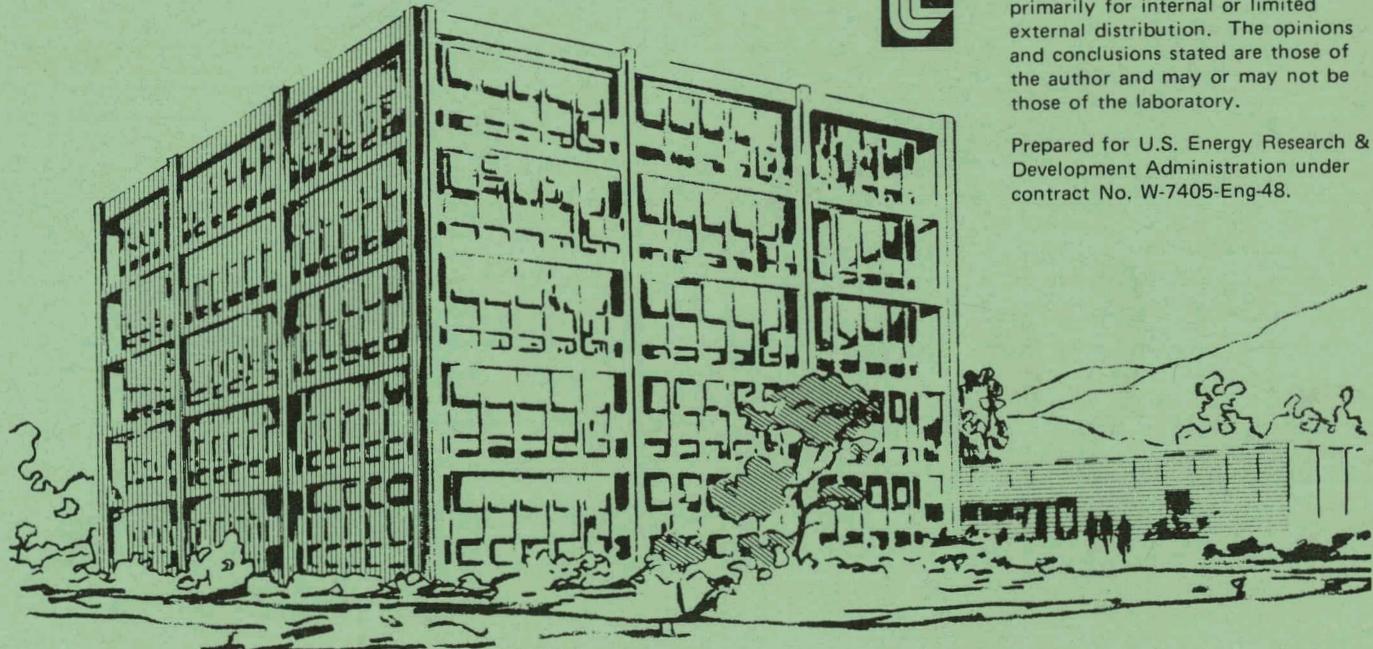


Lawrence Livermore Laboratory

Lithium-water-air Battery Project:
Progress During the Month of July 1976

John F. Cooper, Pamela K. Hosmer, Robert V. Homsy, and Lawrence Koons


August 1, 1976

MASTER

This is an informal report intended primarily for internal or limited external distribution. The opinions and conclusions stated are those of the author and may or may not be those of the laboratory.

Prepared for U.S. Energy Research & Development Administration under contract No. W-7405-Eng-48.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

I. INVESTIGATION OF THE KINETICS OF THE Li/LiOH(aq) ELECTRODE

A. Coulombic Efficiency

As discussed in our previous report,¹ the coulombic efficiency of the lithium dissolution reaction,

may be determined by measuring the rate of hydrogen gas evolution from the combined anodic and cathodic reactions in the cell,

The coulombic efficiency, e , may be related to the hydrogen evolution rate, dV/dt , through the equation:

$$e = \frac{IRT}{nF(P - P_{\text{LiOH}})} \frac{dV}{dt} \quad (3)$$

This month, galvanostatic experiments were performed under constant total pressure using the closed electrolytic cell previously described.²

Results

Experimental results are reported in Table I. The determinations were undertaken for two concentrations of lithium hydroxide (4.15 and 4.70M) and at two values of electrolyte circulation rate. The coulombic efficiency was found to increase from nearly zero (at low current densities relative to limiting current densities) to nearly one (as the limiting current density was approached). This suggested representation of the coulombic efficiency as a function of the dimensionless variable, j_g , the reduced galvanostatic current, where

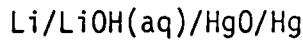
$$j_g = I_g / I_{\text{lim}} \quad (4)$$

The relationship of current efficiency to j_g is shown in Figure 1. Similarly, reduced corrosion current, j_c , and reduced total current, j_t , may be defined:

—NOTICE—
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

$$j_c = (I_g/e - I_g)/I_{lim} \quad (5)$$


$$j_t = I_g/(e I_{lim}) \quad (6)$$

In Figures 2 and 3, j_g , j_c , and j_t are plotted against j_g . The graphs show at once the distribution of the lithium dissolution process between parasitic corrosion and net current producing reactions. At the lower concentration, the total flux of lithium ions from the anode surface remained relatively constant or decreased somewhat as the net current density was allowed to approach the anodic limiting current density. In the more concentrated solution, the total current approached the net (galvanic) current as the state of transient passivation was approached.

In the last column of Table I, the electrode potential and efficiency data is reduced to a dimensionless "figure of merit":

$$eE(Li)/E^\circ \quad (7)$$

This term compares the performance of the lithium electrode to the performance of a lithium electrode in a hypothetical, reversible galvanic cell (of unit efficiency):

It can be seen that coulombic efficiency, not electrode polarization, is the limiting factor in the total energy efficiency of the lithium/lithium hydroxide(aq) electrode.

Conclusions

Several conclusions may be advanced as a consequence of this work. (1) A coulombic efficiency of 1.0 may be approached over a range of lithium hydroxide concentrations. (2) Unit coulombic efficiencies are approached linearly with external cell current as the conditions of "mechanical" or "transient" passivation are approached.

(3) Electrode polarization data indicate that energy losses due to the polarization of the lithium electrode are small even at current densities where the coulombic efficiency exceeds 0.9. (4) Hydrogen gas evolution at currents below $j_g = 1.0$ results in enhanced convection of electrolyte near the lithium anode.

Further investigation of coulombic efficiency as a function of current density, electrode polarization, temperature, and concentration is underway.

II. LITHIUM PRODUCTION TECHNIQUES

A survey of current processes for lithium production has been completed. The results are presented in a report which will be published within August.

1. John F. Cooper, Pamela K. Hosmer, Robert V. Homsy, "Memorandum", June 3, 1976.
2. John F. Cooper, Pamela K. Hosmer, Robert V. Homsy, "Memorandum", July 1, 1976.
3. Robert V. Homsy, "Industrial Production of Lithium Metal: Review of the Literature", UCID ; July 13, 1976.

We gratefully acknowledge the contribution of B. Earl Kelly, who designed and constructed the experimental apparatus used in this research.

Symbols

e	coulombic efficiency of the reaction, $\text{Li} = \text{Li}^+ + 1 \text{ e}^-$
F	Faraday's constant
i	galvanic current density
I, I_g	galvanic current (external circuit current)
i_{lim}	limiting current density
I_{lim}	limiting current
I_c	parasitic (corrosion) current
I_t	lithium dissolution current
j_c	reduced corrosion current (I_c/I_{lim})
j_g	reduced galvanic current (I_g/I_{lim})
j_t	reduced lithium dissolution current (I_t/I_{lim})
$E(\text{Li})$	electrode potential of lithium relative to Hg/HgO , 1M- LiOH
E°	reversible electrode potential of lithium, $(\text{Li} = \text{Li}^+ + 1 \text{ e}^-)$, -3.15 V
n	number of electrons transferred per unit reaction
P	atmospheric pressure
P_{LiOH}	partial pressure of H_2O above lithium hydroxide solution
R	universal gas constant
V	volume of hydrogen gas
t	time
T	temperature

TABLE I. DEPENDENCE OF COULOMBIC EFFICIENCY ON SYSTEM PARAMETERS

Experimental conditions: Electrolyte temperature = 21-22°C
 Partial pressure hydrogen = 97-98 kPa
 Anode area (geometrical = 535-552 mm²)
 Hydrodynamics: stagnation point flow

[LiOH] (molar)	i_{lim} (kA/m ²)	i_g (kA/m ²)	E(Li) (V)*	j_g	j_c	j_t	e	$eE(Li)/E^\circ$ **
4.15	1.09	0.19	-2.88	0.17	1.31	2.48	0.07	0.06
		0.37	-2.86	0.34	1.14	1.48	0.23	0.21
		0.56	-2.82	0.51	0.69	1.20	0.43	0.38
		0.75	-2.87	0.69	0.44	1.13	0.61	0.56
		0.93	-2.85	0.85	0.24	1.09	0.78	0.71
		1.12	-2.60	1.03	-0.02	1.01	1.02	0.84
4.15	1.86	0.18	-2.9	0.10	1.08	1.18	0.08	0.07
		0.37	-2.9	0.20	0.82	1.02	0.20	0.18
		0.54	-2.9	0.29	0.62	0.91	0.32	0.29
		0.72	-2.9	0.39	0.52	0.91	0.42	0.39
		0.91	-2.9	0.49	0.37	0.86	0.52	0.48
		1.09	-2.9	0.59	0.27	0.86	0.67	0.62
		1.27	-2.9	0.68	0.18	0.86	0.78	0.72
		1.45	-2.9	0.78	0.13	0.91	0.87	0.80
		1.63	-2.9	0.88	-0.02	0.86	1.01	0.93
		1.81	-2.7	0.97	-0.06	0.91	1.09	1.00

*Lithium electrode potential measured against Hg/HgO, 1M LiOH reference electrode: Potential corrected for iR drop in electrolyte.

** E° is taken as -3.15 V vs Hg/HgO, 1M LiOH.

TABLE I. DEPENDENCE OF COULOMBIC EFFICIENCY ON SYSTEM PARAMETERS

<u>[LiOH]</u> (molar)	<u>i_{lim}</u> (kA/m ²)	<u>i_g</u> (kA/m ²)	<u>E(Li)</u> (V)*	<u>j_g</u>	<u>j_c</u>	<u>j_t</u>	<u>e</u>	<u>$eE(Li)/E^\circ$</u> **
4.70	1.80	0.05	-2.87	0.03	1.25	1.28	0.02	0.02
		0.09	-2.87	0.05	0.95	1.00	0.05	0.05
		0.14	-2.86	0.08	1.03	1.11	0.07	0.09
		0.18	-2.86	0.10	0.90	1.00	0.10	0.09
		0.27	-2.86	0.15	0.68	0.83	0.18	0.16
		0.32	-2.86	0.18	0.82	1.00	0.18	0.16
1.75	0.41	-2.40	0.23	0.01	0.24	0.96	0.73	
		0.43	-2.00	0.25	-0.01	0.24	1.02	0.65
		0.45	0.09	0.26	-0.03	0.23	1.10	0.03
		0.23	-2.86	0.13	0.78	0.91	0.14	0.13
4.70	2.36	0.41	-2.67	0.17	0.05	0.22	0.79	0.67
		0.45	-2.59	0.19	0.03	0.22	0.85	0.70
		0.50	-2.37	0.21	0.02	0.23	0.93	0.70
		0.54	-1.23	0.23	0	0.23	0.99	0.39

*Lithium electrode potential measured against Hg/HgO, 1M LiOH reference electrode: Potential corrected for iR drop in electrolyte.

** E° is taken as -3.15 V vs Hg/HgO, 1M LiOH.

Figure 1. Dependence of coulombic efficiency on reduced galvanic current density. $(\text{LiOH}) = 4.15, 4.7 \text{ M}$; Temperature = $21 = 22^\circ\text{C}$; stagnation point flow.

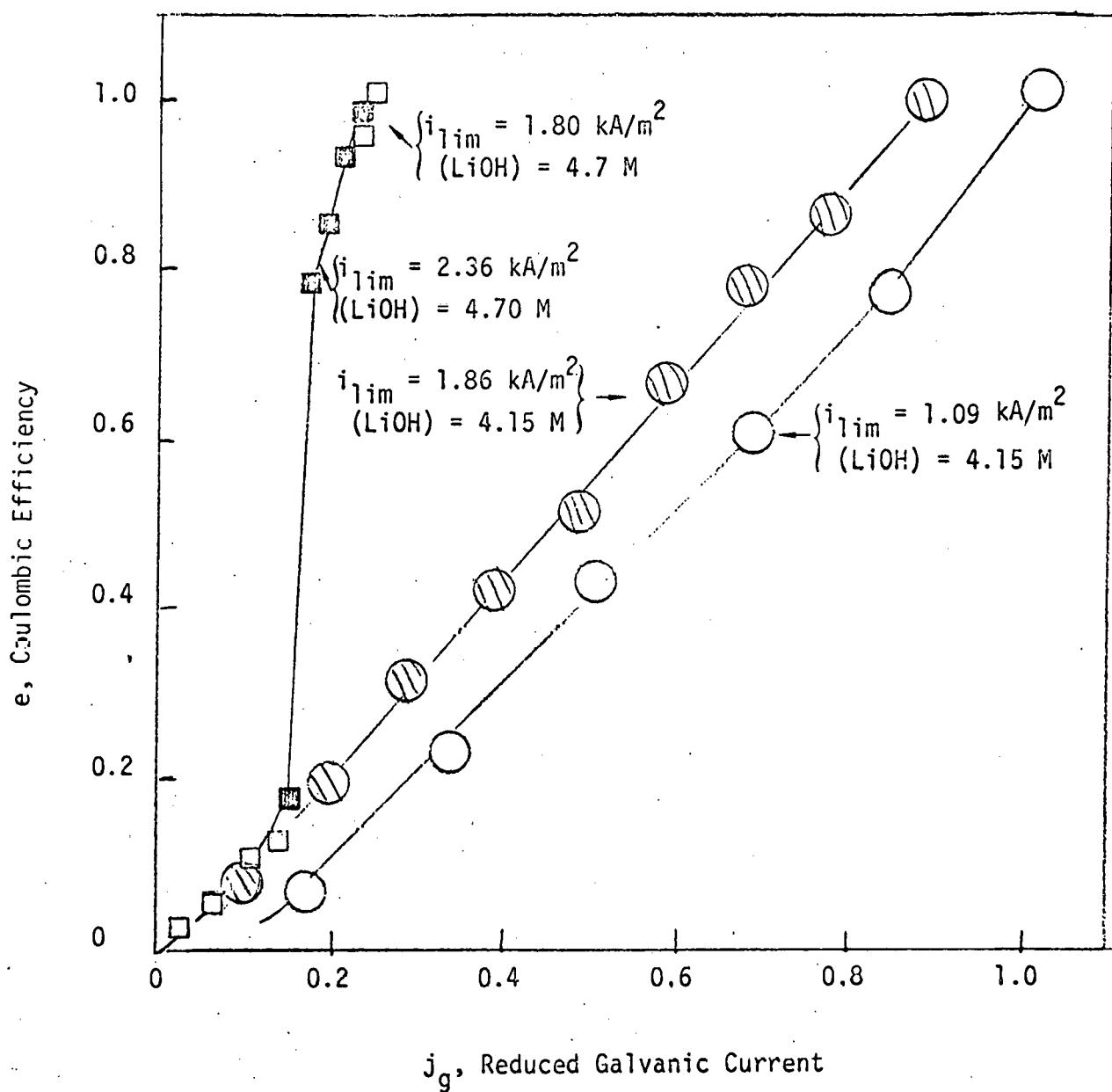


Figure 3. Dependence of reduced total and galvanic current on galvanic current. $(\text{LiOH}) = 4.70 \text{ M}$; $T = 21^\circ\text{C}$; stagnation point flow.

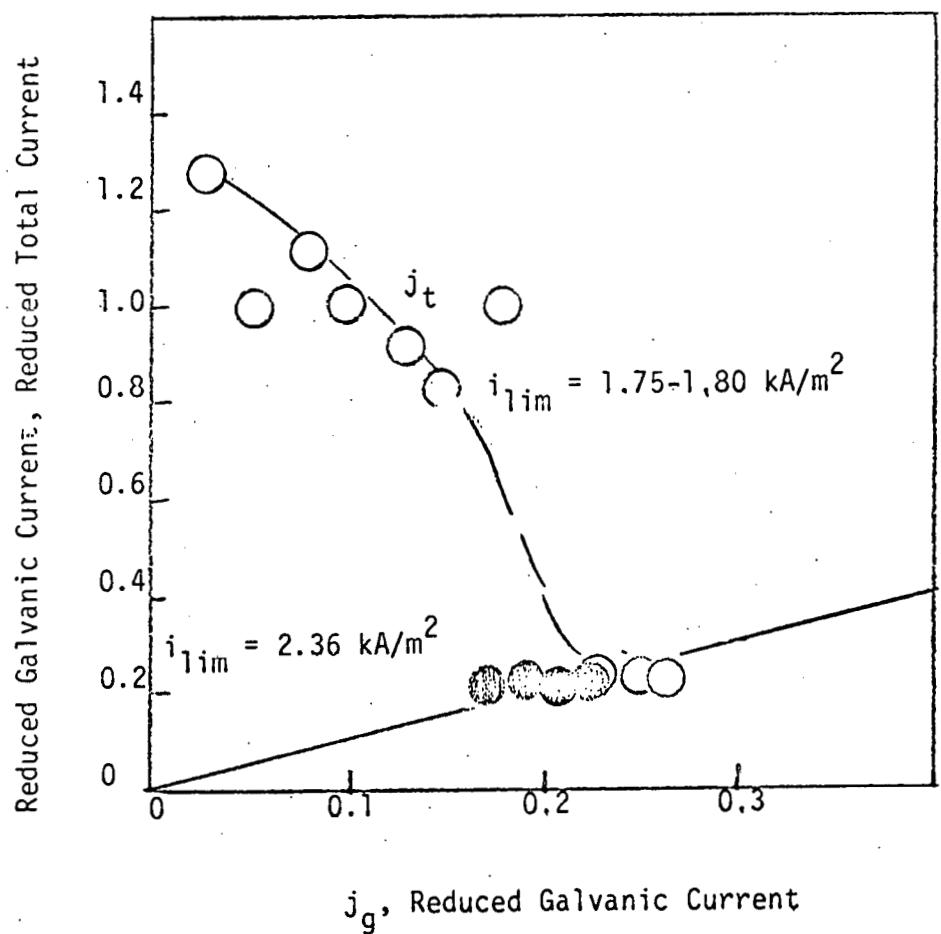
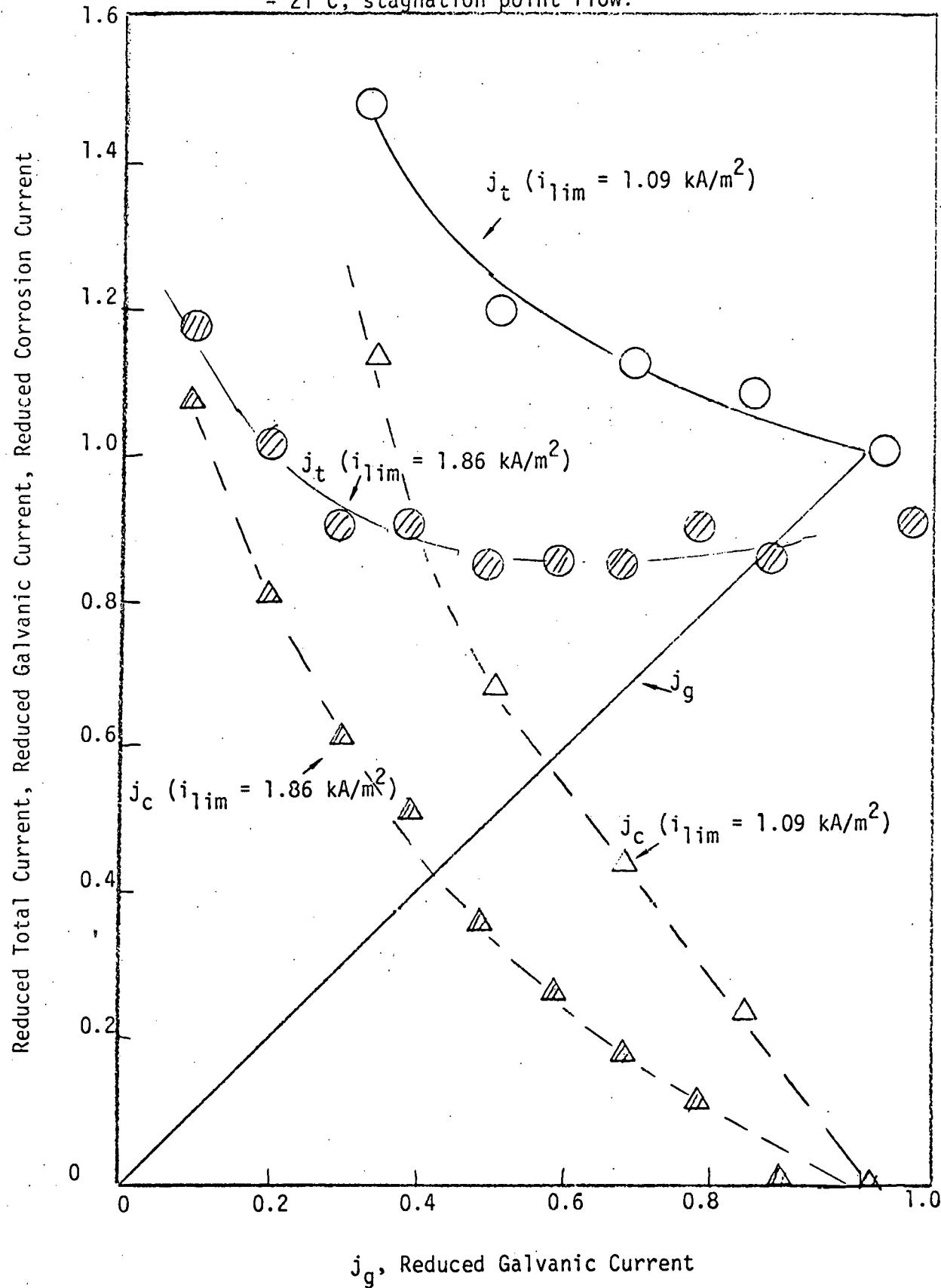



Figure 2. Dependence of total and corrosion currents (reduced) on reduced galvanic current. (LiOH) = 4.15 M; Temperature = 21°C; stagnation point flow.

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research & Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights.

NOTICE

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Energy Research & Development Administration to the exclusion of others that may be suitable.

Technical Information Department
LAWRENCE LIVERMORE LABORATORY
University of California | Livermore, California | 94550