matrix of the SSOR method, can be obtained; see for
instance Habetler and Wachspress [1961], Ehrlich [1964], and Young [1971, 1972, 1977].
The values of w and S(S,, ) are given in terms of the largest eigenvalue M (B) of the matrix B
corresponding to the Jacobi method and S(LU ) where L and U are strictly lower triangular

* Ehrlich [1964] obtained estimates for the optimum w for block SSOR for certain
separable problems using spectral techniques.
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and strictly upper triangular matrices, respectively, and B = L 4+ U. Thus it is shown in
Young [1977] that a good value, wy, of w is given by

(3.3) wy = 2

14 4/1-2M(B) + 45
where
(3.4) 3= max{%, S(LUY}

The corresponding value of S(S,,) satisfies

1-M(B)

1-2M(B)+483
1—M(B)

1-2M(B)+483

(3.5) S(Su,) <

It is not difficult to see that for the SSOR method to be effective S(LU) must not exceed
41 + € for some small e. This condition is satisfied if one uses the natural ordering of the
grid points and if the coefficients of the differential equation are sufficiently smooth; see
Young [1977].

Spectral Methods

For linear systems corresponding to separable partial differential equations with con-
stant coeflicients over rectangular regions, the eigenvalues of A can often be found using
“spectral methods,” i.e. methods based on the use of finite Fourier series.* Thus, consider
the “model problem” based on the Dirichlet problem in the unit square. Using the stan-
dard 5-point difference equation with a square grid of size h = M ~! with M an integer,
we have the difference equation

(36) u(:c + h,y) + ’U,(:E - h7y) + u(m,y + h) + u(x,y - h) - 4u(:z:,y) =0

for all interior grid points (z,y). Multiplying the equations by —1 and moving the terms
involving the (known) boundary values to the right hand side, we obtain a system of the
form (2.1) where A has 4’s on the main diagonal, —1’s in certain off-diagonal elements and
0’s elsewhere. It can be verified directly that the eigenvectors of the difference operator

corresponding to A are

(3.7) Vpq(Z,y) = sinprzsingry

* For one of the earliest papers to use finite Fourier series to analyze difference equations
see Phillips and Wiener {1923].



and the corresponding eigenvalues are

(3.8) Lpg = %[cos pmh + cos gmh|

where p,q = 1,2,---, M —1. Thus the eigenvalues y of the Jacobi method lie in the interval
(3.9) —costh < p < cosmh.

Hence Chebyshev acceleration can be used for the Jacobi method with

(3.10) —mg = Mg = coswh.

A similar technique can be used for rectangular regions with an elliptic differential
equation of the form

(3.11) (Aug)z + (Cuy)y + Fu=G

where A,C and F' are constants; see e.g. Young [1971]), Chapter 6. Again M(B) and
m(B) can be computed. Moreover, bounds on M (B) and m(B) can be computed even for
non-rectangular regions and for variable coefficients. The bounds involve upper and lower
bounds for A, C, and F' in the region. For non-rectangular regions a monotonicity theorem
is used which shows that S(B) is an increasing function of the region involved.

Spectral methods can sometimes be used to determine the eigenvalues of the iteration
matrix L, for the SOR method even when no relation, such as (3.1), is available between
the eigenvalues of £, and the eigenvalues of B. Thus, if one uses the standard 9-point
difference equation instead of the 5-point difference equation for the model problem, the
matrix A is not consistently ordered and (3.1) does not hold. (Of course such a relation
would hold if line SOR were used.) Nevertheless the difference equation is separable and
the eigenvalues of the SOR method can be determined, implicitly, as described by Adams,
LeVeque and Young [1986]; (see also Van de Vooren and Vliegenthart [1967]), by the
following polynominal equation

4 2 4 1
(3.12) a* - [gwcq + —w?cle la® — [2(1 —w) — —w?c + —5-w2c12,(c§ + 4)]a®

25 ° 25 12
4 2 2.2 2
+ [-S—w(l —w)cg — 55Y cyegla+(1—w)* =0
Here A = o? is an eigenvalue of £, and

- (oo

cq = cosqmh
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To find S(L.,) one must solve the above quartic equation numerically for p,q =.1,---, M —1.
One can then determine S(L,). Next, one can find the value of w which minimizes S(£.)
by a direct search procedure.

Using asymptotic analysis it can be shown that for small h
(3.14) S(L,)~1-1.797h
We remark that an approximate asymptotic result, namely,
(3.15) S(L,)~=1-2.357h

can be obtained using the much less laborious analysis of Garabedian [1956], which is based
on the use of a related hyperbolic differential equation.

Use of Differential Equations

A technique which has sometimes been used for analyzing the behavior of an iterative
method for solving an elliptic problem is to consider a related time-dependent problem.
Essentially the iteration number, n, is replaced by the time variable ¢. Thus, suppose one
is trying to solve the model problem using the “extrapolated Jacobi method” defined by

(3.16) w D = 4(Bu(™ 4 ¢) + (1 — y)u™
where
B=I-D1'4
3.17
( ) { c=D"1

Here D is defined in Section 2. The number v is the extrapolation factor. The ex-
trapolated Jacobi method corresponds to the forward difference method for solving the
time-dependent equation

(318) Ut = Uzg + Uyy-

The extrapolation factor v depends on the time step. If one uses variable time steps, this
correspond to the use of variable extrapolation with the Jacobi method, as defined by

(3.19) wH =y (Bu'™ +¢) + (1 — vp1)u™

Here again the {Yn+1} are determined by the time steps. We remark that with a suitable
choice of the {75+1} the convergence of the Jacobi method can be speeded up by an amount
comparable to the speedup achieved using the Chebyshev acceleration. The use of variable
extrapolation with the Jacobi method was studied by Huang [1987] in his PhD thesis.
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Another example of the use of a related differential equation to analyze the conver-
gence of an iterative method for solving a linear system is the analysis of Garabedian [1956]
for the SOR method to which we have previously referred.

4. Adaptive Techniques

In many cases it is difficult or impractical to determine the iteration parameters in
advance to sufficient accuracy. For example suppose one is using the SOR method and
that the coefficient matrix A is consistently ordered. If the true value of S(B) is .9999
but if one uses an estimate of .99 to determine omega, the rate of convergence may be
reduced by a factor of nearly 20. This illustrates the fact that it is seldom possible to
get a sufficiently good estimate of S(B) using a priori methods. In order to get S(B) to
sufficient accuracy it is often necessary to use adaptive techniques.

The basic idea of an adaptive procedure is as follows: One starts the iterative process
with initial estimates of the optimum parameters. Periodically the convergence of the
procedure is tested and compared with the expected convergence rate (which one would
obtain if the exact optimum parameters were used). If the convergence rate is satisfactory
the process is continued; otherwise new parameter estimates are determined according
to some procedures. The development of such procedures is not simple in general, since
one must develop procedures to tell how rapidly the method, with the given choice of
parameters, is converging and, if the method is found to be converging too slowly, how the
parameters should be changed to speed up the convergence.

In this section we discuss the following: the search for omega for the SOR method;
adaptive procedures for Chebyshev acceleration; and the choice of omega for the SSOR
method with Chebyshev and CG acceleration. We also consider variational-based adaptive
procedures, including a composite adaptive procedure developed by Mai [1986].

The Search for Omega for the SOR Method

Early work on the search for omega for the SOR method was based on the use of (3.1)
and (3.2) as well as other related formulas. One such approach was considered by Young
[1955]. Use was made of the fact that if A is consistently ordered then the eigenvalues of
the matrix £ for the Gauss-Seidel method are the square of the eigenvalues of the matrix
B for the Jacobi method. Thus by (3.2) the optimum value of w is given by

2
wp =
1+4/1-5(1)
The eigenvalues of £ are real, nonnegative:and less than one. Hence one can try to

determine S(L£) using the ordinary power method. Then, having estimated S(L), one can
determine wj by (4.1).

(4.1)

A drawback of the above scheme is that many iterations of the Guass-Seidel method
are required to determine S(L£) and that the iterations are essentially wasted. A much more
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sophisticated scheme was used by Hageman and Kellogg [1968] where the power method
is speeded up by the use of Chebyshev polynomials. Other procedures are described by
Varga [1957] and by Bilodeau et al [1957].

Ideally, one would like to avoid carrying out “wasted iterations.” Instead it would be
desirable if every iteration could be useful, to some extent, even if perhaps not as useful
as though the optimum value of the w is used. Several schemes have been proposed for
doing this including schemes of Kulsrud [1961], Carré [1961], Rigler [1965] and Reid [1966].
Each scheme is based on the following ideas. If one knows the spectral radius of the SOR
matrix, L, corresponding to a given w, one could, using (3.1) obtain a good estimate of

S(B) by

S(Ly)+w-—-1

w+/S(Ly)

Having found S(B) one could get an improved value of w using (3.2).

(4.2) S(B) =

The basic procedure is as follows. Choose a value of w not greater than w;. (For
example let w = 1.) Iterate for several iterations and estimate S(L,). Then compute S(B)
from (4.2) and then a new value of w by (3.2).

The problem of adaptively determining the optimum value of w for the SOR method
for the case where the coefficient matrix is SPD and consistently ordered is complicated by
the fact that the matrix £, of the SOR method may have principal vectors of grade 2. This
leads to slow the convergence and, together with the fact that the eigenvalues of L., are
often complex, makes the convergence erratic and also makes it hard to estimate S(L,).
A rather elaborate program, which is based on the ideas given above and which takes into
account a great many of the potential difficulties, has been developed by L. Hageman. The
program is described in Chapter 9 of Hageman and Young [1981]. The program is also
included in the ITPACK 2C software package; see Kincaid et al [1982].

Adaptive Chebyshev Acceleration

For Chebyshev acceleration of a basic iterative method two acceleration parameters,
mpg and Mg, are normally required in addition to the splitting parameters, if any. However,
in many cases a good lower bound, say m, is available for m(G). An example is the SSOR
method where it is known that 0 < m(G). In such cases one can let mg be fixed and equal
to m. There remains one acceleration parameter, Mg, to be determined. For a given value
of Mg one can determine how fast the method should be converging if Mg were equal
to M(G). Moreover one can measure the actual rate of convergence. Also procedures
are available to improve Mg whenever it is found that the convergence is too slow. An
adaptive procedure based on these components is described in Hageman and Young [1981].
An important property of the procedure is that the values of Mg are nondecreasing and
are never greater than M(Q).
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Extensive numerical experiments over a wide range of problems indicate that the
“overhead” associated with the adaptive process is seldom more than 25%-30%; see Hage-
man and Young [1981] and Jea and Young [1988]

Several approaches have been used for the case where mg and Mg must both be
determined adaptively, see e.g. Diamond [1971], Hageman and Young [1981], and Mai
[1986]. Recently Mai and Young [1988] have considered the use of a “dual adaptive proce-
dure,” based on a suggestion of Dr. Tom Manteuffel. Numerical experiments based on this
procedure indicate that it is somewhat more effective in many cases then the Hageman
and Young procedure and the Mai procedure.

An alternative approach for finding m(G) and M(G) based on the use of modified
moments has been used by Golub and Kent [1987].

Adaptive SSOR With Chebyshev and CG Acceleration *

Since the SSOR method is symmetrizable it is usually applied in conjunction with
an acceleration procedure — either Chebyshev acceleration or CG acceleration. In either
case the relaxation factor w must be estimated. If Chebyshev acceleration is used M(S,,)
must also be determined. In Hayes and Young [1977] and Grimes et al [1979] an adaptive
procedure is described which is focused on estimations of S(B) and S(LU). The procedure
is based on analytic formulas given in Section 3 relating the good value of w and the
corresponding value of M(S,,) to S(B) and S(LU). The procedure is used in the ITPACK
2C software package; see Kincaid et al [1982]. Another adaptive procedure for finding w
was given by Benokraitis [1974]. An alternative procedure based on a composite adaptive
procedure corresponding to a variational method is described below.

Variational-Based Adaptive Methods: The Composite Adaptive Procedures

Let us again consider the linear system (2.1) where A is SPD. It is easy to show that
the problem of solving (2.1) is equivalent to that of minimizing the quadratic form

(4.3) F(u) = %(u, Au) — (b,u)

Suppose that we have a basic iterative method (2.2) for solving (2.1) where the
splitting matrix @ depends on a (splitting) parameter, say w. Given u™ it would seem
reasonable to choose w to minimize F(u("t1). In the case of the SOR method, for example,
it can be shown that, (assuming D = I,L = Cr, and U = Cy)

1|12~w
(4.4) Fu"tY) — F(u™) = -3 [TJ (6™, 6(™)

* Evans and Forrington [1963] considered an iteration procedure for finding the opti-
mum value of SSOR using a procedure not related to an acceleration procedure.

11



where §(") = w(I —wL) '™ and r(™ = p — Au(™). One could determine w to minimize
F(u{™*1) at each step or periodically. This might involve a direct search procedure.
However, in some cases, for example for the case where A is red-black the relation (I —
wL)™! = I + wL holds and the problem of minimizing F(u("*1)) is equivalent to that of
minimizing a quartic polynomial in w.

We now describe a somewhat more general approach which is related to the method
of steepest descent.

Given u(™ choose )\, and w to minimize
/\2
(4.5) F(u®™+)) = P(u(™) - X, (6™, r(™) 4 7"(50‘), As(™),

Here 6(™ = Q(w)~1r(™,
The minimization of F(u(**1)) with respect to \, gives

(6™, r(m))

4. Ap = ——————2_

(4.6) (6, A6(m)

and

(47) F(u(n+1)) _ F(u(n)) - _ 1 (6("'),7'(71))2

2 (6, A5(m))”

One then can seek to choose w to minimize F(u(™*1)). Again this might be done after each
iteration or periodically. A direct search might be required unless an analytic formula can
be found.

We now consider a more general approach which we refer to as the “composite adap-
tive procedure.” We assume that Q(w) is SPD for each w so that the basic iterative
method is symmetrizable. It can be shown that if CG acceleration with Z = @ is applied
to (2.2) then, for each n, F(u(**1)) is minimized with respect to any polynomial accel-
eration procedure based on (2.2). Here we write the CG acceleration procedure in the
two-term form

(4.8) u(ttD) = (™ 4 ) p(™
p™ =6M™ +a, ,_p»V

where A, and ap ,—1 are chosen to minimize F(u(""'l) ). For the composite ar‘apuve
procedure where w varies we choose an integer s > 0 and let

(4.9) P =6t ann1p™D + - g o pmT
where again o n_1,%n n-2,"" " @nn—s, \n and w are chosen to minimize F(u{"t1).
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The case s = 0 reduces to the procedure defined by (4.5) — (4.7) above. The case
s = 1 has been analyzed by Mai [1986]. Numerical experiments have been carried out
which show that the convergence rate is improved and that the optimum value of w is
obtained to reasonable accuracy. However, the amount of work required to find w at each
step is quite high. It is expected that with the use of parallel computers the search for the
optimum w can be greatly speeded up.

5. The Nonsymmetric Case

For many problems involving partial differential equations the matrix A is not SPD.
For example consider the convection-diffusion equation

(5.1) Uzg + Uyy + Dug = 0.

If the standard 5-point finite difference equation based on central difference formulas is
used, the matrix A is not symmetric and hence is not SPD. If A is not SPD, then most
of the standard basic iterative methods are not symmetrizable; i.e. I — G is not similar to
an SPD matrix. One consequence of this is that the eigenvalues of the iteration matrix G
are not necessarily real and less than one.

We now describe some of the approaches which can be used to solve linear systems
where the matrix is not SPD. One approach is to use the ordinary SOR method. One can
also use Chebyshev iteration. In each case the formulas are the same as in the symmetriz-
able case but the optimum parameters are determined in a different way. A number of
generalized CG acceleration algorithms are also available; see e.g. Hageman and Young
[1981]. As an alternative to generalized CG acceleration algorithms, one can use various
Lanczos algorithms. These are also described in Hageman and Young [1981] and in Young
et al [1988].

The SOR Method

For the case where A is consistently ordered the relation between the eigenvalues of
the SOR matrix £, and those of the Jacobi matrix B holds. For separable problems it
is often possible to find regions in the complex plane which contain all eigenvalues of B.
Programs are available, see e.g. Young and Eidson [1970], Young and Huang [1983] and
Huang [1983] for finding the optimum value of w when all eigenvalues of B are known.
Usually it is sufficient to have available certain key eigenvalues of B.

For more general problems Ehrlich [1984] and others have developed an “ad hoc SOR”
procedure. This procedure involves choosing values of w at individual mesh points. The
value of w used at a given mesh point is that which one would obtain for a representative
rectangle if the coefficients of the differential equations were constant throughout the rect-
angle. (In such a related problem the optimum value of w can be obtained analytically).
This ad hoc procedure has been found to work well in practice; however, a rigorous analysis
of the procedure remains to be made.
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Chebyshev Acceleration

If the eigenvalues of the basic iterative method G are complex but have real parts less
than one, we can apply Chebyshev acceleration. The method is defined by (7). However
the {v;} and the {p;} are given in terms of two real numbers d and ¢? which relate to an
"optimum ellipse”. This ellipse contains all eigenvalues of G and has center at d and foci
at d % |o| if o2 is positive and at d £ |o|: if 02 is negative. Here 02 = b?> — a? where a and b
are the lengths of the semi-major axis and the semi-minor axis respectively of the ellipse.
(See Hageman and Young [1981], Chapter 12, for more details.)

To find d and o2 one needs to first find all eigenvalues of G (or at least certain key
eigenvalues) and, second, one needs to find d and o?. Manteuffel [1977], [1978] developed
an adaptive program which periodically determines key eigenvalues of G and from these
determines d and ¢2. Another approach to finding the key eigenvalue of G is the hybrid
procedure of Elman et al[1984]. This procedure involves first carrying out several iterations
using the GMRES procedure (see Saad and Schultz [1983]) and then using the coefficients
thus obtained to estimate the key eigenvalues. From these key eigenvalues the values of d
and o2 are determined.

Huang [1983] developed an alternate procedure for finding the optimum values of d
and o2, given all of the eigenvalues of G.

Generalized CG Methods and Lanczos Methods

Both the generalized CG acceleration methods (ORTHODIR, ORTHOMIN, and OR-
THORES) and the Lanczos acceleration methods, (including the biconjugate gradient
method of Fletcher [1975]) do not require any acceleration parameters. However, for the
generalized CG acceleration procedures many of the terms must be discarded; otherwise
the machine time and storage needed would be prohibitive. Thus for the generalized CG
procedures one must chose a nonnegative integer s, and discard all but s terms on each
iteration. All of these methods may include splitting parameters. Mai [1986] has proposed
a composite adaptive procedure for combining the adaptive determination of the splitting
parameters with a generalized CG procedure. Numerical results indicate that the split-
ting parameter is determined fairly quickly and accurately; however, there is a need to
improve the efficiency of the minimization procedure which must be carried out during

each iteration.
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